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NÉEL AND CROSS-TIE WALL ENERGIES
FOR PLANAR MICROMAGNETIC CONFIGURATIONS
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Abstract. We study a two-dimensional model for micromagnetics, which consists in an energy func-
tional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small
regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-
length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along
line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the
limit. These lower bounds are proved to be optimal and are achieved by one-dimensional profiles, cor-
responding to Néel walls, if the jump is small enough (less than π/2 in angle), and by two-dimensional
profiles, corresponding to cross-tie walls, if the jump is bigger. Thus, it provides an example of a
vector-valued phase-transition type problem with an explicit non-one-dimensional energy-minimizing
transition layer. We also establish other lower bounds and compactness properties on different quan-
tities which provide a good notion of convergence and cost of vortices.
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1. Introduction

1.1. General presentation

This paper deals with the analysis of ferromagnetic materials. The general model for such materials is given
by Brown [9] where it is considered that the sample occupies a region Ω ⊂ R3 and there exists a distribution of
magnetization m(x) ∈ R3 in Ω which is constrained to be of constant magnitude MS , and to which is associated
an energy of the form

E(m) = A

∫
Ω

|∇m|2 +K

∫
Ω

ϕ(m) +
∫

R3
|H |2. (1.1)

The first term is usually called the exchange energy and penalizes strong local variations of m.
The second term is called the anisotropy energy and accounts for favored directions for m, which are namely

the wells of the smooth function ϕ : S2 → R+. In real materials (see [21]), several anisotropies do exist, such
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as uniaxial (one preferred direction), cubic (3 mutually orthogonal preferred directions), or planar (see [21],
pp. 406 and 115).

Eventually, the last term is called the demagnetizing energy. The vector field H is the stray field induced by
the distribution in the whole space, given by (up to a physical factor)

H = −∇∆−1div (m1Ω), (1.2)

where 1Ω denotes the characteristic function of Ω.
It turns out that this term vanishes whenever m is divergence-free and tangent to the boundary of Ω. One can

remark that A must be proportional to the square of a length. This is the exchange length, typical lengthscale
of order one variations of m.

There is a very large variety of configurations observed by physicists, which is partly explained by the
competition between all these terms, the shape and size of the domain and various material constants and
anisotropies. For instance, several possible limits are presented in detail in [15] with a particular focus on thin
films.

There is also a fairly large mathematics literature on different variants of the energy (some include an
applied magnetic field). First, Visintin [32] proved the existence of a solution of the system. The question of
the smoothness of critical points was addressed in [10, 19].

Many studies have focused on the “no-exchange” case where the exchange energy term is dropped (A set to
zero): James and Kinderlehrer [23], DeSimone [12] (who justified the limit A → 0 in the case of large bodies),
Dacorogna and Fonseca [13]...

Very recently, in [16], DeSimone et al. have derived rigorously a 2D model as a thin-film limit of the full
3D model. They denote by d the exchange-length, l the side-length of the sample, and t the thickness, and
establish the Gamma-convergence in the regime t� l and d2log (l/t)/lt� 1.

1.2. The model

The original model is 3D but we reduce to a 2D model by focusing on the case of an infinite cylindrical vertical
body of section Ω and considering translation-invariant configurations. We also assume there is a forcing term
which amounts to planar anisotropy, and that the lengthscale

√
A is small compared to the size of the body.

Mathematically, we are thus led to consider the functional

Eε(u) =
1
2

(
ε

∫
Ω

|∇u|2 +
1
ε

∫
R2

|H |2 +
1
cε

∫
Ω

|u3|2
)
, (1.3)

over Ω a smooth simply connected region of R2, where u = (u1, u2, u3) ∈ S2 is a unit vector field (u = m
MS

),
and ε is a small lengthscale.

The demagnetizing field H : Ω → R3 is solution to

{
curl H = 0 in R2

div (H + u1Ω) = 0 in R2,
(1.4)

and using the vertical translation invariance, one can easily observe that (1.4) implies thatH3 is uniform in space.
Since H belongs to L2(R2), we get H3 = 0 and (1.4) rewrites into the two-dimensional model H = (H1, H2),{

∂1H2 − ∂2H1 = 0 in R2

∂1(H1 + u11Ω) + ∂2(H2 + u21Ω) = 0 in R2.
(1.5)

We want to study the asymptotics ε→ 0 (corresponding to a small lengthscale of variations of u), in the regime
cε � ε, i.e. the planar anisotropy is stronger than the demagnetizing energy. For technical convenience, we will
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in fact assume

cε ≤ ε1+δ for some 0 < δ < 1. (1.6)

In the limit ε→ 0, sequences of configurations of bounded energy Eε(uε) ≤ C (such sequences do actually exist)
converge to a limiting field u that satisfies


u ∈ S1 i.e. u = (u1, u2), |u| = 1
div u = 0 in Ω
u · n = 0 on ∂Ω.

(1.7)

Indeed, observe that u3 → 0, H → 0 and then plug it into (1.5).
Writing u = −∇⊥g leads to the eikonal equation{ |∇g| = 1 in Ω

g = 0 on ∂Ω. (1.8)

Such fields u typically have line singularities on which the energy concentrates. This kind of phenomenon has
been studied for related energies, see [2–4,14,22,25] for the gradient theory of phase transitions or “Aviles–Giga”
energy

Fε(u = ∇ψ) =
∫

Ω

ε|∇(∇ψ)|2 +
1
ε
(1 − |∇ψ|2)2, (1.9)

and [30,31] for a 2D micromagnetic toy model. Beside the compactness proofs (i.e. uε → u in ∩Lp) the essential
problem is always to understand the structure and cost of jumps across the singular lines at the limit ε→ 0, a
question which was more particularly addressed in [2, 22, 30, 31].

The model we study here may seem somewhat artificial, because of the vertical invariance and planar
anisotropy assumptions. (As we mentioned, it corresponds to a correct limit of the full model in the rather
unrealistic infinite-cylinder case.) However, it seems that it has a more general link with the full micromagnetics
model, which still remains to be understood: this seems like an important open question. It is suggested by
a formal argument following the type of argument of [15]: in relatively-thick thin-film regime, i.e. where the
thickness is small but much larger than the exchange length

√
A = ε; without assuming any anisotropy, the

two dimensional limiting energy should penalize the square of the L2 norm of the 2D demagnetizing field H (as
in (1.3)) and should also penalize the vertical component of the magnetization, thus creating a planar forcing
(as in (1.3) again).

What is clear is that the model we study here contains what seem like the essential ingredients which should
appear in a thin-film micromagnetics model: it contains a nonlocal term which penalizes the divergence of the
magnetization and a term penalizing the vertical component of the magnetization, thus it leads to the right
limiting problem (1.7); moreover, it allows for the presence of vortices (see Sect. 1.4), which, although they
carry only a vanishing fraction of the energy, are crucial for determining the energy of the global configuration.

Finally, as we will see in the rest of the paper, the results we obtain for this model present striking similarities
with the observations (in particular those of cross-tie walls) made in soft ferromagnetic thin films. This is why
we keep in this paper the terminology of the physics of ferromagnetic thin films. The good agreement between
predictions of this model and experimental evidence support the conjecture that there should exist a rigorous
link between this energy and the original one.

1.3. The results of [30, 31]

Let us explain in further detail the mathematical model studied by Rivière and Serfaty in [30,31]. It consists
in studying the same energy under the additional constraint that u belongs to S1 (i.e. u3 ≡ 0 and the anisotropy
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term drops out). In that case, any uε ∈ H1(Ω, S1) possesses a lifting ϕε ∈ H1(Ω,R) such that

uε = eiϕε .

The sequence (ϕε) is shown to be also compact and the authors exhibit a limiting energy which is written in
terms of ϕ, the limit of ϕε:

E0(u, ϕ) =
∫

Ω

|div (ϕu + u⊥)|. (1.10)

Here, u⊥ = (−u2, u1), and div (ϕu + u⊥) is a bounded Radon measure supported on the singular set of ϕ
(
∫
Ω
|div (ϕu + u⊥)| is its total mass). In the case ϕ ∈ BV (Ω,R), E0 can be written in a more explicit way

E0(u, ϕ) =
∫

Σϕ

2| sinX −X cosX |, (1.11)

where Σϕ is the one-dimensional jump set of ϕ and X = [ϕ]Σϕ

2 is half the value of the jump of ϕ across Σϕ

(this formula is valid for |X | ≤ π and can be extended to all X , see [31]). This lower bound was proved to be
optimal (at least for |X | ≤ π) and achieved by one-dimensional profiles at the scale ε called Néel walls in the
physics literature.

Moreover, it is also proved in [30] that

minE0(u, ϕ) = |∂Ω|, min
uε∈H1(Ω,S1)

Eε(uε) → |∂Ω|, (1.12)

and minimizers of Eε (under the S1 constraint) converge to u∗ or −u∗ where

u∗(x) = ∇⊥dist(x, ∂Ω), (1.13)

and ∇⊥ = (−∂2, ∂1) (see [5]).
Taking a minimizing sequence of the energy of [30] as a test-function in Eε, we get as a first upper bound

that minEε ≤ |∂Ω| + o(1).

1.4. Vortices

Let us point out that the energy computed in [30] includes a cost (see (1.11)) for jumps of 2π in ϕ (while u
does not jump), and such jumps have to occur because of the topological constraint uε(x) ∈ S1 and u · n = 0
on ∂Ω. The model that we study here allows us to release this artificial constraint uε ∈ S1, and thus lower
energies can be achieved. We only have u ∈ S1 at the limit, and this makes the situation quite different. Indeed,
one can consider the planar projection of uε

uε
‖ = (uε

1, u
ε
2).

It does not satisfy uε
‖ ∈ S1, and admits a local lifting ϕε such that

uε
‖ = ρεeiϕε ,

which cannot be defined globally since ρε = |uε
‖| can vanish at a point x0 while ϕε can have a nonzero degree

around x0. This is precisely what is called a vortex, and such vortices are frequently seen in physical situations
and called “Bloch lines”. Mathematically, they can be compared to the vortices arising in the Ginzburg–Landau
type models (see the book by Bethuel et al. [7]). Here, they carry only a vanishing fraction of the energy, and
they allow to get rid of jumps of 2π of the phase.
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In fact, the functionals ∫
Ω

ε|∇u|2 +
1
cε
|u3|2

with u ∈ H1(Ω, S2), corresponding to dropping
∫

R2 |H |2 in Eε, have been studied by Sandier [33], André and
Shafrir [6], and more recently by Hang [20]. It leads to an analysis and to results that are very similar to [7].

Here, in contrast, because of the presence of the demagnetizing energy, which forces configurations to be
almost divergence-free, u not only has vortex (point) singularities, but also line singularities. Also we will see
that the notion of vortex is weaker here, and, because u has line singularities, the vortices cannot be defined
from the knowledge of u only, but rather as limits of those of uε, and will thus depend on the sequence uε → u.

