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RELAXATION OF QUASILINEAR ELLIPTIC SYSTEMS
VIA A-QUASICONVEX ENVELOPES

Uldis Raitums
1

Abstract. We consider the weak closure WZ of the set Z of all feasible pairs (solution, flow) of the
family of potential elliptic systems

div

�
s0P
s=1

σs(x)F ′s(∇u(x) + g(x))− f(x)

�
= 0 in Ω,

u = (u1, . . . , um) ∈ H1
0 (Ω; Rm), σ = (σ1, . . . , σs0) ∈ S,

where Ω ⊂ Rn is a bounded Lipschitz domain, Fs are strictly convex smooth functions with quadratic
growth and S = {σmeasurable | σs(x) = 0 or 1, s = 1, . . . , s0, σ1(x) + · · · + σs0(x) = 1}. We show
that WZ is the zero level set for an integral functional with the integrand QF being the A-quasiconvex
envelope for a certain function F and the operator A = (curl,div)m. If the functions Fs are isotropic,
then on the characteristic cone Λ (defined by the operator A) QF coincides with the A-polyconvex
envelope of F and can be computed by means of rank-one laminates.
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1. Introduction

We consider the problem of weak closure for the set of solutions of a family of quasilinear elliptic systems.
The origin of this investigation is optimal material layout (or optimal design) problems. Mathematically such
problems often can be formulated, see e.g. Kohn and Strang [4] or Tartar [9], as

I(u)→ min,

div
(
s0∑
s=1

σs(x)F ′s(∇u(x) + g(x)) − f(x)
)

= 0 in Ω,

u = (u1, . . . , um) ∈ H1
0 (Ω; