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1. Introduction

In an earlier paper [6], the equation

(PDE) −∆u = g(x, u), x ∈ Ω ⊂ R
n

was studied where Ω is a cylindrical domain in R
n, i.e. Ω = R ×D with D a bounded open set in R

n−1 having
a smooth boundary. For x ∈ Ω, set x = (x1, y) with x1 ∈ R and y ∈ D. The function g satisfies

• (g1) g ∈ C1(Ω × R,R) and is 1-periodic in x1;
• (g2) G(x, z) =

∫ z

0 g(x, s)ds is 1-periodic in z;
• (g3) g is even in x1.

Letting ν(x) denote the outward pointing normal to ∂Ω, the boundary condition taken for (PDE) in [6] was

(BC)
∂u

∂ν
= 0, x ∈ ∂Ω.

Let

L(u) =
1
2
|∇u|2 −G(x, u)

and Ωj = [j, j + 1] ×D for j ∈ Z. By minimizing the functional

I0(u) =
∫

Ω0

L(u)dx

over
E0 = {u ∈W 1,2(Ω0)|u is 1-periodic in x1},
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it was shown in [6] that hypotheses (g1, g2) imply there is a classical solution v of (PDE) minimizing I0 on E0.
If in addition (g3) holds, v is even in x1 and

c0 ≡ inf
E0
I0 = I0(v) = inf

W 1,2(Ω0)
I0 ≡ c. (1.1)

Set
M = {v ∈ E0|I0(v) = c0}·

Note that by (PDE) and (BC), v ∈ M implies v + j ∈ M for all j ∈ Z. The main result in [6] was if (g1–g3)
hold and M consists of isolated points, then for any v ∈ M, there is a w ∈ M\{v} and a solution, U , of (PDE)
and (BC) such that U is heteroclinic in x1 from v to w, i.e. U(x)−v(x) → 0 as x1 → −∞ and U(x)−w(x) → 0
as x1 → ∞. It was also shown that the same result obtains for (PDE) under boundary conditions for different
hypotheses on g including a class of water wave problems studied by Kirchgassner [3], Turner [8], and Mielke [4].

The goal of this paper is to improve on [6] in 3 ways. First the structure of M will be clarified. It will be
shown that M is an ordered set, i.e. v, w ∈ M and v 6≡ w implies v < w or v > w. Secondly the condition that
M consists of isolated points will be weakened. Since if v ∈ M, so is v + 1, either these two functions are part
of a continuum in M, or not. It will be assumed that the latter alternative holds and in particular v and w are
adjacent members of M with v < w.

Thirdly, and this is the main contribution of the current paper, condition (g3) will be dropped. This hy-
pothesis was crucial in [6]. Indeed the approach taken in [6] was to find U as the minimizer of an appropriate
functional. The natural functional corresponding to (PDE) is

I(u) =
∫

Ω

L(u)dx

but when c0 6= 0, I(u) will not be finite on the class of admissible functions. Therefore a renormalized functional
was introduced in [6]. More precisely, set

Γ =
{
u ∈W 1,2

loc (Ω)|u(x) − v(x) → 0 as x1 → −∞ and u(x) − w(x) → 0 as x1 → ∞ for some w ∈ M\{v}
}
,

and for u ∈ Γ, define the renormalized functional for (PDE) via

J(u) =
∑
j∈Z

aj(u) (1.2)

where

aj(u) =
∫

Ωj

L(u)dx− c0.

Setting τju(x1, y) = u(x1 − j, y), it follows that

aj(u) = I0(τ−ju) − c0.

Since τ−ju ∈W 1,2(Ω0), by (1.1),

aj(u) ≥ 0 (1.3)

and J is a nonnegative functional. In [6], U was obtained as the minimizer of J on Γ. Dropping (g3), it is no
longer the case that c0 = c; in general c0 > c. Hence (1.3) fails and it is not clear that J is bounded from below
on Γ. Replacing c0 by c will not help since then J will be infinite on the natural class of admissible functions.
Thus another approach is needed here. For such an approach, we were motivated by some recent work [7] on
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an Allen–Cahn model equation which in turn has antecedents in work of Moser [5] and Bangert [1] on minimal
laminations of a torus and of Bosetto and Serra [2] on an ODE problem related to [1]. Γ will be replaced by a
class of functions asymptotic from v to w and having an additional monotonicity property and J by a related
function J∗. Minimizing J∗ on Γ∗ will produce the desired heteroclinic joining v and w. The proof will be
carried out in Section 2 with some details postponed until Section 3. Then in Section 4, it will be indicated
how the current approach also applies to the water wave problem of Kirchgässner [3].

2. The main results

In this section, our main results will be formulated and proved. As was noted in Section 1, it was shown
in [6] that M 6= φ and the elements of M are classical solutions of (PDE) and (BC) which are 1-periodic in x1.
The first result uses the variational structure of (PDE) and the Maximum Principle to say more about M.

Proposition 2.1. If g satisfies (g1, g2), M is an ordered set.

Proof. An argument essentially due to Moser [5] will be employed. Suppose v 6= w ∈ M and v and w are not
ordered. Set ϕ = max(v, w) and ψ = min(v, w). Then ϕ, ψ ∈ E0. For functions a, b on Ω0,

{a ≤ b} ≡ {x ∈ Ω0|a(x) ≤ b(x)}

and {a < b}, the same with strict inequality. Hence

2c0 ≤ I0(ϕ) + I0(ψ) =
∫
{w≥v}

L(w)dx +
∫
{v>w}

L(v)dx+
∫
{w≥v}

L(v)dx +
∫
{v>w}

L(w)dx = 2c0. (2.1)

Therefore ϕ, ψ ∈ M and by [6] are classical solutions of (PDE) and (BC). Since v and w are not ordered, without
loss of generality there are points x, x ∈ Ω0 such that v(x) > w(x) and v(x) = w(x). Consider χ ≡ ϕ−w. Then
χ ≥ 0 in Ω0 and χ(x) > 0. Observe that χ satisfies a linear elliptic partial differential equation in Ω0:



−∆χ = a(x)χ, x ∈ Ω0

∂χ

∂ν
= 0 x ∈ [0, 1]× ∂D (2.2)

where


a(x) =

g(x, ϕ(x)) − g(x,w(x))
ϕ(x) − w(x)

if ϕ(x) > w(x),

= gu(x, ϕ(x)) if ϕ(x) = w(x).

Writing a(x) = a+(x) − a−(x) where

a+ = max(a, 0); a− = max(a, 0),

equation (2.3) leads to



−∆χ+ a−χ = a+χ ≥ 0, if x ∈ Ω0

∂χ

∂ν
= 0, if x ∈ [0, 1]× ∂D. (2.3)
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By the Maximum Principle, χ cannot have an interior minimum in Ω0 unless χ ≡ constant which is not the
case because v and w are not ordered. Since χ(x) = 0, x ∈ [0, 1] × ∂D. But then by the Maximum Principle,

∂χ

∂ν
(x) < 0, (2.4)

contrary to (2.3). Thus v and w are ordered.

To continue, as was mentioned in the introduction, M may be a connected set. E.g. if g ≡ 0, M = R.
For the existence argument that will be given shortly, it is necessary that M is not connected. Thus for what
follows, it will be assumed that:

(∗) there are adjacent members v < w of M.

Next it will be shown that (∗) implies there is a solution of (PDE) and (BC) heteroclinic in x1 from v to w
and similarly from w to v. This will be done by minimizing a variant of the renormalized functional J of (1.2)
over an appropriate class of sets, Γ∗. To motivate the choice of Γ∗, proceeding formally, suppose that J has a
minimizer in the class of W 1,2

loc (R×D) functions heteroclinic in x1 from v to w. Suppose further the minimizer is
a classical solution of (PDE) and (BC). Then repeating the proof of Proposition 2.1 for this new setting shows
M∗, the set of minimizers of J , is an ordered set. Moreover if U ∈ M∗, (g1) implies J(τjU) = J(U) for all
j ∈ Z. Hence τjU ∈ M∗. The ordering property of M∗ then implies τ−1U > U, i.e. U has a monotonicity
property. This formal argument will be exploited by building the monotonicity into the class of functions Γ∗

and it will be crucial for what follows. Define

Γ∗ =
{
u ∈ W 1,2

loc (R ×D)|v ≤ u ≤ τ−1u ≤ w, and τ−ju
∣∣∣
Ω0

→ v (resp. w) in L2(Ω0) as j → −∞ (resp. ∞)
}
·

To introduce the analogue of J of (1.2) that will be employed here, let m,n ∈ Z with m ≤ n. For u ∈ Γ∗, set

Jm,n(u) =
n∑
m

aj(u)

and define

J∗(u) = limm→−∞Jm,0(u) + limn→∞J1,n(u). (2.5)

Set

c∗ = inf
u∈Γ∗

J∗(u). (2.6)

The main result of this section is:

Theorem 2.2. Let g satisfy (g1, g2) and let (∗) hold. Then there is a U ∈ Γ∗ such that J∗(U) = c∗. Moreover
U is a classical solution of (PDE) and (BC).

The proof of Theorem 2.2 is divided into several steps. So as not to delay the exposition, the details of some
of the steps will be postponed until Section 3. Although the setting is different, the structure of the argument
is very close to that of [7] which we will strongly follow.
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To begin, note that c∗ <∞. Indeed if

ϕ(x) = v, x1 ≤ 0, (2.7)

= x1w + (1 − x1)v, 0 ≤ x1 ≤ 1
= w, 1 ≤ x1,

then ϕ ∈ Γ∗ and c∗ ≤ J∗(ϕ) <∞.
Next it will be shown that Jm,n is bounded from below on Γ∗. This requires a preliminary result.