Let us now focus on the crucial example of Ω = B(0, R), the limiting divergence-free configuration u∗ =
∇⊥dist(x, ∂Ω) = eiθ in polar coordinates, can be approximated by a smooth uε

‖ = ρεeiθ with ρε(0) = 0, and
such that the energy tends to 0 as ε→ 0. (In fact, the result of [24] is that the limiting energy can only be zero
in the case of Ω being a disc and u = ±u∗.)

On the other hand, trying to approximate u∗ by smooth S1-valued uε gives rise to a concentration of the
energy along a radius of B(0, R), along which uε has to wind once around S1. In that case (which is the
case of [30]), the energy is bounded below by 2πR (perimeter of the ball). This illustrates the main difference
between both models and it turns out to be a major feature in the richness of limiting configurations, as well as
new technical difficulties. For instance, the upper bound on the energy Eε(uε) ≤ C is not sufficient to control
the number of vortices at the limit, contrarily to cases such as [7]. However, the mathematical quantities and
methods introduced in [30] turn out to be relevant for analyzing this new problem (the jump singularities and
their cost).

1.5. Main result

The spirit is, exactly as in [30, 31], that of Gamma-convergence: we look for relevant lower bounds for the
energy and for corresponding upper bounds, thus deriving a limiting energy in the asymptotics ε→ 0.

Let us start from a family uε ∈ H1(Ω, S2) such that Eε(uε) ≤ C. The Lp compactness of uε follows easily
from previous studies on similar problems (for example the proof of [25], see Lem. 2.1), and uε converges strongly
to a limiting S1-valued u which satisfies (1.7), and which generically has line-singularities.

If u is assumed to be in BV (Ω), then we can get a lower bound for the energy in terms of the jumps of u,
which is of the type of (1.11), but a different formula.

The structure theorem of BV allows to define a rectifiable one-dimensional jump set of u, Σu, and traces
u+, u− on both sides of Σu. Then we define

X =
1
2

min
∣∣∣ ̂(u±;u∓)

∣∣∣ ∈ [0, π
2

]
(1.14)

i.e. the geometric half-angle between u+ and u−.

Theorem 1. Let εn → 0 and uεn be sequences of maps from Ω into S2 satisfying Eεn(uεn) ≤ C. Then, up to
extraction, uεn converges in ∩p<∞Lp(Ω) to some limit u which satisfies (1.7). If, in addition, u ∈ BV (Ω, S1),
then

lim inf
n→∞ Eεn(uεn) ≥

∫
Σu

A(X)dH1 (1.15)

where

A(X) = 2| sinX −X cosX | for X ∈ [0,
π

4
] (1.16)

A(X) = 2
∣∣∣(X − π

2

)
cosX − sinX +

√
2
∣∣∣ for X ∈

[π
4
,
π

2

]
· (1.17)

Here, H1 denoted the one-dimensional Hausdorff measure.
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One notices that for jumps less than π
4 (1.16), one recovers (1.11) and thus the (purely planar) Néel walls

found in [30] are still optimal. On the contrary, for jumps bigger than π
2 , they are no longer optimal (also

in contrast with the case of the Aviles–Giga problem), the lower bound (1.17) is strictly smaller than that of
(1.11), due to the extra degree of freedom uε ∈ S2 and the possibility of vortices. The formula (1.17) is obtained
by analytical means but turns out to be also optimal, which is one of our main results. Thus

∫
Σu
A(X) can be

seen as the limiting energy for Eε.

Theorem 2. For all X ∈ [π
4 ,

π
2 ], there exists a “cross-tie wall” configuration u over R2 = {(x, y)} such that

limy→+∞ u(x, y) = u+ = ei( π
2 −X)

limy→−∞ u(x, y) = u− = ei( π
2 +X),

which is periodic in x, and whose energy per unit-length of x is (after rescaling at any scale going to 0)

A(X) + o(1) = 2
∣∣∣(X − π

2

)
cosX − sinX +

√
2
∣∣∣+ o(1).

The optimal configurations are this time two-dimensional configurations (i.e. u depends on both x and y) and
have an unbounded number of vortices. They are observed in thin film experiments (see [21, 28, 29]) and are
called in physics “cross-tie walls”.

In the particular case X = π
2 the pattern is that of Figure 1.

The configuration is periodic and each cell contains one degree +1 and one degree −1 vortex (indicated by
circles). This particular configuration is strikingly similar to the numerical simulations and experimental results
presented in [28]. This picture can be generalized to all jumps X ∈ [π

4 ,
π
2 ], see Section 4.2.

One may then use these 2D cross-tie profiles to construct test-configurations which achieve equality in (1.15).
Jump-lines of the cross-tie walls have to be regularized as 1D Néel walls (the jumps are ≤ π

2 ). Since the energy
per unit length of the cross-tie pattern is scale-invariant, one can blow them down and, given a u with given
jump-lines and jumps, paste them along the jump-lines at any scale which tends to 0 as ε→ 0 and which is � ε.
This will regularize u into a family uε → u with equality in (1.15).

The method to obtain the lower bound is inspired by the following “trick” of [30]

Eε(uε) ≥ 1
2

∫
Ω

ε|∇uε|2 +
1
ε
|Hε|2 ≥

∫
Ω

|∇ϕε ·Hε|. (1.18)

The problem here is that the phase ϕε of uε is not univalued, so we use the fact that

Eε(uε) ≥
∫

Ω

|f(ϕε)∇ϕε ·Hε| =
∫

Ω

|∇F (ϕε) ·Hε|

for all |f | ≤ 1 and F ′ = f . We then find such functions F such that F (ϕε) depends only on ϕε modulo 2π,
hence only on uε. As in [30], one can write F (uε) ·Hε as a divergence and pass to the limit (see Sect. 2).

The problem we have studied is a singularly perturbed (nonlocal) variational problem. It can be viewed
as some kind of a phase-transition model (it is also a Landau theory) like (1.9) or its real-valued version
(see [27, 34]), where the transition layers are the singular lines across which our u jumps. In real-valued phase
transition models, the transitions are known to follow a one-dimensional profile. It is also the case in the
problem of [30], and is what is expected for the Aviles–Giga energy (1.9), for which one knows that the one-
dimensional profile remains optimal. For vector-valued order parameters, it is known that energy-minimizing
transition layers can sometimes be multidimensional rather than one-dimensional (e.g. Jin and Kohn [22],
Conti et al. [11]) but here the achievement is that we are able to identify precisely the structure of an optimal
non-one-dimensional transition layer structure.
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P

Figure 1. The optimal cross-tie wall.

1.6. Lower bounds involving the vortices

This second approach gives a result which is not always optimal but does not require any BV assumption on
u and allows to take into account the vortices. The lower bound of Theorem 1 depends only on the limiting u.
However, the result we are going to state shows that two sequences uε converging to the same u do not necessarily
have the same limiting energy. Their vortex-structure, which is not given by the knowledge of u (because u
has line singularities) has to be taken into account. One must thus add the knowledge of the vortices of the
sequence uε → u and find a suitable notion of convergence of those vortices.

Let us start from a family uε ∈ H1(Ω, S2) such that Eε(uε) ≤ C, converging to u in Lp.
By a certain transformation (see Lem. 2.2), one may reduce to configurations uε ∈ H1(Ω\{aε

1, · · · , aε
n(ε)}, S1),

S1-valued except at a finite number of singular points. First, from the equation (1.5) defining H , there exists gε

such that

uε1Ω +Hε = −∇⊥gε. (1.19)

Notice that gε → g defined in (1.8). Away from its singular points, uε admits locally an H1-lifting ϕε ∈ R i.e.
uε = eiϕε , by the result of [8]. The vector field Vε = ∇ϕε is curl-free in Ω\ ∪i {ai}. Let also dε

i be the degree
associated to aε

i , i.e. the winding number of ϕε around ai.
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The approach to the lower bound is again to start with (1.18). The idea of [30] was to write

∇ϕε ·Hε = ∇ϕε · (Hε + uε) −∇ϕε · uε = −∇ϕε · ∇⊥gε − curl uε. (1.20)

Now in the presence of vortices, we have

−∇ϕε · ∇⊥gε − curl uε = curl (gεVε − uε) − 2π
∑

i

dε
igε(aε

i )δaε
i

(1.21)

where δai is the Dirac mass at the point ai. If the vortices (ai, di) are fixed for example, one may write

lim inf
ε→0

Eε(uε) ≥ lim inf
ε→0

∫
Ω

|∇ϕε ·Hε| ≥
∫

Ω

|curl (gεVε − uε) − 2π
∑

i

digε(ai)δai |

=
∫

Ω\∪i{ai}
|curl (gεVε − uε)|. (1.22)

In the case where g has a constant sign in Ω, then u · τ does not change sign on ∂Ω and formally passing to the
limit ε→ 0,

lim inf
ε→0

Eε(uε) ≥ lim inf
ε→0

∣∣∣∣∣
∫

Ω

curl (gεVε − uε) − 2π
∑

i

digε(ai)δai

∣∣∣∣∣ =

∣∣∣∣∣|∂Ω| − 2π
∑

i

dig(ai)

∣∣∣∣∣ . (1.23)

Thus the measure curl (g∇ϕ− u)bΩ\{ai} plays the same role as the measure div (ϕu+ u⊥) in [30]. It carries a
cost of the jumps of u and ϕ along the singular lines of u. But contrarily to the case of the S1 constraint, some
jumps of 2π of ϕ have now been removed by the presence of vortices.

This can be made rigorous in the case of prescribed vortices for example. Nevertheless, we are still able to
get a rigorous result without any assumption on the vortices.

Let us introduce a few more notations. g will be assumed to be nonnegative for simplicity (the general case
is treated in Sect. 3). The total degree on the level-set {gε = t} will be denoted by, i.e.

Dε(t) =
∑

i/gε(aε
i )≥t

dε
i ∈ Z, (1.24)

and

Mε(t) = 2π
∫ t

0

Dε(s) ds. (1.25)

We also define

pε(t) =
∫
{gε=t}∩Ω

|∇gε| (1.26)

(extended by 0 for t ≥ max gε or t ≤ min gε). We denote

p(t) = H1({g = t}) (1.27)

extended by the value 0 for t > max g, and |∂Ω| = H1(∂Ω) for t < 0. In fact, p is in L1 and possibly has jumps.
We will show pε ⇀ p in L1(R+). With an abuse of notation, we define the BV norm of a function of R by

‖f‖BV =
∫

R

|f ′| := sup
ζ∈C∞

0 (R)
|ζ|≤1

∫
R

ζ′f.
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Theorem 3. Assume Eε(uε) ≤ C, uε → u in ∩Lp(Ω) and g ≥ 0 in Ω. Then, as ε→ 0,

pε +Mε is bounded in BVloc(R+). (1.28)

Extracting subsequences if necessary, there exist M ∈ L1(R+) and D =
M ′

2π
in W−1,1(R+) such that

pε +Mε ⇀ p+M in BVloc(R+) (1.29)

i.e., denoting by M(R+) the dual of C0
0 (R+),

p′ε + 2πDε ⇀ p′ + 2πD in M(R+). (1.30)

Moreover,

lim inf
ε→0

Eε(uε) ≥ E0(u,D) = ‖p+M‖BV (R+) =
∫ +∞

0

|p′ + 2πD|. (1.31)

This lower bound is obtained by integrating the quantity ∇⊥gε · ∇ϕε + curl uε over regions {t ≤ gε ≤ t+ dt}.
Thus we reduce to an integral over R: the integration variable t is the value of g. Although it only gives
information transversally to the level-sets of g, it appears to be a relevant variable. There does not seem to be
an analogue global formulation available for e.g. the Aviles–Giga energy.

The limiting energy E0 does not depend only on u, but on the couple (u,D). It appears that it is the
quantity D(t), rather than the vortices themselves, which is relevant. In addition, let us point out that D is not
necessarily integer-valued, because vortices of opposite signs can accumulate (counter-examples can be easily
constructed); D is only a bounded measure.

If however limiting vortices (ai, di) can be defined, e.g. if they are fixed a priori, then D ∈ Z and D(t) =∑
i/g(ai)≥t di and, going back to the lower bound (1.31), one may write

∫ +∞

0

|p′ + 2πD| ≥
∣∣∣∣
∫ +∞

0

p′ + 2πD
∣∣∣∣ =

∣∣∣∣∣p(∞) − p(0) + 2π
∑

i

dig(ai)

∣∣∣∣∣
≥
∣∣∣∣∣|∂Ω| − 2π

∑
i

dig(ai)

∣∣∣∣∣ , (1.32)

using the fact that g = 0 on ∂Ω hence p(0) ≥ |∂Ω|; hence one recovers the formula (1.23).
Conversely, taking u = u∗ = −∇⊥g0 where g0 = dist(., ∂Ω), and putting one vortex a of degree 1 at a point

of maximum of g0, one would get equality in formula (1.32) and an energy |∂Ω| − 2πg0(a) = |∂Ω| − 2πmaxΩ g.
It follows that

lim sup
ε→0

min
H1(Ω,S2)

Eε ≤ |∂Ω| − |B|, (1.33)

where |B| is the perimeter of a maximal disc B inscribed in Ω. This provides an upper bound which is already
smaller than |∂Ω|, that of [30] and of pure S1 configurations. If the domain is not convex, it is more interesting
to put vortices of degree +1 at local maxima of g0 and vortices of degree −1 at saddle points of g0 in such a
way that the total degree on each connected component of a level-set of g is 1.

The question of finding and describing an optimal configuration (which is probably not unique and depends
on the geometry), i.e. one which minimizes the limiting energy

∫
Σu
A(X), is open and seems difficult in general.

This is another main difference with the purely S1-case of [30], where u∗ was the minimizer. We refer to
Section 4.1 for more examples and counter-examples.
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The paper is organized as follows: Section 2 contains the proof of Theorem 1, Section 3 the proof of Theorem 3.
Both these sections are more analytical and may be skipped in a first reading. Section 4.1 contains examples
and Section 4.2 the construction of optimal cross-tie wall profiles.

2. The limiting jump energy

We consider any family uε ∈ H1(Ω, S2) such that Eε(uε) ≤ C and wish to prove convergence and lower
bounds. Here, ε will stand for any sequence εn going to 0.

Lemma 2.1. Let uε be in H1(Ω, S2) such that Eε(uε) ≤ C. There exists u ∈ ∩p<∞Lp(Ω, S1) and g ∈
∩p<∞W

1,p
0 (Ω) such that (up to extraction)

uε → u in ∩p<∞ Lp(Ω){
u = −∇⊥g in Ω |∇g| = 1
g = 0 on ∂Ω (2.1)

(i.e. the limiting u is a divergence-free, S1-valued vector field tangent to ∂Ω).

Proof. As written in the introduction (Eq. (1.5)), H is defined by

{
∂1(u11Ω +H1) + ∂2(u21Ω +H2) = 0
∂1H2 − ∂2H1 = 0, (2.2)

and we have the standard estimate

∀1 < p <∞, ∃Cp ‖Hε‖Lp(R2) ≤ C‖uε‖Lp(Ω) ≤ Cp. (2.3)

Also Hε → 0 in L2(R2) hence Hε → 0 in ∩pL
p(R2).

We can write a two-dimensional Hodge decomposition of uε
‖1Ω (where u‖ = (u1, u2)):

uε
‖1Ω = −Hε −Kε (2.4)

with Kε = ∇⊥gε a divergence-free vector-field in ∩p<∞Lp(R2) and ‖Kε‖L2(R2) ≤ C, ‖gε‖H1(R2) ≤ C. Then,

‖∆gε‖L2(Ω) = ‖curl uε
‖‖L2(Ω) ≤ C‖∇uε‖L2(Ω).

Let now Ω′ be any open subset whose closure is in Ω. By elliptic regularity,

‖gε‖H2(Ω′) ≤ C‖∇uε‖L2(Ω) ≤ C√
ε

in view of the energy upper bound Eε(uε) ≤ C. Thus,

‖∇Kε‖L2(Ω′) ≤ C√
ε
· (2.5)

On the other hand,

||Kε| − 1| =

∣∣∣∣∣|Hε + uε
‖| −

|uε
‖|

|uε
‖|

∣∣∣∣∣ ≤ |Hε| +
∣∣∣∣∣uε

‖ −
uε
‖

|uε
‖|

∣∣∣∣∣ = |Hε| + ||uε
‖| − 1|,
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hence
‖1 − |Kε|‖L2(Ω) ≤ ‖Hε‖L2(Ω) + ‖|uε

‖| − 1‖L2(Ω).

But we also have ∫
Ω

||uε
‖| − 1|2 ≤ C

∫
Ω

|uε
3|2 ≤ Ccε ≤ Cε, (2.6)

in view of the energy bound, so

‖1 − |Kε|‖L2(Ω) ≤ C
√
ε. (2.7)

Combining this with (2.5), we obtain

‖∇Kε‖L2(Ω′)‖1 − |Kε|‖L2(Ω′) ≤ C,

while div Kε = 0. The result of [25] allows us to conclude that Kε is compact in ∩p<∞Lp(Ω′).
In the meantime, Hε → 0 in ∩p<∞Lp(R2) hence from (2.4), uε

‖ is also compact in ∩p<∞Lp(Ω′). From the
energy bound

∫
Ω
|uε

3|2 → 0 while |uε
3| ≤ 1, thus we can say that ‖uε

3‖Lp(Ω) → 0 for all p < ∞; consequently
uε is also compact in ∩p<∞Lp(Ω′) and converges to some u. Then, up to extraction, uε → u a.e. in Ω and |uε|
is bounded by 1, hence by Lebesgue’s theorem uε → u in Lp(Ω). u is S1-valued because uε

3 → 0 in ∩p<∞Lp

and thus a.e. Passing to the limit in (2.2), we get that

div (u1Ω) = 0 in W−1,p(R2),

and thus we can find g ∈ W 1,∞(R2) such that u1Ω = −∇⊥g. The function g will be constant in R2\Ω hence
can be chosen to be zero in R2\Ω. This proves the lemma. �

We then have the following lemma, whose proof is postponed until the end of the section.

Lemma 2.2. Let uε be such that Eε(uε) ≤ C. We can find ũε ∈ ∩1≤p<2W
1,p(Ω, S1) ∩H1(Ω\ ∪n(ε)

i=1 {aε
i}, S1)

where for each ε, {aε
1, · · · , aε

n(ε)} is a finite set of points of Ω; and satisfying the following:

‖ũε − uε‖Lp(Ω) → 0 ∀p <∞ (2.8)

‖H̃ε −Hε‖Lp(Ω) → 0 ∀p <∞, (2.9)

where H̃ε is the stray field generated by ũε according to (2.2), and

Eε(uε) ≥
∫

Ω

|Hε||∇uε
‖| =

∫
Ω

|H̃ε||∇ũε| + o(1). (2.10)

We then introduce notations for maps in BV (Ω, S1). We recall the definition:

BV (Ω, S1) :=
{
u ∈ BV (Ω,R2), u(x) ∈ S1 a.e. x ∈ Ω

} ·
Recall that a map u ∈ BV (Ω,R2) is approximately continuous in the whole of Ω except on a 1-dimensional
rectifiable subset of Ω called the jump set of u that we will denote here by Σu (see [18], Sect. 5.9).

For H1−a.e. x ∈ Σu we denote by νu(x) the approximate unit normal for a given regular choice of orientation
of the at most countable union of C1 curves containing H1-almost the whole of Σu. Denote

H±
νu

:=
{
y ∈ R2, (y − x) · νu(x) ≥ 0 (resp. ≤ 0)

} ·
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Finally, recall that H1−a.e. point in Σu admits a left and right approximate limit along Σu: there exists two
measurable functions u+ and u− on Σu such that for H1−a.e. point x in Σu we have

lim
r→0

1
r2

∫
Br(x)∩H±

νu

|u(y) − u±(x)| dy = 0.

The following bound holds

∫
Σu

|u+ − u−| dH1 ≤
2∑

i=1

∫
Σu

|ui
+ − ui

−| dH1 ≤
2∑

i=1

‖ui‖BV ≤
√

2‖u‖BV . (2.11)

Finally, We call X the measurable function from Σu into [0, π/2] given by

X =
1
2

min
∣∣∣ ̂(u±, u∓)

∣∣∣ .
We shall now establish the following result:

Theorem 1. Let εn → 0 and uεn be sequences of maps from Ω into S2 satisfying Eεn(uεn) ≤ C. Then, up to
extraction, uεn converges in ∩p<∞Lp(Ω) to some limit u which satisfies (1.7). If in addition u ∈ BV (Ω, S1),
then

lim inf
n→∞ Eεn(uεn) ≥

∫
Σu

A(X)dH1 (2.12)

where

A(X) = 2| sinX −X cosX | for X ∈
[
0,
π

4

]
A(X) = 2

∣∣∣(X − π

2

)
cosX − sinX +

√
2
∣∣∣ for X ∈

[π
4
,
π

2

]
·

Proof. εn will be simply denoted ε.
Step 1: Using the result of Lemma 2.2, we have

Eε(uε) ≥
∫

|H̃ε||∇ũε| − o(1).

