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BOUNDARY CONTROLLABILITY OF THE FINITE-DIFFERENCE SPACE
SEMI-DISCRETIZATIONS OF THE BEAM EQUATION ∗, ∗∗

Liliana León1 and Enrique Zuazua2

Abstract. We propose a finite difference semi-discrete scheme for the approximation of the boundary
exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam
with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform
(with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural
functional setting. We then prove that there are two ways of restoring the uniform controllability
property: a) filtering the high frequencies, i.e. controlling projections on subspaces where the high
frequencies have been filtered; b) adding an extra boundary control to kill the spurious high frequency
oscillations. In both cases the convergence of controls and controlled solutions is proved in weak and
strong topologies, under suitable assumptions on the convergence of the initial data.
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1. Introduction

The transversal vibrations of a 1-d beam with hinged boundary conditions are modelled by the following
equation




u′′ + ∂4
xu = 0 in Q = (0, 1) × (0, T )

u(0, t) = u(1, t) = 0 t ∈ (0, T )

∂2
xu(0, t) = ∂2

xu(1, t) = 0 t ∈ (0, T )

u(x, 0) = u0(x), u′(x, 0) = u1(x) x ∈ (0, 1),

(1)

where ′ denotes the derivative of u with respect to time.
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When (u0, u1) ∈ H1
0 (0, 1) ×H−1(0, 1) there exists a unique solution u such that

u ∈ C([0, T ];H1
0 (0, 1)) ∩C([0, T ];H−1(0, 1)). (2)

This solution admits the Fourier expansion

u(x, t) =
∞∑

k=1

{ak cos k2π2t+ bk sin k2π2t} sin kπx, (3)

with suitable Fourier coefficients depending on the initial data (u0, u1).
The energy associated with (u0, u1) ∈ H1

0 (0, 1) ×H−1(0, 1) is given by

E(t) =
1
2

{
‖u(., t)‖2

1 + ‖u′(., t)‖2
−1

}
, (4)

where ‖.‖1 and ‖.‖−1 are the canonical norms in H1
0 (0, 1) and H−1(0, 1), respectively. Namely

‖u‖1 =
[∫ 1

0

(∂xu)2 dx
]1/2

; ‖u‖−1 = ‖(−∂2
x)−1u‖1

where (−∂2
x)−1 denotes the inverse of the operator −∂2

x with homogeneous Dirichlet boundary conditions at
x = 0, 1.

It is easy to see that the energy E(t) is conserved along time for the solutions of (1).
Applying multipliers or Fourier series techniques one can prove a boundary observability inequality showing

that, for every T > 0, there exists C = C(T ) > 0 such that

E(0) ≤ C

∫ T

0

|∂xu(1, t)|2 dt, (5)

for every solution of (1) (see Lions [10]).
As a consequence of this observability inequality and Lions’ HUM method [10] the following boundary

controllability property may be proved:
For all T > 0 and (y0, y1) ∈ F = H1

0 (0, 1) × H−1(0, 1), there exists a control ν ∈ L2(0, T ), such that the
solution of




y′′ + ∂4
xy = 0 in Q = I × (0, T )

y(0, t) = y(1, t) = 0 t ∈ (0, T )

∂2
xy(0, t) = 0 ∂2

xy(1, t) = ν t ∈ (0, T )

y(x, 0) = y0(x), y′(x, 0) = y1(x) x ∈ I,

(6)

satisfies

y(x, T, ν) = y′(x, T, ν) = 0.

The main objective of this work is to study the controllability of the classical semi-discrete space approximation
by finite differences of (6). We also study the convergence of controls and controlled solutions as the mesh-size
tends to zero. Our work provides two alternative methods for the numerical approximation of the exact control
ν of equation (6).
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In Section 2 we analyze the problem of the observability of the finite-difference space semi-discretization of
the beam equation (1). In Section 3, combining the results of the previous section, we find two results of uniform
controllability (as the mesh size tends to zero) of the semi-discrete space approximation by finite differences
of (6). The first one concerns the partial control obtained by filtering the high frequencies and the second
one the control of the semi-discrete solutions by means of a suitable modification of the boundary control. In
Section 4, we study the convergence of the solutions of the previous semi-discrete problems as the mesh-size
tends to zero.

2. Analysis of the boundary observability problem

For each N ∈ N we consider a partition of I = (0, 1), P = {x0 = 0, . . . , xj = jh, . . . , x
N+1 = 1}, where the

mesh-size is h = 1/(N + 1).
To get a discrete definition of the boundary conditions of the problem (1) using centered finite differences,

we also introduce two external points x−1 = x0 − h and xN+2 = xN+1 + h. We denote by uh,j(t) the
approximation of the solution of (1) at the point xj . We also set uh,−1 = −uh,1 and uh,N+2 = −uh,N .

The semi-discretization by finite differences of (1) is then given by the following system of N ordinary
differential equations,




u′′h,j = − 1
h4

[uh,j+2 − 4uh,j+1 + 6uh,j − 4uh,j−1 + uh,j−2],

0 < t < T j = 1, 2, . . .N

uh,0 = uh,N+1 = 0, 0 < t < T

uh,−1 = −uh,1 uh,N+2 = −uh,N , 0 < t < T

uh,j(0) = u0
h,j u′h,j(0) = u1

h,j, j = 1, 2, . . .N.

(7)

Here the initial conditions (u0
j , u

1
j) of (7) are suitable approximations of the initial conditions of (1) at the points

xj of the mesh. It is easy to see that the scheme (7) is convergent as h → 0 in the classical sense, i.e. it is
consistent and stable.

The eigenvalue problem associated to (7) is as follows




1
h4B~φ

k(h) = β~φk(h)

φk,0 = φk,N+1;

φk,−1 = −φk,1 φk,N+2 = −φk,N

(8)

where

B =




5 −4 1 0 . . . . . . . . . . . . . . . . . . . . 0
−4 6 −4 1 0 . . . . . . . . . . . . . . . 0

1 −4 6 −4 1 0 . . . . . . . . . 0
0 1 −4 6 −4 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 −4 6 −4 1 0
0 . . . . . . . . . 0 1 −4 6 −4 1
0 . . . . . . . . . . . . . . . 0 1 −4 6 −4
0 . . . . . . . . . . . . . . . . . . . . 0 1 −4 5




N×N

· (9)
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Figure 1. Graph of discrete eigenvalues βk(h) for different values of h and the continuous
eigenvalues βk = k4π4 of the beam equation.

Note that B = A2 with

A =




−2 1 0 . . . . . . . . . . . . . . . 0
1 −2 1 0 . . . . . . . . . 0
0 1 −2 1 0 . . . 0

. . . . . . . . . . . . . . .
0 . . . 0 1 −2 1 0
0 . . . . . . . . . 0 1 −2 1
0 . . . . . . . . . . . . . . . 0 1 −2




N×N

· (10)

The matrix A arises in the semi-discrete approximation of Laplace’s equation in one space dimension and its
eigenvalues and eigenvectors are well known (see [6]);

λk(h) =
4
h2

sin2

(
kπh

2

)
k = 1, 2, . . . , N (11)

~φk(h) = (φk,1, φk,2, . . . , φk,N ) k = 1, 2, . . . , N (12)
φk,j(h) = sin(jkπh). (13)

Then, the eigenvectors of B are the same, and their eigenvalues are

βk(h) = λ2
k(h) =

16
h4

sin4

(
kπh

2

)
k = 1, 2, . . . , N.

The discrete eigenvalues βk(h) approximate the eigenvalues of the continuous model βk = k4π4 for k fixed, when
the size of the mesh h tends to zero, and its eigenvectors ~φk(h) coincide with the eigenfunctions φk(x) = sin(kπx)
of the continuous model (1) on the mesh points.
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Therefore, the solution of system (7) may be expressed as

~uh(t) =
N∑

k=1

{
ak cos

(√
βk(h) t

)
+ bk sin

(√
βk(h) t

)}
~φk(h) (14)

with ~uh(t) = (uh,1(t), uh,2(t), . . . uh,N(t)), for suitable Fourier coefficients aj , bj depending on the initial data.
We set Ah = 1

h2A, where A is as in (10) and we denote by A−1
h its inverse. We define the energy Eh(t)

associated to problem (7) by

Eh(t) =
h

2

N∑
j=1



∣∣∣∣∣uh,j+1(t) − uh,j(t)

h

∣∣∣∣
2

+
∣∣∣∣
(
A−1

h ~uh
′(t)
)
j+1

− (A−1
h ~uh

′(t)
)

j

h

∣∣∣∣∣
2

 (15)

which is an approximation of the continuous energy E(t). Note that Eh(t) is conserved along time for solutions
of (7).

It is then natural to analyze the following semi-discrete version of the observability inequality (5):

Eh(0) ≤ C(T, h)
∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt (16)

where C(T, h) is independent of the solution of (7).
The observability inequality (16) is said to be uniform, if the constants C(T, h) are bounded uniformly in h,

as h→ 0.
However, as we shall see below in Section 2.1, whatever T > 0 is, the inequality (16) may not be uniform.
In order to restore the uniformity of the observability inequality with respect to h there are two possibilities:

(a) to restrict the class of solutions of (7) under consideration; (b) to reinforce the observed quantity on the
right hand side of (16).

Once the lack of uniform observability is proved in Section 2.1 the rest of this section will be devoted to
prove the two uniform observability properties mentioned above.

2.1. Non-uniform observability

Let us first recall the following observability identity for the eigenvectors of B (see Lem. 1.1 in [5])

h

N∑
j=0

∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

=
2

(4 − √
βk(h) h2)

∣∣∣∣φk,N

h

∣∣∣∣
2

k = 1, 2, . . .N. (17)

This identity allows to show that the observability inequality may not be uniform as h → 0 for any T . More
precisely, we have the following negative result:

Theorem 2.1. For any T > 0, we have

sup
~uh sol. of (7)

(
Eh(0)∫ T

0

∣∣uh,N(t)/h
∣∣2dt

)
−→ ∞, as h→ 0. (18)

Proof. For h > 0, consider ~uh(t) = (uh,1(t), uh,2(t), . . . , uh,N(t)) the solution of (7), associated to the eigenfunc-
tion ~φ k(h):

~uh(t) = ei
√

βk(h) t ~φk(h) = eiλk(h) t ~φk(h). (19)
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According to (17)

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt =
∣∣∣∣φk,N

h

∣∣∣∣
2 ∫ T

0

∣∣∣eiλk(h) t
∣∣∣2 dt =

T

2
(
4 − λk(h) h2

)
h

N∑
j=0

∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

· (20)

Note that 4 − λk(h) h2 = 4 cos2(kπh
2 ).

On the other hand,

Eh(0) = h

N∑
j=0

∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

·

Therefore

Eh(0) =
1

2T cos2(kπh
2 )

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt. (21)

Thus for any T > 0, taking k = N and using that

cos2
(
Nπh

2

)
= cos2

(
π

2
− πh

2

)
−→ 0 when h→ 0,

equation (18) holds immediately. �
Remark 2.1. Let δ ∈ (0, 1) be given. The counterexample above may not be found in the class of low frequency
solutions with Fourier components corresponding to indexes k ≤ δN . Indeed in that case, the quotient in (21)
may be bounded below by 1/

[
2T cos2 δ

(
(π − πh)/2

)]
which is bounded as h −→ 0.

This observation motivates the uniform observability result we state in the following section for filtered
solutions in which the high frequency components have been filtered.

2.2. Uniform observability of filtered solutions

Given γ ∈ (0, 16) and h > 0, we consider Ch(γ) the class of solutions of (7) generated by the eigenvectors
of (8) associated with eigenvalues such that

βk(h) ≤ γh−4.

More precisely,

Ch(γ) =


~uh sol. of (7) : ~uh =

∑
βk(h)≤γh−4

{
akei

√
βk(h)t + bke−i

√
βk(h)t

}
~φk(h)


 · (22)

Observe that, when γ = 16, Ch(γ) = Ch(16) coincides with the space of all solutions of the semi-discrete
problem (7). The following observability result holds in this class.

Theorem 2.2. Let 0 < γ < 16. For all T > 0, there exists C = C(T, γ) > 0 such that

Eh(0) ≤ C

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt ∀ ~uh ∈ Ch(γ), ∀ h > 0. (23)

The proof of this result relies on Ingham’s inequality (see [17] for instance) in which the gap between the
consecutive eigenvalues of the semi-discrete system (7) plays a crucial role.
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Figure 2. The function k → γk(h) for different values of h.

2.2.1. Analysis of the gap between consecutive eigenvalues

Let us first observe that the gap for the continuous model (1) satisfies

√
βk+1 −

√
βk = (2k + 1)π2 → ∞.

Moreover, we have the following:

Lemma 2.1. The following properties hold:

(i)
√
βk+1(h) −

√
βk(h) ≥ 3π2

{
sin πh

2
πh
2

}2

− π4h2 (24)

(ii) lim
h→0

inf
1≤k≤ 1

h−2

{√
βk+1(h) −

√
βk(h)

}
= 3π2 (25)

(iii) lim
h→0

sup
1≤k≤ 1

h−2

{√
βk+1(h) −

√
βk(h)

}
= ∞. (26)

Proof. (i) We set

γk(h) =
√
βk+1(h) −

√
βk(h), for k = 1, 2, . . . , N − 1.

Using classical trigonometrical identities it follows that

γk(h) =
2
h2

(
cos kπh− cos (k + 1)πh

)
=

4
h2

sin
(2k + 1)πh

2
sin

πh

2
· (27)

We observe that 0 < 3πh
2 ≤ (2k+1)πh

2 ≤ π − 3πh
2 for k = 1, 2 . . . , N − 1.

Thus, for every h > 0, the function k → γk(h) describes a concave parabola which is symmetric with
respect to k = 1−h

2h , as shown in Figure 2.



834 L. LEÓN AND E. ZUAZUA

Then, it is enough to consider k ∈ N such that 3πh
2 ≤ (2k+1)πh

2 ≤ π
2 , or equivalently 1 ≤ k ≤ 1−h

2h . For those
indexes k we have

γk(h) ≥ 4
h2

sin
{

3πh
2

}
sin
{
πh

2

}
, ∀ k ∈ N ∩

[
1,

1 − h

2h

]
·

Using the trigonometrical identity sin 3α = 3 sinα− 4 sin3 α in the previous inequality, we conclude that

γk(h) ≥ 3π2

{
sin πh

2
πh
2

}2

− π4h2

{
sin πh

2
πh
2

}4

≥ 3π2

{
sin πh

2
πh
2

}2

− π4h2,

for every k = 1, 2, . . . , N − 1.

(ii) From (27) we have that

inf
1≤k≤ 1

h−2
{γk(h)} = inf

1≤k≤ 1
h−2

{
4
h2

sin
(2k + 1)πh

2
sin

πh

2

}
=

4
h2

sin
3πh
2

sin
πh

2
· (28)

Then, (25) holds.

(iii) Again from the equality (27) we have that

sup
1≤k≤ 1

h−2

{
γk(h)

}
= sup

1≤k≤ 1
h−2

{
4
h2

sin
(2k + 1)πh

2
sin

πh

2

}
=

4
h2

sin
π

2
sin

πh

2
, (29)

and (26) holds. �
We also have the following additional property:

Lemma 2.2. For all γ∞ > 0, there exist δ > 0 and k0 ∈ N such that:√
βk+1(h) −

√
βk(h) ≥ γ∞ (30)

for k = k0, k0 + 1, . . . , 1/h− 1 − k0 and ∀ |h| < δ.

Proof. In view of (29) there exists k0 and δ > 0 such that

γk0(h) ≥ γ∞ for all |h| < δ. (31)

Then, taking into account that the parabola k −→ γk(h) is symmetric with respect to k = 1−h
2h , we deduce that

γk(h) ≥ γ∞ for k = k0, . . . ,
1 − 2h
h

− k0. (32)

�
In view of the particular structure of the gap functions described above we need the following variant of Ingham’s
inequality, whose proof is very close to that of Theorem 3.4 given in [13].

Lemma 2.3. Let f(t) =
∑
n∈Z

dneiµnt where
{
µn

}
n∈Z

is a sequence of real numbers, such that there exist

N ∈ N, γ > 0 and γ∞ > 0 such that

(i) µn+1 − µn ≥ γ ∀n ∈ Z.

(ii) Card{n ∈ Z : µn+1 − µn ≤ γ∞} = N.
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Then, for any interval J = [0, T ] ⊂ R with T > 2π
γ∞

there exist two positive constants C1, C2 > 0 such that

C1

∑
n∈Z

|dn|2 ≤
∫ T

0

∣∣∣∣∣
∑
n∈Z

dneiµnt

∣∣∣∣∣
2

dt ≤ C2

∑
n∈Z

|dn|2, (33)

for all sequence {dn} ∈ l2.
More precisely C1 = C1(N) and C2 = C2(N), where Ci(j), i = 1, 2, are given by the following recurrent

formulas

C1(j + 1) =

[(
2
C2(j)
T

+ 1
)

4
C1(j) (Tγ∞ − 2π)2 γ2

+
2
T

]−1

,

C2(j) = 2{j T + C2(0)}, j = 1, 2, . . . ,

and C1(0), C2(0) are such that (33) holds in the particular case in which N = 0.

Remark 2.2. The main difference between Lemma 2.3 and that proved in [13] is that, here, the set of badly
separated µn-s is not necessarily constituted by the first n-s such that |n| ≤ k0 for some finite k0 as in [13].

Proof. We proceed as in [3] and [13]. The proof is divided in two steps.

Step 1. We fix any T > 2π/γ∞. Let us consider the set

Y = {n ∈ Z : µn+1 − µn ≤ γ∞} · (34)

Denote

g(t) =
∑
n∈Z

n/∈Y

dneiµnt.

Applying Ingham’s inequality [13] to g(t), we have that there exist two constants C1(0) > 0 and C2(0) > 0
such that:

C1(0)
∑
n∈Z

n/∈Y

|dn|2 ≤
∫ T

0

|g(t)|2 dt ≤ C2(0)
∑
n∈Z

n/∈Y

|dn|2. (35)

For

f(t) = g(t) +
∑
n∈Z

n∈Y

dneiµnt,

we have

∫ T

0

|f(t)|2 dt =
∫ T

0

∣∣∣∣∣
∑
n∈Y

dneiµnt +
∑
n/∈Y

dneiµnt

∣∣∣∣∣
2

≤ 2
∫ T

0



∣∣∣∣∣
∑
n∈Y

dneiµnt

∣∣∣∣∣
2

+

∣∣∣∣∣
∑
n/∈Y

dneiµnt

∣∣∣∣∣
2

 dt. (36)
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According to (35) we obtain

∫ T

0

∣∣f(t)
∣∣2 dt ≤ 2C2(0)

∑
n/∈Y

|dn|2 + 2T

(∑
n∈Y

|dn|
)2

≤ 2C2(0)
∑
n/∈Y

|dn|2 + 2TN
∑
n∈Y

|dn|2 ≤ (2C2(0) + 2TN)
∑
n∈Z

|dn|2.

This provides the second inequality in (33).

Step 2. We now argue by induction on N .
If N = 0, equation (33) follows from (35). When N = 1, if Y = {dn1}, then

f(t) =
∑
n∈Z

n/∈Y

dneiµnt + dn1e
iµn1 t. (37)

In Theorem 3.4 of [13], it was proved that for η > 0 and T ′ = T − η, when f(t) = g(t) + dn1 , then

γ2 η4 C1(0)
∑
n∈Z

n/∈Y

|dn|2 ≤
∫ T ′

0

∣∣∣∣
∫ η

0

(f(t+ ψ) − f(t)) dψ
∣∣∣∣
2

dt ≤ 4η2

∫ T

0

|f(t)|2 dt. (38)

On the other hand,

|dn1 |2 ≤ |f(t) − g(t)|2 =
1
T

∫ T

0

|f(t) − g(t)|2 dt ≤ 2
T

{∫ T

0

|f(t)|2 dt+
∫ T

0

|g(t)|2 dt

}

≤ 2
T



∫ T

0

|f(t)|2 dt+ C2(0)
∑
n∈Z

n/∈Y

|dn|2


 ≤

{
2
T

+
8C2(0)

Tγ2 η2C1(0)

}∫ T

0

|f(t)|2 dt. (39)

Then, from (38) and (39) we have

∑
n∈Z

|dn|2 ≤
{

4
γ η2C1(0)

+
2
T

+
8C2(0)

Tγ2 η2C1(0)

}∫ T

0

|f(t)|2 dt

≤
{

2
T

+
4

γ2 η2C1(0)

(
2C2(0)
T

+ 1
)}∫ T

0

|f(t)|2 dt. (40)

If N = 2, let Y = {n1, n2}. In particular, if n1 = 0, we write f(t) as

f(t) =
∑
n∈Z

n/∈Y

dneiµnt + d0eiµn1 t + dn2e
iµn2 t.

Setting

g(t) =
∑
n∈Z

n6=n2

dneiµnt + d0,
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and applying the result in step 1 to g(t) we have

∑
n∈Z

n6=n2

|dn|2 ≤
{

2
T

+
4

γ2 η2C1(0)

(
2C2(0)
T

+ 1
)}∫ T

0

|g(t)|2 dt

and

(2C2(0) + 2T )
∑
n∈Z

n6=n2

|dn|2 ≥
∫ T

0

|g(t)|2 dt.

Thus, from the previous estimate it follows that

|dn2 |2 ≤ |f(t) − g(t)|2 =
1
T

∫ T

0

|f(t) − g(t)|2 dt ≤ 2
T

{∫ T

0

|f(t)|2 dt+
∫ T

0

|g(t)|2 dt

}

≤ 2
T



∫ T

0

|f(t)|2 dt+ (2C2(0) + 2T )
∑

k∈Z−{n2}
|dn|2




≤
{

2
T

+
4

γ2 η2C1(0)

(
4C2(0)
T

+ 4
)}∫ T

0

|f(t)|2 dt. (41)

Iterating this argument the first inequality in (33) follows. �
2.2.2. Proof of Theorem 2.2

In order to represent the solution in Ch(γ) in a simpler way we introduce

Ih(γ) =
{
k ∈ N : 1 ≤ k <

1
h
− 2 and βk(h) ≤ γh−4

}

and the functions

mk,j =




c+k φk,j k ∈ Z ∩ Ih
c−−k φ−k,j −k ∈ Z ∩ Ih
0 k /∈ Z ∩ Ih

(42)

µk(h) =

{ √
βk(h) k ∈ N

−√β−k(h) −k ∈ N.
(43)

The components of ~uh, are then given by

uh,j =
∑
k∈Z

mk,j eiµk(h)t. (44)

Thus,

u′h,j =
∑
k∈Z

iµk,j(h)mk,j eiµk(h)t

(A−1
h ~uh

′)h,j = −
∑
k∈Z

imk,j eiµk(h)t. (45)
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Substituting identities (44) and (45) in (15) and having into account that the matrix Ah = 1
h2A is orthogonal,

we deduce that

Eh(t) = h

N∑
j=0

∑
k∈N

{
|c+k |2

∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

+ |c−k |2
∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2
}

· (46)

Moreover, from (46) and the identity (17) we have that

Eh(t) ≤ 2
4 −√

γ

∑
k∈N

{|c+k |2 + |c−k |2
} ∣∣∣∣φk,N

h

∣∣∣∣
2

=
2

4 −√
γ

∑
k∈Z

∣∣∣mk,N

h

∣∣∣2 · (47)

From Lemma 2.2, for all T > 0 exists δ0 > 0 and k0 ∈ N, such that

µk+1(h) − µk(h) ≥ 2π
T

∀ k ∈ K0(h) =
{
k0 + 1, k0 + 2, . . . ,

1 − 3h
h

− k0

}
with |h| ≤ δ0. (48)

Hence Y = {1, 2, . . . , k0,
1−2h

h − k0, . . . ,
1−2h

h }.
Let us observe that, independently of the size of h, the set of indices Y is constituted by 2k0 elements.
On the other hand, in (ii) of Lemma 2.1 it was proved that for all ε ∈ (0, 1), there exists δ1 > 0, such that

µk+1(h) − µk(h) ≥ 3π2 − ε ∀ k ∈ Z and |h| < δ1. (49)

Thus, applying Lemma 2.3 in (47) it is immediate to check that, for all T > 0, with δ = min{δ0, δ1} > 0, there
exists a constant C = C(T, γ) > 0, such that

Eh(0) ≤ C

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt, ∀ ~uh ∈ Ch(γ) with |h| < δ. (50)

This completes the proof of Theorem 2.2. �

2.3. Uniform observability by reinforced boundary measurements

The goal of this section is to show that, in view of the gap properties obtained in the previous section, the
observability inequality is uniform if the boundary measurement is reinforced in a suitable way.

Theorem 2.3. For all T > 0, there exists C = C(T ) > 0 such that

Eh(0) ≤ C

{∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt+ h2

∫ T

0

∣∣∣∣u
′
h,N (t)
h

∣∣∣∣
2

dt

}
(51)

for all ~uh solution of (7) and 0 < h < 1.

Proof. Consider ~uh with components as in (44). According to the identities (46) and (17),

Eh(0) = h

N∑
j=1

∑
k∈N

(|c+k |2 + |c−k |2
) ∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

=
∑
k∈N

2
(4 − |µk(h)|h2)

(|c+k |2 + |c−k |2)
∣∣∣∣φk,N

h

∣∣∣∣
2

=
∑
k∈Z∗

2
(4 − |µk(h)|h2)

∣∣∣mk,N

h

∣∣∣2 · (52)



CONTROLLABILITY OF THE SEMI-DISCRETIZED BEAM EQUATION 839

On the other hand, from Theorems 2.2 and 2.1 we have that, for all T > 0 there exists δ > 0, such that

c1
∑
k∈Z∗

∣∣∣mk,N

h

∣∣∣2 ≥
∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt ≥ C1

∑
k∈Z∗

∣∣∣mk,N

h

∣∣∣2 , (53)

for all |h| < δ.
Analogously,

c2
∑
k∈Z∗

|µk(h)|2
∣∣∣mk,N

h

∣∣∣2 ≥
∫ T

0

∣∣∣∣u
′
h,N(t)
h

∣∣∣∣
2

dt =
∫ T

0

∣∣∣∣∣
∑
k∈Z∗

iµk(h) eiµk(h) t mk,N

h

∣∣∣∣∣
2

dt

≥ C2

∑
k∈Z∗

|µk(h)|2
∣∣∣mk,N

h

∣∣∣2· (54)

Thus, for Ĉ = min{C2, C1}:
∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt+ h2

∫ T

0

∣∣∣∣u
′
h,N(t)
h

∣∣∣∣
2

dt ≥ Ĉ
∑
k∈Z∗

(
1 + h2 |µk(h)|2) ∣∣∣mk,N

h

∣∣∣2

≥ Ĉ
∑
k∈Z∗

(1 + h2 |µk(h)|2)
{

4 − |µk(h)| h2

4 − |µk(h)| h2

} ∣∣∣mk,N

h

∣∣∣2 · (55)

On the other hand, for h sufficiently small,

(
1 + h2 |µk(h)|2) (4 − h2 |µk(h)|) = 4

{
1 +

16
h2

sin4

( |k|πh
2

)}
cos2

( |k|πh
2

)

≥ 4
{

cos2
( |k|πh

2

)
+ k2 π2 sin2

( |k|πh
2

)}
≥ 4, for |k| = 1, 2, . . . , 1/h− 1.

(56)

Therefore,

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt+ h2

∫ T

0

∣∣∣∣u
′
h,N(t)
h

∣∣∣∣
2

dt ≥ c
∑
k∈Z∗

1
(4 − |µk(h)| h2)

∣∣∣mk,N

h

∣∣∣2

≥ c h
∑
k∈N

N∑
j=1

(|c+k |2 + |c−k |2)
∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

· (57)

This concludes the proof of Theorem 2.3. �

2.4. The reverse inequalities

The following holds:

Proposition 2.1. For any T > 0, there exists c = c(T ) > 0 such that

Eh(0) ≥ c

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt, ∀ ~uh, 0 < h < 1. (58)
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Proof. According to the identities (17) and (46), we have

Eh(t) =
∑
k∈Z∗

2
(4 − λk(h) h2)

|mk,h(t)|2
∣∣∣∣φk,N

h

∣∣∣∣
2

·

As 4 − λk(h) h2 = 4 cos2(kπh
2 ) ≤ 4,

Eh(t) ≥ 1
2

∑
k∈Z∗

|mk,h(t)|2
∣∣∣∣φk,N

h

∣∣∣∣
2

· (59)

Then, applying Lemma 2.3, taking (59) into account and properties (48) and (49) on the eigenvalues under
consideration we deduce (58). �

As an immediate consequence of Proposition 2.1 the following holds:

Proposition 2.2. For any T > 0, there exists c = c(T ) > 0 such that

Eh(0) + h2 Eh
∗ (0) ≥ c

{∫ T

0

∣∣∣∣uh,N (t)
h

∣∣∣∣
2

dt+ h2

∫ T

0

∣∣∣∣u
′
h,N(t)
h

∣∣∣∣
2

dt

}
, ∀ ~uh, (60)

where Eh∗ is the energy associated to ~u
′
h instead of ~uh, i.e.

Eh
∗ (t) =

h

2

N∑
j=0



∣∣∣∣u

′
h,j+1 − u′h,j

h

∣∣∣∣
2

+

∣∣∣∣∣ (A
−1
h ~u

′′
h )h,j+1 − (A−1

h ~u
′′
h )h,j

h

∣∣∣∣∣
2

 · (61)

Remark 2.3. Due to the fact that (~u′h)′ = ~u
′′
h = −A2

h ~uh, the energy Eh
∗ satisfies

Eh
∗ (t) =

h

2

N∑
j=0

{∣∣∣∣u
′
h,j+1 − u′h,j

h

∣∣∣∣
2

+
∣∣∣∣(Ah~uh)h,j+1 − (Ah~uh)h,j

h

∣∣∣∣
2
}

· (62)

3. Control of the semi-discrete equation

In this section, we apply the observability results obtained above to analyze the controllability properties of
the semi-discrete system.

3.1. The semi-discrete control problem

Let P = {0 = x0 < x1 < · · · < xN+1 = 1}. It is natural to introduce the following approximations of the
boundary conditions in (6):

yh,0 = yh,N+1 = 0
yh,1 − 2yh,0 + yh,−1 = 0

yh,N+2 − 2yh,N+1 + yh,N = h2 νh(t). (63)
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Let us now consider the following controlled semi-discrete systems




y′′h,j = − 1
h4

{yh,j+2 − 4yh,j+1 + 6yh,j − 4yh,j−1 + yh,j−2} ,
0 < t < T, 1 ≤ j ≤ N

yh,0 = yh,N+1 = 0, 0 < t < T

yh,−1 = −yh,1 yh,N+2 = −yh,N + h2νh, 0 < t < T

yh,j(0) = y0
h,j y′h,j(0) = y1

h,j, j = 1, . . . , N.

(64)

This system may be viewed as a semi-discretization of (6) but also as the semi-discrete system (7) under the
action of a control νh.

We denote by ~yh(t) = (yh,1(t), yh,2(t), . . . , yh,N(t)) the solution of (64), with control νh. Note that, y0
h,j and

y1
h,j are, as usual, approximations of the initial conditions (y0, y1) of the control problem (6) at the points xj .

3.2. The discrete spaces Hs
h and Hs

h;

The eigenvectors ~φk(h) of the spectral problem (8) satisfy

h
N∑

j=1

|φk,j(h)|2 = h
N∑

j=1

sin2 (jkπh) = 1/2. (65)

However, to simplify the notation, in what follows, we shall normalize them so that

h |~φk(h)|2
RN = h

N∑
j=1

|φk,j(h)|2 = 1. (66)

For every s ∈ R, introduce the finite dimensional Hilbert spaces Hs
h = span{~φ 1(h), . . . , ~φN (h)} endowed with

the norm

‖~vh‖2
s,h =

N∑
k=1

λs
k(h) |ck|2, whenever ~vh =

N∑
k=1

ck ~φ
k(h). (67)

In particular, H0
h will be denoted by L2

h.

