
ESAIM: Control, Optimisation and Calculus of Variations June 2002, Vol. 8, 273–285

URL: http://www.emath.fr/cocv/ DOI: 10.1051/cocv:2002021

ON THE INSTANTANEOUS SPREADING FOR THE NAVIER–STOKES
SYSTEM IN THE WHOLE SPACE ∗

Lorenzo Brandolese1, 2 and Yves Meyer1

Abstract. We consider the spatial behavior of the velocity field u(x, t) of a fluid filling the whole
space Rn (n ≥ 2) for arbitrarily small values of the time variable. We improve previous results on
the spatial spreading by deducing the necessary conditions

R
uh(x, t)uk(x, t) dx = c(t)δh,k under more

general assumptions on the localization of u. We also give some new examples of solutions which have
a stronger spatial localization than in the generic case.
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Introduction

We consider the Navier–Stokes system for an incompressible viscous fluid in the absence of external forces




∂tu + ∇ · (u ⊗ u) = ∆u −∇p
u(x, 0) = a(x)
div(u) = 0.

(NS)

Here u : Rn × [0,∞[→ Rn (n ≥ 2) denotes the velocity field and p(x, t) is the pressure.
A very natural question is to know whether localization with respect to the space variables is preserved by

the Navier–Stokes evolution.
It is now well known that mild localization properties are conserved for small time (see e.g. [4,5,7,8]). In order

to give an elementary justification of this fact, let us write (NS) in the usual equivalent integral formulation,
which is obtained after applying the Leray–Hopf projector P (which is the orthogonal projector onto the field
of soleinoidal vectors):

u(t) = et∆a −
∫ t

0

e(t−s)∆P∇ · (u ⊗ u)(s) ds, div(a) = 0. (IE)
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If we consider the space L∞
γ of all measurable functions f such that

sup
x∈Rn

(1 + |x|)γ |f(x)| < ∞ (0 ≤ γ ≤ n + 1),

then a straightforward application of the standard fixed point argument yields the existence and unicity of a
solution of (IE) in C([0, T ], L∞

γ ), for some T > 0 which may depend on a, but not on γ. Here the continuity for
t = 0 should be defined in the distributional sense, as it is usually done in non-separable spaces.

Miyakawa [7] and He–Xin [4] first achieved the construction of (local and global) solutions to the
Navier–Stokes equations with a decay O(|x|−(n+1)), uniformly in time.

The restriction γ ≤ n + 1 is very natural if we look at the kernel F (x, t) of the matrix-operator et∆P∇.
Indeed, we easily see that |F (x, t)| ≤ C|x|−(n+1) and this decay-rate is known to be optimal. We will recall
hereafter some other useful properties of F .

This obviously does not mean that the bound |u(x, t)| ≤ C(1 + |x|)−(n+1) for solutions generated by well-
localized initial conditions will be optimal. To give a simple example, it is well known that there exists a
classical two-dimensional solution u of (NS), with radial vorticity, which has a rapid spatial decay at infinity.
This solution turns out to solve also the linear heat system with the same initial condition.

However, generic solutions to the Navier–Stokes equations do not have a fast decay at infinity, even if the
initial data are smooth and compactly supported. This is usually seen by means of the Fourier transform.

For instance, the argument that follows goes through if we suppose u(t) ∈ L2(Rn) and p(t) ∈ L1(Rn) for
some t. We just start with the classical relation −∆p =

∑
h,k ∂h∂k(uhuk) which is obtained by applying the

divergence operator to (NS). On the Fourier transform side this reads

−p̂(ξ, t) =
n∑

h,k=1

ξhξk|ξ|−2ûhuk(ξ, t), t ∈ [0, T ]. (1)

Since the left hand side is continuous at 0, the right hand side should also be continuous for ξ = 0 which implies
ûhuk(0, t) = −p̂(0)δhk. This is equivalent to

∫
uh(x, t)uk(x, t) dx = −δhk

∫
p(x, t) dx (δhk = 1 if h = k, δhk = 0 if h 6= k). (2)

Moreover, one shows that, if u ∈ C(]t − δ, t + δ[, L1(Rn, (1 + |x|)dx)) (δ > 0), the condition on the pressure is
satisfied. Thus, a decay at infinity of the form |x|−(n+1) log(|x|)−1−ε (ε > 0) is forbidden for generic solutions
(see [1, 3]).

A slightly deeper argument allowed the first author to prove that a decay |x|−(n+1) log(|x|)−1/2−ε is also
forbidden. Indeed, he showed that the condition a ∈ L2(Rn, (1 + |x|)n+2dx), in general, is not conserved during
the evolution.

Our main goal will be to get rid of these logarithmic factors. Another important issue of this paper consists
in proving that the pressure is localized, at least in a weak sense, under a mild localization assumption on the
velocity. Then the orthogonality relations

∫
uh(x, t)uk(x, t) dx = c(t)δhk will follow in a straightforward manner.