Lemma 2.3. Let n ∈ N and Γn = {u ∈ W 1,2

loc(R ×D)|u is n periodic in x1}. If

cn = inf
u∈Γn

∫ n

0

∫
D
L(u)dx. (2.8)

Then cn = nc0 and is achieved by v ∈ M.

Proof. The existence of a minimizer, v of (2.8) follows as in [6] for the case of n = 1. It remains to prove that

∫ n

0

∫
D
L(v)dx = nc0. (2.9)

By (g1), τ−1v is also a minimizer of (2.8) and the proof of Proposition 2.1 shows that the set of minimizers
of (2.8) is ordered. Therefore either (i) τ−1v ≡ v, (ii) τ−1v < v, or (iii) τ−1v > v. If e.g. (ii) is valid,

v(x1 + 1, y) < v(x1, y) < v(x1 − (n− 1), y) = v(x1 + 1, y), (2.10)

a contradiction. Likewise (iii) cannot hold. Thus (i) is valid, i.e. v is 1-periodic in x1, cn = nc0, and the result
is proved.

Now it follows that Jm,n is bounded from below:

Proposition 2.4. There is a constant K > 0 such that for all u ∈ Γ∗ and m ≤ n,

Jm,n(u) ≥ −K. (2.11)

The proof of Proposition 2.4 will be given in Section 3. The proposition implies an upper bound for Jm,n(u):

Lemma 2.5. For all m ≤ n and u ∈ Γ∗,

Jm,n(u) ≤ J(u) + 2K. (2.12)

Proof. By (2.11),

J(u) = limi→−∞Ji,0(u) + limi→∞J1,i(u) = Jm,n(u) + limi→−∞Ji,m−1(u) + limi→∞Jn+1,i(u) ≥ Jm,n(u) − 2K

from which (2.12) follows.
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The next step in the proof is to show that the finiteness of J∗(u) implies some strong asymptotic properties
for u:

Proposition 2.6. Let u ∈ Γ∗ and J∗(u) <∞. Then

J∗(u) = lim
m→−∞

n→∞
Jm,n(u), (2.13)

i.e. the lim’s in (2.5) are limits, and

lim
m→−∞ ‖u− v‖W 1,2(Ωm) = 0, (2.14)

lim
n→∞ ‖u− w‖W 1,2(Ωn) = 0. (2.15)

The proof of this proposition will be given in Section 3.
With the aid of the above preliminaries, the function U of Theorem 2.2 can be obtained. Let (uk) be a

minimizing sequence for (2.6). Then there is an M > 0 such that

J(uk) ≤M (2.16)

for all k ∈ N. Since u ∈ Γ∗ implies τju ∈ Γ∗ for all j ∈ Z, and J∗(τju) = J∗(u), the sequence (uk) can be
normalized by requiring that




∫
Ω−1

(uk − v)dx ≤ 1
2

∫
Ω0

(w − v)dx∫
Ω0

(uk − v)dx ≥ 1
2

∫
Ω0

(w − v)dx.
(2.17)

Note that since uk ≤ τ−1uk,




∫
Ωj

(uk − v)dx ≤ 1
2

∫
Ω0

(w − v)dx, j ≤ −1∫
Ωj

(uk − v)dx ≥ 1
2

∫
Ω0

(w − v)dx, j ≥ 0.
(2.18)

By (2.12) and (2.16),

1
2

∫ n+1

m

∫
D
|∇uk|2dx ≤

∫ n+1

m

∫
D
G(x, uk)dx+ (n+ 1 −m)c0 +M + 2K. (2.19)

Thus (2.19) coupled with the L∞ bounds for uk imply (uk) is bounded inW 1,2
loc (Ω). Hence there is a U ∈ W 1,2

loc (Ω)
such that along a subsequence, uk → U weakly in W 1,2

loc , strongly in L2
loc, and pointwise a.e. Thus

v ≤ U ≤ τ−1U ≤ w (2.20)

and U satisfies (2.18). By weak lower semicontinuity and (2.12) again,

Jm,n(U) ≤ limk→∞Jm,n(uk) ≤M + 2K (2.21)
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for all m ≤ n in Z. Hence

J∗(U) ≤M + 2K <∞. (2.22)

To show that U ∈ Γ∗, it remains to prove that U is heteroclinic from v to w. Towards that end, for x ∈ Ω0, set
Vi = τiU . Then (Vi) is a monotone nonincreasing sequence as i→ ∞ and Vi is bounded in W 1,2(Ω0) via (2.21)
with m = n = −i. Therefore there is a V ∈ W 1,2(Ω0) such that Vi → V weakly in W 1,2(Ω0) and strongly in
L2(Ω0) as i→ ∞. Since

lim
i→∞

Vi = V = lim
i→∞

τ1Vi = τ1V, (2.23)

