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UNIFORM ESTIMATES FOR THE PARABOLIC GINZBURG–LANDAU
EQUATION

F. Bethuel
1

and G. Orlandi
2

Abstract. We consider complex-valued solutions uε of the Ginzburg–Landau equation on a smooth
bounded simply connected domain Ω of RN , N ≥ 2, where ε > 0 is a small parameter. We assume that
the Ginzburg–Landau energy Eε(uε) verifies the bound (natural in the context) Eε(uε) ≤ M0| log ε|,
where M0 is some given constant. We also make several assumptions on the boundary data. An
important step in the asymptotic analysis of uε, as ε → 0, is to establish uniform Lp bounds for the
gradient, for some p > 1. We review some recent techniques developed in the elliptic case in [7], discuss
some variants, and extend the methods to the associated parabolic equation.
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1. Introduction

In many problems involving a small parameter ε (tending to zero), a crucial step in order to describe the
asymptotic limit of the solutions is to establish uniform estimates, i.e. independent of ε. Of course, when the
limit is singular these estimates may involve a function space which is larger than the energy space. A typical
example is the Cahn–Hilliard (also called Modica–Mortola) functional, where the energy space is H1, whereas
the minimizers happen to be uniformly bounded in BV (see [29, 30]).

In this paper we will focus on uniform estimates for the complex-valued Ginzburg–Landau equation. Here
again the energy space is H1; however uniform estimates are established (in the elliptic case) in W 1,p with
1 ≤ p < N

N−1 ≤ 2 (see [7, 9, 11, 26]). Our purpose is to review some new ideas introduced in [7] for the elliptic
case, and then to extend these methods to the associated parabolic evolution problem.

More precisely, the following situation was analysed in [7]. Let N be an integer larger than two, and let Ω
be a smooth bounded, simply connected domain in R

N . For 0 < ε < 1 a small parameter, consider solutions
uε : Ω → C of the Ginzburg–Landau equation with Dirichlet data gε in H1/2(∂Ω; C):

(GL)ε


 −∆uε =

1
ε2
uε(1 − |uε|2) in Ω

uε = gε on ∂Ω.
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Assume moreover that there exist positive constants M0 and M1 such that

(H1) Eε(uε) =
∫

Ω

eε(uε) =
1
2

∫
Ω

|∇uε|2 +
1

4ε2

∫
Ω

(1 − |uε|2)2 ≤M0| log ε|,
(H2) ||gε||2H1/2(∂Ω) ≤M1,

(H3) |gε| = 1 , a.e. in ∂Ω.

The main result of [7] is the following:

Theorem 1 ([7], Th. 1). Let 1 ≤ p < N
N−1 . There exists a constant Cp depending only on M0, M1, Ω and p,

but independent of ε, such that for any solution uε of (GL)ε verifying (H1), (H2) and (H3), we have∫
Ω

|∇uε|p ≤ Cp. (1)

The proof of Theorem 1 relies on a new result in [22] (see also [1]). Roughly speaking, this result shows that if,
for 0 < ε < 1, vε : Ω → C verifies the bound

Eε(vε) ≤M0| log ε|,

then the Jacobians {Jvε}0<ε<1 are precompact in some weak norm (see Sect. 2 for a precise statement), whereas
the family {vε}0<ε<1 may not be compact in any reasonable norm. The Jacobian Jv (for a map v : Ω → C) is
defined as

Jv :=
1
2
d(v × dv) =

∑
i<j

(vxi × vxj )dxi ∧ dxj

(here a× b := a1b2 − a2b1 denotes the exterior product of two vectors a, b ∈ R2 ' C). Moreover, if vεn (εn → 0)
is a subsequence such that Jvεn converges, then the limit J∗ is a measure with the structure of an integer
multiplicity rectifiable current of dimension N − 2.

In many cases (and here specially in view of the parabolic equation considered later) it is natural to relax
the condition |gε| = 1. Therefore, we will consider also the following variant of assumption (H3), namely we
may assume instead that there exists a positive constant M2 such that

(H3bis)
1
2

∫
∂Ω

|∇gε|2 +
1

4ε2

∫
∂Ω

(1 − |gε|2)2 ≤M2| log ε|.

We then have the following:

Theorem 1bis. Let 1 ≤ p < N
N−1 . There exists a constant Cp depending only on M0, M1, M2, Ω and p, but

independent of ε, such that for any solution uε of (GL)ε verifying (H1), (H2), (H3bis) we have∫
Ω

|∇uε|p ≤ Cp. (2)

Estimate (1) was first considered in [9] for N = 2, where it was established in the case gε = g is independent on
ε and smooth (see also [6] for other references in case N = 2). It was then generalized under various restrictive
assumptions on N , gε and uε (see [11, 26, 31] and [14]). Theorem 1 and Theorem 1bis cover all the above
quoted results; however we expect that the same conclusion might be derived under milder assumptions on the
boundary data gε.

As already mentioned, this kind of estimate is a crucial ingredient in the asymptotic analysis of solutions to
equation (GL)ε as ε→ 0. The theory was developed during the last decade in [3,6,8–11,14,26,27,31,33,36]. In
particular, the main result in [11] (Th. 1 there) can be derived under the assumptions considered here. More
precisely, the following holds:
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Theorem 2. Let uε be a solution of (GLε) satisfying (H1), (H2), (H3) or (H3bis).
Then, for a subsequence εn → 0, there exist a map u∗ ∈ W 1,p(Ω), ∀ 1 ≤ p < N

N−1 , and a map g∗ ∈ H1/2(∂Ω)
such that

i) |u∗| = 1 on Ω, |g∗| = 1 , u∗ = g∗ on ∂Ω;
ii) uεn → u∗ in W 1,p(Ω) , gεn ⇀ g∗ in H1/2(∂Ω);
iii) div(u∗ ×∇u∗) = 0 in Ω;

iv)
eεn(uεn)
| log εn| ⇀ µ∗ as measures, where µ∗ is a bounded measure on Ω̄.

Set S = supp(µ∗).
v) S is a closed subset of Ω̄ with HN−2(S) < +∞;
vi) u∗ ∈ C∞(Ω\S) and for any ball B(x0, r) included in Ω\S there exists a function ϕ∗ ∈ C∞(B(x0, r)), such

that ∆ϕ∗ = 0, u∗ = exp(iϕ∗);
vii) uεn → u∗ in Ck(K), for any compact subset K of Ω \ S;
viii) S is HN−2-rectifiable; µ∗ is a stationary varifold.

The proof of Theorem 2 can be derived, following the same arguments as in Sections 4, 7, 8 and 9 of [11], from
estimate (1) and the η-ellipticity property:

Theorem 3 ([11], Th. 2). Let uε be a solution of (GL)ε on the ball Br. Then there exist constants K > 0, and
α > 0, depending only on N such that if

Eε(uε, Br) ≤ ηrN−2
∣∣∣log

ε

r

∣∣∣ , (3)

with η > 0, then

|uε(0)| ≥ 1 −Kηα. (4)

Note that in [11], estimate (1) appeared as a consequence of Theorem 3 (together with covering arguments),
whereas here the two properties happen to be completely independent results. In particular, for the proof of
Theorem 2, this approach bypasses the (somewhat unpleasant) technicalities related to the analysis near the
boundary.

We recall also that statement viii) in Theorem 2 is a direct consequence of Theorem 3 and the analysis of [4]
(rectifiability of S can be also deduced, as in [27], using the result of [25]).

In two dimensions, Theorem 3 originated simultaneously in [12, 36], and was used extensively for a large
number of problems (see [6, 33]). In higher dimension, the first η-ellipticity result was given in [31] under the
name η-compactness (for N = 3 and minimizing maps), then in [26] for minimizing maps in arbitrary dimension,
in [27] for N = 3, uε not necessarily minimizing, and finally in [10, 11] in the general case.

Remark 1. From Theorem 2 we deduce directly that

Juεn ⇀ J∗ = Ju∗ in D′(Ω).

It can be proved directly arguing as in Sections 5 and 6 of [11] (without the machinery of [1, 22]), that J∗ is a
bounded measure and that

supp (J∗) ⊂ S = supp (µ∗).

When gε varies with ε, then the two sets might be different. However, if gε ≡ g is fixed (and |g| = 1), then it
is not known if the two sets coincide; it is even not known if the rectifiable set supporting J∗ is closed or not.
Finally, we have (see Rem. 5.1)

u∗ ∈ C∞(Ω \ supp (J∗)) .
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We turn next to the parabolic Ginzburg–Landau equation, which is the main focus of this paper:

(PGL)ε



∂uε

∂t
− ∆uε =

1
ε2
uε(1 − |uε|2) in Ω × (0,+∞),

uε(x, 0) = u0
ε(x) for a.e. x ∈ Ω ,

uε(x, t) = gε(x) for a.e. (x, t) ∈ ∂Ω × (0,+∞).

Equations related to (PGL)ε appear in many applications, for instance as dynamical models in superconductiv-
ity. The equation (PGL)ε has been extensively studied in recent years. In particular the dynamics of vortices
has been described in the two dimensional case, and some results have been obtained in higher dimensions (see
e.g. [5, 20, 21, 23, 24]).

In this paper, we will make several assumptions on the initial data u0
ε : Ω → C and on the boundary condition

gε : ∂Ω → C, which is time independent. First, for gε, we assume (H2), (H3) or (H3bis) hold, as in the elliptic
case. For u0

ε we assume that there exist positive constants M0 and M3 such that

(H4) Eε(u0
ε) ≤M0| log ε| , ||u0

ε||2H1/2(Ω) ≤M3, |u0
ε| ≤ 1.

Under these hypotheses, equation (PGL)ε admits, for fixed ε > 0, a unique solution uε : Ω × [0,+∞) → C.
Moreover, uε ∈ C∞(Ω × (0, T )) for each T > 0, and |uε| ≤ 1, by the maximum principle. For t ≥ 0, let
ut

ε : Ω → C be the function defined by ut
ε(x) := uε(x, t), and recall the energy equality

Eε(uT
ε ) +

∫ T

0

∫
Ω

∣∣∣∣∂uε

∂t

∣∣∣∣
2

= Eε(u0
ε). (5)

In particular we have the inequality

∫ T

0

∫
Ω

∣∣∣∣∂uε

∂t

∣∣∣∣
2

+ |∇uε|2 ≤M0(T + 1)| log ε|, (6)

and hence uε ∈ H1(Ω× [0, T ]), and the L2 norm of its gradient (with respect to space-time variables) is bounded
by a constant times | log ε|, as in the elliptic case.

Our purpose is to extend some of the techniques developed in the elliptic framework: in particular,
Hodge–de Rham decomposition, reduction to systems of linear equations, etc. One of the consequences of
this analysis is the following estimate, which, to our knowledge, is new.

Theorem 4. Let 1 ≤ p < N+1
N , T > 0. There exists a constant Cp depending only on M0, M1, M2, M3, Ω, p

and T , but independent of ε, such that for any solution uε of (PGL)ε with initial data u0
ε verifying (H4) and

boundary data gε verifying (H2), and (H3) or (H3bis), we have

∫ T

0

∫
Ω

|∇uε|p ≤ Cp. (7)

A direct consequence of Theorem 4 and the analysis in Section 6 is the following:

Proposition 1. Let {uε}0<ε<1 be solutions of (PGL)ε satisfying (H4), (H2), and (H3) or (H3bis). Then, for
a subsequence εn → 0, there exists a map u∗ : Ω × [0,+∞) → C such that, for every 1 ≤ p < N+1

N and every
T > 0,

i) uεn ⇀ u∗ in Lp(Ω × [0, T ]), ∇uεn ⇀ ∇u∗ in Lp(Ω × [0, T ]);



UNIFORM ESTIMATES FOR THE PARABOLIC GINZBURG–LANDAU EQUATION 223

ii) u∗ ∈ C∞(Ω × [0,+∞) \ supp (J̃∗);S1).

Here J̃∗ is the weak limit of J̃uεn in the sense of [1, 22] (see Sect. 2).
As one easily sees, Proposition 1 gives only partial results concerning the convergence of uε as ε goes to

zero. Note in particular, that at this stage we cannot even exclude the fact that the support of J̃∗ has positive
measure. A further step for the asymptotic analysis of uε would be to derive the analogous of Theorem 3 for
the parabolic case. In this context, a result in case Ω = R

3 is provided in [28].
The relation of the (possible) asymptotic behavior of solutions to (PGL)ε with motion by mean curvature,

in Brakke’s (weak) formulation, has been shown in [4], under some additional assumption on the solutions,
which is conjectured there. This assumption can be proved in the elliptic case, yielding, as already mentioned,
statement viii) of Theorem 2.

Finally, in the case the initial condition u0
ε has some special properties (in particular, the concentration

set of u0
ε is a smooth (N − 2)-dimensional manifold), then convergence to motion by mean curvature (for the

concentration set), up to appearance of singularities, is established in [21] (see also [24]). The techniques there,
rely on a careful analysis on the concentration of the energy density eε(uε).

The outline of the paper is as follows.
The next section is devoted to an important estimate first derived by Jerrard and Soner [22] for Jacobians

of maps vε : Ω → C verifying the bound Eε(vε) ≤M0| log ε|. We present several variants of this estimate (most
of the ideas are from [7]), which take into account the boundary data. These estimates are the main ingredient
in the proofs of Theorem 1, Theorem 1bis and Theorem 4. Section 3 is concerned with the Hodge–de Rham
decomposition of u × ∇u, and its interplay with the results of Section 2. Section 4 deals with a similar issue,
for a situation specially adapted for the parabolic problem. In Section 5 we give the proofs of Theorem 1 and
Theorem 1bis. Finally, in Section 6 we prove Theorem 4.

2. Uniform bounds for Jacobians

In this section, we will describe and extend a new estimate for Jacobians of maps in H1 with some control
on the Ginzburg–Landau energy. This estimate is actually in the same spirit as, in the scalar case (i.e. for
real-valued maps v), the famous estimate (see [29, 30])

∫
Ω

|∇Φ(v)| ≤ √
2εEε(v), (2.1)

where Φ(v) = v2

2 − v3

3 is a primitive of (1−v2). Estimate (2.1) is the starting point of the strong L1 compactness
of sequences of functions vε satisfying εEε(vε) ≤ C (and not only of solutions of (GL)ε!).

For complex-valued maps v ∈ H1(Ω; C) satisfying the even stronger bound (but natural in this context)
Eε(v) ≤ C| log ε|, we can not expect similar compactness properties. A simple example is provided by maps
presenting wild oscillations in the phase, for instance take vε = exp(i| log ε|1/2φ), where φ : Ω → R is an
arbitrary smooth function. Note that compactness cannot be expected even for solutions of (GL)ε (see [15]).

However, oscillations in the phase of v are not seen by the Jacobian of v, which, we recall, is defined as the
two-form

Jv :=
1
2
d(v × dv) =

∑
i<j

(vxi × vxj )dxi ∧ dxj . (2.2)

In particular, vxi × vxj = 0 whenever vxi and vxj are colinear. Hence, when |v| = 1 as in the example above,
we have Jv ≡ 0.

It turns out that Jacobians possess compactness properties in some weak norm, as was first shown by Jerrard
and Soner in [22]. More precisely, from the computations in [22] we deduce immediately:
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Theorem 2.1. Let α > 0, M > 0, and U be a smooth bounded domain in RN . There exists a constant K0 > 0,
depending only on U , M and α, but independent of ε, such that for every map vε ∈ H1(U,C) verifying the
bound

Eε(vε, U) =
1
2

∫
U

|∇vε|2 +
1

4ε2

∫
U

(1 − |vε|2)2 ≤M | log ε|, (2.3)

we have

||Jvε||[C0,α
c (U)]∗ ≤ K0. (2.4)

Remark 2.1. Theorem 2.1 extends immediately to the case U is a compact manifold. Note that in case U is
a compact manifold without boundary, then C0,α

c (U) = C0,α(U).

The proof of Theorem 2.1 relies on reduction to the two dimensional case by slicing arguments, and then on
lower bounds established in [19] (see also [34]) which generalize earlier results in [9, 17].

A different proof, which works also for R
k-valued maps, has been derived independently in [1] using Geometric

Measure Theory: the strategy is to approximate the Jacobian of vε by an integer multiplicity polyhedral current
with uniformly bounded mass, and then apply Federer–Fleming compactness theorem (see [16, 35]).

Finally, a totally different approach is provided in [2]: it relies on the parabolic regularization of vε, as in [3],
and on the regularity theory of [11].

In order to prove Theorem 1 and Theorem 1bis, we will make use of the following variant of Theorem 2.1.

Proposition 2.1. Let α > 0 and let Ω be a smooth domain. Let gε : ∂Ω → C satisfying either
i) (H2) and (H3)

or
ii) (H3bis).

Then there exists a constant K1 > 0 depending on α, either M1 or M2, Ω, but independent of ε, such that for
every map vε ∈ H1(Ω,C) verifying (2.3) and vε = gε on ∂Ω we have

||Jvε||[C0,α(Ω̄)]∗ ≤ K1. (2.5)

Remark that condition i) yields some compactness on gε, whereas this is not the case for condition ii). In
case assumption i) holds, the proof of Proposition 2.1 was given in [7]. We will give here the proof under the
assumption ii) (it is actually even simpler than under hypothesis i)), and then recall some elements of the proof
in case i).

The idea, in both cases, is to extend the map vε to some larger domain G containing Ω, in such a way
that the Ginzburg–Landau energy as well as the Jacobian of the extension remain controlled. Then we apply
Theorem 2.1 to this particular extension of vε on the larger domain G.

Proof of Proposition 2.1 assuming i). For x ∈ R
N set d(x) := dist(x,Ω). Consider, for δ > 0 the set Wδ =

{x ∈ RN \ Ω̄, d(x) < δ}. For δ0 > 0 sufficiently small, on W0 ≡Wδ0 the nearest-point projection π : W0 → ∂Ω
is well-defined and smooth, and its restriction to each level set d−1(t) in W0 gives rise to diffeomorphisms
πt : d−1(t) → ∂Ω.

Remark 2.2. Recall that for each x ∈ W0, d is differentiable at x and |∇d(x)| = 1. Moreover, π(x) =
x − d(x)∇d(x), hence for each level t, ||∇πt − I||L∞(W0) ≤ Ct, where the constant C depends only on the
curvature of ∂Ω.

Set G = W0 ∪ Ω̄. We extend vε to a map ṽε defined on G by setting{
ṽε(x) = vε(x) for x ∈ Ω̄ ,
ṽε(x) = gε(π(x)) for x ∈W0 .
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For the Ginzburg–Landau energy Eε(ṽε, G) of ṽε on G we have the straightforward estimate (by (H3bis) and
Rem. 2.2)

Eε(ṽε, G) = Eε(vε,Ω) + Eε(ṽε,W0) ≤ (M0 + Cδ0M2)| log ε|, (2.6)

with C depending on the curvature of ∂Ω.
We turn now to the Jacobian Jṽε. Observe first that Jṽε = π∗

t Jgε on each level set d−1(t) ⊂ W0, while
obviously Jṽε = Jvε in Ω.

Let f : [0, δ0] → [0, 1] a smooth cut-off function such that f(t) = 1 for t < δ0/3, f(t) = 0 for t > 2δ0/3. We
will extend any smooth 2-form ζ ∈ C∞(Ω̄; Λ2RN ) to a (Lipschitz continuous) 2-form ζ̃ compactly supported in
G as follows: on ∂Ω decompose ζ = ζ> +ζN where ζ> and ζN denote respectively the tangential and the normal
part of ζ with respect to ∂Ω (see for instance the Appendix of [11] for notations). Then, for a fixed 0 < t < δ0,
set

ζ̃(x) = f(t)
[
(π−1

t )∗ζ>(x) + ζN (π(x))
]
, for each x ∈ d−1(t). (2.7)

A simple calculation yields, for each α > 0, ||ζ̃||C0,α(G) ≤ C||ζ||C0,α(Ω̄), where C depends only on ||f ||C0,α and
the curvature of ∂Ω.

In view of (2.6) and Theorem 2.1 we have∣∣∣∣
∫

G

Jṽε · ζ̃
∣∣∣∣ ≤ ||Jṽε||[C0,α

c (G)]∗ ||ζ̃||C0,α(G) ≤ C1||ζ||C0,α(Ω̄). (2.8)

We compute, using the coarea formula and Remark 2.2,

∣∣∣∣
∫

W0

Jṽε · ζ̃
∣∣∣∣ =

∣∣∣∣
∫

W0

|∇d|π∗Jgε · ζ̃
∣∣∣∣ =

∣∣∣∣∣
∫ δ0

0

dt
∫

d−1(t)

f(t)π∗
t Jgε · (π−1

t )∗ζ>

∣∣∣∣∣
≤ Cδ0

∣∣∣∣
∫

∂Ω

Jgε · ζ>
∣∣∣∣ ≤ Cδ0||Jgε||[C0,α(∂Ω)]∗ ||ζ||C0,α(∂Ω)

≤ C2||ζ||C0,α(Ω̄), (2.9)

where the last inequality follows from assumption (H3bis) and Remark 2.1 in the case U = ∂Ω. Combining (2.8)
and (2.9) we finally deduce∣∣∣∣

∫
Ω

Jvε · ζ
∣∣∣∣ ≤

∣∣∣∣
∫

G

Jṽε · ζ̃
∣∣∣∣ +

∣∣∣∣
∫

W0

Jṽε · ζ̃
∣∣∣∣ ≤ (C1 + C2)||ζ||C0,α(Ω̄), (2.10)

and the conclusion follows.

Proof of Proposition 2.1 assuming ii). The argument is based also on an extension of vε to a larger domain G.
However, the construction is different and is more involved. It yields a control of the Jacobian of the extension
in the (stronger) L1 norm. It is based on the following lemma, proved in [7].

Lemma 2.1 ([7], Prop. 4). Let U be a smooth bounded domain of RN . There exists a constant K2 > 0 depend-
ing only on U such that for every γ ∈ H1/2(∂U, S1) there exists wε ∈ H1(U,R2) verifying

wε = γ on ∂U (2.11)

Eε(wε, U) ≤ K2||γ||2H1/2(∂U)| log ε| (2.12)

||Jwε||L1(U) ≤ K2||γ||2H1/2(∂U). (2.13)
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We recall that a map wε verifying (2.11, 2.12) was already constructed in [13] (Th. 5). Using a projection
argument of [18], a different construction was provided in [32]. The construction in [7] follows the ideas of [18,32].

With Lemma 2.1 at our disposal, the proof is completed as follows: define G = W0 ∪ Ω̄ as in case i), and set
U = W0, so that ∂U = ∂Ω ∪ ∂G. Let γ be the function defined on ∂U by γ ≡ g on ∂Ω and γ ≡ 1 on ∂G, so
that ||γ||H1/2(∂U) ≤ C||g||H1/2(∂Ω). Let wε be the function defined on U as in Lemma 2.1, and set

{
ṽε(x) = vε(x) for x ∈ Ω,
ṽε(x) = wε(x) for x ∈ U.

In particular ṽε ∈ H1(G,C), and clearly

Eε(ṽε, G) ≤ Eε(vε,Ω) + Eε(wε, U) ≤ C(M0 +M1)| log ε|. (2.14)

Let ζ and ζ̃ be as in case i). In view of (2.14) and Theorem 2.1 we deduce∣∣∣∣
∫

G

Jṽε · ζ̃
∣∣∣∣ ≤ K||ζ̃||C0,α

c (G) ≤ CK||ζ||C0,α(Ω̄), (2.15)

where K depends on δ0,M0,M1, α. On the other hand ||Jwε||L1(U) ≤ C||g||2
H1/2 ≤ CM1 by (2.13), so that∣∣∣∣

∫
U

Jwε · ζ̃
∣∣∣∣ ≤ CM1||ζ̃||L∞(U) ≤ CM1||ζ̃||C0,α

c (G) ≤ CK||ζ||C0,α(Ω̄), (2.16)

and the conclusion follows arguing as for (2.10) using (2.15) and (2.16).

Next, we adapt the previous discussion to a situation which we will encounter in the parabolic case. For that
purpose, let T > 0 and set

ΛT = Ω × [0, T ] ⊂ R
N+1.

For 0 ≤ t ≤ T , we consider the slices Ωt = Ω × {t}, so that

∂ΛT = ∂Ω × [0, T ] ∪ Ω0 ∪ ΩT .

In what follows, ∇vε denotes the gradient of vε with respect to spatial variables, whereas ∇̃vε represents the
gradient with respect to all space-time variables (x1, . . . , xN , t). Similarly, Jvε (resp. J̃vε) will denote the
spatial component of the Jacobian (resp. the Jacobian with respect to all variables x1, . . . , xN , t).

Let gε : ∂Ω → C be given. We consider functions vε : ΛT → C verifying

vε(x, t) = gε(x) in ∂Ω × [0, T ]. (2.17)

We will assume that for some positive constant M0∫
Ωt

|∇vε|2 +
1
2ε

(1 − |vε|2)2 ≤M0| log ε| for t = 0, T, (2.18)∫
ΛT

|∇̃vε|2 +
1
2ε

(1 − |vε|2)2 ≤M0(T + 1)| log ε|. (2.19)

Proposition 2.2. Let α > 0, T > 0, and vε : ΛT → C. Assume that vε verifies (2.17, 2.18) and (2.19).
Assume moreover that gε verifies either (H2) and (H3), or (H3bis). Then there exists a constant K2 > 0
depending on M0, either M1 or M2, α, Ω and T but independent on ε, such that

||J̃vε||[C0,α(Λ̄T )]∗ ≤ K2. (2.20)



UNIFORM ESTIMATES FOR THE PARABOLIC GINZBURG–LANDAU EQUATION 227

Proof. Let W0 and G be as in the proof of Proposition 2.1 and consider the domain QT = G× (−1, T + 1), so
that ΛT ⊂⊂ QT . We construct an extension v̌ε of vε to QT setting,



v̌ε(x, t) = ṽt

ε(x) , ∀ t ∈ [0, T ], ∀x ∈ W0

v̌ε(x, t) = ṽ0
ε(x), ∀ t ∈ (−1, 0), ∀x ∈W0

v̌ε(x, t) = ṽT
ε (x) , ∀ t ∈ (T, T + 1) ∀x ∈W0,

where, for a map w : Ω → C, w̃ defines its extension to the domain G as in the proof of Proposition 2.1 (the
definition is different in case (H3) and in case (H3bis)). Similarly, for a test function ζ ∈ C0,α(Λ̄T ,Λ2RN+1),
we define its extension ζ̌ to the larger domain QT , by



ζ̌(x, t) = ζ̃t(x) ∀ t ∈ [0, T ] , ∀x ∈W0

ζ̌(x, t) = χ(t)ζ̃0(x) ∀ t ∈ (−1, 0) , ∀x ∈ W0

ζ̌(x, t) = χ(t)ζ̃T (x) ∀ t ∈ (T, T + 1) , ∀x ∈W0.

Here, for a test function ψ ∈ C0,α(Ω̄; Λ2RN+1), ψ̃ denotes its extension to the domain G as in the proof of
Proposition 2.1 (again, the definition is different in case (H3) and in case (H3bis)). The function χ : R → R+

denotes a cut-off function such that χ(t) = 0 if t ≤ −1 or t ≥ T + 1.
We then have

Eε(v̌ε, QT ) ≤ CEε(vε,ΛT ) + Eε(v0
ε ,Ω) + Eε(vT

ε ,Ω) ≤ CM0(T + 1)| log ε|.

Therefore, we may apply Theorem 2.1 to v̌ε on QT , to assert that

∣∣∣∣
∫

QT

Jv̌ε · ζ̌
∣∣∣∣ =

∣∣∣∣∣
∫

ΛT

Jvε · ζ +
∫

QT \ΛT

Jv̌ε · ζ̌
∣∣∣∣∣ ≤ C||ζ̌||C0,α(QT ) ≤ C||ζ||C0,α(Λ̄T ).

Arguing as in the proof of Proposition 2.1, we estimate the integral of Jv̌ε · ζ̌ on the three components of
QT \ ΛT = W0 × [0, T ] ∪G× (−1, 0) ∪G× (T, T + 1), and complete the proof as above.

3. Hodge–de Rham decomposition

3.1. Splitting of the energy

Let x0 ∈ Ω, and assume that v : Ω → C is smooth, and v(x0) 6= 0. Then v 6= 0 in some open neighborhood
U of x0, so that we may write

v(x) = ρ(x) exp(iφ(x)) , for x ∈ U, (3.1)

where ρ = |v| and φ is a real-valued function on U , defined up to an integer multiple of 2π. Moreover,

∇v = exp(iφ)∇ρ + iρ exp(iφ)∇φ (3.2)

and |∇v|2 splits as
|∇v|2 = |∇ρ|2 + ρ2|∇φ|2.

From (3.2) we also notice that
v ×∇v = ρ2∇φ.
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When v vanishes somewhere in Ω, we are not able to define the function φ to the whole of Ω. However, v×∇v
is globally well-defined on Ω, and we have, as above, the identity

|v|2|∇v|2 = |v|2|∇|v||2 + |v ×∇v|2,

and hence
|∇v|2 = |∇|v||2 + |v ×∇v|2 + (1 − |v|2)(|∇v|2 − |∇|v||2).

Since |∇v|2 ≥ |∇|v||2, this yields

|∇v|2 ≤ |∇|v||2 + |v ×∇v|2 + |1 − |v|2||∇v|2,

so that

|∇v|2 ≤ |∇|v||2 + |v ×∇v|2 +
√

2ε
[
(1 − |v|2)2

4ε2
+

|∇v|2
2

]
,

i.e.

|∇v|2 ≤ |∇|v||2 + |v ×∇v|2 +
√

2ε eε(v). (3.3)

In view of (3.3), for every 1 ≤ p ≤ 2 there exists some constant Cp depending on p and Ω such that

∫
Ω

|∇v|p ≤ Cp

[∫
Ω

|∇|v||p +
∫

Ω

|v ×∇v|p + (εEε(v))p/2

]
. (3.4)

Remark 3.1. Assume v verifies Eε(v) ≤M0| log ε|. Then, for 0 < ε < 1 we have ε| log ε| ≤ 1, and consequently

εEε(v) ≤M0.

3.2. Hodge–de Rham decomposition for v × ∇v
The Hodge–de Rham decomposition asserts that every l-form µ on a simply connected domain Ω can be

decomposed as
µ = dH + d∗Φ,

where H is a (l−1)-form on Ω , Φ represents a (l+1)-form, d represents the exterior derivative, and d∗ = ±?d?
(here ? denotes the Hodge operator). In general there is no uniqueness of such a decomposition. We may
therefore impose auxiliary conditions, in particular on the boundary. A common choice of auxiliary conditions is

{
d∗H = 0 , dΦ = 0 in Ω,
H> = 0 , Φ> = 0 on ∂Ω.

These conditions ensure uniqueness of the decomposition. Moreover, for any 1 < p < +∞ there exists a
constant Cp depending on p and Ω, such that

||H ||W 1,p + ||Φ||W 1,p ≤ Cp||µ||Lp . (3.5)

Next let v : Ω → C be a function in H1. We apply the previous decomposition to the 1-form v × dv, where
dv =

∑N
i=1 ∂iv dx

i. Therefore,

v × dv = dϕ + d∗ψ, (3.6)
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where ϕ is a real-valued function in Ω (and hence d∗ϕ = 0) and ψ is a 2-form in Ω, such that

{
dψ = 0 in Ω,
ψ> = 0 ϕ = 0 on ∂Ω.

(3.7)

Applying the d operator to (3.6), we obtain

2Jv = d(v × dv) = dd∗ψ = dd∗ψ + d∗dψ = −∆ψ in Ω.

Hence ψ is solution to the boundary problem

{−∆ψ = 2Jv in Ω
ψ> = 0 , (d∗ψ)> = (v × dv)> on ∂Ω. (3.8)

This elliptic problem determines the 2-form ψ uniquely as a function of Jv and the boundary value of v on ∂Ω.

3.3. W 1;p estimates for ψ

In this section we prove:

Proposition 3.1. Let 1 ≤ p < N
N−1 , and assume v ≡ vε : Ω → C verifies (H1), (H2), and (H3) or (H3bis),

and let ψε ≡ ψ be given by (3.6, 3.7). Then we have

∫
Ω

|∇ψε|p ≤ Kp

where Kp is a constant depending only on p, M0, M1 and M2 in case (H3bis).

Remark 3.2. Here we do not assume that vε is a solution of (GL)ε. Proposition 3.1 ensures compactness
of the “d∗ψ” component of v × dv. This part accounts in particular for topological obstructions to the lifting
property (3.1).

In order to prove Proposition 3.1, we need the following linear estimate related to (3.8) (this estimate is
standard for functions).

Lemma 3.1. Let 1 < p < +∞ and 1
p + 1

q = 1. Let l ∈ N, 1 ≤ l ≤ N . Let ϕ and ω be l-forms on Ω, and A be
an (l − 1)-form on ∂Ω. Assume that

{−∆ϕ = ω in Ω
ϕ> = 0, (d∗ϕ)> = A on ∂Ω.

There exists some constant C depending only on Ω and p such that

||ϕ||W 1,p(Ω) ≤ C

(
||ω||[W 1,q(Ω)]∗ + ||A||

[W
1− 1

q
,q

(∂Ω)]∗

)
.

We apply Lemma 3.1 to ω = 2Jv and A = (v × dv)> = gε × dgε. Since 1 ≤ p < N
N−1 , we have q > N , and, for

α = 1 − N
p , we recall the embedding W 1,q(Ω) ↪→ C0,α(Ω̄). By duality we therefore have the embedding

[C0,α(Ω̄)]∗ ↪→ [W 1,q(Ω)]∗. (3.9)
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If vε verifies (H1), (H2), (H3) or (H3bis), by Proposition 2.1 we have ||Jvε||[C0,α(Ω̄)]∗ ≤ C, hence by (3.9) we
have

||Jvε||[W 1,q(Ω)]∗ ≤ Cp. (3.10)

In order to apply Lemma 3.1 it remains to estimate ||gε × dgε||
[W

1− 1
q

,q
(∂Ω)]∗

.