We now state our main result. Let us introduce the space E of all functions f ∈ L1(Rn) such that

lim
R→∞

R

∫
|x|≥R

|f(x)| dx = 0. (3)
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We norm this space by

∫
|x|≤1

|f(x)| dx + sup
R≥1

R

∫
|x|≥R

|f(x)| dx. (4)

Observe that f(x) = (1 + |x|)−(n+1) satisfies ||f ||E < ∞, but this function does not belong to E. On the other
hand, an integrable function which is o(|x|−(n+1)) at infinity does belong to E. Thus we can say that that E is
the L1(Rn) version of a localization of the form o(|x|−(n+1)) at infinity.

Then we have:

Theorem 0.1. Let u(x, t) be a solution of the Navier–Stokes system in [0, T ] (0 < T ≤ ∞) such that a =
u(0) ∈ L2(Rn) ∩ E and satisfying the following properties

u ∈ C([0, T ], L2(Rn)) (5)
u(·, t) ∈ L∞([0, T ], E) (6)
|u(·, t)|2 ∈ L∞([0, T ], E). (7)

If we note by a1, . . . , an the components of the initial data, then we have

∫
ah(x)ak(x) dx = cδhk, h, k = 1, . . . , n (8)

for some constant c.

It should be observed that under some mild assumptions on the localization of the data (such as, for example,
|a(x)| ≤ C(1+ |x|)−(n+1+ε)/2) then (5) and (7) are always satisfied, at least in some small interval [0, T ]. Hence
this theorem states that generic solutions do not belong to L∞([0, T ], E). Since E contains both L1(Rn, (1 +
|x|)dx) and L2(Rn, (1 + |x|)n+2dx), Theorem 0.1 improves all previous results on the instantaneous spreading.
As we will see later on, even if we drop the assumption (5) then the solution must satisfy the orthogonality
relations (8) at least for almost all t ∈ [0, T ].

Before going further, let us mention that the importance of (2) in the context of the spatial localization was
first noticed by Dobrokhotov and Shafarevich [2]. They deduced these necessary conditions as a consequence of
some remarkable integral identities. We will briefly recall such identities in the following section, since they do
not seem to be much known. We point out, however, that their approach leads to very stringent assumptions
on the decay of p and u.

In Section 2 we prove Theorem 0.1. Then we state a generalization of this result to the case of solutions with
a stronger spatial localization. Many other necessary non-linear conditions on the initial data can be derived in
this setting.

Sections 3 and 4 are fully borrowed from the first author’s doctoral dissertation. There we will discuss the
converse problem of finding sufficient conditions in order to obtain a space-decay for u faster than expected.
Under a localization assumption for the data, we show that if (8) is satisfied, and if this condition remains
true in a small interval of time, then the corresponding solution will decay faster than |x|−(n+1), uniformly on
this interval. Let us however stress that (a) the orthogonality relations do not persist under the Navier–Stokes
evolution and (b) we were not able to characterize the subclass of initial data for which (8) is conserved during
the time evolution. In the last part of this paper we provide several new examples of such data. The interesting
point is that the corresponding solutions are non-trivial in the following sense: they solve the Navier–Stokes
system without being solutions of the heat equation.
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1. Integral identities

We start with recalling the integral identities of Dobrokhotov and Shafarevich (see [2] for a proof). These
identities read as follows (i, j = 1, 2, 3):

∂

∂t

∫
∂Ω

〈n, u〉xixj dS +
∫

∂Ω

〈n, u〉(xiuj + xjui) dS +
∫

∂Ω

〈n, aij〉dS =
∫

∂Ω

〈n,∇〉(xiuj + xjui)dS

− 2
∫

∂Ω

〈n, bij〉dS + 2
[∫

Ω

uiuj dx + δij

∫
Ω

p dx

]
· (9)

Here u(x, t) and p(x, t) is any solution of ∂tu + u · ∇u = ∆u −∇p which is two times differentiable in (x, t) ∈
Ω̄× (t− δ, t + δ), Ω ⊂ R3 is a smooth bounded domain, n is the exterior normal to ∂Ω, dS the surface element
on ∂Ω and the vectors aij and bij are defined by:

(aij)i = pxj , (aij)j = pxi (aij)k = 0, i, j, k = 1, 2, 3
(bij)i = uj , (bij)j = ui, (bij)k = 0, i 6= j, j 6= k, k 6= i
(aii)j = 2δijpxj , (bii)j = 2δijuj.

As an immediate consequence, we see that if p(t) ∈ L1(R3) in some interval t ∈]0, T [ and if u and p verify the
following decay properties

∂tu(x, t) = o(|x|−4) ∇u(x, t) = (|x|−3)
p(x, t) = o(|x|−3) u(x, t) = o(|x|−2), 0 < t < T, (10)

when x → ∞, then (2) holds for t ∈]0, T [.