V ∈ E0. We claim V ∈ M. If not, there is a ρ > 0 such that

I0(V ) > c0 + ρ. (2.24)

Since

I0(V ) ≤ lim
i→∞

I0(Vi), (2.25)

for all large i,

I0(Vi) = I0(τiU) ≥ c0 + ρ/2. (2.26)

But then

Ji,0(U) → ∞ (2.27)

as i→ −∞, contrary to (2.21). Thus V ∈ M and by (2.20) lies between v and w. Moreover by (2.18) with uk

replaced by U , letting j → −∞ shows
∫

Ω0

(V − v)dx ≤ 1
2

∫
Ω0

(w − v)dx. (2.28)

Consequently by condition (∗), V = v. Similarly Vi → w as i→ −∞ and U ∈ Γ∗.
The next step in our argument is:

Proposition 2.7. J∗(U) = c∗.

The proof of this proposition will be given in Section 3.
The final step in the proof of Theorem 2.2 is to verify that U is a classical solution of (PDE) and (BC). This

is a consequence of local minimization properties that the global minimizer, U of (2.6) possesses. To be more
precise, let Br(z) denote an open ball of radius r about z ∈ R

n. Suppose B2r(z) ⊂ Ω. Set

Ar(z) = {u ∈W 1,2(B2r(z))|u = U in B2r(z)\Br(z)} · (2.29)

For u ∈ Ar(z), define

Fr(u) =
∫

Br(z)

L(u)dx. (2.30)

The local minimization property for interior points is:

Proposition 2.8. For each z ∈ Ω and 0 < r < 1
2 such that B2r(z) ⊂ Ω, U minimizes Fr over Ar(z).
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This result will also be proved in Section 3. Since

Fr(U) = inf
u∈Ar(z)

Fr(u)

and, by standard elliptic regularity arguments, any minimizer of Fr on Ar(z) is a classical solution of (PDE) in
Br(z), U is a classical solution of (PDE) in Ω, and is even in C2,α

loc (Ω) for any α ∈ (0, 1).
It remains only to show that U is smooth up to ∂Ω and (BC) holds. This follows as above by a slight variant

of Proposition 2.8. Let z ∈ ∂Ω and r > 0. Consider

F̂r(u) =
∫

Br(z)∩Ω

L(u)dx (2.31)

on

Âr(z) = {u ∈W 1,1(B2r(z) ∩ Ω)|u = U in (B2r(z)\Br(z)) ∩ Ω} · (2.32)

The analogue of Proposition 2.8 here is:

Proposition 2.9. For each z ∈ ∂Ω and 0 < r < 1
2 , U minimizes F̂r on Âr(z).

The proof of this result will be sketched after that of Proposition 2.8.
By the regularity of U given by Proposition 2.9, U is a C2,α function up to ∂Ω and ∂U

∂ν = 0 on ∂Ω. The
proof of Theorem 2.2 is complete.

3. Proofs of the technical results

This section is devoted to the proof of Propositions 2.4, and 2.6–2.9.

Proof of Proposition 2.4. Define

ϕ(x) =




(x1 −m)u(x) + (m+ 1 − x1)v(x), m ≤ x1 ≤ m+ 1,
u(x), m+ 1 ≤ x1 ≤ n

(x1 − n)v(x) + (n+ 1 − x1)u(x), n ≤ x1 ≤ n+ 1
(3.1)

and continue ϕ to R ×D as an n−m+ 1 periodic function. Then by Lemma 2.3,

Jm,n(ϕ) ≥ 0. (3.2)

By (3.1),
∫

Ωm

L(ϕ)dx =
∫

Ωm

[
1
2
|(x1 −m)∇u+ (m+ 1 − x1)∇v|2 + (x1 −m)ux1 + (m+ 1 − x1)vx1(u− v)

+
1
2
(u − v)2 +G(x, ϕ)

]
dx. (3.3)

The terms in (3.3) will be estimated separately. First,

|(x1 −m)∇u + (m+ 1 − x1)∇v|2 ≤ [(x1 −m)2 + (m+ 1 − x1)2](|∇u|2 + |∇v|2) ≤ |∇u|2 + |∇v|2. (3.4)

Next

T = (x1 −m)ux1 + (m+ 1 − x1)vx1(u− v) = (x1 −m)
∂

∂x1

(u− v)2

2
+ (u − v)vx1 . (3.5)
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Therefore, since u− v ≤ w − v ≤ 1,
∫

Ωm

Tdx ≤
∫
D

(x1 −m)
(u− v)2

2

∣∣∣m+1

m
dy +

1
2

∫
Ωm

(u− v)2dx+
1
2

∫
Ωm

v2
x1

dx (3.6)