We introduce 

g(s) = s for s ∈

[
−π

4
,
π

4

]

g(s) =
π

2
− s for s ∈

[
π

4
,
3π
4

]
,

and complete it to R into a continuous π-periodic function. Observe that |g′| = 1. We then define for
σ = eis0 ∈ S1,

fσ(eis) = g(s− s0)
(again |f ′| = 1), and the vector-field

Vσ(t) =




−
∫ t

s0

g′(τ − s0) cos τ dτ = −
∫ t−s0

0

g′(τ) cos(τ + s0) dτ

−
∫ t

s0

g′(τ − s0) sin τ dτ = −
∫ t−s0

0

g′(τ) sin(τ + s0) dτ


 . (2.13)
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Observe that
∫
g′ cos(τ+s0) and

∫
g′ sin(τ+s0) are 2π-periodic, therefore Vσ is a 2π-periodic vector-field, hence

can be considered as a map from S1 to R2. In fact fσ and Vσ are constructed so that for any smooth map v
into S1 we have

div (Vσ(v)) + ∇(fσ(v)) · v = 0. (2.14)

We claim that for any σ = eis0 ∈ S1, we have

div
(
fσ(ũε) (ũε + H̃ε) + Vσ(ũε)

)
=
f ′

σ(ũε)
iũε

∇ũε · H̃ε in D′(Ω). (2.15)

Then, assuming (2.15), since | f ′
σ(ũε)
iũε | ≤ 1, we deduce that

∀σ ∈ S1, Eε(uε) ≥
∫

Ω

|∇ũε||H̃ε| − o(1) ≥
∫

Ω

∣∣∣div
(
fσ(ũε) (ũε + H̃ε) + Vσ(ũε)

)∣∣∣− o(1), (2.16)

which replaces the lower bound
∫
Ω |div (ϕu + u⊥)| in the S1-valued case. Observe that it is also an analogue

of the method introduced by Jin and Kohn in [22] to get lower bounds for the Aviles–Giga energy (1.9). The
result will follow by passing to the limit ε→ 0.

Step 2: Proof of (2.15). Observe first that both sides of the equality have a meaning since, by construction
(Lem. 2.1), H̃ε ∈ ∩p<+∞Lp and ∇ũε ∈ Lq for any q < 2. Because of (2.14), since smooth maps are strongly
dense in W 1,2(Ω′, S1), where Ω′ is an open simply connected subset of Ω containing no vortices of ũε, we deduce
that (2.15) holds once we replace Ω by such an Ω′. Since ũε has only finitely many vortices aε

1 · · ·aε
n(ε), the

distribution

div
(
fσ(ũε) (ũε + H̃ε) + Vσ(ũε)

)
− f ′

σ(ũε) (iũε)−1∇ũε · H̃ε (2.17)

supported at the isolated points aε
j is a combination of ∂kδaj and since

div
(
fσ(ũε) (ũε + H̃ε) + Vσ(ũε)

)
∈W−1,p

for any 1 < p < +∞, it has to vanish and (2.15) is proved.

Step 3: Clean-up of Σu. Let δ > 0. The rectifiability property of Σu means that Σu ⊂ ∪+∞
k=1Γ

k ∪ Γ0 where Γk

for k ≥ 1 are C1 embedded curves and H1(Γ0) = 0. Choose an integer N such that

∫
Σu∩∪+∞

k=N+1Γ
k

|u+ − u−| dH1 ≤ δ. (2.18)

We may always assume that (Γ
k
)k=1···N is made of disjoint embedded C1 curves. Since u is left and right

approximately continuous H1 a.e. on Σu, we may extend the H1-measurable functions u+ and u− on Σu ∩
∪k=1···NΓ

k
by the approximate limit of u on the whole of ∪k=1···NΓ

k
.

On ∪k=1···NΓ
k

we consider the subset LN of Lebesgue points for u+ and u− (H1(∪k=1···NΓ
k \LN) = 0). Let

EN be a compact subset of LN such that

∫
EN

|u+ − u−| dH1 ≥
∫
∪k=1···NΓ

k
|u+ − u−| dH1 − δ. (2.19)
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The existence of such a compact set for the given Radon measure |u+ − u−| dH1bLN is given by the standard
approximation of measurable sets by compact sets (see for instance [18], Sect. 1.1). To any x ∈ EN we assign
a positive radius ρx such that

1

| ∪k=1···N Γ
k ∩Bρx(x)|

∫
∪k=1···N Γ

k∩Bρx (x)

|u±(y) − u±(x)| dH1 ≤ δ

H1(∪N
k=1Γ

k
)

(2.20)

(by definition of a Lebesgue point). From (Bρx(x))x∈EN we may extract a Besicovitch subcovering of EN

(Bρj (xj)) made of at most countably many balls, each of them intersecting at most C0 other balls, where
C0 is a universal number (see [18], Sect. 1.5.2). Observe that here this covering has to be finite since EN is
compact. Consider a partition of unity (φj)j modelled on this subcovering so that φj ∈ C∞

0 (Bρj (xj)), φj ≥ 0

and
∑

j φj ≡ 1 on EN , and π the projection from a tubular neighborhood of ∪kΓ
k

to ∪kΓ
k
. We thus have

reduced to the case of a smooth curve.

Step 4: We choose σ to be the unit normal ν(xj) at xj to the oriented set of curves ∪kΓ
k

so that ν(xj) belongs
to the smallest arc joining u+(xj) and u−(xj). Then, from (2.16),

Eε(uε) ≥
∑

j

∫
Ω

φj(π(x))
∣∣∣div

(
fν(xj)(ũ

ε) (ũε + H̃ε) + Vν(xj)(ũ
ε)
)∣∣∣− o(1). (2.21)

Since ũε → u in ∩pL
p(Ω),

fν(xj)(ũ
ε) (ũε + H̃ε) + Vν(xj)(ũ

ε) → fν(xj)(u)u+ Vν(xj)(u) in ∩p L
p.

Thus,

lim inf
ε→0

Eε(uε) ≥
∑

j

∫
Ω

φj(π(x))
∣∣div

(
fν(xj)(u)u+ Vν(xj)(u)

)∣∣ . (2.22)

Since u is assumed to be BV , and div u = 0, by the BV chain rule of Volpert, we find that
div

(
fν(xj)(u)u+ Vν(xj)(u)

)
is supported only in Σu (see (2.14)) and

div
(
fν(xj)(u)u+ Vν(xj)(u)

)
=
(
fν(xj)(u

+(x))u+(x) + Vν(xj)(u
+(x)) − fν(xj)(u

−(x))u−(x) − Vν(xj)(u
−(x))u−(x)

) · ν(x)H1bΣu . (2.23)

But in view of (2.20),

∑
j

∫
Σu

φj(π(x))| (fν(xj)(u
±(x))u±(x) + Vν(xj)(u

±(x))
) · ν(x)

− (fν(xj)(u
±(x))u±(x) + Vν(xj)(u

±(x))
) · ν(xj)| ≤ Cδ. (2.24)

On the other hand, a simple computation yields the crucial relation

| (fν(xj)(u
+)(xj) u+(xj) + Vν(xj)(u

+)(xj)
) · ν(xj)

− (fν(xj)(u
−)(xj) u−(xj) + Vν(xj)(u−)(xj)

) · ν(xj)| = A(X(xj)). (2.25)

Indeed, in the orthonormal frame to Σu at xj , the situation is that of a jump from −X(xj) to X(xj) with
ν(xj) = ei0. If X ≤ π

4 , f(u±) = ±X and V (u±) = u⊥± with u± = (cosX,± sinX), hence the jump is

X cosX − sinX +X cosX − sinX = 2(X cosX − sinX).
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If X ∈ [π
4 ,

π
2 ], then f(u+) = π

2 −X , f(u−) = −π
2 +X , V (u+) = −u⊥+ + (−√

2,
√

2), V (u−) = −u⊥− + (
√

2,−√
2)

and the cost is
2
(π

2
−X

)
cosX + 2

(
sinX −√

2
)
.

Combining (2.22–2.25), we obtain that

lim inf
ε→0

Eε(uε) ≥
∫

EN

A(X) − Cδ (2.26)

and using (2.19) and (2.18) we obtain the result. �

We finish with the
Proof of Lemma 2.2. We recall that we assume cε ≤ ε1+δ for some δ > 0 arbitrarily small. For any α ∈ S2 such
that α3 >

3
4 we define a map πa from S2 to S1 as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if |x3| ≤ 1
4 πα(x) =

(
x1

(x2
1 + x2

2)
1
2
,

x2

(x2
1 + x2

2)
1
2

)

if x3 ≥ 1
2 , x 6= α πα is the intersection with the equator of the unique geodesic joining

α to the equator and containing x

if x3 ≤ − 1
2 , x 6= −α πα is the intersection with the equator of the unique geodesic joining

−α to the equator and containing x.

(2.27)

For 1
4 ≤ |x3| ≤ 1

2 , πα is extended in such a way that the following holds :

for x 6= α,−α, |∇πα(x)| ≤ C

inf(|x− α|, |x+ α|) (2.28)

|x− πα(x)| ≤ Cx3. (2.29)

Let p < 2. For almost every α such that α3 >
3
4 , α is a regular value of uε i.e. (uε)−1(α) is a finite set of points

where the Jacobian determinant of uε does not vanish.
Using (2.28), and ω being a subset of Ω,∫

α3> 3
4

∫
ω

|∇(πα(uε(x)))|p dxdα ≤ C

∫
α3> 3

4

∫
ω

|Dπα(uε)|p|∇uε|p(x) dxdα

≤ C

∫
α3> 3

4

∫
ω

|∇uε|p
|uε − α|p ·

Using Fubini’s theorem, this implies that∫
α3> 3

4

∫
ω

|∇(πα(uε(x)))|p dxdα ≤ C

∫
ω

|∇uε(x)|p
(∫

α∈S2

dα
|uε(x) − α|p

)
dx

≤ C

∫
ω

|∇uε|p.

(Indeed, since p < 2,
∫

α∈S2
dα

|y−α|p converges for every y ∈ S2.) Using the mean-value theorem, it follows that
there exists αε ∈ S2 such that αε

3 >
3
4 and∫

ω

|∇(πα(uε))|p ≤ C

∫
ω

|∇uε|p (2.30)
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and such that (uε)−1(αε) is a finite set. We then set

ũε(x) = πα(uε(x)). (2.31)

ũε is S1-valued and has the same regularity as uε i.e. H1 except for x ∈ (uε)−1(αε). We denote by a1, · · · , aε
n(ε)

the set of singular points of ũε i.e. (uε)−1(αε). Since ũε is H1 away from these points, dε
i , the degree of ũε

at aε
i is well-defined. Moreover, as soon as |uε

3(x)| ≤ 1
4 , ũε =

uε
‖(x)

|uε
‖(x)| (u‖ denotes (u1, u2)) hence ũε has the

same degree as ũε =
uε
‖(x)

|uε
‖(x)| outside of the set {|uε

3(x)| ≥ 1
4}, which is a small set: in view of the energy bound

1
cε

∫
Ω |uε

3|2 ≤ C, we have

vol
({

|uε
3(x)| ≥ 1

4

})
≤ O(cε). (2.32)

Let us prove that for some p > 1, we have ∫
Ω

|∇(ũε − uε
‖)|p → 0. (2.33)

Indeed, in view of (2.30),∫
|uε3|≥ 1

4

|∇(ũε − uε
‖)|p ≤ C

∫
|uε3|≥ 1

4

|∇ũε|p + |∇uε|p ≤ C

∫
|uε3|≥ 1

4

|∇uε|p.