1.1. Estimates for the kernel of et∆P∇
Here we recall some known estimates for the kernel F (x, t) = (Fjhk(x, t)) of et∆P∇ (j, h, k = 1, . . . , n). The

components of its Fourier transform are given by

F̂jhk(ξ, t) = iξh

(
δjk − ξjξk|ξ|−2

)
exp

(−t|ξ|2) · (11)

Hence, F (x, t) is smooth, F (x, t) = t−1/2F (xt−1/2, 1) and |F (x, 1)| ≤ |x|−(n+1).

This estimate for the kernel is optimal, as it is trivially seen from the singularity of F̂ (ξ, t) at ξ = 0. Another
useful property, which directly follows from the scaling law is ||F (·, t)||1 ≤ Ct−1/2.

For later use, the derivatives of F can be estimated by

|∂β
x F (x, t)| ≤ C|x|−(n+1+|β|), |β| ≥ 0. (12)

2. Proof of the main result

Before entering into more details, let us sketch the proof of Theorem 0.1. The first step consists in checking
that the localization of the velocity implies a similar property for the gradient of the pressure. Next we will
show that the pressure itself is localized. Finally the localization of both the pressure and the velocity easily
implies (8).

In order to establish Theorem 0.1 we place the Banach space E on a ladder of functional spaces Eα.
Since

∫
|x|≥R |f(x)| dx → 0 if R → ∞ whenever f ∈ L1(Rn), we may want to know at which speed this

convergence holds. For α > 0, we introduce the space Eα of all integrable functions which satisfy

lim
R→∞

Rα

∫
|x|≥R

|f(x)| dx = 0. (13)
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Hence Eα is a Banach space for the norm∫
|x|≤1

|f(x)| dx + sup
R≥1

Rα

∫
|x|≥R

|f(x)| dx (14)

and it is easy to show that continuous and compactly supported functions form a dense sub-space in Eα.
Accordingly with the introduction, we call E = E1. Let us state without proof some simple but useful properties
of these spaces.

Lemma 2.1. If α > 0 and f is a locally integrable function such that

lim
R→+∞

Rα

∫
R≤|x|≤2R

|f(x)| dx = 0, (15)

then f ∈ Eα. Moreover, ||f ||Eα and∫
|x|≤1

|f(x)| dx + sup
R≥1

Rα

∫
R≤|x|≤2R

|f(x)| dx (16)

are two equivalent norms.

Lemma 2.2. For α > 0, Eα is a Banach algebra with respect to the convolution product.

Lemma 2.1 paves the road to a natural definition of the spaces Eα when α = 0: E0 is the space of locally
integrable functions satisfying

lim
R→∞

∫
R≤|x|≤2R

|f(x)| dx = 0 (17)

and we norm it by ∫
|x|≤1

|f(x)|dx + sup
R≥1

∫
R≤|x|≤2R

|f(x)| dx < ∞. (18)

The next important lemma shows that if one is assuming a localization condition on the gradient ∇f of a
function f defined on Rn, (n ≥ 2), then this function f is itself a localized function, up to an additive constant.
This is obviously false in one dimension. A first instance of this general fact is provided by the space BV
consists of the functions f whose gradient is a bounded Borel measure. If f ∈ BV, then there exists a constant
c and a function g in Ln/(n−1)(Rn) such that f = c + g. Our aim is to extend this localization property to the
context of the Eα spaces.

Lemma 2.3. Let n ≥ 2 and f ∈ BV (Rn) such that ∇f ∈ Eα, with α ≥ 1. Then we can find a constant c and
g ∈ Eα−1 such that f = c + g.

Proof. To establish this property, we consider the unit sphere Sn−1 in Rn and we renormalize its area element
dσ in order to have

∫
Sn−1 dσ = 1. Our assumption reads∫

λ≥R

∫
Sn−1

|∇f(λν)|λn−1 dλdσ(ν) ≤ εRR−α

with εR ≤ C and εR → 0 if R → ∞. We start by studying the total variation of I(λ) ≡ ∫
Sn−1 f(λν) dσ(ν). We

have I ′(λ) =
∫

Sn−1 ν · ∇f(λν) dσ (ν) and so |I ′(λ)| ≤ ∫
Sn−1 |∇f(λν)| dσ(ν). This implies

∫
λ≥R |I ′(λ)|λn−1 dλ ≤

εRR−α. Then

Rn−1

∫
λ≥R

|I ′(λ)| dλ ≤ εRR−α.
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Hence the limit c = limλ→∞ I(λ) does exist and

|I(λ) − c| ≤ ελλ−α−n+1.

We next apply Hölder and Poincaré’s inequalities on Sn−1 and we get∫
Sn−1

|f(λν) − I(λ)| dσ(ν) ≤ Cnλ

∫
Sn−1

|∇f(λν)| dσ(ν).

This finally gives

∫ 2R

R

∫
Sn−1

|f(λν) − c|λn−1 dλdσ(ν) ≤
∫ 2R

R

∫
Sn−1

|f(λν) − I(λ)|λn−1 dλdσ(ν)

+
∫ 2R

R

∫
Sn−1

|I(λ) − c|λn−1 dλdσ(ν)

≤ 2R

∫ 2R

R

∫
Sn−1

|∇f(λν)|λn−1 dλdσ(ν) + εRR−α+1 ≤ ε̃RR−α+1

where ε̃R → 0 if R → ∞. Lemma 2.3 is thus proved.

The following proposition will be an essential step in deducing the orthogonality relations.

Proposition 2.4. Let gh,k (h, k = 1, . . . , n) be a family of integrable functions and f a tempered distribution.
We assume that

lim
R→∞

〈 f, ϕ(·/R) 〉 = 0 (19)

for all smooth functions ϕ supported in 1 ≤ |x| ≤ 2. If

∆f =
n∑

h,k=1

∂h∂kgh,k (20)

then we have, for some constant c,∫
gh,k(x) dx = cδhk (h, k = 1, . . . , n). (21)

Proof. Taking the Fourier transform in (20) we get f̂(ξ) =
∑

h,k ξhξk|ξ|−2ĝh,k(ξ) + P̂ (ξ), where P̂ is a sum of
derivatives of Dirac masses supported by the origin (more precisely P is a harmonic polynomial). Since f tends
to 0 at infinity in a weak sense, we must have P ≡ 0. Indeed, one first observes that I(R) = 〈 P̂ , Rnϕ̂(R·) 〉 is
a polynomial in R of the form I(R) = C(β)∂βϕ̂(0)Rn+|β|, with |β| ≥ 0. The coefficients C(β) arise from the
expansion P̂ =

∑
β C(β)∂βδ0. Next we observe that ĝh,k(ξ) are bounded on Rn which implies that J(R) =∫ ∑

h,k ξhξk|ξ|−2ĝh,k(ξ)Rnϕ̂(Rξ) dξ is uniformly bounded in R. Finally (20) tells us that I(R)+J(R) tends to 0
when R → ∞. Therefore the polynomial I(R) is bounded which implies C(β) = 0.

This discussion yields

f̂(ξ) =
n∑

h,k=1

ξhξk|ξ|−2ĝh,k(ξ).

We now use again the fact that the functions ĝh,k(ξ) are bounded on Rn which implies that the family f̂(ξ/R)
is bounded in L∞(Rn). The continuity at 0 of ĝh,k(ξ) is now used and f̂(ξ/R) converges for R → ∞ to
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Ŝ(ξ) ≡ ∑
h,k ξhξk|ξ|−2ĝh,k(0) in the weak-∗ topology σ(L∞, L1). This implies that the inverse Fourier transform

fR of f̂(Rξ) converges to a tempered distribution S in the distributional sense. But if φ ∈ C∞
0 (Rn) and 0 does

not belong to the support of ϕ, (19) yields

〈 fR, ϕ 〉 = 〈 f, ϕ(·/R) 〉 −→ 0, R → ∞.

Hence S is supported at the origin. But S = limR→∞ R−nf(x/R) is also a homogeneous distribution of degree
−n. Thus, S = cδ0 (Dirac mass at 0) for some constant c. This gives (21).

Remark 2.5. We could now directly apply Proposition 2.4 to deduce (2) under a much weaker assumption on
the pressure than p ∈ L1(Rn) (as we made in Sect. 2). Indeed let us just suppose that, at some instant t we have
u(t) ∈ L2(Rn) and p(t) ∈ S′(Rn) satisfying the mild decay condition (19). Then

∫
uh(x, t)uk(x, t) dx = cδhk.

We are now ready to prove Theorem 0.1. We write (NS) in the integral form

u(x, t) = et∆a −
∫ t

0

e(t−s)∆∂h(uhu) ds −
∫ t

0

e(t−s)∆∇p(s) ds. (22)

It is easily seen that
∫ t

0 e(t−s)∆∂h(uhu) ds belongs to L∞([0, T ], E). Indeed uhu ∈ L∞([0, T ], E) by (7). Moreover,
et∆∂h is a convolution operator with kernel ct−(n+1)/2Gh(x−y√

t
) and Gh ∈ E. Then we observe that the norm

of h−nφ(h−1·) in E is bounded by the norm of φ in E, at least when 0 < h ≤ 1, and we just apply Lemma 2.2.
Let us come back to (22). By our hypotheses, all terms but the last belong to L∞([0, T ], E). We thus have

∫ t

0

e(t−s)∆∇p(s) ds = ∇p̃(t) ∈ L∞([0, T ], E),

where we wrote p̃(t) =
∫ t

0 e(t−s)∆p(s) ds. Let ũh,k(t) =
∫ t

0 e(t−s)∆uh(·, s)uk(·, s) ds. If we apply the divergence
operator to (22), we get

−∆p̃ =
n∑

h,k=1

∂h∂kũh,k.

By Lemma 2.3, p̃(t), up to a constant, belongs to L∞([0, T ], E0). Then Proposition 2.4 applies and we obtain∫
ũh,k(x, t) dx = c(t)δhk. Then we just differentiate in t and deduce

∫
uh(x, t)uk(x, t) dx = c(t)δhk,

for almost every t ∈ [0, T ]. The assumption (5) allows us to conclude. This completes the proof of Theorem 0.1.
If a stronger spatial localization is imposed to u, many other necessary algebraic conditions on the higher-

order moments of uhuk(x, t) must be satisfied. In order to state these conditions, let us consider the higher
moments

λαhk(t) =
∫

xαuh(x, t)uk(x, t) dx, |α| = 0, . . . , m, m ∈ N. (23)

We first state a generalization of Proposition 2.4 in the following remark:

Remark 2.6. Let m = 0, 1, . . . be a fixed integer and u(x, t) and p(x, t) a solution of the Navier–Stokes
equations such that, at some time t, u(t) ∈ L2(Rn, (1 + |x|)mdx) and p(t) ∈ Em. Then the moments λαhk(t)
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must satisfy the following identity:

n∑
h,k=1

∑
|α|=`

λαhk(t)
α!

ξαξhξk = (ξ2
1 + · · · + ξ2

n)Pl(ξ) (24)

where Pl is a homogeneous polynomial of degree l for ` = 0, . . . , m.

Here again this statement would become obvious if the pressure is also localized, i.e. if p(t) ∈ L1(Rn,
(1+ |x|)mdx). Indeed, this would give p̂(ξ) ∈ Cm(Rn) and the conclusion would follow from the Taylor formula.

The case m = 0 follows from Proposition 2.4. In the general case, the conclusion of Remark 2.6 can be
obtained by induction on m, following the same arguments of Proposition 2.4. We leave the details to the
reader.

As a consequence of this observation, we easily obtain the following result, which is the natural generalization
of Theorem 0.1.

Corollary 2.7. Let m ≥ 0 an integer and a = u(0) ∈ L2(Rn, (1 + |x|)mdx) ∩ Em+1 a soleinoidal field. Let
T > 0 and u(x, t) be a solution of the Navier–Stokes equations such that

u ∈ C([0, T ], L2(Rn, (1 + |x|)mdx)) (25)
u(·, t) and |u(·, t)|2 ∈ L∞([0, T ], Em+1). (26)

Then (24) holds for all t ∈ [0, T ] and ` = 0, 1 . . . , m.

In the following section we will show that whenever the initial condition is localized, these necessary conditions
turn out to be also sufficient. They imply a good localization of the solution, at least for small time.

3. Sufficient conditions

As we have already mentioned in the introduction, in order to obtain bounded solutions u(x, t) which decay at
a low rate |x|−γ (0 ≤ γ ≤ n+1) at the beginning of the evolution, we can simply suppose |a(x)| ≤ C(1+ |x|)−γ .
Moreover, the unicity of such solutions is granted in the natural functional space associated to this decay
property.

This remark leads to studying the case γ ≥ n+1, i.e. the spatial localization of u, when u(0) is well-localized
and the necessary conditions (8) (or, more generally, Eq. (24)) are satisfied at t = 0.

A first difficulty comes from the fact that, for generic initial data satisfying (8), this cancellation property
instantaneously breaks down during the evolution. In three dimensions a simple example (which should be
compared to the specific examples of Sect. 4) is given by


a1(x) =

[
x3

(
1 − 2x2

2

) − x2

(
1 − 2x2

3

)]
exp

(−|x|2/2
)

a2(x) =
[
x1

(
1 − 2x2

3

) − x3

(
1 − 2x2

1

)]
exp

(−|x|2/2
)

a3(x) =
[
x2

(
1 − 2x2

1

) − x1

(
1 − 2x2

2

)]
exp

(−|x|2/2
)
.

Indeed, let us fix a small t0 > 0. A trivial computation shows that
∫

exp(−2t0|ξ|2)â1(ξ)â2(ξ) dx 6= 0. Hence
the cancellation

∫
a1(x)a2(x) dx = 0 breaks down for the solution of the heat system. By choosing α > 0 small

enough, we thus see that the solution u of the Navier–Stokes equations, starting from αa(x), cannot verify (8)
for t = t0.

Therefore it does not suffice to impose this condition to the initial data in order to ensure an over-critical
spatial decay for u. We will come back to this problem in the following section.