Proposition 3.2. Let q > N and g ∈ H1/2(∂Ω; C) such that ||g||L∞(∂Ω) ≤ 1. Then there is a constant Cq > 0
depending only on q and Ω such that

||g × dg||
[W

1− 1
q

,q
(∂Ω)]∗

≤ Cq

(
||g||2H1/2(∂Ω) + ||g||H1/2(∂Ωega)

)
.

Proof. Let ξ ∈ W 1− 1
q ,q(∂Ω). Note that we have the embedding W 1− 1

q ,q(∂Ω) ↪→ C0 ∩H1/2(∂Ω). On the other
hand, we recall that H1/2 ∩ L∞(∂Ω) is an algebra, therefore since |g| ≤ 1, ξg belongs to H1/2 ∩ L∞(∂Ω) and

||ξg||H1/2(∂Ω) ≤ C (||ξ||L∞ ||g||H1/2 + ||g||L∞ ||ξ||H1/2 )

≤ C

(
||ξ||

W
1− 1

q
,q

(∂Ω)
||g||H1/2(∂Ω) + ||ξ||

W
1− 1

q
,q

(∂Ω)

)
≤ ||ξ||

W
1− 1

q
,q

(∂Ω)

(
1 + ||g||H1/2(∂Ω)

)
.

Finally, we have ∣∣∣∣
∫

∂Ω

ξ(g × dg)
∣∣∣∣ ≤ ||dg||H−1/2(∂Ω)||ξg||H1/2(∂Ω)

≤ C||g||H1/2(∂Ω)||ξ||
W

1− 1
q

,q
(∂Ω)

(
1 + ||g||H1/2(∂Ω)

)
, (3.11)

and the conclusion follows:

Proposition 3.2bis. Let q > N and g ∈ H1/2(∂Ω; C) such that

1
2

∫
∂Ω

|∇gε|2 +
1

4ε2

∫
∂Ω

(1 − |gε|2)2 ≤M2| log ε| .

Then for some constant Kq > 0 depending only on q, Ω, M2 and ||g||H1/2(∂Ω), we have

||g × dg||
[W

1− 1
q

,q
(∂Ω)]∗

≤ Kq .

Proof. Consider the function g̃ defined on ∂Ω by g̃ = g if |g| ≤ 1, g̃ = g/|g| otherwise. We have g̃× dg̃ = g× dg
if |g| ≤ 1, and g̃ × dg̃ = 1

|g|2 g × dg, if |g| ≥ 1. Therefore

|g × dg − g̃ × dg̃| ≤ ||g|2 − 1||dg| ≤
√

2ε
(

(1 − |gε|2)2
4ε2

+
|∇g|2

2

)
· (3.12)

Let ξ be as in Proposition 3.2. We have, as in (3.11),

∣∣∣∣
∫

∂Ω

ξ(g̃ × dg̃)
∣∣∣∣ ≤ C||ξ||

W
1− 1

q
,q

(∂Ω)

(
||g||2H1/2(∂Ω) + ||g||H1/2(∂Ω)

)
. (3.13)
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On the other hand, in view of (3.12), we deduce
∣∣∣∣
∫

∂Ω

ξ(g̃ × dg̃ − g × dg)
∣∣∣∣ ≤ C||ξ||

W
1− 1

q
,q

(∂Ω)
M2ε| log ε|. (3.14)

Combining (3.13) with (3.14) we are led to
∣∣∣∣
∫

∂Ω

ξ(g × dg)
∣∣∣∣ ≤ C||ξ||

W
1− 1

q
,q

(∂Ω)

(
||g||2H1/2(∂Ω) + ||g||H1/2(∂Ω) +M2ε| log ε|

)
,

and the conclusion follows.

Proof of Proposition 3.1. In view of Lemma 3.1 and (3.8), we have

||ψε||W 1,p(Ω) ≤ C

(
||Jvε||[W 1,q(Ω)]∗ + ||gε × dgε||

W
1− 1

q
,q

(∂Ω)

)
,

where q is such that 1
p + 1

q = 1. The conclusion follows from (3.10), and Proposition 3.2 (in case (H3bis), from
Prop. 3.2bis).

4. Hodge–de Rham decomposition on ΛT

We will consider here a situation specially tailored for the parabolic case.
As in Section 2 consider, for T > 0, the cylinder ΛT = Ω × [0, T ] ⊂ RN+1. Let gε satisfy (H2), and (H3)

or (H3bis). We will consider maps vε : ΛT → C; recall that for 0 ≤ t ≤ T , we have defined

vt
ε : Ω → C, vt

ε(x) = vε(x, t).

We will assume throughout this section that vε verifies (2.17–2.19), and

|vε| ≤ 1, (4.1)

||v0
ε ||H1/2(Ω) ≤M3. (4.2)

We also recall that ∇̃ represents the gradient in RN+1, and we denote by δ the exterior derivative in RN+1, and
δ∗ = ± ? δ?, where ? is the Hodge operator on R

N+1.

Proposition 4.1. Let vε be as above. Then there exist a function Φ, a 1-form χ and a 2-form Ψ on ΛT , such
that 


vε × δvε = δΦ + δ∗Ψ + χ,

δΨ = 0 in ΛT ,

Φ = 0 on Ω0 ∪ ∂Ω × [0, T ], Ψ> = 0 on ∂ΛT .

(4.3)

Moreover, for 1 ≤ p < N+1
N , there exist constants Cp and 0 < α < 1, depending on p, T , Ω, such that

||∇̃Ψ||Lp(ΛT ) ≤ Cp , ||χ||Lp(ΛT ) ≤ Cpε
α. (4.4)

Comment. Although the statement of Proposition 4.1 looks very similar to that of Proposition 3.1, we have
to point out a major difference: on ΩT ⊂ ∂ΛT no uniform bound (and hence no compactness) is assumed for
vε. In particular, this is the reason why we do not impose Φ = 0 on ΩT .
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Proof of Proposition 4.1. We decompose the proof into two steps. The first step corresponds to a
Hodge–de Rham decomposition of vε on ΩT ⊂ ∂ΛT : this allows to analyse the possible lack of compact-
ness on this portion of ∂ΛT . In the second step, we use a gauge transformation to remove this possible lack of
compactness.

Step 1: HdR decomposition on ΩT . In view of the results of Section 3, we write

vT
ε × dvT

ε = dϕT + d∗ψT in Ω, (4.5)

where ϕT (resp. ψT ) is a function (resp. a 2-form) defined on Ω, satisfying

dψT = 0 in Ω , ϕT = 0 and ψT
> = 0 on ∂Ω.

By Proposition 3.1 and assumption (2.19), we have, for 1 ≤ p < N
N−1 ,

||∇ψT ||pLp(Ω) ≤ Cp , ||∇ψT ||2L2(Ω) + ||∇ϕT ||2L2(Ω) ≤ CM0| log ε|. (4.6)

We consider the harmonic extension Φ0 of ϕT to ΛT defined by


∆̃Φ0 = 0 in ΛT ,

Φ0 = 0 on ∂ΛT \ ΩT ,

Φ0(x, T ) = ϕT (x) on ΩT .

By (4.6) and standard estimates, we have

||∇̃Φ0||2L2(ΛT ) ≤ CM0| log ε|. (4.7)

Step 2: “Gauge transformation” of vε. On ΛT we consider the map wε : ΛT → C defined by

wε = vε exp(−iΦ0) in ΛT .

Note that |wε| = |vε|. The computations in Section 3 yield

wε × δwε = vε × δvε − |vε|2δΦ0 = vε × δvε − δΦ0 + (1 − |vε|2)δΦ0 in ΛT . (4.8)

Since |vε| ≤ 1 by assumption (4.1), we have

|∇wε| ≤ |∇vε| + |∇Φ0|,

hence it follows, from (4.7) and (2.19),

||∇wε||2L2(ΛT ) + ε−2||(1 − |wε|2)||2L2(ΛT ) ≤ CM0| log ε|. (4.9)

Note also that, since |wε| ≤ 1 by (4.1) and ||(1 − |vε|2)||2L2(ΛT ) ≤ M0(T + 1)ε2| log ε|, it follows by Hölder’s
inequality and (4.7) that, for 1 ≤ p < 2,

||(1 − |vε|2)δΦ0||pLp(ΛT ) ≤ CM0(T + 1)ε2−p| log ε|, (4.10)

and similarly

||(1 − |vε|2)dϕT ||pLp(Ω) ≤ CM0ε
2−p| log ε|. (4.11)
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Next, we apply the HdR decomposition to wε on ΛT , so that

wε × dwε = δΦ1 + δ∗Ψ ,

where Φ1 (resp. Ψ) is a function (resp. a 2-form) defined on ΛT such that

δΨ = 0 in ΛT , Φ1 = 0 and Ψ> = 0 on ∂ΛT . (4.12)

The equation for Ψ is then −∆̃Ψ = 2J̃wε in ΛT , with boundary condition Ψ> = 0 on ∂ΛT , and

(δ∗Ψ)> = wε × dwε = vε × dvε − |vε|2dϕT = d∗ΨT + (1 − |vε|2)dϕT on ΩT .

In view of (4.6) and (4.11), we have for 1 ≤ p < N+1
N < N

N−1 ,

||(δ∗Ψ)>||Lp(ΩT ) ≤ Cp ,

and hence, since Lp(ΩT ) = [Lq(ΩT )]∗ ⊂ [W 1−1/q,q(ΩT )]∗, for 1
p + 1

q = 1, it follows using the same arguments as
in the proof of Proposition 3.1,

||∇̃Ψ||Lp(ΛT ) ≤ Cp , ∀ 1 ≤ p <
N + 1
N

· (4.13)

Finally, going back to (4.8), we have

vε × δvε = wε × dwε − δΦ0 + (1 − |vε|2)δΦ0 = δ(Φ0 + Φ1) + δ∗Ψ + (1 − |vε|2)δΦ0.

We set

Φ = Φ0 + Φ1 , χ = (1 − |vε|2)δΦ0 ,

so that vε × δvε = δΦ + δ∗Ψ + χ. This completes the proof, in view of (4.10, 4.12) and (4.13).

5. The elliptic equation

In this section, we turn to solutions u ≡ uε of (GL)ε verifying (H1), (H2), (H3) or (H3bis). It follows from
the analysis in Section 3.1, equations (3.4) and (3.6), that

∫
Ω

|∇u|p ≤ Cp

[∫
Ω

|∇ρ|p +
∫

Ω

|∇ϕ|p +
∫

Ω

|∇ψ|p + (εEε(u))p/2

]
, (5.1)

where ρ = |u|, and ϕ ≡ ϕε and ψ ≡ ψε are such that



u× du = dϕ+ d∗ψ in Ω,
dψ = 0 in Ω,
ϕ = 0 ψ> = 0 on ∂Ω.

(5.2)

In order to prove Theorem 1 and Theorem 1bis it suffices, in view of (5.1), Remark 3.1 and Proposition 3.1, to
bound ϕ and ρ.
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5.1. ϕ vanishes!

As a consequence of (GL)ε, it turns out that ϕ = 0. Indeed, taking the exterior product of (GL)ε by the
solution u, we derive

div (u×∇u) = u× ∆u = 0.
In the formalism of differential forms, we may rewrite previous identity as d∗(u×du) = 0. Since u×du = dϕ+d∗ψ,
it follows that ϕ verifies {

−∆ϕ = d∗dϕ = 0 in Ω
ϕ = 0 on ∂Ω ,

so that ϕ = 0 in Ω.

5.2. W 1;p estimates for ρ

The equation for ρ2 = |u|2 is

−∆ρ2 + 2|∇u|2 =
2
ε2
ρ2(1 − ρ2). (5.3)

Proposition 5.1. Let u be a solution of (GL)ε verifying (H1). Let 1 ≤ p < 2. There exists some constant Kp

and 0 < α < 1 depending only on p,M0 and Ω, such that, for 0 < ε < 1,∫
Ω

|∇ρ|p ≤ Kpε
α .

Proof. It is similar to the proof of ([11], Erratum). We introduce the set

A = {x ∈ Ω, ρ(x) > 1 − ε1/2}

and the function
ρ̄ = max{ρ, 1 − ε1/2},

so that ρ̄ = ρ on A and 0 ≤ 1 − ρ̄ ≤ ε1/2 in Ω.
Next let ζε be a function in C∞

c (Ω) such that 0 ≤ ζε ≤ 1 on Ω, ζε ≡ 1 on Ωε ≡ {x ∈ Ω, dist (x, ∂Ω) ≥ ε1/2},
and |∇ζε| ≤ Cε−1/2, where the constant C depends only on Ω.

Finally, we multiply equation (5.1) by ζε(ρ̄2 − 1) (which is compactly supported in Ω), and integrate over Ω.
We obtain ∫

Ω

∇ρ2∇ρ̄2ζε +
∫

Ω

2ρ(1 − ρ2)(1 − ρ̄2)
ε2

ζε =
∫

Ω

(1 − ρ̄2)|∇u|2 +
∫

Ω

∇ρ2∇ζε(1 − ρ̄2).