Using Hölder’s inequality,

∫
|uε3|≥ 1

4

|∇uε|p ≤ vol
({

|uε(x)| ≤ 1
4

})1− p
2

‖∇uε‖p
L2(Ω).

But in view of the energy bound, we have ‖∇uε‖L2(Ω) ≤ C

ε
1
2

and, using (2.32), we are led to

∫
|uε3|≥ 1

4

|∇uε|p ≤ O

(
c
1− p

2
ε

ε
p
2

)
·

Since cε ≤ ε1+δ, this implies that we can choose p− 1 > 0 small enough compared to δ so that∫
|uε3|≥ 1

4

|∇(ũε − uε
‖)|p ≤ o(1). (2.34)

Next, we bound
∫
|uε3|≤ 1

4
|∇(ũε − uε

‖)|p. Recalling that ũε =
uε
‖(x)

|uε
‖(x)| in the set {|uε

3| ≤ 1
4}, we have

|∇(ũε
1 − uε

1)| =

∣∣∣∣∣∇
(

uε
1√

(uε
1)2 + (uε

2)2
− uε

1

)∣∣∣∣∣ =

∣∣∣∣∣∇
(
uε

1

(
1√

1 − (uε
3)2

− 1

))∣∣∣∣∣ .
We observe that in {|uε

3| ≤ 1
4},∣∣∣∣∣ 1√

1 − (uε
3)2

− 1

∣∣∣∣∣ ≤ C|uε
3|2 and

∣∣∣∣∣∇ 1√
1 − (uε

3)2

∣∣∣∣∣ ≤ C|uε
3||∇uε

3|.
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Thus, in {|uε
3| ≤ 1

4},

|∇(ũε
1 − uε

1)| ≤ C(|uε
3|2|∇uε

1| + |uε
3||∇uε

3|) ≤ C|uε
3||∇uε|.

Similarly, |∇(uε
2 − ũε

2)| ≤ C|uε
3||∇uε|. Hence,∫

|uε3|≤ 1
4

|∇(ũε − uε
‖)|p ≤ C

∫
Ω

|uε
3|p|∇uε|p

≤ C

(∫
Ω

|uε
3|2
)1− p

2
(∫

Ω

|∇uε|2
) p

2

≤ C
c
1− p

2
ε

ε
p
2

(2.35)

where we have used again Hölder’s inequality and the energy upper bound. Choosing again p − 1 > 0 small
enough, we can ensure (combining (2.34) and (2.35)) that (2.33) holds.

Then, from (2.29), we have for 2 ≤ q <∞,∫
Ω

|ũε − uε|q ≤ C

∫
Ω

|uε
3|q ≤ C

∫
Ω

|uε
3|2 ≤ O(cε).

Hence, for all 2 ≤ q <∞, ‖ũε − uε‖Lq(Ω) ≤ O(cqε) which proves (2.8). In addition, we deduce the estimate

‖Hε − H̃ε‖Lq(R2) ≤ C‖ũε − uε‖Lq(Ω) ≤ O(cqε) (2.36)

where H̃ε is the demagnetizing field induced by ũε (see (2.2)). Thus, in view of (2.33),∫
Ω

|∇(ũε − uε
‖)||H̃ε| ≤ ‖∇(ũε − uε

‖)‖Lp(Ω)‖H̃ε‖Lq(R2) ≤ C‖∇(ũε − uε
‖)‖Lp(Ω) = o(1)

while, using (2.36) and the energy bound∫
Ω

|∇uε
‖||Hε − H̃ε| ≤ ‖∇uε‖L2(Ω)‖Hε − H̃ε‖L2 ≤ C

(cε
ε

) 1
2 → 0.

We conclude that ∫
Ω

|∇uε
‖||Hε| =

∫
Ω

|∇ũε||H̃ε| + o(1).

�
Remark 2.1. It is not possible to define vortices of uε directly because, for example, uε

3 can be equal to 1
on a subset of Ω of nonempty interior. The construction of ũε allows to isolate points next to which uε passes
through the North or South pole, the vortices which are relevant being those with nonzero degree, i.e. those
which are topological. This definition of vortices (and the choice of ũε) may not seem intrinsic since they depend
on a choice of the point αε. However, the vortex-locations can only vary very little in space (on an o(1) scale)
and their degree is intrinsic.

3. Lower bounds involving the vortices

Let uε ∈ H1(Ω, S2) be such that Eε(uε) ≤ C and uε → u in ∩pL
p. With Lemma 2.2, we may use (2.10)

to start bounding the energy from below and hence, replacing uε by ũε, work on
∫
Ω |H̃ε||∇ũε|. Then, we can

define gε ∈ ∩p<∞W 1,p(R2) such that
ũε1Ω + H̃ε = −∇⊥gε.
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Since uε → u strongly in ∩p<∞Lp(Ω) and Hε → 0 too, in view of (2.8) and (2.9) we have ũε → u strongly
in ∩p<∞Lp(Ω) and H̃ε → 0 in ∩p<∞Lp(R2). Therefore, gε → g (defined in (2.1)) strongly in ∩p<∞W 1,p(R2)
(hence uniformly). From now on, we will assume that uε has been replaced by ũε ∈ H1(Ω\ ∪n(ε)

i=1 {aε
i}, S1) and

write uε instead of ũε, Hε instead of H̃ε. We thus have a family of S1-valued vector fields with a finite number
of singular points or “vortices” (for fixed ε). Since uε is in H1 away from these points, we can define its degree
around aε

i , and write

dε
i = deg(uε, aε

i ). (3.1)

Locally in Ω\{aε
1, · · · , aε

n(ε)}, from the result of [8], uε admits an H1-lifting ϕε and we may define the vector-field

Vε = 〈∇uε, iuε〉“=”∇ϕε, (3.2)

which is well-defined a.e. in Ω, curl-free in Ω\{aε
1, · · · , aε

n(ε)}. As in [30], the lower bound of the energy will
follow from bounding

∫
Ω |Hε · Vε|.

In a first step, we shall assume that g defined in (2.1) has a distinguished sign in Ω, i.e., without loss of
generality, that {

g ≥ 0 in Ω
g = 0 on ∂Ω.

We define

Dε(t) =
1
2π

∫
{gε=t}∩Ω

Vε · τ =
∑

i/gε(aε
i )≥t

dε
i ∈ Z (3.3)

where the normal-vector n to {gε = t} is oriented towards the increasing gε. The function Dε is integer-valued
on R+, equal to the total degree on the level-set {gε = t}. It is defined almost everywhere (for t such that
{gε = t} is regular and does not contain any vortex-point). It can be defined for all t through the formula∑

i/gε(aε
i )≥t dε

i and extended by 0 for t < 0. Then, we recall that

Mε(t) = 2π
∫ t

0

Dε(s) ds, (3.4)

and pε and p are defined in (1.26) and (1.27). We have the following result:

Lemma 3.1.
pε ⇀ p in L1(R+).

Before proving this lemma, let us state the main result.

Theorem 3. Assume Eε(uε) ≤ C, uε → u in ∩Lp(Ω) and g ≥ 0 in Ω. Then, as ε→ 0,

pε +Mε is bounded in BVloc(R+). (3.5)

Extracting subsequences if necessary, there exist M ∈ L1(R+) and D = M ′
2π in W−1,1(R+) such that

pε +Mε ⇀ p+M in BVloc(R+) (3.6)

i.e., denoting by M(R+) the dual of C0
0 (R+),

p′ε + 2πDε ⇀ p′ + 2πD in M(R+). (3.7)
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Moreover,

lim inf
ε→0

Eε(uε) ≥ E0(u,D) = ‖p+M‖BV (R+) =
∫ +∞

0

|p′ + 2πD|. (3.8)

If in addition we assume that uε does not have vortices in a set of the form {g ≤ δ} for some δ > 0 and has a
lifting ϕε in that set uniformly bounded in L∞, then the lower bound can be improved as follows:

lim inf
ε→0

Eε(uε) ≥ E0(u,D) = ‖p+M‖BV (R) =
∫

R

|p′ + 2πD| (3.9)

(D being extended by 0 on R− and p by |∂Ω|).
The result (3.9) is a stronger lower bound than (3.8). However, it assumes that vortices do not accumulate

near the boundary, which is not necessarily true.

Corollary 1. When the assumptions of [31] are satisfied, i.e. uε ∈ S1 (uε
3 ≡ 0) with a lifting ϕε, ‖ϕε‖L∞ ≤ N ,

then Dε ≡ 0, and we get
pε bounded in BVloc(R+) pε ⇀ p in BVloc(R+)

lim inf
ε→0

Eε(uε) ≥ ‖p‖BV (R+) ≥
∣∣∣∣
∫ +∞

0

p′
∣∣∣∣ = |p(0)| ≥ |∂Ω|. (3.10)

Remark 3.1. This is consistent with the lower bound obtained in [30] which was

lim inf
ε→0

Eε(uε) ≥
∫

Ω

|div (ϕu + u⊥)|.

Indeed, this can be proved rather simply. For any f ∈ C∞(R) such that |f | ≤ 1 and f(0) = 0,
∫

Ω

f(g)div (ϕu + u⊥) = −
∫

Ω

f ′(g)

(after integrating by parts and using u = −∇⊥g, |∇g| = 1). Using the coarea formula of Federer,

−
∫

Ω

f ′(g) = −
∫

R

f ′(t)p(t) dt.

Taking the supremum over all such f , we obtain that∫
Ω

|div (ϕu + u⊥)| ≥ ‖p‖BV (R+).

In addition, there is equality in (3.10) if and only if p′ ≤ 0 on R+ (for g ≥ 0), which is to be compared to the
sign condition obtained in [30, 31].

Remark 3.2. If vortices ai with degrees di are fixed a priori, then the lower bound (3.8) of Theorem 3 implies
the “nice” formula

lim inf
ε→0

Eε(uε) ≥
∣∣∣∣
∫

R

p′ + 2πD
∣∣∣∣ =

∣∣∣∣∣|∂Ω| − 2π
∑

i

dig(ai)

∣∣∣∣∣ . (3.11)
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As a corollary of Theorem 3, we can derive a lower bound in the general case when g changes sign. We define
Ω+ to be the interior of the set {g ≥ 0} and Ω− the interior of {g ≤ 0},

p+(t) = H1({g = t}) for t > 0

extended by the values 0 for t > max g, |∂Ω+| for t < 0;

p−(t) = H1({g = t}) for t < 0

extended by 0 for t < min g, |∂Ω−| for t > 0. For t ≥ 0,

D+
ε (t) =

1
2π

∫
{gε=t}∩Ω+

Vε · τ =
∑

i/gε(aε
i )≥t

dε
i ∈ Z,

and for t ≤ 0,

D−
ε (t) =

1
2π

∫
{gε=t}∩Ω−

Vε · τ =
∑

i/gε(aε
i )≤t

dε
i ∈ Z,

and we set

M±
ε = 2π

∫ t

0

D±
ε (s) ds.