In this section we rather consider the class of initial data such that (8) remains true during the evolution.
Before studying the spatial properties of the corresponding solutions, let us first show, by means of a classical
two-dimensional example, that this class is non-empty.
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We start with considering the vorticity ω(x, t) = ∇∧ u = ∂1u2(x, t)− ∂2u1(x, t). Here x = (x1, x2). Then we
choose ω0 = ω(0) such that ω̂0 is radial, smooth, compactly supported in R2 and such that 0 does not belong to
the support of ω̂0. Then we pose ω(x, t) = et∆ω0(x), in a such way that the vorticity solves the heat equation
∂tω = ∆ω. Since ω(x, t) is radial, the Biot–Savart law yields u · ∇ω ≡ 0. Hence, ∂tω − ∆ω + u · ∇ω = 0 which
is nothing but the formulation of the Navier–Stokes equation in the velocity-vorticity formulation. Moreover,
again by the Biot–Savart law, the solution u is given by û(ξ, t) = (−iξ2, iξ1)|ξ|−2 exp(−t|ξ|2)ω̂0(ξ). Hence u(t)
is in the Schwartz class for all t ≥ 0. This solution u satisfies (24) for all t ≥ 0 and all ` = 0, 1, 2, . . .

In the following theorem we show that the converse of Corollary 2.7 is true:

Theorem 3.1. Let L∞
γ be defined as in the introduction and, for easing the notations, let us write F = L∞

(n+1).
Let m ≥ 0 be an integer and a = u(0) be a divergence-free vector such that |a(x)| ≤ C(1+|x|)−γ, with n+1+m <
γ ≤ n + 2 +m. For a sufficiently small T > 0, we know that there exists a unique solution u(x, t) ∈ C([0, T ], F )
of the Navier–Stokes equations with initial condition a. We then obtain |u(x, t)| ≤ C(1 + |x|)−(n+1), uniformly
in [0, T ]. Then, if (24) holds for all t ∈ [0, T ] and ` = 0, . . . , m, the decay of this solution is improved into

|u(x, t)| ≤ C(1 + |x|)−γ , x ∈ Rn, t ∈ [0, T ]. (27)

Proof. We consider the integral formulation (IE) of the Navier–Stokes equations, which we write in the following
way

u(t) = et∆a − B(u, u)(t),

where B is the bilinear operator given by

B(u, v)(t) =
∫ t

0

e(t−s)∆P∇ · (u ⊗ v)(s) ds.

We already know that |u(x, t)| ≤ C(1 + |x|)−(n+1), uniformly in [0, T ]. But since |a(x)| ≤ C(1 + |x|)−γ , the
linear evolution et∆a(x) =

∫
gt(x − y)a(y) dy satisfies |et∆a(x)| ≤ CT (1 + |x|)−γ , uniformly in [0, T ]. We now

show that |B(u, u)(x, t)| ≤ C(1 + |x|)−(n+2+m). This is an immediate consequence of the following lemma:

Lemma 3.2. Let K ≥ 0 an integer and T > 0. Let also u(x, t) be a function satisfying |u(x, t)| ≤ C(1 +
|x|)−(n+1+K) and (24), for ` = 0, . . . , K. Then

|B(u, u)(x, t)| ≤ CK,T (1 + |x|)−(n+2+K).

Proof. We sketch the proof in the case K = 0 while the general case is treated in the first author’s doctoral
dissertation.

We consider the j-component of the bilinear term B(u, u) which we shall write in the following way (ac-
cordingly with the notations fixed in the introduction): B(u, u)j =

∫ t

0 Fjhk(·, t − s) ∗ (uhuk)(s) ds. In order to
simplify the notation, here and in what follows, we shall omit the summations on the repeated indexes h and k
(h, k = 1, . . . , n).

Let rh,k(x, t) be such that

uhuk(x, t) = rh,k(x, t) +
(∫

uhuk(y, t) dy

)
g(x),

where g is the Gaussian, normalized by
∫

g(y) dy = 1. By (24), with ` = 0, we have
∫
rh,k(x, t) dx = 0, for all

t ∈ [0, T ]. We first consider the term

I(x, t) ≡
∫ t

0

∫
Fjhk(x − y, t − s) ∗ rh,k(s) dy ds.
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By
∫
rh,k = 0 and an integration by parts, using (12) with |β| = 1, we easily obtain |I(x, t)| ≤ C(1 + |x|)−(n+2).