Remark 3.1. The norm in H−1
h is the dual to that in H1

h in the sense that

‖~vh‖−1,h = sup
~wh∈H1

h

|(~vh, ~wh)0,h|
‖~wh‖1,h

, (68)

where (~vh, ~wh)0,h = h
N∑

j=1

vh,jwh,j denotes the scalar product in L2
h.

We also introduce the discrete energy space Fh = H1
h ×H−1

h , with norm

‖(~uh, ~vh)‖2
Fh

= ‖~uh‖2
1,h + ‖~vh‖2

−1,h. (69)

The dual of Fh is denoted by F∗
h .
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Let us now introduce, for all h > 0 and 0 < γ < 16, the space generated by the eigenfunctions ~φk(h) of the
spectral problem (8) with indexes on the set Ih,γ = {1 ≤ k ≤ 1/h− 1 : λk(h) ≤ √

γh−2}. In other words

Vh,γ = span
{
~φk(h) : k ∈ Ih,γ

}
·

For every s ∈ R, we denote by Hs
h,γ the subspace of Hs

h generated by the eigenvectors ~φk(h) with eigenvalues
lying in Ih,γ , endowed with the norm of Hs

h, i.e.

‖~vh‖2
s,h =

∑
k∈Ih,γ

λs
k(h) |ck|2, whenever ~vh =

∑
k∈Ih,γ

ck ~φ
k(h).

3.3. Partial controllability

Let γ ∈ (0, 16) and T > 0. The partial controllability problem of system (64) in the space Fh = H1
h ×H−1

h

consists in finding a control νh ∈ L2(0, T ) such that the solution ~yh of (64) satisfies

Πγ

(
~yh(T ), ~yh

′(T )
)

= 0

where Πγ is the orthogonal projection from Fh into Fh,γ = H1
h,γ ×H−1

h,γ and

Πγ

(
~yh(T ), ~yh

′(T )
)

=
(
Πγ~yh(T ),Πγ ~yh

′(T )
)

=


 ∑

k∈Ih,γ

ak
~φk(h),

∑
k∈Ih,γ

bk~φ
k(h)


 , (70)

where (ak) and (bk) are the Fourier coefficients of (~yh(T ), ~y′h(T )) in the basis of the eigenvectors {~φk(h)}k∈Ih,γ
.

Multiplying (64) by uh,j, adding in j, integrating in time, and using the symmetry of the matrix Bh we get

0 =
N∑

j=1

∫ T

0

yh,j

(
u′′h,j + (Bh ~uh)h,j

)
dt+

N∑
j=1

(y′h,j uh,j − yh,j u
′
h,j)
∣∣∣∣
T

0

+
∫ T

0

uh,N(t) νh(t)
h2

dt. (71)

Thus, for all solution ~uh of (7), we have

N∑
j=1

(y′h,j(T ) uh,j(T ) − yh,j(T ) u′h,j(T )) =
N∑

j=1

(y1
h,j u

0
h,j − y0

h,j u
1
h,j) −

∫ T

0

uh,N(t) νh(t)
h2

dt. (72)

Now, consider the functional LT : R
N × R

N → R:

LT

(
~yh

0, ~yh
1) =

N∑
j=1

(y1
h,j u

0
h,j − y0

h,j u
1
h,j) −

∫ T

0

uh,N(t) νh(t)
h2

dt.

We obtain the following characterization of the partial controllability property of system (64).

Lemma 3.1. Let T > 0 and γ ∈ (0, 16). Problem (64) is partially controllable in Fh = H1
h ×H−1

h , iff for each
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( ~yh
0, ~yh

1) ∈ Fh there exists νh ∈ L2(0, T ), such that

N∑
j=1

(y1
h,j u

0
h,j − y0

h,j u
1
h,j) =

1
h2

∫ T

0

νh(t) uh,N(t) dt, (73)

for any initial data
(
~uh

0, ~uh
1) associated to solution ~uh ∈ Ch(γ).

Proof. It is immediate from (72). �
The following uniform (with respect to h→ 0) partial controllability property holds in the space Ch(γ).

Theorem 3.1. For all T > 0 and γ ∈ (0, 16) system (64) is partially controllable on Fh = H1
h × H−1

h for all
0 < h < 1. Moreover, there exists a constant C = C(T, γ) > 0, independent of 0 < h < 1, such that

‖νh‖L2(0,T ) ≤ C ‖Πγ( ~yh
1,− ~yh

0)‖F∗
h
, ∀ 0 < h < 1,

for any
(
~yh

0, ~yh
1) ∈ Fh where νh is the control of minimal L2(0, T )-norm.

Proof. We define the functional Jh : R
N × R

N → R, by

Jh

(
( ~uh

0, ~uh
1)
)

=
1
2

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt− h

N∑
j=1

(
y1

h,j u
0
h,j − y0

h,j u
1
h,j

)
, (74)

where ~uh is the solution of (7) in the class Ch(γ) with initial data ( ~uh
0, ~uh

1).
We have ∣∣∣∣∣∣h

N∑
j=1

(
y1

h,j u
0
h,j − y0

h,j u
1
h,j

)∣∣∣∣∣∣ =
∣∣∣(Πγ ~yh

1, ~uh
0
)

RN

∣∣∣+ ∣∣∣(Πγ ~yh
0,− ~uh

1
)

RN

∣∣∣
≤ ‖Πγ ~yh

1‖−1,h ‖ ~uh
0‖1,h + ‖Πγ ~yh

0‖1,h ‖ ~uh
1‖−1,h

≤ ‖Πγ( ~yh
1,− ~yh

0)‖F∗
h
‖( ~uh

0, ~uh
1)‖Fh

. (75)

According to (75) and the direct inequality in Proposition in 2.1 we deduce that Jh is continuous for each
0 < h < 1. Moreover Jh is convex.

On the other hand, according to the observability inequality in Theorem 2.2, Jh is coercive in Ch(γ), uniformly
on 0 < h < 1.

Thus, for each 0 < h < 1 there is a unique minimizer ( ~uh
0,∗, ~uh

1,∗) of the functional Jh:

Jh( ~uh
0,∗, ~uh

1,∗) = min
( ~uh

0, ~uh
1)∈Fh,γ

Jh

(
( ~uh

0, ~uh
1)
)
.

Calculating the Gateux derivative of Jh in ( ~uh
0,∗, ~uh

1,∗), we get

J ′
h

(
( ~uh

0,∗, ~uh
1,∗)
)
· ( ~uh

0, ~uh
1) =

∫ T

0

u∗h,N(t) uh,N(t)
h2

dt− h

N∑
j=1

(
y1

h,j u
0
h,j − y0

h,j u
1
h,j

)
= 0, ∀ ( ~uh

0, ~uh
1) ∈ Fh,γ . (76)

According to (73) and (76), νh = u∗h,N(t)/h is the control we were looking for.
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Let us finally prove the uniform L2(0, T )-bound on the controls. We have

Jh

(
( ~uh

0,∗, ~uh
1,∗)
)
≤ Jh(0, 0) = 0.

Moreover, from (75) it follows that

1
2

∫ T

0

∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

dt ≤ ‖Πγ

(
~yh

1,− ~yh
0
)
‖F∗

h
‖( ~uh

0,∗, ~uh
1,∗)‖Fh

. (77)

Combining (77) with the uniform observability inequality of Theorem 2.2 yields

1
2

∫ T

0

∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

dt ≤ Ĉ ‖Πγ

(
~yh

1,− ~yh
0
)
‖F∗

h

(∫ T

0

∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

dt

)1/2

, (78)

or, equivalently,

‖νh‖2
L2(0,T ) =

∫ T

0

∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

dt ≤ C(T, γ) ‖Πγ

(
~yh

1,− ~yh
0
)
‖2
F∗

h
(79)

where C(T, γ) is independent of 0 < h < 1 as we wanted to prove. �

3.4. Uniform exact controllability with reinforced controls

In this section we analyze the problem of exact controllability. Thus, we look for controls such that the
whole solution (and not only its projections Πγ) vanishes at time t = T . This will be achieved, as in the
previous section, minimizing a suitable quadratic functional with the aid of the uniform observability inequality
of Theorem 3.1. The additional term we add on the functional reinforces the observed quantity on the boundary
and leads to controls that are uniformly bounded in H−1(0, T ) but not in L2(0, T ). In fact, we will be able
to obtain a sharper decomposition of the control but, as mentioned above, it will be naturally bounded in
H−1(0, T ).

Note that a control νh ∈ H−1(0, T ) such that the solution ~yh of (64) satisfies

~yh(T ) = ~yh
′(T ) = 0, for all h ∈ (0, 1) (80)

may be characterized by the property that

h

N∑
j=1

(y1
h,j u

0
h,j − y0

h,j u
1
h,j) =

〈
νh(t),

uh,N(t)
h

〉
H−1(0,T )×H1(0,T )

·

Observe that the duality between H−1(0, T ) and H1(0, T ) is not necessarily well defined. To avoid this difficulty
we shall build H−1(0, T )-controls with compact support in (0, T ).

We emphasize that, for any h > 0, the controls νh we shall obtain are arbitrarily smooth since we are dealing
with a linear finite dimensional control system but it is natural to work on the frame of H−1(0, T ) to get uniform
bounds, as h→ 0.

Theorem 3.2. For all T > 0, system (64) is exactly controllable in time T , for all h ∈ (0, 1). Moreover, for
all ( ~yh

0, ~yh
1) ∈ Fh = H1

h ×H−1
h the control νh(t) may be found such that

νh(t) = ν1,h(t) + h ν′2,h(t)
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where ν1,h(t) ∈ L2(0, T ) and ν′2,h(t) ∈ H−1(0, T ) (with compact support on (0, T )) and so that

‖ν1,h‖L2(0,T ) ≤ C ‖( ~yh
0, ~yh

1)‖Fh
, (81)

‖ν′2,h‖H−1(0,T ) ≤ C ‖( ~yh
0, ~yh

1)‖Fh
(82)

with a constant C > 0 which is independent of 0 < h < 1 and the data ( ~yh
0, ~yh

1) ∈ Fh to be controlled.

Proof. Given T > 0 and ε > 0 small enough (ε < T/2) we consider ρε(t) ∈ C∞(R), so that 0 ≤ ρε ≤ 1, ρε = 1
in (ε, T − ε) and the support of ρε is compact in (0, T ).

For ( ~uh
0, ~uh

1) ∈ Fh, we define the quadratic functional Jh : R
N × R

N → R by

Jh

(
( ~uh

0, ~uh
1)
)

=
1
2

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt+
h2

2

∫ T

0

ρε(t)
∣∣∣∣u

′
h,N(t)
h

∣∣∣∣
2

dt− h

N∑
j=1

(y1
h,j u

0
h,j − y0

h,j u
1
h,j). (83)

Observe that Jh is continuous and convex. Moreover, according to Theorem 2.3, Jh is also coercive in Fh.
Therefore, there exists a unique ( ~uh

0,∗, ~uh
1,∗) ∈ Fh minimizing Jh.

On the other hand, we have∣∣∣∣∣∣h
N∑

j=1

(
y1

h,j u
0
h,j − y0

h,j u
1
h,j

)∣∣∣∣∣∣ ≤ ‖
(
~yh

1,− ~yh
0
)
‖F∗

h
‖
(
~uh

0, ~uh
1
)
‖Fh

. (84)

Computing the Gateux derivative of Jh at the minimizer we deduce that

J ′
h

(
( ~uh

0,∗, ~uh
1,∗)
)
· ( ~uh

0, ~uh
1) =

∫ T

0

u∗h,N(t) uh,N(t)
h2

dt− h2

〈(
ρε (u∗h,N)′

)′
h

,
uh,N

h

〉
H−1(0,T )×H1(0,T )

+h
N∑

j=1

(u1
h,j y

0
h,j − u0

h,j y
1
h,j) = 0, ∀ ( ~uh

0, ~uh
1) ∈ Fh. (85)

The control we are looking for is then νh(t) = ν1,h(t) + h ν′2,h(t), with

ν1,h(t) =
u∗h,N(t)
h

and ν2,h(t) = −ρε(t) (u∗h,N )′(t). (86)

On the other hand, Jh

(
( ~uh

0,∗, ~uh
1,∗)
)
≤ Jh

(
(0, 0)

)
= 0. Hence,

1
2

∫ T

0

{∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

+ h2ρε(t)
∣∣∣∣(u

∗
h,N )′(t)
h

∣∣∣∣
2
}

dt ≤
〈
~yh

1, ~uh
0,∗
〉
H−1

h ×H1
h

+
〈
~yh

0,− ~uh
1,∗
〉
H1

h×H−1
h

. (87)

Then, by Theorem 2.3, we get

1
2

∫ T

0

∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

dt+
h2

2

∫ T

0

ρε(t)
∣∣∣∣ (u

∗
h,N)′(t)
h

∣∣∣∣
2

dt ≤ ‖( ~yh
1,− ~yh

0)‖F∗
h
‖( ~uh

0,∗, ~uh
1,∗)‖Fh

≤ C ‖( ~yh
0, ~yh

1)‖F∗
h

(
1
2

∫ T

0

∣∣∣∣u
∗
h,N(t)
h

∣∣∣∣
2

dt+
h2

2

∫ T

0

ρε(t)
∣∣∣∣ (u

∗
h,N)′(t)
h

∣∣∣∣
2

dt

)1/2

.
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Consequently

1
2

∫ T

0

∣∣∣∣u
∗
h,N (t)
h

∣∣∣∣
2

dt+
h2

2

∫ T

0

ρε(t)
∣∣∣∣(u

∗
h,N )′(t)
h

∣∣∣∣
2

dt ≤ C ‖
(
~yh

1,− ~yh
0
)
‖2
F∗

h
. (88)

Therefore,
u∗h,N(t)

h
and ρε(t)(u∗h,N )′(t) are uniformly bounded in L2(0, T ), and

h ν′2,h = h2

(
ρε(t) (u∗h,N )′(t)

)′
h

is of the order of h in H−1(0, T ). (89)

This completes the proof of Theorem 3.2. �

4. Convergence results

In this section we study the convergence as h→ 0 of the semi-discrete systems without and with control.
We discuss both weak and strong convergence depending on the convergence properties of the initial data

and the controls.

4.1. Convergence for the uncontrolled semi-discrete system

We consider families {~uh(t)} of solutions of (7) depending on the parameter h and study their limit behavior
as h→ 0. Recall that ~uh admits the following development in Fourier series

~uh(t) =
N∑

k=1

mk,h(t) ~φk(h)

where

mk,h(t) =

{
c+k ei λk(h)t se k ∈ N,

c−k ei λk(h)t se k /∈ N
(90)

are the time-dependent Fourier coefficients.
Note that using the fact that sinα/α ≥ c > 0, for all 0 ≤ α ≤ π/2, for a suitable c > 0 we have

c k2π2 ≤ λk(h) ≤ k2π2 for all 0 < h < 1, 1 ≤ k ≤ N. (91)

Let us now introduce, for every s ∈ R, the following Hilbert spaces of sequences

Hs =

{
{ck}k∈N ∈ l2 :

∞∑
k=1

k2s |ck|2 <∞
}
, (92)

endowed with their canonical norms. In particular H0 = l2.

Proposition 4.1. Let {~uh(t)} be a family of solutions of (7), depending on the parameter h, with uniformly
bounded energies, i.e.

Eh(0) ≤ C for all h > 0. (93)
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Then, by extracting a suitable subsequence h→ 0 we may guarantee that,

mk,h(.) ⇀
h→0

mk(.) weakly in H1(0, T ), for all k ∈ N, (94)

u(x, t) =
∑
k∈N

mk(t) sin(kπx) solves (1) for suitable initial data, (95)

u ∈ C([0, T ];H1
0 (0, 1)) ∩ C1([0, T ];H−1(0, 1)), (96)

E(0) ≤ lim inf
h→0

Eh(0), (97)

h

N∑
j=1

|uh,j(t)|2 −→
h→0

|u(t)|2L2(0,1) in L∞(0, T ). (98)

Proof. As an immediate consequence of (93) and from the conservation of energy we deduce that, for all
h ∈ (0, 1),

Eh(t) =
h

2

N∑
j=0

{∣∣∣∣uh,j+1 − uh,j

h

∣∣∣∣
2

+
∣∣∣(A−1

h ~uh
′)h,j+1 − (A−1

h ~uh
′)h,j

h

∣∣∣2
}

≤ C, (99)

for all 0 ≤ t ≤ T .
Due to the fact that the eigenvectors ~φk(h) are orthogonal, we deduce that

h

N∑
k=1



(
|mk,h(t)|2 + λ−2

k (h)|m′
k,h(t)|2

) N∑
j=0

∣∣∣∣φk,j+1(h) − φk,j(h)
h

∣∣∣∣
2

 ≤ C. (100)

Since,

h

N∑
j=1

∣∣∣∣φk,j+1 − φk,j

h

∣∣∣∣
2

= h λk(h)
N∑

j=1

|φk,j(h)|2 =
λk(h)

2
, (101)

we conclude that, for all h ∈ (0, 1),

Eh(0) =
1
2

N∑
k=1

(
λk(h) |mk,h(t)|2 + λ−1

k (h) |m′
k,h(t)|2

)
≤ C. (102)

Then, from the uniform boundedness estimate (91) we have

{ ~mh(.)}k∈N uniformly bounded in L∞(0, T ;H1), (103)
{ ~m′

h(.)}k∈N uniformly bounded in L∞(0, T ;H−1). (104)

Thus, extracting subsequences, it follows that

~mh(.) ⇀
h→0

~m(.) weakly * in L∞(0, T ;H1), (105)

~m′
h(.) ⇀

h→0
~m′(.) weakly * in L∞(0, T ;H−1). (106)
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In particular,

~mh(.) ⇀
h→0

~m(.) weakly in L2(0, T ;H1). (107)

~m
′
h(.) ⇀

h→0
~m

′
(.) weakly in L2(0, T ;H−1). (108)

On the other hand, due to the fact that

m′′
k,h + λ2

k(h) mk,h = 0, (109)

from (103) we have

∑
k∈N

λ−3
k (h)

∣∣m′′
k,h(t)

∣∣2 =
∑
k∈N

λk(h)
∣∣mk,h(t)

∣∣2 ≤ C, for all h ∈ (0, 1). (110)

Consequently,

~m′′
h(.) ⇀

h→0
~m′′(.) weakly * in L∞(0, T ;H−3). (111)

Using the classical Aubin–Lions compactness Lemma (see for instance Simon [14]), according to (105) and (111)
we deduce that

~mh(.) −→
h→0

~m(.) strongly in C([0, T ];Hs), for all s < 1, (112)

and

~m
′
h(.) −→

h→0
~m

′
(.) strongly in C([0, T ];H−s), for all s > 1. (113)

According to the bounds (105) and (106) and the convergence (112) and (113) we deduce that

~mh(0) ⇀
h→0

~m0 weakly in H1, (114)

~m′
h(0) ⇀

h→0
~m1 weakly in H−1, (115)

where

~m(0) = ~m0 ∈ H1, ~m′(0) = ~m1 ∈ H−1.

Then, u is defined as in (95), u ∈ L∞(0, T ;H1
0 (0, 1))∩W 1,∞(0, T ;H−1(0, 1)) and, according to (105) and (106),

it is the solution of (1) with initial data

u0(x) =
∑
k∈N

m0
k sin(kπx) ∈ H1

0 (0, 1), u1(x) =
∑
k∈N

m1
k sin(kπx) ∈ H−1(0, 1).

By uniqueness of solutions of (1) we deduce that (96) holds.
On the other hand, convergence (98) follows from (112) and (65). Indeed

h

N∑
j=1

|uh,j(t)|2 =
1
2

N∑
k=1

|mk,h(t)|2 −→
h→0

1
2

N∑
k=1

|mk(t)|2 = |u(t)|2L2(0,1), in C([0, T ]). (116)
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We conclude this proof checking the property of lower semi-continuity of the energy (97). From (114) and (115)
we get

∑
k∈N

k2 π2 |mk(0)|2 ≤ lim inf
h→0

N∑
k=1

λk(h) |mk,h(0)|2 (117)

∑
k∈N

(k2 π2)−1 |m′
k(0)|2 ≤ lim inf

h→0

N∑
k=1

λ−1
k (h) |m′

k,h(0)|2. (118)

Therefore, denoting λk = k2π2 we have

∑
k∈N

(λk |mk(0)|2 + λ−1
k |m′

k(0)|2) ≤ lim inf
h→0

{∑
k∈N

λk(h) |mk,h(0)|2 +
∑
k∈N

λ−1
k (h)|m′

k,h(0)|2
}
, (119)

and (97) holds. �

4.2. Convergence of the normal derivatives

In the following propositions we study the convergence of the normal derivatives of the solution of the
semi-discrete systems. These results will be important in the study of the convergence of the solutions of the
controlled semi-discrete system.