≤ 1
2
|D| + 1

2
|D| + 1

2

∫
Ωm

v2
x1

≡ K1

where |D| denotes the measure of D. The last integral in (3.3) can be estimated via
∫

Ωm

G(x, ϕ)dx =
∫

Ωm

(G(x, ϕ) −G(x, v) +G(x, v))dx ≤M1

∫
Ωm

(ϕ− v)dx +
∫

Ωm

G(x, v)dx (3.7)

≤M1|D| +
∫

Ωm

G(x, v)dx ≡ K2

where M1 is a Lipschitz constant for G(x, z) on Ω × [min v,maxw]. Combining (3.3–3.7) gives
∫

Ωm

L(ϕ)dx ≤
∫

Ωm

1
2
(|∇u|2 + |∇v|2)dx+K1 +K2 ≤

∫
Ωm

L(u)dx+ |
∫

Ωm

G(x, u)dx| +K3. (3.8)

As in (3.7),
∣∣∣∣
∫

Ωm

G(x, u)dx
∣∣∣∣ ≤M1

∫
Ωm

(u− v)dx+
∣∣∣∣
∫

Ωm

G(x, v)dx
∣∣∣∣. (3.9)

Hence

am(ϕ) ≤ am(u) +K4. (3.10)

Combining (3.2, 3.10), and a similar estimate for an(ϕ) yields

Jm,n(u) = Jm,n(ϕ) + am(u) − am(ϕ) + an(u) − an(ϕ) ≥ −K (3.11)

and Proposition 2.4 is proved. �
Proof of Proposition 2.6. Set uk = τku. As following (2.22), uk → v (resp. w) as k → ∞ (resp. −∞) weakly in
W 1,2(Ω0) and strongly in L2(Ω0). Moreover as in (2.24–2.27),

lim
|k|→∞

I0(uk) = c0. (3.12)

Now (3.12) will be used to prove (2.13–2.15). Choose a sequence ki → ∞ such that

lim
i→∞

I0(uki) = c0. (3.13)

We claim

lim
i→∞

‖uki − v‖W 1,2(Ω0) = 0. (3.14)

By the convergence already established for uki , it suffices to show

lim
i→∞

‖∇uki −∇v‖L2(Ω0) = 0. (3.15)
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To verify (3.15), note first that

lim
i→∞

‖∇uki‖L2(Ω0) = ‖∇v‖L2(Ω0) (3.16)

for if not, by the weak lower semicontinuity of ‖ · ‖L2(Ω0), there is a δ > 0 such that

1
2
‖∇v‖2

L2(Ω0) + δ ≤ 1
2

lim
i→∞

‖∇u`i‖2
L2(Ω0) (3.17)

where `i is a subsequence of ki. But then

I0(v) + δ ≤ lim
i→∞

1
2
‖∇u`i‖2

L2(Ω0) + limi→∞

∫
Ω0

G(x, u`i)dx = limi→∞I0(u`i) = c0 (3.18)

contrary to (3.13). Now as i→ ∞,

‖∇uki −∇v‖2
L2(Ω0) = ‖∇uki‖2

L2(Ω0) + ‖∇v‖2
L2(Ω0)

− 2
∫

Ω0

∇uki · ∇vdx → 0

via (3.16) and the weak convergence of in L2(Ω) of ∇uki to ∇v. Thus (3.15) holds.
Next (3.12) will be strengthened to show that

lim
k→∞

I0(uk) = c0. (3.19)

Then the arguments in (3.13–3.18) show (2.14) holds and the analogue of (3.19) for k → −∞ yields (2.15). To
get (3.19), it will be shown that each of the following limits exist:

(i) lim
k→−∞

Jk,0(u); (ii) lim
k→∞

J1,k(u). (3.20)

Then (3.20) (i) implies ak(u) → 0 as k → −∞ and therefore (3.19) is valid.
To prove (3.20), (i), set

N− = {n ∈ −N |an(u) ≤ 0} · (3.21)

Suppose first that N− is finite. Then Jn,0(u) is an increasing sequence which is bounded from above as n→ −∞
via (2.12). Thus (3.20) (i) is verified. On the other hand if N− is an infinite set, the sequence (ni) it represents
must satisfy (3.13) so by (3.14) as i→ ∞,

‖uni − v‖W 1,2(Ω0) → 0. (3.22)

If the limit (3.20) (i) does not exist, then `− < `+ where

`− ≡ limn→−∞Jn,0(u); `+ = limn→−∞Jn,0(u). (3.23)

It will be shown that `− < `+ is not possible.
Choose ε satisfying

0 < ε <
`+ − `−

3
· (3.24)
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By (3.23), there are sequences (pk), (qk) ⊂ −N with pk, qk → −∞ as k → ∞ and such that qk > pk > qk+1,
and