It follows that on the set Aε = Ωε ∩A we have∫
Aε

|∇ρ2|2 =
∫

Aε

∇ρ2∇ρ̄2 ≤ ε1/2

∫
Ω

|∇u|2 +
2C
ε1/2

∫
Ω

|∇ρ||1 − ρ2|

≤ ε1/2

∫
Ω

|∇u|2 + C(2ε)1/2

[∫
Ω

|∇ρ|2 +
∫

Ω

(1 − ρ2)2

2ε2

]
,

hence, since ρ ≥ 1 − ε1/2 on Aε, we have, for ε ≤ 1/4,
∫

Aε

|∇ρ|2 ≤ 4
∫

Aε

|∇ρ2|2 ≤ 16Cε1/2Eε(u) ≤ 16CM0ε
1/2| log ε|. (5.4)
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Set Wε = Ω \ Ωε, B = Ω \A, so that

Ω = B ∪Aε ∪Wε. (5.5)

From (H1) we deduce
∫

B
(1 − ρ2)2 ≤ 4M0ε

2| log ε| and hence, since (1 − ρ) ≥ ε1/2 on B, it follows |B|
≤ 4M0ε| log ε|. Thus

∫
B

|∇ρ|p ≤
(∫

Ω

|∇ρ|2
)p/2

|B|1−p/2 ≤ C| log ε|p/2(ε| log ε|)1−p/2,

i.e. ∫
B

|∇ρ|p ≤ Cε1−p/2| log ε|. (5.6)

Finally, we turn to Wε. Clearly, by construction |Wε| ≤ Cε1/2. Hence

∫
Wε

|∇ρ|p ≤
(∫

Ω

|∇ρ|2
)p/2

|W |1−p/2 ≤ Cε1/2−p/4| log ε|p/2. (5.7)

Combining (5.5) with (5.4, 5.6) and (5.7) we derive the desired conclusion.

5.3. Proof of Theorem 1 and Theorem 1bis completed

Combining the results of Proposition 5.1, Proposition 3.1, Remark 3.1, and the fact that ϕ = 0, we deduce
from (5.1) the conclusions of Theorem 1 and Theorem 1bis.

Remark 5.1. Let εn → 0 be a subsequence such that uεn ⇀ u∗ in W 1,p(Ω) for every 1 ≤ p < N
N−1 , gεn ⇀ g∗

in H1/2(∂Ω), ψεn ⇀ ψ∗ in W 1,p(Ω; Λ2RN ). Passing to the limit in (5.2), we have

u∗ × du∗ = d∗ψ∗.

We may also pass to the limit in the equation for ψε, so that we are led to

{
−∆ψ∗ = 2Ju∗ in Ω,
ψ> = g∗ × dg∗ on ∂Ω.

In particular, ψ∗, and hence u∗, belong to C∞(Ω \ supp(Ju∗)).

6. The parabolic equation

In this section, we turn to solutions u ≡ uε of (PGL)ε verifying (H4), (H2), and (H3) or (H3bis). Applying
Proposition 4.1 to u, we write

u× δu = δΦ + δ∗Ψ + χ in ΛT , (6.1)

where Φ is a function, χ a 1-form, Ψ a 2-form defined on ΛT , such that δΨ = 0 in ΛT , Ψ> = 0 on ∂ΛT ,

Φ = 0 on Ω0 ∪ ∂Ω × [0, T ], (6.2)
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and for 1 ≤ p < N+1
N , there are constants Cp > 0, 0 < αp < 1, such that

||∇̃Ψ||Lp(ΛT ) ≤ Cp , ||χ||Lp(ΛT ) ≤ Cpε
αp . (6.3)

Moreover, we have, for 1 ≤ p < 2,
∫

ΛT

|∇u|p ≤ Cp

(
M0(T + 1)p/2 +

∫
ΛT

|∇ρ|p + |∇Φ|p + |∇̃Ψ|p + |χ|p
)
, (6.4)

so that in order to prove Theorem 4 it suffices to bound ρ and Φ.

6.1. Lp estimates for ∇ρ
The equation for ρ2 is

∂ρ2

∂t
− ∆ρ2 + 2|∇u|2 =

2
ε2
ρ2(1 − ρ2) in ΛT . (6.5)

We then have:

Proposition 6.1. Let u = uε be a solution of (GL)ε verifying (H4), (H2), and (H3) or (H3bis). Let ρ = |u|,
and 1 ≤ p < 2. There exists some constant Kp > 0 and 0 < α < 1 such that, for every 0 < ε < 1,

∫
ΛT

|∇ρ|p ≤ Kpε
α.

Proof. It is similar to the proof of Proposition 5.1. One introduces ρ̄ = max{ρ, 1−ε1/2} on ΛT , and ζε : Ω → R+,
as there. Multiplying (6.5) by ρ̄ζε on ΛT one obtains, computing as for (5.4),

∫
Aε

|∇ρ2|2 ≤ ε1/2

∫
ΛT

|∇u|2 + Cε1/2

∫
ΛT

|∇ρ|2 +
(1 − ρ2)2

2ε2
+

∫
ΛT

∣∣∣∣∂ρ∂t (ρ̄− 1)
∣∣∣∣ , (6.6)

where Aε = {y ∈ ΛT , ρ(y) ≥ 1 − ε1/2}. The last term in inequality (6.6) can be bounded by Cε
∫
ΛT

|∇̃ρ|2
+ (1−ρ2)2

4ε2 . Hence

∫
Aε

|∇ρ|2 ≤ CM0(T + 1)ε1/2| log ε|. (6.7)

The proof is then completed as in the proof of Proposition 5.1.

6.2. Lp estimates for ∇Φ

Taking the exterior product of (PGL)ε with u, we are led to

u× ∂u

∂t
− div (u×∇u) = 0 in ΛT . (6.8)

We have, in view of (6.1), 

u× du = dΦ + (δ∗Ψ + χ) − Pt(δ∗Ψ + χ)dt ,

u× ∂u

∂t
=
∂Φ
∂t

+ Pt(δ∗Ψ + χ).
(6.9)
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Here, for a 1-form ω on ΛT , we denote Pt(ω) its dt component, i.e. if ω = ω1dx
1 + · · · + ωNdx

N + ωtdt, then
Pt(ω) = ωt.

Combining (6.8) and (6.9) we are led to the equation for Φ:

∂Φ
∂t

− ∆Φ = d∗(δ∗Ψ + χ− Pt(δ∗Ψ + χ)dt) − Pt(δ∗Ψ + χ) in ΛT . (6.10)

Set f = (f1, . . . , fN ), where

f1dx
1 + · · · + fNdx

N = δ∗Ψ + χ− Pt(δ∗Ψ + χ)dt ,

and let g = −Pt(δ∗Ψ + χ). In view of (6.2) and (6.10) we obtain the following initial and boundary value
parabolic problem for Φ: 


∂Φ
∂t

− ∆Φ = div f + g in ΛT ,

Φ(x, 0) = 0 ∀x ∈ Ω ,
Φ(x, t) = 0 ∀x ∈ ∂Ω , ∀ t ∈ [0, T ],

(6.11)

where, for every 1 ≤ p < N+1
N ,

||f ||Lp(ΛT ;RN ) + ||g||Lp(ΛT ) ≤ Cp ,

for some constant Cp independent of ε.
Note that (6.11) is a well posed parabolic problem for Φ. In view of standard parabolic estimates, we deduce∫

ΛT

|∇Φ|p ≤ Cp(T ). (6.12)

6.3. Proof of Theorem 4 completed

Combining (6.3) with (6.12) and the result of Proposition 6.1, we deduce from (6.4) the conclusion of
Theorem 4.

6.4. Proof of Proposition 1

Statement i) is straightforward. For statement ii) we argue as in Remark 5.1.

The first author is partially supported by European Grant ERB FMRX CT980201. The second author wishes to thank
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