Proposition 4.2. Let {~uh(t)} be a family of solutions of (7) depending on h→ 0 and satisfying (93). Let u be
any solution of (1) obtained as limit when h→ 0 of {~uh(t)} as in the statement of Proposition 4.1. Then

uh,N(t)
h

⇀
h→0

∂x u(1, t) weakly in L2(0, T ), (120)

and therefore

∫ T

0

|∂x u(1, t)|2 dt ≤ lim inf
h→0

∫ T

0

∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt. (121)

Proof. From inequality (58) and (93) we have

∫ T

0

∣∣∣∣∣uh,N(t)
h

∣∣∣∣
2

dt =

∣∣∣∣∣
∑
k∈N

mk,h(t)
φk,N (h)

h

∣∣∣∣
2

L2(0,T )

≤ C ∀ h ∈ (0, 1). (122)

Hence, there exists a subsequence of {h}0<h<1, such that

νh =
uh,N(t)
h

⇀
h→0

ν weakly in L2(0, T ). (123)

On the other hand, from (112) it follows that

mk,h(.) −→
h→0

mk(.) strongly in C([0, T ]), for all k ∈ N. (124)

Moreover, for all k ∈ N,

φk,N (h)
h

=
sin(Nkπh)

h
=

sin k(1 − h)π
h

= − cos(kπ)
sin(kπh)

h
(125)
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converges to

−∂x φk
∣∣
x=1

= −∂x (sin(kπx))
∣∣
x=1

= − cos(kπ) kπ, (126)

when h −→ 0.
Therefore, combining (124, 125) and (126) we obtain that

−mk,h(.)
φk,N (h)

h
−→
h→0

mk(.) ∂x φk
∣∣
x=1

strongly in C([0, T ]), ∀ k ∈ N. (127)

Let u(x, t) =
∑
k∈N

mk(t) sin(kπx) be the limit solution of (1). It is sufficient to check that the weak limit ν

in (123) coincides with ∂x u(1, t).

For any test function ϕ ∈ D(0, T ) we set

~vh =
N∑

k=1

〈
mk,h, ϕ

〉
D′(0,T )×D(0,T )

~φk(h) (128)

v(x) =
∑
k∈N

〈
mk, ϕ

〉
D′(0,T )×D(0,T )

sin(kπx). (129)

It is then sufficient to check that

vh,N

h
−→
h→0

∂x v(1). (130)

At this respect note that,

(Bh~uh)h,j = −u′′h,j = −
N∑

k=1

m′′
k,h(t) φk,j(h) (131)

and

∂4
x u(x) = −u′′(x) = −

∑
k∈N

m′′
k(t) ∂4

x φk(x). (132)

Consequently,

(Bh~vh)h,j =
N∑

k=1

〈
mk,h, ϕ

〉
D′(0,T )×D(0,T )

(Bh
~φk(h))h,j = −

N∑
k=1

〈
m′′

k,h, ϕ
〉
D′(0,T )×D(0,T )

φk,j(h), (133)

and

∂4
x v(x) =

∑
k∈N

〈
mk, ϕ

〉
D′(0,T )×D(0,T )

∂4
x φk(x) = −

∑
k∈N

〈m′′
k, ϕ〉D′(0,T )×D(0,T ) φk(x). (134)
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Consider the elliptic problem



−∂4

x v = g in (0, 1)
v(0) = v(1) = 0
∂2

x v(0) = ∂2
x v(1) = 0,

(135)

where g(x) =
∑
k∈N

gk sin(kπx) with gk =
〈
m′′

k, ϕ
〉
D′(0,T )×D(0,T )

. From (134) we have g ∈ H−1(0, 1).

On the other hand, let us consider the discretized problems



−(Bh ~vh)h,j = gh,j, j = 1, 2, . . . , N
vh,0 = vh,N+1 = 0
vh,−1 = −vh,1; vh,N+2 = −vh,N

(136)

where gh,j =
N∑

k=1

gk
h sin(jkπh) with gk

h =
〈
m′′

k,h, ϕ
〉
D′(0,T )×D(0,T )

.

Observe that, from (107) and (108) we have

{m′′
k,h(.)}k∈N ⇀

h→0
{m′′

k(.)}k∈N weakly in H−1(0, T ;H−1). (137)

Consequently,

{gk
h}N

k=1 ⇀
h→0

{gk}k∈N weakly in H−1. (138)

On the other hand, the solutions vh,j of (136) and v of (135), are given by

vh,j = −
N∑

k=1

gk
h

sin(kπhj)
λ2

k(h)
, j = 1, 2, . . . , N

and

v = −
∑
k∈N

gk sin(kπx)
λ2

k

·

Convergence (130) is equivalent to proving that

N∑
k=1

gk
h

λ2
k(h)

sin(kπNh)
h

=
N∑

k=1

gk
h

λ2
k(h)

sin(kπh)
h

cos(kπ) −→
h→0

∑
k∈N

gk

k3π3
cos(kπ),

or, taking into account that the convergence of each term of the series for k fixed holds, for any ε > 0 there
exists Mε > 0, such that

∣∣∣∣∣∣
∑

k≥Mε

(
gk

h

λ2
k(h)

sin(kπh)
h

− gk

k3π3

)
cos(kπ)

∣∣∣∣∣∣ ≤ ε. (139)
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Taking into account that {gk}k∈N ∈ H−1, it is easy to see that, for sufficiently large Mε:∣∣∣∣∣∣
∑

k≥Mε

gk

k3π3
cos(kπ)

∣∣∣∣∣∣ ≤ 1
π3


 ∑

k≥Mε

k−2 |gk|2



1/2
 ∑

k≥Mε

k−4 cos2(kπ)




1/2

≤ C

π3


 ∑

k≥Mε

1
k4




1/2

≤ ε

2
· (140)

Similarly, since ck2 ≤ λk(h) we have

∣∣∣∣∣∣
∑

k≥Mε

gk
h

λ2
k(h)

sin(kπh)
h

cos(kπ)

∣∣∣∣∣∣ ≤
∑

k≥Mε

|gk
h|

λ2
k(h)

kπ ≤

 ∑

k≥Mε

|gk
h|2

λk(h)




1/2
 ∑

k≥Mε

k2π2

λ3
k(h)




1/2

≤ C

( ∑
k≥Mε

k−2|gk
h|2
)1/2


 ∑

k≥Mε

1
k4




1/2

≤ ε

2
, (141)

for a sufficiently large Mε, independent of h.
This completes proof of (139) and that of Proposition 4.2 as well. �
The following result provides the strong convergence of the normal derivative under suitable assumptions on

the initial data.

Proposition 4.3. Let T > 0 and h ∈ (0, 1). Let ( ~uh
0, ~uh

1) ∈ H1
h ×H−1

h and (u0, u1) ∈ H1
0 (0, 1)×H−1(0, 1)

be the initial conditions of problems (7) and (1), given by

~uh
0 =

N∑
k=1

m0
k,h

~φk(h), ~uh
1 =

N∑
k=1

m1
k,h

~φk(h),

u0(x) =
∑
k∈N

m0
k φk(x), u1(x) =

∑
k∈N

m1
k φk(x).

Assuming that m0
k,h = m1

k,h = 0 for all k > N we suppose that

{m0
k,h}k∈N −→

h→0
{m0

k}k∈N strongly in H1, (142)

{m1
k,h}k∈N −→

h→0
{m1

k}k∈N strongly in H−1. (143)

Then,

uh,N(t)
h

−→
h→0

∂x u(1, t) strongly in L2(0, T ). (144)

Proof. As a consequence of Proposition 4.2 we have

uh,N(t)
h

⇀
h→0

∂x u(1, t) weakly in L2(0, T ),

where

uh,N(t)
h

=
N∑

k=1

mk,h(t)
φk,N

h
=

N∑
k=1

mk,h(t)
sin(kπh)

h
cos(kπ)
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and

∂x u(1, t) =
∑
k∈N

mk(t) ∂x φk
∣∣
x=1

=
∑
k∈N

kπ mk(t) cos(kπ). (145)

To conclude the proof of (144) it is sufficient to show that the following holds:

∫ T

0

∣∣∣∣∣
N∑

k=1

mk,h(t)
sin(kπh)

h
cos(kπ) −

∑
k∈N

kπ mk(t) cos(kπ)

∣∣∣∣∣
2

dt −→
h→0

0.

Thus, it is sufficient to check that, for every ε > 0, there exists Mε > 0 such that

∫ T

0

∣∣∣∣∣∣
∑

k≥Mε

(
mk,h(t)

sin(kπh)
h

−mk(t)kπ
)

cos(kπ)

∣∣∣∣∣∣
2

dt ≤ ε. (146)

In view of the convergence (142, 143) and the conservation of the energies Eh we deduce that:

~mh(t) = {mk,h(t)}k∈N −→
h→0

~m(t) = {mk(t)}k∈N strongly in H1, (147)

for all 0 ≤ t ≤ T .
As a consequence of the direct inequality proved in Proposition 2.1 we deduce that

∫ T

0

∣∣∣∣∣∣
∑
k≥M

mk,h(t)
sin(kπh)

h
cos(kπ)

∣∣∣∣∣∣
2

dt ≤ C0

∑
k≥M

|mk,h|2 k2π2, ∀M ≥ 1. (148)

Due to the conservation of energy and taking hypotheses (142) and (143) into account we have that

∑
k≥Mε

|mk,h|2 k2π2 ≤ ε

2
, for Mε large enough. (149)

On the other hand, by the same argument,

∫ T

0

∣∣∣∣∣∣
∑

k≥Mε

(k π) mk(t) cos(kπ)

∣∣∣∣∣∣
2

dt ≤ Ĉ0

∑
k≥Mε

|mk|2 k2π2 ≤ ε

2
· (150)

Combining (150) with (148, 149) convergence (146) follows immediately. �

4.3. Weak convergence of the semi-discrete problems with boundary control

In this section we study the convergence of the solutions of the controlled systems (64). In view of the two
uniform controllability results of Theorems 3.1 and 3.2 we distinguish two cases:

Theorem 4.1. Let T > 0, and 0 < γ < 16. For any h ∈ (0, 1), consider ( ~yh
0, ~yh

1) ∈ H1
h,γ × H−1

h,γ and
(y0, y1) ∈ H1

0 (0, 1) ×H−1(0, 1), the initial conditions in (64) and (6) respectively, given by

~yh
0 =

N∑
k=1

a0
k,h

~φk(h), ~yh
1 =

N∑
k=1

b1k,h
~φk(h), y0 =

∑
k∈N

a0
k φk, y1 =

∑
k∈N

b1k φk. (151)
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Assuming that,

{a0
k,h}k∈N ⇀

h→0
{a0

k}k∈N weakly in H1, (152)

{b1k,h}k∈N ⇀
h→0

{b1k}k∈N weakly in H−1, (153)

then, (~yh(t), ~yh
′(t)) ∈ H1

h,γ ×H−1
h,γ and its partial controls νh ∈ L2(0, T ) are given as in Theorem 3.1. Moreover,

the Fourier coefficients ak,h(.) and bk,h(.) of ~yh and ~y′h respectively, are such that

{ak,h(.)}k∈N ⇀
h→0

{ak(.)}k∈N weakly * in L∞(0, T ;H1), (154)

{bk,h(.)}k∈N ⇀
h→0

{bk(.)}k∈N weakly * in L∞(0, T ;H−1), (155)

νh(.) ⇀
h→0

ν(.) weakly in L2(0, T ), (156)

where, (y(x, t), y′(x, t)) =
(∑
k∈N

ak(t) φk(x),
∑
k∈N

bk(t) φk(x)
)

solves (6), with control ν(t), and y(T ) = y′(T )

= 0. The limit control ν is given by

ν(t) = −∂x u
∗(1, t),

where u∗ is solution of (1), with data (u0,∗, u1,∗) ∈ H1
0 (0, 1) ×H−1(0, 1) minimizing the functional

J
(
(u0, u1)

)
=

1
2

∫ T

0

∣∣∂x u(1, t)
∣∣2 dt− 〈(y1, y0); (u0,−u1)

〉
F ′×F

(157)

in H1
0 (0, 1) ×H−1(0, 1).