Jpk,0(u) → `−; Jqk,0(u) → `+ (3.25)

as k → ∞. Hence for k large,

Jpk,0(u) ≤ `− + ε < `+ − ε ≤ Jqk,0(u). (3.26)

Set sk the largest q ∈ N− such that q < qk and set rk the smallest p ∈ N− such that p ≥ pk. As a function of
t, Jsk+t,0(u) is increasing in (0, qk − 1 − sk] while Jpk+t,0(u) decreases in [0, rk − pk]. Therefore

Jrk,0(u) ≤ `− + ε < `+ − ε ≤ Jsk,0(u) (3.27)

and

Jrk,sk−1(u) = Jrk,0(u) − Jsk,0(u) ≤ −(`+ − `−) + 2ε. (3.28)

Now by (3.22), u is close to v in W 1.2(Ω`) for ` = sk and ` = rk and k large. This allows us to modify u in Ω`

so as to produce a function, ψ, which equals v in [rk, rk + 1
2 ] and in [sk + 1

2 , sk + 1]. Hence ψ extends to Ω as a
sk − rk + 1 periodic function in x1 so

Jrk,sk
(ψ) ≥ 0 (3.29)

via Lemma 2.3. More precisely, ψ is given by




ψ(x) = v(x), rk ≤ x1 ≤ rk +
1
2

= 2(x1 −
(
rk +

1
2

)
u(x) + 2((rk + 1) − x1)v(x), rk +

1
2
≤ x1 ≤ rk + 1

= u(x), rk + 1 ≤ x1 ≤ sk

= 2(x1 − sk)v(x) + 2
(
sk +

1
2
− x1

)
u(x), sk ≤ x1 ≤ sk +

1
2

= v(x), sk +
1
2
≤ x1 ≤ sk + 1.

(3.30)

Then for k large enough,

|ark
(u)| + |ark

(ψ)| + |ask
(u)| + |ask

(ψ)| < ε (3.31)

via (3.22) and straightforward estimates. Consequently by (3.29) and (3.31),

Jrk,sk−1(u) = Jrk,sk
(ψ) − ark

(ψ) + ark
(u) − ask

(ψ) ≥ −ε. (3.32)

Combining (3.32) and (3.28) shows

`+ − `− ≤ 3ε (3.33)

contrary to (3.24). Thus (3.20) (i) has been verified and (3.20) (ii) follows similarly. The proof of Proposition 2.6
is complete. �
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Proof of Proposition 2.34. This proof has some elements in common with that of Proposition 2.6. Suppose
J∗(U) 6= c∗. Then since U ∈ Γ∗, by (2.6), there is a σ > 0 such that

J∗(U) = c∗ + 9σ. (3.34)

By Proposition 2.6,

J∗(U) = lim
n→∞J−n,n(U). (3.35)

Hence there is an n0 ∈ N such that if n ≥ n0,

J−n,n(U) ≥ c∗ + 8σ. (3.36)

By the weak lower semicontinuity of J−n,n and (3.36), there is a k0(n) ∈ N such that if k ≥ k0,

J−n,n(uk) ≥ J−n,n(U) − σ ≥ c∗ + 7σ. (3.37)

Moreover since (uk) is a minimizing sequence for (2.6), for k large,

J∗(uk) ≤ c∗ + σ. (3.38)

Let Tn(u) denote the tail of J∗(u), i.e.

Tn(u) = J−∞,−n−1(u) + Jn+1,∞(u) ≡ T−
n (u) + T+

n (u).

Therefore by (3.37, 3.38) for n ≥ n0 and k large,

c∗ + σ ≥ J−n,n(uk) + Tn(uk) ≥ c∗ + 7σ + Tn(uk)

or

Tn(uk) ≤ −6σ. (3.39)

Next it will be shown that (3.39) is not possible, i.e. the tail of uk is uniformly small provided that n and k are
sufficiently large. It suffices to show that

T i
n(uk) > −3σ, i = +,−. (3.40)

The − case will be verified; the + case is handled in the same way.
Let δ > 0, free for the moment. Since U ∈ Γ∗ and J∗(U) <∞, by (2.14) for n = n(δ) large enough,

‖U − v‖W 1,2(Ω−n−1) ≤ δ. (3.41)

We claim

‖uk − U‖W 1,2(Ω−n−1) ≤ δ (3.42)

for n(δ) large and appropriate k. Assuming (3.42) for now, by (3.41, 3.42),

‖uk − v‖W 1,2(Ω−n−1) ≤ 2δ. (3.43)
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Let N ∈ N with N > n+1 and let ψ be as in (3.30) with u replaced by uk, r by N , and s by −n−1. Then (3.29)
becomes

J−N,−n−1(ψ) ≥ 0. (3.44)

Therefore for δ = δ(σ) sufficiently small, as in (3.31),

|a−n−1(uk)| + |a−n−1(ψ)| < σ. (3.45)

For N = N(k) near ∞, by (2.13) again,

‖uk − v‖W 1,2(Ω−N ) ≤ δ. (3.46)

Hence

|a−N(uk)| + |a−N (ψ)| < σ. (3.47)

Finally as in (3.32, 3.44, 3.45) imply

T−
n (uk) = J−N,−n−1(uk) + T−

N (uk) ≥ −2σ + T−
N (uk). (3.48)

Since J∗(uk) <∞, for N possibly still larger,

|T−
N

(uk)| < σ. (3.49)

Thus (3.40) is a consequence of (3.48, 3.49) and J∗(U) = c∗.
It remains to verify (3.42). Since uk → U in L2(Ω−n−1) as k → ∞, it suffices to show

‖∇uk −∇U‖L2(Ω−n−1) ≤ δ/2 (3.50)

for n(δ) large and appropriate k. Since by weak lower semicontinuity,

∫
Ω−n−1

L(U)dx ≤ lim
k→∞

∫
Ω−n−1

L(uk)dx, (3.51)

0 ≤ ρn = limk→∞

∫
Ω−n−1

L(uk)dx −
∫

Ω−n−1

L(U)dx.

Now (3.50) is a consequence of the following result:

Lemma 3.1. ρn → 0 as n→ ∞ and

limk→∞‖∇(uk − U)‖2
L2(Ω−n−1)

≤ 2ρn. (3.52)

Proof.

lim
k→∞

∫
Ω−n−1

|∇(uk − U)|2dx = lim
k→∞

∫
Ω−n−1

(|∇uk|2 − 2∇uk · ∇U + |∇U |2)dx

= lim
k→∞

∫
Ω−n−1

|∇uk|2dx−
∫

Ω−n−1

|∇U |2dx.
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Thus to get (3.52), it suffices to prove

lim
k→∞

∫
Ω−n−1

|∇uk|2dx ≤
∫

Ω−n−1

|∇U |2dx+ 2ρn. (3.53)

But

lim
k→∞

∫
Ω−n−1

L(uk)dx =
∫

Ω−n−1

L(U)dx+ ρn = lim
k→∞

∫
Ω−n−1

1
2
|∇uk|2dx+

∫
Ω−n−1

G(x, U)dx (3.54)

so (3.53) holds. Finally to show that ρn → 0 as n→ ∞, by (2.11, 2.12) and (2.16)

−K ≤ J−j,−`(U) =
−∑̀

i=−j

(
lim

k→∞
ai(uk) − ρ−i

)
≤ lim

k→∞
J−j,−`(uk) −

−∑̀
−j

ρ−i ≤M + 2K −
−∑̀
−j

ρ−i. (3.55)

Thus letting ` = 0 and j → −∞ shows
∞∑
0

ρn ≤M + 3K

so ρn → 0 as n→ ∞.

Proof of Proposition 2.8. Set

c(Br(z)) = inf
u∈Ar(z)

Fr(u). (3.56)

Since Ar(z) is closed and convex, it is weakly closed. The functional Fr is weakly lower semicontinuous. Hence
there is a V ∈ Ar such that Fr(V ) = c(Br(z)). Standard regularity arguments show V is a classical solution of
(PDE) and even in C2,α(Br(z)) for any α ∈ (0, 1). Let

M(Br(z)) = {W ∈ Ar(z) | Fr(W ) = c(Br(z))}·

Then M(Br(z)) is an ordered set via the proof of Proposition 2.1.
We claim each V ∈ M(Br(z)) satisfies v ≤ V ≤ w. If not, suppose V (x) > w(x) for some x ∈ Br(z). Set

B = {x ∈ Br(z) | V (x) > w(x)}·

Then ϕ ≡ min(w, V ) ∈ Ar(z) so

Fr(V ) ≤ Fr(ϕ) (3.57)

and therefore
∫

B

L(V )dx ≤
∫

B

L(w)dx. (3.58)

For x ∈ Ω and j ∈ Z, set xj = x+ (j, 0). Define




ψ(x) = max(w(x), V (x)), x ∈ B2r(z)
ψ(xj) = ψ(x), x ∈ B2r(zj), j ∈ Z

ψ(x) = w(x), x ∈ Ω \ ⋃
j∈Z

Br(zj).
(3.59)
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Then ψ ∈ E0, so

I0(ψ) ≥ I0(w). (3.60)

Hence ∫
B

L(V )dx ≥
∫

B

L(w)dx. (3.61)

Thus by (3.58) and (3.61),
∫

B

L(V )dx =
∫

B

L(w)dx (3.62)

and

I0(V ) = I0(w) = c0. (3.63)

Consequently by (3.59) and (3.62), ψ ∈ M. But ψ and w are not ordered, contrary to Proposition 2.1. Thus
V ≤ w and similarly, V ≥ v.