Consider next the second term which contains the expression Fjhk ∗ (
∫

uhuk)g. It easily seen that this term
vanishes. Indeed,

∫
uhuk(x, t) = c(t)δhk and (δhkFjhk)b(ξ, t) = i

∑n
h=1(ξj − ξjξhξh/|ξ|2)e−t|ξ|2 ≡ 0. Since the

proof of the general case can be found in the first author’s doctoral dissertation, we will limit the discussion to
some heuristical comments. Indeed we write vh,k = uh(x, t)uk(x, t) and wj(ξ, t) = i

∫ t

0
exp[−(t − s)ξ2]ξh(δjk −

ξjξk|ξ|−2)v̂h,k(ξ, s)ds. The assumption implies that v̂h,k is killing the singularity of the symbol of the Leray–
Hopf projector. The improved smoothness on the Fourier transform side reflects into the improved decay in the
space variables. This is the meaning of our lemma.

The proof of Theorem 3.1 is now immediate: we simply iterate Lemma 3.2 for K = 0, . . . , m.

4. Well-localized flows

4.1. Symmetric solutions

We give here some examples of initial data such that the orthogonality relations
∫

ah(x)ak(x) dx = cδh,k hold
and remain true during the evolution. Moreover, we will choose a with a strong spatial localization in a such
way that Theorem 3.1 implies the existence of a unique local solution with a faster than |x|−(n+1) decay.

We have already given in the previous section a two-dimensional example of such data. We point out,
however, that this example is a quite trivial one since the corresponding solution satisfies P∇ · (u ⊗ u) ≡ 0 and
thus u solves also the heat equation. In the case n = 3, even such trivial solutions do not seem to be known to
exist.

We should look for some more stringent conditions than (8) which are conserved during the Navier–Stokes
evolution. The following construction is borrowed from [1]. We choose the initial data in the class of the so
called symmetric vector fields . We recall that a(x) = (a1(x), . . . , an(x)) is said to be symmetric, if the two
following properties are satisfied:

1. a1(x) = a2(σx) = . . . an(σn−1x), where x = (x1, . . . , xn) and σ is the permutation σ(x1, . . . , xn) =
(xn, x1, . . . , xn−1);

2. a1(x1, . . . , xn) is odd with respect to x1 and even with respect to xj , j = 2, . . . , n.
Starting from well-localized and symmetric data, we obtain solutions which decay at least with the over-critical
rate |x|−(n+3). This was announced in [1], but the proof was only sketched. As an immediate consequence of
Theorem 3.1, we can now give a complete proof.

We just need to state two more remarks. The first one is obvious:

Remark 4.1. Let a a symmetric vector field. If a ∈ L2(Rn), then
∫

ah(x)ak(x) dx = cδhk. Moreover, if
a ∈ L2(Rn, (1 + |x|)dx) then

∫
xjah(x)ak(x) dx = 0, for all j, h, k = 1, . . . , n.

In particular, (24) holds for ` = 0, 1.
The second remark simply states that the symmetry properties are conserved by the Navier–Stokes evolution.

This is true under general assumptions on the initial data, but since in the last two sections only bounded
solutions are studied, we just treat this particular case.

Remark 4.2. Let a ∈ L∞(Rn) a divergence-free symmetric vector field. Then the corresponding solution
u ∈ C([0, T ], L∞(Rn)) (T small enough) is symmetric for all t (0 ≤ t ≤ T ).

Indeed, u is obtained by means of the usual fixed point argument: u0 = et∆a, un+1 = et∆a − B(un, un),
n = 0, 1, . . . Hence, we just need to show that, for all n, un(t) is symmetric. First note that the convolution
with a radial function does not destroy the symmetries. Thus et∆a is symmetric.

Next we need to show that if v(x, t) and w(x, t) are symmetric for all t, then B(v, w)(x, t) is also symmetric.
This can be easily done by showing that B̂(v, w)(ξ, t) is symmetric in the ξ variable. Indeed, we first observe
that the vectors θ(ξ, t) ≡ ∑n

h=1 ξhûhv(ξ, t) and φ(ξ, t) ≡ ξ|ξ|−2
∑n

h,k=1 ξhξkûhvk(ξ, t) are symmetric for all t.

Then B̂(v, w)(ξ, t) = i
∫ t

0 e−(t−s)|ξ|2(θ(ξ, s) − φ(ξ, s)) ds is obviously symmetric.
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We just proved the following:

Corollary 4.3. Let a be a divergence-free symmetric vector field, such that |a(x)| ≤ C(1+ |x|)−γ , with 0 ≤ γ ≤
n + 3. Then there exists T > 0 and a solution u of the Navier–Stokes equations in Rn such that u(0) = a and
|u(x, t)| ≤ C ′(1 + |x|)−γ .

In order to build solutions which decay faster than |x|−(n+3), some supplementary symmetries on the data
are probably necessary.

4.2. Some explicit examples

We now give some examples of initial data which satisfy the assumptions of Corollary 4.3, in order to show
that the two symmetry properties are consistent with the divergence-free condition. Let us start with the case
n = 3. We take ϕ ∈ S(R) (the Schwartz class) and we define

a(x1, x2, x3) =


 x1(x2

3 − x2
2)

x2(x2
1 − x2

3)
x3(x2

2 − x2
1)


ϕ(|x|2) (n = 3).