We consider now as initial datum for the semi-discrete equation (64) (~y 0
h , ~y

1
h ) ∈ H1

h×H−1
h . From Theorem 3.2

we obtain that the corresponding solutions and controls of (64) can be expressed by

~yh(t) = ~zh(t) + h ~wh(t) and νh(t) = ν1,h(t) + h ν′2,h(t), (158)

where ~zh =
N∑

k=1

ck,h
~φk(h) is the solution of (64) with control ν1,h ∈ L2(0, T ) and initial data ( ~yh

0, ~yh
1), and

~wh =
N∑

k=1

ek,h
~φk(h) solves (64) with control ν′2,h ∈ H−1(0, T ) and zero initial data.

Theorem 4.2. Let T > 0. For any h ∈ (0, 1), consider the initial data (~y 0
h , ~y

1
h ) ∈ H1

h × H−1
h and

(y0, y1) ∈ H1
0 (0, 1) ×H−1(0, 1) of problems (64) and (6) as in (151).

Assume that,

{a0
k,h}k∈N ⇀

h→0
{a0

k}k∈N weakly in H1, (159)

{b1k,h}k∈N ⇀
h→0

{b1k}k∈N weakly in H−1. (160)
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Then, the controls νh, and the controlled solutions ~yh in (158) satisfy

{ck,h}k∈N ⇀
h→0

{ck}k∈N weakly* in L∞(0, T ;H1) ∩W 1,∞(0, T ;H−1) (161)

h {ek,h}k∈N is of order h in L∞(0, T ;H−1) ∩W 1,∞(0, T ;H−3), (162)

ν1,h ⇀
h→0

ν weakly in L2(0, T ), (163)

h ν′2,h is of order h in H−1(0, T ), (164)

where y(x, t) =
∑
k∈N

ck(t) φk(x) is solution of problem (6) with control ν(t) = −∂x u
∗(1, t) ∈ L2(0, T ) such that

y(T ) = y′(T ) = 0 and u∗ solves (1) with the initial data (u0,∗, u1,∗) that minimizes the functional J defined
in (157) in H1

0 (0, 1) ×H−1(0, 1).

Proof of Theorem 4.1. We divide the proof in several steps.

First Step (Convergence of the Controls). In view of Theorem 3.1 and estimate (79), there exists a
subsequence {νh}h, such that

νh(t) =
u∗h,N(t)
h

⇀ ν(t) in L2(0, T ), as h→ 0. (165)

Recall that ~uh
∗(t) solves (7) with data ( ~uh

0,∗, ~uh
1,∗) ∈ H1

h,γ ×H−1
h,γ minimizing the functional Jh defined in (74).

Moreover, as a consequence of the observability inequality (23) we have

‖( ~uh
0,∗, ~uh

1,∗)‖Fh
≤ C for all h > 0.

In these conditions, Proposition 4.2 guarantees that ν(t) = ∂x u
∗(1, t), where u∗ solves (1).

Second Step. The solution ~yh of (64) satisfies

〈
~yh

′(s), ~uh(s)
〉
H−1

h
×H1

h

− 〈
~yh(s), ~uh

′(s)
〉
H1

h
×H−1

h

=
〈
~yh

1, ~uh
0
〉
H−1

h ×H1
h

−
〈
~yh

0, ~uh
1
〉
H−1

h ×H1
h

+
∫ s

0

νh(t)
uh,N(t)
h

dt, (166)

for any ~uh ∈ Ch(γ) and all 0 < s < T .

According to Proposition 2.1 and estimate (166), we obtain that

|( ~yh
′(s),− ~yh(s))‖F∗

h
≤ C ‖( ~yh

1,− ~yh
0)‖F∗

h
+ |νh|L2(0,T ), ∀ s ∈ (0, T ). (167)

Combining (152, 153, 165) and (167), we deduce the existence of a subsequence of indexes {h}, such that

{ak,h(t)}k∈N ⇀
h→0

{ak(t)}k∈N weakly * in L∞(0, T ;H1), (168)

{bk,h(t)}k∈N ⇀
h→0

{bk(t)}k∈N weakly * in L∞(0, T ;H−1), (169)

where bk,h(t) = a′k,h(t) and bk(t) = a′k(t).
Let us now prove that

{a′′k,h(t)}k∈N ⇀
h→0

{a′′k(t)}k∈N weakly in L2(0, T ;H−3). (170)
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For that it is sufficient to show that ~yh
′′ is bounded in L2(0, T ;H−3) or, equivalently, for any ~θh ∈ L2(0, T ;H3

h)

∣∣∣∣〈 ~yh
′′(t), ~θh(t)

〉
L2(0,T ;H−3

h )×L2(0,T ;H3
h)

∣∣∣∣ ≤ C ‖~θh‖L2(0,T ;H3
h), ∀ h > 0. (171)

In fact, by multiplying (64) by θh,j(t) =
N∑

k=1

gk,h(t) φk,j (the j-th component of ~θh), adding in j and integrating

in (0, T ), we get that

∣∣∣∣∣∣h
N∑

j=1

∫ T

0

y′′h,j θh,j dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣h
N∑

j=1

∫ T

0

(Bh ~yh)h,j θh,j dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
∫ T

0

θh,N(t)
h

νh dt+ h
N∑

j=1

∫ T

0

yh,j (Bh
~θh)h,j dt

∣∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

θh,N

h
νh dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

N∑
k=1

ak,h(t) λ2
k(h) gk,h(t) dt

∣∣∣∣∣
≤

(∫ T

0

‖{ak,h(t)}‖2
H1 dt

)1/2(∫ T

0

‖{gk,h(t)}‖2
H3 dt

)1/2

+
∣∣∣∣θh,N(t)

h

∣∣∣∣
L2(0,T )

|νh|L2(0,T ) . (172)

On the other hand, due to θh(t) ∈ L2(0, T ;H3
h), the sequence of Fourier coefficients {gk,h(t)}k∈N ∈ L2(0, T ;H3)

and

∣∣∣∣θh,N (t)
h

∣∣∣∣
2

L2(0,T )

=
∫ T

0

∣∣∣∣∣
∑
k∈N

gk,h
sin(kπNh)

h

∣∣∣∣∣
2

dt

≤
(∑

k∈N

λ−3
k (h)

sin2(kπh)
h2

) ∫ T

0

(∑
k∈N

λ3
k(h) |gk,h|2

)
dt

≤ C
∑
k∈N

1
k4

‖~θh‖2
L2(0,T ;H3

h). (173)

Therefore, as a consequence of inequality (172) the proof of (171) and, therefore, that of (170) finishes.
Then, from (168, 169) and (170) we get

{ak(t)}k∈N ∈ C([0, T ];H−1) and {a′k(t)}k∈N ∈ C([0, T ];H−3),

which implies the existence of {ak(0)}k∈N and {a′k(0)}k∈N, which are uniformly bounded in H1 and H−1

respectively.
Moreover, from (168, 169) and (169, 170) and Aubin–Lions compactness lemma, we deduce that

{ak,h(t)} −→
h→0

{ak(t)}, strongly in C([0, T ];Hδ) ∩ C1([0, T ];H−δ), (174)
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for any δ > 0. Thus,

{ak,h(0)} ⇀
h→0

{ak(0)}, weakly in H1, (175)

{a′k,h(0)} ⇀
h→0

{a′k(0)}, weakly in H−1. (176)

Observe that, by the hypotheses of theorem, ak(0) = a0
k and a′k(0) = a1

k.
We also observe that, from (174), for each k fixed, the following convergence holds

ak,h(t) eiλk,h(t) −→
h→0

ak(t) eiλk(t), for all t ∈ [0, T ] (177)

a′k,h(t) eiλk,h(t) −→
h→0

a′k(t) eiλk(t), for all t ∈ [0, T ]. (178)

Third Step. Consider ~uh = eiλp(h)t ~φ p(h) ∈ Ch(γ). Then, obviously,

uh,N(t)
h

−→ ∂xu(1, t) uniformly in [0, T ], (179)

where u(x, t) = ei λptφp(x). From (165) it then follows that

∫ T

0

νh(t)
uh,N(t)
h

dt −→
∫ T

0

ν(t) ∂xu(1, t) dt, as h→ 0. (180)

On the other hand, taking into account that ~uh → u in C([0, T ];H1) and that (174) is valid for δ = 1, we have
that the first term in the left hand side of (166) satisfies, for all s ∈ (0, T ),

h
N∑

j=1

y′h,j(s) uh,j(s) −→
h→0

∫ 1

0

y′(x, s) u(x, s) dx, (181)

where y(x, t) =
∑
k∈N

ak(t) φk(x).

Similarly, in each term of (166) using the estimates (174) and (180) together with the fact of ~u′h → u′ in
C([0, T ];H−1) we show that when h tends to zero,

∫ 1

0

{y′(x, s) u(x, s) − y(x, s) u′(x, s)} dx =
∫ 1

0

{y1(x) u0(x) − y0(x) u1(x)} dx

−
∫ s

0

ν(t) ∂x u(1, t) dt, ∀ s ∈ (0, T ). (182)

Thus, y is the solution by transposition of (6) with control ν.
Since Πγ~yh(T ) = Πγ ~yh

′(T ) = 0, by the convergences (177, 178) and the fact that, as h → 0, all the Fourier
components are eventually involved in the projections Πγ , we deduce that y(T ) = y′(T ) = 0.

Step 4. To conclude the proof of theorem it is sufficient to show that ν = ∂xu
∗(1, t), where u∗ solves (1) with

the initial data minimizing the functional (157).
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We know that both ν and ∂x u
∗(1, t) are exact controls for the system (6). Then

∫ T

0

(ν(t) − ∂x u
∗(1, t)) ∂x u(1, t) dt = 0,

for every solution u of the adjoint system (1).
From Proposition 4.2 we have also that ν(t) = ∂x z(1, t) ∈ L2(0, T ), where z is solution a (1). Consequently

∫ T

0

(
∂x z(1, t)− ∂x u

∗(1, t)
)
∂x u(1, t) dt = 0.