It remains to show that Fr(U) = c(Br(z)). For j ∈ Z, let

Vj(x) = inf
V ∈M(Br(zj))

V (x).

Then Vj(x) ∈ M(Br(zj)). Define

U∗(x) =



Vj(x), x ∈ Br(zj)
U(x), x ∈ Ω \

⋃
j∈Z

Br(zj). (3.64)

We claim

U∗ ≤ τ−1U
∗. (3.65)

If so, U∗ ∈ Γ∗ and

J∗(U) ≤ J∗(U∗). (3.66)

Now (3.64) and (3.66) imply
∫

Br(z)

L(U)dx ≤
∫

Br(z)

L(V0)dx. (3.67)

Hence by the minimization property of V0,
∫

Br(z)

L(U)dx =
∫

Br(z)

L(V0) = c(Br(z)). (3.68)

Lastly to verify (3.65), suppose it is false. Then for some j ∈ Z, there is an (x, y) ∈ Br(zj) such that

Vj(x0, y0) > Vj+1(x0 + 1, y0). (3.69)



930 P.H. RABINOWITZ

Define functions on B2r(zj) as follows: ψ(x, y) = Vj+1(x1, y), ϕ = Vj , χ = max(ϕ, ψ), ζ = min(ϕ, ψ). Then on
B2r(zj) \Br(zj),

ζ = ϕ = U ≤ τ−1U = ψ = χ

and
ζ ∈ Ar(zj), τ1χ ∈ Ar(zj+1).

As in (2.1),

Fr(δ) + Fr(χ) = Fr(ϕ) + Fr(ψ) = c(Br(zj)) + c(Br(zj+1)) (3.70)

which implies that ζ ∈ M(Br(zj)) and τ1χ ∈ M(Br(zj+1)). Thus ζ ≥ ϕ = Vj and in particular at (x0, y0),

Vj(x0, y0) ≤ ζ(x0, y0) ≤ ψ(x0, y0) = Vj+1(x0 + 1, y0). (3.71)

But (3.71) contradicts (3.69). Hence (3.65) holds and Proposition 2.8 is proved. �
Proof of Proposition 2.9. The proof here follows the same lines as that of Proposition 2.8 and will be omitted.

4. Final remarks

The results of Section 2 extend to other situations such as those treated in Section 3 of [6] provided that
some basic properties of M carry over to these new settings. In particular it is required that: (i) M has at
least two members so that heteroclinics are possible, (ii) M is an ordered set, and (iii) M is not too big, i.e. (*)
holds. It will briefly be indicated why this is the case for a class of equations which arise in a water wave model
and treated by Kirchgässner [3] near a bifurcation point using center manifold methods.

Consider

−∆u = λa(y)u− f(x, y, u, λ) (4.1)

for (x, y) ∈ R
2 with |y| < 1 with the Dirichlet boundary conditions:

u(x,±1) = 0. (4.2)

It is assumed that a(y) is C1 and positive, f is C1 in its arguments, 1-periodic in x, and f(x, y, z, λ) = o(|z|) as
z → 0. Then the linearization of (4.1) about u = 0 gives a linear eigenvalue problem:

−∆ϕ = λaϕ (4.3)

with boundary conditions (4.2) and ϕ 1-periodic in x. The smallest eigenvalue λ1 is positive and simple and
there is a corresponding positive eigenfunction ϕ1. Choose λ > λ1. Then – see e.g. [6] –

I0(u) =
∫

Ω0

(
1
2
|∇u|2 − λ

2
u2

)
dx+ o(‖u‖2

W 1,2(Ω0)) (4.4)

as u→ 0. Since ∫
Ω0

|∇ϕ1|2dx = λ1

∫
Ω0

ϕ2
1dx,

equation (4.4) shows that if u is a small multiple of ϕ1,

I0(u) =
1
2

(
1 − λ

λ1

) ∫
Ω0

|∇u|2dx + o
(‖∇u‖2

L2Ω2

)
< 0. (4.5)
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Consequently c0 = c0(λ) < 0 for λ > λ1. Of course it is possible that c0(λ) = −∞. Some conditions were given
in [6] where this is not the case. E.g. c0(λ) > −∞ if the primitive, F (x, y, z, λ) =

∫ z

0
f(x, y, t, λ)dt of f is a

bounded function of z or if F (x, y, z, λ) → ∞ as |z| → ∞.
Assuming that c0(λ) is finite, suppose further that f is odd in z. Then F is even in z. Hence u ∈ M implies

−u ∈ M and by (4.5), 0 6∈ M. Furthermore the argument of Proposition 2.1 shows M is an ordered set.
Therefore if v, −v ∈ M, without loss of generality, −v < 0 < v in Ω0. Consequently our requirements (i–iii)
hold here. In particular if v is the smallest positive member of M, there is a pair of solutions of (4.1, 4.2)
heteroclinic in x, one from −v to v and the other from v to −v.
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