Obviously, the contributions of energy on Ω+ and Ω− can be added up and we deduce from Theorem 3, applied
successively on Ω+ and Ω−.

Theorem 3’. Assume Eε(uε) ≤ C, then as ε→ 0,

pε ⇀ p+ in L1(R+)
pε ⇀ p− in L1(R−)

pε +M+
ε is bounded in BVloc(R+)

pε +M−
ε is bounded in BVloc(R−),

there exist M+,M− ∈ L1, D+ = (M+)′

2π , D− = (M−)′

2π , such that

pε +M+
ε ⇀ p+ +M+ in BVloc(R+)

pε +M−
ε ⇀ p− +M− in BVloc(R−)

p′ε + 2πD+
ε ⇀ p′+ + 2πD in M(R+) (respectively −),

and we have

lim inf
ε→0

Eε(uε) ≥ ‖p+ +M+‖BV (R+) + ‖p− +M−‖BV (R−)

=
∫ +∞

0

|(p+)′ + 2πD+| +
∫ 0

−∞
|(p−)′ + 2πD−|. (3.12)

If we have the extra assumption on a set {−δ ≤ g ≤ δ}, then

lim inf
ε→0

Eε(uε) ≥ ‖p+ +M+‖BV (R) + ‖p− +M−‖BV (R).
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We start with the

Proof of Lemma 3.1. First of all, let us show that the weak limit of pε is p. Let f ∈ C0(R+) be a test-function.
Using the coarea formula, we have

∫
R+
f(t)pε(t) dt =

∫
R+
f(t)

(∫
{gε=t}∩Ω

|∇gε|
)

dt =
∫
{gε≥0}∩Ω

f(gε)|∇gε|2.

But we know that |∇gε| → 1 in ∩p<∞Lp, thus

∫
R+
f(t)pε(t) dt =

∫
{gε≥0}∩Ω

f(gε) + o(1),

while gε → g uniformly, hence f(gε)1gε≥0 → f(g)1Ω a.e. It follows by dominated convergence that

∫
R+
f(t)pε(t) dt →

∫
Ω

f(g).

On the other hand, using once again the coarea formula,∫
Ω

f(g) =
∫

Ω

f(g)|∇g| =
∫

R+
f(t)p(t) dt. (3.13)

Hence, ∫
R+
f(t)pε(t) dt→

∫
R+
f(t)p(t) dt. (3.14)

Therefore, the weak limit of pε is p. In order to prove weak L1 convergence, we just prove that pε is equiintegrable
in R+. First of all, p ∈ L1(R+) because

∫
R+ p(t) dt =

∫
Ω

1 = |Ω| as in (3.14). Hence, for η > 0 given, there
exists δ such that

|b− a| < δ =⇒
∫ b

a

p(t) dt < η. (3.15)

Secondly,

∫ b

a

pε(t) dt =
∫

a≤gε≤b

|∇gε|2 ≤ ‖∇gε‖2
L4vol(a ≤ gε ≤ b)

1
2 ≤ Cvol(a ≤ gε ≤ b)

1
2 .

By strong convergence of gε to g, for ε small enough, and for all a, b ∈ R+, we have (with the same coarea
formula again)

vol(a ≤ gε ≤ b) ≤ vol
(
a− δ

4
≤ g ≤ b+

δ

4

)
=
∫

a− δ
4≤g≤b+ δ

4

|∇g| =
∫ b+ δ

4

a− δ
4

p(t) dt.

Thus, in view of (3.15), if |b− a| < δ
2 , we have

∫ b

a

pε(t) dt ≤ Cη
1
2 .
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This characterizes the equiintegrability of pε, which implies that pε ⇀ p in L1(R+). �

Proof of Theorem 3. As already mentioned, we are going to use the fact that Eε(uε) ≥ ∫
Ω
|Hε · Vε| and

bound from below
∫
Ω |Hε · Vε|. We first can write Hε · Vε as follows (using uε1Ω +Hε = −∇⊥gε):

Hε · Vε = −(uε + ∇⊥gε) · Vε in Ω. (3.16)

One can also check that, since uε is S1-valued and locally equal to eiϕε , we have

curl uε = uε · Vε in Ω, (3.17)

and thus, using curl Hε = 0,

Hε · Vε = −∇⊥gε · Vε − curl uε = −∇⊥gε · Vε + curl ∇⊥gε in Ω. (3.18)

This decomposition is the same trick as the one that we used in [30] to obtain the lower bound. Let us now
take a test-function f ∈ C1(R+) and evaluate∫

Ω

f(gε)(−Vε · ∇⊥gε + curl ∇⊥gε).

Then, we will use ∫
Ω

|Hε · Vε| ≥ sup
|f |≤1

∫
Ω

f(gε)(−Vε · ∇⊥gε + curl ∇⊥gε)

to obtain the lower bound.
Let δ > 0 be fixed. We recall that we are in the case g ≥ 0 and g = 0 on ∂Ω; therefore, by uniform convergence

of gε to g, for ε small enough, {gε ≥ δ} ⊂ Ω. Using F , some primitive of f ,∫
gε≥δ

f(gε)(Vε · ∇⊥gε − curl ∇⊥gε) =
∫

gε≥δ

Vε · ∇⊥F (gε) − f(gε)curl ∇⊥gε. (3.19)

Now we can observe that

Vε · ∇⊥F (gε) = curl (F (gε)Vε) − F (gε)curl Vε

= curl (F (gε)Vε) − 2π
n(ε)∑
i=1

dε
iF (gε(aε

i ))δaε
i

(3.20)

in the sense of distributions, where the (aε
i , d

ε
i ) are the vortices of uε (cf. (3.1)). Hence,∫

gε≥δ

Vε · ∇⊥F (gε) =
∫

gε=δ

F (gε)Vε · τ − 2π
∑

i/gε(aε
i )≥δ

dε
iF (gε(aε

i )). (3.21)

But in view of definition (3.3), this is

2πF (δ)Dε(δ) − 2π
∑

i/gε(aε
i )≥δ

dε
iF (gε(aε

i )). (3.22)

(Without loss of generality, we may assume that {gε = δ} does not contain any vortex.) Meanwhile, we examine
the other term. Integrating by parts, we have∫

gε≥δ

f(gε)curl ∇⊥gε =
∫

gε=δ

f(gε)
∂gε

∂next
−
∫

gε≥δ

f ′(gε)|∇gε|2.



NÉEL AND CROSS-TIE WALL ENERGIES FOR PLANAR MICROMAGNETIC CONFIGURATIONS 53

On the level-set {gε = δ}, we have ∂gε

∂next
= −|∇gε|, hence

∫
gε≥δ

f(gε)curl ∇⊥gε = −f(δ)pε(δ) −
∫

gε≥δ

f ′(gε)|∇gε|2. (3.23)

Using the coarea formula, the second term is equal to − ∫∞
δ
f ′(t)pε(t) dt. Inserting (3.22) and (3.23) into (3.19),

we obtain∫
gε≥δ

f(gε)(Vε · ∇⊥gε − curl ∇⊥gε) = 2πF (δ)Dε(δ)

−2π
∑

i/gε(aε
i )≥δ

dε
iF (gε(aε

i )) + f(δ)pε(δ) +
∫ ∞

δ

f ′(t)pε(t) dt. (3.24)

Taking f ≡ 1 and letting δ → 0, one formally obtains the result mentioned in Remark 3.2 from this equation.
We can transform the second term in the sum as follows: noticing that Dε(t) =

∑
gε(aε

i )≥t dε
i , let us denote

by tk(k = 1, · · · ,K) the increasing sequence of t ≥ δ such that {gε = t} contains a vortex. Then,

2π
∑

i/gε(aε
i )≥δ

dε
iF (gε(aε

i )) = 2π
K∑

k=1


 ∑

i/gε(aε
i )=tk

dε
i


F (tk)

= 2π
K∑

k=1

(Dε(tk) −Dε(tk+1))F (tk). (3.25)

After a standard re-summation process, (3.25) becomes

2π
∑

i/gε(aε
i )≥δ

dε
iF (gε(aε

i )) = 2π
K∑

k=2

Dε(tk)
∫ tk

tk−1

f(s) ds+ 2πDε(t1)F (t1).

We observe that Dε(δ) = Dε(t1) and Dε is equal to Dε(tk) on (tk−1, tk]; therefore,

2πF (δ)Dε(δ) − 2π
∑

i/gε(aε
i )≥δ

dε
iF (gε(aε

i )) = −2π
∫ tK

t1

Dε(s)f(s) ds− 2πDε(t1) (F (t1) − F (δ))

= −2π
∫ ∞

δ

Dε(t)f(t) dt (3.26)

(with the convention pε = 0 for t > max gε). Plugging this into (3.24), we conclude that∫
gε≥δ

f(gε)(Vε · ∇⊥gε − curl ∇⊥gε) = f(δ)pε(δ) +
∫ ∞

δ

f ′(t)pε(t) dt− 2π
∫ ∞

δ

Dε(t)f(t) dt

= −
∫ ∞

δ

f(t) (p′ε(t) + 2πDε(t)) dt. (3.27)

Going back to (3.18), taking the supremum over all f ’s such that |f | ≤ 1, we deduce that p′ε +2πDε is bounded
in the sense of measures, or that pε +Mε is bounded in BV ([δ,+∞)). Since this is true for all δ > 0, we can
say it is bounded in BVloc(R+). Moreover, we have∫

gε≥δ

|Hε · Vε| ≥
∫ ∞

δ

|p′ε + 2πDε|,
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and using the lower semi-continuity of the mass,

lim inf
ε→0

∫
gε≥δ

|Hε · Vε| ≥
∫ ∞

δ

|p′ + 2πD|. (3.28)

Since this is true for all δ > 0, we conclude that

lim inf
ε→0

Eε(uε) ≥ lim inf
ε→0

∫
gε≥δ

|Hε · Vε| ≥
∫ ∞

0

|p′ + 2πD|,

which provides the desired result.
Next, we consider the particular case in which uε does not have vortices in a set of the form {g ≤ δ} for

some small δ, and thus has a lifting ϕε which is assumed to be uniformly bounded in L∞ in this neighborhood.
Since gε → g uniformly, we have ∪εk

∩ε<εk
{gε < δ} ∩ Ω = {g < δ}, and we may assume that uε has no vortex

and has the lifting ϕε in the set {gε < δ} for ε small enough. Then, we are in the framework of [30] and

Hε · Vε = Hε · ϕε = −uε · ∇ϕε −∇⊥gε · ∇ϕε = −div (ϕε∇⊥gε) − curl uε = div (−ϕε∇⊥gε + uε⊥). (3.29)

Then,

C ≥
∫
{gε<δ}∩Ω

|Hε · Vε| =
∫
{gε<δ}∩Ω

|div (−ϕε∇⊥gε + uε⊥)|

≥
∫
∪εk

∩ε<εk
{gε<δ}∩Ω={g<δ}

|div (−ϕε∇⊥gε + uε⊥)|. (3.30)

ϕε being bounded in L∞, it converges weakly in ∩pL
p to some ϕ; on the other hand −∇⊥gε → −∇⊥g = u

strongly in ∩p<∞Lp (see Lem. 2.1), thus div (−ϕε∇⊥gε +uε⊥)b{g < δ} which remains bounded in L1 converges
weakly to div (ϕu + u⊥), and

lim inf
ε→0

∫
gε<δ

|Hε · Vε| ≥
∫

g<δ

|div (ϕu + u⊥)|. (3.31)

Following exactly the proof of [30] Lemma 5.2, we obtain that∫
g<δ

|div (ϕu+ u⊥)| ≥ |p(δ) − |∂Ω||, (3.32)

(which may not go to 0 as δ → 0). Then,

Eε(uε) ≥
∫

gε<δ

|Hε · Vε| +
∫

gε≥δ

|Hε · Vε|

and using (3.28) together with (3.31) and (3.32), we are led to

lim inf
ε→0

Eε(uε) ≥
∫ +∞

δ

|p′ + 2πD| + |p(δ) − |∂Ω||.

This is true for all δ > 0, hence it implies that

lim inf
ε→0

Eε(uε) ≥
∫ +∞

−∞
|p′ + 2πD|
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(in the sense of the BV norm of p +M), where p has been extended by |∂Ω| for t < 0 and D by 0 for t < 0.
This concludes the proof of Theorem 3, from which Theorem 3’ also follows. �
Remark 3.3. The lower bounds of Theorems 3 and 3’ are not always optimal. To improve them, one should
first sum up the contributions of p′j +2πDj over all the connected components Cj of gε. We also believe that an
optimal bound should involve

∫
R2 |p′ + 2πD̂| + 2π|D − D̂| where D̂ is the truncation of D : D̂ = D if |D| ≤ 1,

D̂ = sign(D) otherwise. Thus a total degree one on the boundary of each connected component of gε should be
favored.

4. Examples and optimal wall jumps

In this section, we would like to explain in several examples the different formulas obtained before. We begin
with very simple situations in which the theory is easily explained, and afterwards, we try to consider more and
more complex situations in order to get an intuition about the characteristics of the minimizers. Each time,
we try to compare the different formulas and sometimes give the main differences between this situation and
the one studied in [30,31]. We also show how the optimal energy can be reached using the so-called “cross-tie”
walls or Néel walls depending on the magnitude of the jump across the wall.

We start with the lower bound of Section 2 (for u ∈ BV (Ω))

E(u) =
∫

Σu

A(X) dH1, (4.1)

where X was defined in (1.14) and A is given by

A(X) = 2| sinX −X cosX | for X ∈
[
0,
π

4

]
(4.2)

A(X) = 2
∣∣∣(X − π

2

)
cosX − sinX +

√
2
∣∣∣ for X ∈

[π
4
,
π

2

]
· (4.3)

We will show that this formula is optimal, and that such bounds are achieved for Néel walls in the first case,
and “cross-tie” walls in the second case.

We remark that this formula does not say anything about the possible convergence of the vortices and optimal
places where they should be put. To see that, we can use the following two formulas for the limiting energy
(cf. (1.31) and (1.32)) only valid if the vortices are of finite number and converge to the points ai with degree di.

E0(u, {ai}, {di}) = |∂Ω| − 2π
∑

i

dig(ai), (4.4)

which may be useful if we know the function g (e.g. it is the distance to the boundary), or equivalently the
formula using the perimeter of the level-sets of g

E0(u,D) =
∫

|p′(t) + 2πD(t)| dt. (4.5)

In particular, if we know that the configuration we are looking at is approximated by a sequence (uε) for which
the number of vortices is bounded, then uε can be considered as purely planar away from these points and
following the arguments of [30], we get as a limiting energy

E0(u) =
∫

Σu

2| sinX −X cosX | dH1. (4.6)
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In other words, if we want to reach the optimal wall energy for big jumps given by the second formula (4.3),
which is smaller than (4.6), we need to consider sequences with unbounded number of vortices.

4.1. Limiting energy on simple configurations

4.1.1. The unit disc

Let us begin with the simplest one vortex situation. Namely, we consider the case where Ω is the unit disc
and the limiting (divergence free) vectorfield u0 is given by

u0 = −∇⊥g,

where g(x) = dist(x, ∂Ω). As already explained in the introduction, it is possible to find a sequence (uε) such
that

uε ∈ H1(Ω, S2),
uε −→ u0 in L2 strong as ε −→ 0,
Eε(uε) −→ 0 as ε −→ 0.

This case is clearly already very different from [30] where the energy is always bounded from below by |∂Ω|.
However, since u0 possesses no line singularity, the formula (4.1) gives the correct lower bound for the energy

since the singular set has no H1 measure and thus the integration reduces to zero. In [24], it is proved that this
is the only case where a zero limiting energy can be achieved. Moreover, it is now possible to get different lower
bounds according to the way the vortices converge. Indeed, imagine that uε possesses a degree one vortex that
converges to some point P inside the disc. Then, applying the formula (4.4), we get the lower bound

lim inf
ε→0

Eε(uε) ≥ |∂Ω| − 2πg(P ),

= 2πdist(O,P ),

where O stands for the center of the disc.
This amount of remaining energy comes from the fact that in order for (uε) to converge to u0, a concentration

of energy must occur on a line joining P to O. Along this line, the vectorfield possesses a phase jump of 2π
which costs at least the energy given above.

An explicit computation of the lower bound is also possible using the formula (4.5). Indeed, for a value
t ∈ (0, 1], the level set g−1(t) is precisely the circle of center O and radius t whose perimeter is

p(t) = 2π(1 − t).

Now, we must compute the degree of these level sets. It is clear that if P is inside the level set g−1(t) then the
degree D(t) will be equal to one. Otherwise the degree will be equal to zero.

Finally, P is inside g−1(t) for all t ∈ [0, g(P )) and outside for all t ∈ (g(P ), 1]. Putting all together in the
formula, we get the lower bound

lim inf
ε→0

Eε(uε) ≥
∫ 1

0

|p′(t) + 2πD(t)| dt,=
∫ g(P )

0

0 dt+
∫ 1

g(P )

2π dt,= 2π(1 − g(P )),

which is the correct answer.

4.1.2. The unit square

Consider now the case where Ω is the unit square of R2, and u0 is still given by

u0 = −∇⊥g,
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Figure 2. The unit square viscosity solution.

where g(x) = dist(x, ∂Ω). Figure 2 shows the vectorfield u0. Since u0 possesses line singularities, we expect
the lower bound of the energy to be strictly positive. Let us use the formula (4.1) to compute the value of
the smallest lower bound. On each diagonal segment, u0 has a jump of

π

2
in the phase, so that the energy is

computable by

lim inf
ε→0

Eε(uε) ≥ 8
√

2
2

∣∣∣∣ sin(π4
)
− π

4
cos
(π

4

) ∣∣∣∣,
= 4 − π

> 0.

Using the formula (4.4) and assuming that the sequence (uε) possesses a degree one vortex that converges to
some point P inside Ω, we get

lim inf
ε→0

Eε(uε) ≥ ||∂Ω| − 2πg(P )| ,
= (4 − 2πdist(P, ∂Ω)).

In the case where P is equal to the center of the square, we of course recover the preceding result
(

dist(P, ∂Ω)

= 1
2

)
. Using the formula (4.5) yields the same answer, and we leave the reader doing the computation.

4.1.3. The 2 × 1 rectangle

This geometry is quite famous in the micromagnetic community since it has been used as a benchmark
for computing rectangular thin films. A recent paper by Rave and Hubert [29] is for instance devoted to the
systematic comparison of different configurations in terms of energy, depending on the size and the thickness of
the film.

Here, we would like to compare from the point of view of our theory the two usually called Landau–Lifshitz
and diamond configurations (see Fig. 3).

For the diamond configuration, there is essentially no problem since all the jumps involved are of magnitude
less than π/2. It is thus easily seen that in that case, we must use the first formula (4.2). We can also remark
that the diamond configuration is only two squares glued together (see Fig. 4) from which we deduce that the
optimal achievable energy is twice that of one square

Ediamond = 2(4 − π) = 8 − 2π.

Moreover, this energy is achievable if the approximate configurations possess two vortices converging to the
center of each square.
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Figure 3. Landau Lifshitz and diamond configurations on a rectangle.

Figure 4. Rectangle as two glued squares.

For the Landau–Lifshitz configuration, the situation is slightly more complicated. In order to compute its
energy, we must first look at the way the sequence (uε) converges to this state. Indeed, in the case the number
of vortices is bounded, or there are no vortices at all, thus, equation (4.6) applies and we are led to

ELL = 4 − π + 2

(the first term is the energy concentrated along the four diagonal and the last one is the energy along the
horizontal line). A too quick conclusion could lead to the misleading inequality

ELL > Ediamond.

However, using the formula (4.3) gives the better lower bound

E′
LL = 4 − π + 2(

√
2 − 1),

and a numerical evaluation leads to
E′

LL < Ediamond < ELL.

We will see in the next section that E′
LL (which cannot be achieved with a bounded number of votices) cor-

responds to putting a cross-tie wall in the horizontal line, whereas the first computation of the energy (ELL)
corresponds to putting a Néel wall in this line. This is exactly the kind of behavior that was found in [29] (Fig. 5)
where the cross-tie configuration possesses an energy very close to but smaller than the one of the diamond
configuration and the Landau–Lifshitz configuration without a cross-tie wall has a much bigger energy.

4.2. Optimal walls

To conclude this section, we show that the lower bounds given in the previous sections are indeed optimal.
The nice phenomenon that occurs is that the energy density given in (4.2) is achieved by a Néel wall (this
was already known from the previous work [30]), which is a one-dimensional structure in the wall, but only for
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Figure 5. The up-down wall.

jumps in the phase less than π/2. For bigger jumps, the Néel wall is no longer optimal and the energy given
by (4.3) is achieved with a two-dimensional structure, the “cross-tie walls”. As already mentioned, they are
actually seen in thin films experiments [21,28]. They are also under investigation by mathematicians [17]. Here,
we would like to give a cross-tie wall configuration which is optimal for our model. We begin with the up-down
jump where the situation is somewhat simpler, and generalize afterwards to the case of any jump.

4.2.1. The up-down situation

In the up-down jump, we have to describe a microscopic structure inside a wall like the one drawn in Figure 5.
We propose the following construction drawn in Figure 6. We decompose the domain into several strips

perpendicular to the wall. In each strip, the configuration will be the same, so that the whole configuration
is periodic. In the upper half of each strip, we split the domain into three parts (see Fig. 7): the lower left
triangle ΩL, the lower right triangle ΩR and the rest of the domain Ω (the angles being π

4 ). We also call P the
point on the wall in the middle of the strip. Then, the configuration is given by (see Fig. 7)

u(x) =




ei π
4 on ΩL,

e−i π
4 on ΩR,

−∇⊥dist(x, P ) on Ω.
(4.7)

On the lower part of the strip, the configuration is simply extended by symmetry around P . In the figures, the
circles denote the positions of the vortices at the ε-stage.

Now, we compute the energy of this configuration in order to verify that it is equal to 2(
√

2 − 1) per unit
length of the wall (this is what formula (4.3) gives for an angle of jump equal to π). Since the configuration
is periodic, we only need to compute the energy concentrated on the vertical and horizontal lines in one strip
assuming the width of the strip is equal to one. As all the jumps are of angle less than π/2, they may be
achieved by the 1D planar profiles of [30]. We thus compute the energy using the formula of [30] for the energy
density

A(X) = 2| sinX −X cosX |,
where X is half the jump in the phase across the wall. To do so, we parameterize the vertical discontinuity
by s. Since the distance between two neighbouring vortices is assumed to be one, we easily get the half-angle
jump X across the vertical line:

X(s) =



π

4
if s ∈

[
−1

2
,
1
2

]
,∣∣∣∣arctan

(
1
2s

)∣∣∣∣ otherwise.
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Figure 6. The optimal cross-tie wall.

P P

L R

Ω

Ω Ω

Figure 7. Zoom of the upper half strip.

On the other hand, the half-angle jump on the horizontal line jump is constant and equal to π/4. Putting
everything together gives an energy equal to

E = 4

(√
2

2
− π

4

√
2

2

)
+ 2

∫ +∞

1
2

2 (sin(X(s)) −X(s) cos(X(s))) ds

=
√

2
2

(4 − π) + 4
∫ +∞

1
2

(
1√

1 + 4s2
− arctan

(
1
2s

)
2s√

1 + 4s2

)
ds

=
√

2
2

(4 − π) + 2
[
− arctan

(
1
2s

)√
1 + 4s2

]+∞

1
2

=
√

2
2

(4 − π) + 2(arctan(1)
√

2 − 1)

= 2(
√

2 − 1).
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P1 P2

Figure 8. Extraction of one strip from the cross-tie pattern.

We also remark that it is possible to do the computation in a more geometrical way. Indeed, we first truncate
the domain by two discs centered in P1 and P2 and of radius R as in Figure 8 and then observe that extending
in these two regions the configuration by

u(x) =
{−∇⊥dist(x, P1) in the left-hand disc,
−∇⊥dist(x, P2) in the right-hand disc,

it does not change the total energy since no discontinuity line has been added.
In order to further simplify the computation, we try to recognize u as the orthogonal gradient of the distance

function to the boundary of a domain on each side of the vertical discontinuity line. This is not very difficult
and a few attempts lead to the egg-like domain drawn in Figure 9. The very last remark before the computation
is that one may exchange the left-hand side of the egg-like domain with the reflection of its right-hand side.
More precisely, we have to compute the energy of a configuration obtained by gluing two right-hand parts of the
egg-like domain. If we decide to glue two right-hand parts (and obtain the diamond-like domain presented in
Fig. 9), the configuration obtained by taking the orthogonal gradient of the distance function to the boundary
of this new domain possesses exactly the same energy as the original one since the jumps are exactly of the
same amount and precisely occur in the same place.

Eventually we observe that now, the domain is convex and the potential is simply the distance function to
the boundary. Therefore, we are allowed to use formula (4.4) to compute its energy or at least a lower bound.
This leads to the value

E = |∂Ω| − 2πr, (4.8)

where r is the radius of the biggest disc inscribed in the domain. Recording that dist(P1, P2) = 1, calling θ the

angle P̂2P1M (see Fig. 9) and R =
1

2 cos(θ)
, we get for the perimeter

|∂Ω| = 4
(
R
(
θ − π

4

)
+

1√
2

+
π

4

(
R− 1√

2

))
·
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P1 P2 P2

r
θ

R

P1

M

Figure 9. Egg-like domain and diamond-like domain.

Figure 10. Around the saddle point the configuration consists in 4 domains with constant magnetization.

On the other hand, the biggest inscribed disc has a radius (see Fig. 9)

r = R − 1
2
√

2
·

Therefore, the energy of the configuration is given by

E = |∂Ω| − 2πr,

= 4
(
Rθ +

1√
2
− π

4
√

2

)
− 2πR+

π√
2
,

= 2
√

2 +
2θ − π

2 cos(θ)
·
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Figure 11. triangles with different sizes.

Now letting θ tend to
π

2
gives

lim
θ→π

2

E(θ) = 2(
√

2 − 1),

which is the desired result.
The computation of this energy is also possible via the level-set theory described in the previous section in

a slightly more formal way. Indeed, if we compute the level-sets of the potential g associated to u, we find for
their degrees

D(t) =




−1 if t ∈
[

0,
√

2
4

)
,

0 if t ∈
(√

2
4
,+∞

)
,

and for their lengths

p(t) =




(4 + π)t if t ∈
[

0,
√

2
4

)
,

a non increasing function of t if t ∈
(√

2
4
,+∞

)
.

The lower bound is now easily computable by

E =
∫ +∞

0

|p′(t) + 2πD(t)| dt,

=
∫ √

2
4

0

|4 + π − 2π| dt+ p

(√
2

4

)
− p(+∞),

= 2
√

2 − 2.

This computation is quite formal since everything has been restricted to only one strip but it is easy to see that
doing the computation on the extended configuration drawn in Figure 8 leads exactly to the same result.

Eventually, we realize that making a change of scale of this cross-tie configuration doesn’t change its energy
since the energy behaves like a length. It is therefore possible to draw a microstructure cross-tie wall which
possesses the same energy per unit length.
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Hyperbola

Parabola

P2P1

Figure 12. Oblique cross-tie wall (zoom).

θ1

M

θ2

P1 P2

Figure 13. Egg-like domain in the oblique case.

4.2.2. The situation with a jump in the phase less than π

The optimal cross-tie configuration is much more delicate to understand in this situation. Indeed, we must
find a configuration where all the angle jumps are less than π/2, otherwise these jumps could be replaced
by other cross-tie patterns in another smaller scale. Keeping that in mind, we propose the following picture.
Around the saddle points we take the same configuration as before (any change here would lead to a bad
angle according to the preceding remark). The only remaining freedom is the relative size of these constantly
magnetized subdomains. It is possible to consider triangular domains as in Figure 11 and try to extend the
configuration outside. On the right hand side of the domain, the solution is taken to be

u(x) = −∇⊥dist(x, P2),
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Figure 14. Oblique cross-tie wall.

Figure 15. A cross-tie wall in a Permalloy sample (courtesy R. Schäfer).

and we conversely take on the left hand side

u(x) = −∇⊥dist(x, P1).

Now the problem becomes to find the two curves separating these two solutions in a way which is consistent
with the fact that u is divergence-free. An analytical computation of these curves is possible in the same spirit
as when one finds the shock curve of a weak solution of a hyperbolic scalar partial differential equation from



66 F. ALOUGES, T. RIVIÈRE AND S. SERFATY

Figure 16. Oblique cross-tie walls in Permalloy (courtesy R. Schäfer).

Rankine-Hugoniot relation. However, a very simple argument shows that, in our case, this discontinuity line
consists of a piece of parabola and a piece of hyperbola as in Figure 12. Indeed, the first part of this curve
separates two regions where the characteristic lines are straight lines of direction π/4 on the left hand side and
straight lines emerging from P2 on the right hand side. Noticing that the tangent to the discontinuity line bisects
the angle made by the characteristic on both sides, we get that this discontinuity curve exactly transforms rays
emerging from P2 into rays of direction π/4 by Fermat’s reflection principle. It is therefore a parabola of focal
point P2 and direction π/4. Farther, the curve transforms light rays emerging from P2 into light rays emerging
from P1 and is therefore a hyperbola of focal points P1 and P2.

In order to compute the energy of this configuration, we need to do as in the previous case an integration
along the jump lines. Such a computation is possible but really tedious. Thus, we just present a justification of
the formula relying on the geometric point of view by finding a convex domain in which the orthogonal gradient
of the distance to the boundary function possesses the same jumps as u, and using the formula

E(u) = |∂Ω| − 2πr, (4.9)

where r is the radius of the biggest disc inscribed in Ω to obtain a lower bound of the energy. This lower bound
should, as in the straight case, be optimal and give the same result as the integration of the wall energy along
the discontinuity line. (To really prove this one needs to check that we have equalities in (1.22, 1.23) for this
distance function.)

We begin by cutting one strip of the pattern and close it by extending the solution to two discs. One centered
in P1 and of radius R+C and the other centered in P2 and of radius R. The constant C is tuned in order that
both circles intersect at the hyperbola. In other words, the equation of the hyperbola is

dist(x, P1) = dist(x, P2) + C.
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As before, interchanging the right hand parts of the egg-like domains with the left-hand parts leads to a domain
drawn in Figure 13, which is still convex and on which we have to compute the energy of the orthogonal gradient
of the distance to the boundary function.

We now use the formula (4.9). In view of the shape of the domain (see Fig. 13 for notations), we get for the
left hand part of the boundary

|(∂Ω)L| = 2
((

3π
4

− θ2

)
R+

1√
2

+
π

4

(
R− 1√

2

))
, (4.10)

and for the right hand part

|(∂Ω)R| = 2
((

θ1 − π

4

)
(R+ C) +

1√
2

+
π

4

(
R+ C − 1√

2

))
· (4.11)

Moreover, a quick computation shows that the radius r of the biggest disc inscribed in Ω is given by

r = R− 1 − C
√

2
2
√

2
· (4.12)

Putting (4.10, 4.11) and (4.12) together yields

E(u) = |(∂Ω)L| + |(∂Ω)R| − 2πr,

= 2
(
−θ2R+

√
2 + (R+ C)θ1 − πC

2

)
,

= 2
(√

2 +R(θ1 − θ2) + C
(
θ1 − π

2

))
·

Now, letting R tends to +∞, we get the expression of the parameters in terms of the half-angle of the jump

C = cos(X),

lim
R→+∞

R(θ1 − θ2) = − sin(X),

and

lim
R→+∞

θ1 = X,

from which we get the expression for the energy of one cross-tie strip

E(u) = 2
(√

2 − sin(X) −
(π

2
−X

)
cos(X)

)
,

which is the claim.
We have drawn in Figure 14 the pattern obtained by gluing together oblique strips constructed before and

in Figures 15 and 16 reproduced several pictures of cross-tie wall (both straight and oblique) obtained on thin
permalloy films and extracted from [21]. They are strikingly similar.

This paper has greatly benefited from discussions with the DKMO team (Antonio DeSimone, Bob Kohn, Stefan Müller
and Felix Otto), that we wish to thank very much. We also thank R. Shäfer and Springer for their authorization to
reproduce the cross-tie pictures from [21].



68 F. ALOUGES, T. RIVIÈRE AND S. SERFATY
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