Taking u = z − u∗ as test function in this identity it follows that ν(t) = ∂x u
∗(1, t). �

Proof of Theorem 4.2. We divide the proof in 3 steps.

Step 1. From Theorem 3.2 it follows that the control of system (64) has the form νh(t) = ν1,h(t) + h ν′2,h(t).
Moreover, from (88, 159) and (160) we have that

{ν1,h(t)}h is uniformly bounded in L2(0, T ) (183)

{ν2,h(t)}h is uniformly bounded in L2(0, T )
with compact support in (0, T ) (184)

{ν′2,h(t)}h is uniformly bounded in H−1(0, T ) (185)

h ν′2,h(t) is of order h in H−1(0, T ). (186)

Hence, there exists a subsequence of {h} such that

ν1,h(t) ⇀
h→0

ν1(t) weakly in L2(0, T ) (187)

h ν′2,h(t) −→
h→0

0 strongly in H−1(0, T ). (188)

Remark that, from Proposition 4.2, ν(t) = ∂x u
∗(1, t) ∈ L2(0, T ), where u∗ solves (1).

Step 2. Let t ∈ [0, T ] and j = 1, . . . , N . We introduce the following semi-discrete problems:




z′′h,j = − 1
h4

{zh,j+2 − 4zh,j+1 + 6zh,j − 4zh,j−1 + zh,j−2} ,
zh,0 = zh,N+1 = 0,
zh,−1 = −zh,1 zh,N+2 = −zh,N + h2 ν1,h,

zh,j(0) = y0
h,j, z′h,j(0) = y1

h,j,

(189)

and




w′′
h,j = − 1

h4
{wh,j+2 − 4wh,j+1 + 6wh,j − 4wh,j−1 + wh,j−2} ,

wh,0 = wh,N+1 = 0,
wh,−1 = −wh,1 wh,N+2 = −wh,N + h2 ν′2,h,

wh,j(0) = 0, w′
h,j(0) = 0.

(190)
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It is easy to see that the solution ~yh(t) of (64) can be decomposed as ~yh(t) = ~zh(t) + h ~wh(t). In particular, ~zh

satisfies the identity:

h

N∑
j=1

(z′h,j(s) uh,j(s) − zh,j(s) u′h,j(s)) = h

N∑
j=1

(y1
h,j u

0
h,j − y0

h,j u
1
h,j) −

∫ T

0

ν1,h(t)
uh,N(t)
h

dt,

for any ~uh solution of (7). Now, taking Proposition 2.1 into account, we obtain that∣∣∣〈( ~zh
′(s),−~zh(s)), (~uh(s), ~uh

′(s))
〉
F∗

h×Fh

∣∣∣
≤ ‖(~y 1

h ,−~y 0
h )‖F∗

h
‖(~u 0

h , ~u
1
h)‖Fh

+ |ν1,h(.)|L2(0,T )

∣∣∣∣uh,N(t)
h

∣∣∣∣
L2(0,T )

≤ ‖(~u 0
h , ~u

1
h)‖Fh

(
‖(~y 1

h ,−~y 0
h )‖F∗

h
+
∣∣ν1,h(.)

∣∣
L2(0,T )

)
. (191)

Since the sequence {ν1,h}h is uniformly bounded in L2(0, T ), from the hypotheses (159) and (160) we have

‖( ~zh
′(s),−~zh(s))‖F∗

h
≤ C ‖(~u 1

h ,−~u 0
h)‖F∗

h
for all s ∈ (0, T ).

Hence, {ck,h(s)}h, the sequence of Fourier coefficients of ~zh, is uniformly bounded in L∞(0, T ,
H1) ∩W 1,∞(0, T,H−1).

On the other hand, we denote by ~ϕh the solution of the semi-discrete system:




ϕ′′
h,j = − 1

h4
{ϕh,j+2 − 4ϕh,j+1 + 6ϕh,j − 4ϕh,j−1 + ϕh,j−2} ,

ϕh,0 = ϕh,N+1 = 0, 0 < t < T

ϕh,−1 = −ϕh,1 ϕh,N+2 = −ϕh,N + h2 ν2,h,

ϕh,j(0) = 0 ϕ′
h,j(0) = 0,

(192)

where 0 < t < T and 1 ≤ j ≤ N .
The sequence ~ϕh satisfies the same uniform boundedness properties of ~zh above.
Taking into account that ~wh = ~ϕh

′, its Fourier coefficients {ek,h(s)}h are uniformly bounded in L∞(0, T ,
H−1) ∩W 1,∞(0, T,H−3).
Step 3. From the previous estimates it follows that

ck,h(s) −→
h→0

ck(s) weakly * in L∞(0, T,H1) ∩W 1,∞(0, T,H−1) (193)

h ek,h(s) −→
h→0

0 strongly in L∞(0, T,H−1) ∩W 1,∞(0, T,H−3).

But, since

ak,h(T ) = ck,h(T ) + h ek,h(T ) = 0 (194)
bk,h(T ) = c′k,h(T ) + h e′k,h(T ) = 0, (195)

and ak,h(T ) = bk,h(T ) for all k, we deduce that (ck,h(T ), c′k,h(T )) −→
h→0

(0, 0), as h→ 0, for all k.

As a consequence of (193) it follows that ck(T ) = c′k(T ) = 0. Therefore, the limit y(x, t) =
∑
k∈N

ck(t) φk(x) of

~zh solves (6) with control ν(t) = ∂x u
∗(1, t) and satisfies y(T ) = y′(T ) = 0.

Finally, using the same arguments of Theorem 4.1 we conclude that u∗ solves (1) with initial datum (u0,∗, u1,∗)
minimizing the functional defined in (74). �
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4.4. Strong convergence of the semi-discrete problem with boundary control

Assuming the strong convergence of the initial data further convergence properties of controls and solutions
can be proved:

Theorem 4.3. Let T > 0 and 0 < γ < 16. For any h ∈ (0, 1), consider (~y 0
h , ~y

1
h ) ∈ H1

h,γ × H−1
h,γ and

(y0, y1) ∈ H1
0 (0, 1) ×H−1(0, 1), the initial conditions in (64) and (6) as in (151).

Assuming that,

{a0
k,h}k∈N −→

h→0
{a0

k}k∈N strongly in H1, (196)

{b1k,h}k∈N −→
h→0

{b1k}k∈N strongly in H−1, (197)

then, the partial controls νh(t) ∈ L2(0, T ), and the controlled solutions ~yh satisfy

{ak,h(t)}k∈N −→
h→0

{ak(t)}k∈N strongly in H1, ∀ t ∈ (0, T ); (198)

{bk,h(t)}k∈N −→
h→0

{bk(t)}k∈N strongly in H−1, ∀ t ∈ (0, T ); (199)

νh(.) −→
h→0

ν(.) strongly in L2(0, T ); (200)

where, (y(x, t), y′(x, t)) =
(∑
k∈N

ak(t) φk(x),
∑
k∈N

bk(t) φk(x)
)

solves (6), with control ν(t) ∈ L2(0, T ), and

y(T ) = y′(T ) = 0. Moreover, the control ν is given by

ν(t) = −∂x u
∗(1, t),

where u∗ is solution of (1), with initial data (u0,∗, u1,∗) minimizing the functional defined in (157).

Proof. Combining Theorem 4.1 and Theorem 2.2 we obtain the weak convergence of the initial data ( ~uh
0,∗, ~uh

1,∗)
∈ H1

h,γ×H−1
h,γ of (7), minimizing the functional Jh defined in (74). Moreover, by the hypotheses of Theorem 4.3,

the linear term of the functional Jh converges to the linear term of the functional J defined in (157). Therefore,
proving (200) is equivalent to proving that

Jh( ~uh
0,∗, ~uh

1,∗) −→
h→0

J(u0,∗, u1,∗), (201)

where (u0,∗, u1,∗) ∈ H1
0 (0, 1) × H−1(0, 1) minimizes the functional J . Indeed, if this is true, taking the

convergence of the linear term into account and the structure of the functionals Jh and J we deduce that

∫ T

0

|νh(t)|2 dt −→
∫ T

0

|ν(t)|2 dt,

which, combined with the weak convergence property provides the desired strong convergence result.
In view of the weak convergence of the initial data and the controls, and by weak lower semicontinuity it is

easy to see that
J(u0,∗, u1,∗) ≤ lim inf Jh( ~uh

0,∗, ~uh
1,∗).

Thus, in order to complete the proof of (201) it is sufficient to check that for all (u0, u1) ∈ D where D is the
subspace of initial data with a number finite of Fourier coefficients, which is dense in the space H1

0 (0, 1) ×
H−1(0, 1), there exists a sequence of approximated initial data ( ~uh

0, ~uh
1) such that

lim
h→0

Jh( ~uh
0, ~uh

1) = J(u0, u1).
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This is easy to see. Indeed, it is sufficient to take as ( ~uh
0, ~uh

1) the discrete initial data with same Fourier
coefficients as (u0, u1) ∈ D, which makes sense when h is sufficiently small.

Finally, taking the hypotheses of the Theorem into account, and the strong convergence of the controls it is
easy to see that the solutions ~uh of (7) converge strongly to the solution u of (1). Consequently convergences
(198) and (199) are true. �

Theorem 4.4. Let T > 0. For any h ∈ (0, 1), consider the initial data (~y 0
h , ~y

1
h ) ∈ H1

h × H−1
h and

(y0, y1) ∈ H1
0 (0, 1) ×H−1(0, 1) of problems (64) and (6) as in (151).

Assume that,

{a0
k,h}k∈N −→

h→0
{a0

k}k∈N strongly in H1, (202)

{b1k,h}k∈N −→
h→0

{b1k}k∈N strongly in H−1. (203)

Let ~yh be the solution of system (64) with control νh, so that both satisfy the decomposition given in (158).
Then,

{ck,h}k∈N −→
h→0

{ck}k∈N strongly in L∞(0, T ;H1) ∩W 1,∞(0, T ;H−1), (204)

h {ek,h}k∈N −→
h→0

0 strongly in L∞(0, T ;H−1) ∩W 1,∞(0, T ;H−3), (205)

h {ek,h}k∈N is of order h in L∞(0, T ;H−1) ∩W 1,∞(0, T ;H−3), (206)

ν1,h(.) −→
h→0

ν(.) strongly in L2(0, T ), (207)

h ν′2,h(.) −→
h→0

0 strongly in H−1(0, T ), (208)

h ν′2,h(.) is of order h in H−1(0, T ), (209)

where y(x, t) =
∑
k∈N

ck(t) φk(x) is the solution of problem (6) with control ν(t) = −∂x u
∗(1, t) ∈ L2(0, T ) where

u∗ solves (1) with the initial data (u0,∗, u1,∗) that minimizes the functional J defined in (157).

Proof. The proof is similar to that of Theorem 4.3 and we omit it. �

The authors are grateful to Sorin Micu for fruitful discussions.
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