This example generalizes in a obvious manner to the case n ≥ 3. Indeed, we can take the vector field a =
(a1, . . . , an) such that

ah(x1, . . . , xn) = xh

(
x2

h−1 − x2
h+1

)
ϕ

(|x|2) , h = 1, . . . , n (n ≥ 3). (28)

Here we noted x0 = xn and xn+1 = x1. Both the symmetry properties and the divergence-free condition hold,
as trivially checked.

This example cannot be adapted to the two-dimensional case. Somewhat surprisingly, as we will see hereafter,
the examples for n = 2 turn out to be more difficult.

We now present a quite general method that can be applied to construct many other examples of symmetric
initial data. This allows us to circumvent the difficulties arising from the condition div(a) = 0. We recall that,
for a n-dimensional vector field a(x), its vorticity is given by the n× n antisymmetric matrix Ω = ∇a− (∇a)∗.
In the two-dimensional case, Ω is usually identified to the scalar ω = ∂1a2 − ∂2a1. If n = 3, Ω can be identified
to the vector

ω = ∇ ∧ a =


 ∂2a3 − ∂3a2

∂3a1 − ∂1a3

∂1a2 − ∂2a1


 ·

By the Biot–Savart law, we have

ah = (−∆)−1
n∑

k=1

∂kΩhk, h = 1, . . . , n. (29)

Then a is a symmetric field if and only if

Ωhk(x) is odd with respect to xh and xk (30)
Ωhk(x) is even with respect to xj , j = 1, . . . , n and j 6= h, k (31)
Ωhk(x) = Ωh+1,k+1(xn, x1, . . . , xn−1), h, k = 1, . . . , n. (32)

Since (−∆)−1 does not affect the symmetries, in order to construct a soleinoidal symmetric vector field a(x), we
can just define ah(x) =

∑n
k=1 ∂kΩ̃hk(x), where Ω̃ is any antisymmetric matrix which satisfies (30, 31) and (32).

Let us come back to the case n ≥ 3. By (32) Ω̃ is completely determined by the choice of its elements Ω̃1,2,
Ω̃1,3, . . . and Ω̃1,[n/2]. Here [·] is the integer part. These [n/2] functions are just supposed to verify (30) and (31).
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Figure 1. The field a(x1, x2) corresponding to the choice θ(ρ) = exp(−ρ).

Note that the examples (28) that we gave before for n ≥ 3 are obtained by simply choosing Ω̃1,2(x) = x1x2θ(|x|2),
with θ ∈ S(R) and Ω̃1,3 = . . . = Ω̃1,[n/2] = 0. Here ϕ and θ are relied by ϕ = −2θ′.

In the case n = 2, Ω̃(x1, x2) is completely determined by Ω̃1,2(x1, x2). This function must be odd with
respect to x1 and x2 and such that Ω̃1,2(x1, x2) = −Ω̃1,2(x2, x1). The simplest example is Ω̃1,2(x1, x2) =
x1x2(x2

1 − x2
2)θ(|x|2), with θ ∈ S(R). Then ah =

∑2
k=1 ∂kΩ̃hk yields

a(x1, x2) =
(

(x3
1 − 3x1x

2
2)θ(|x|2) + 2(x3

1x
2
2 − x1x

4
2)θ

′(|x|2)
(x3

2 − 3x2
1x2)θ(|x|2) + 2(x2

1x
3
2 − x4

1x2)θ′(|x|2)
)

(33)

(see Fig. 1). Note that P∇ · (a⊗ a) does not vanish identically. Hence the corresponding solution u(x, t) of the
Navier-Stokes equations is not a trivial one (i.e. it is not a solution of the heat equation).

5. Conclusions

We showed that most of the localized initial data lead to solutions of the Navier–Stokes equations which
instantaneously spread-out. In other terms the generic solutions of the Navier–Stokes equations turn out to
have a poor spatial localization. The spreading effect holds, in particular, whenever the initial data have
non-orthogonal components with respect to the L2(Rn) inner product.

However, we constructed some exceptional solutions on the whole space Rn (n ≥ 2) which decay at infinity
with a faster decay than in the generic case. Some special symmetries of the data guarantee this unexpected
spatial behavior. Another point of interest of such “symmetric solutions” is that the non-linear term of the
Navier–Stokes equations P∇·(u⊗u) does not vanish identically. Hence these exceptional solutions are non-trivial
in the following sense: they do not solve the linear heat system starting with the same initial data.
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In this paper we dealt only with local strong solutions. In an independent paper we will treat the case of
global weak (or strong) solutions. Starting from a symmetric data allows then to obtain a decay of the energy
||u(t)||22 faster than expected , when t → ∞.
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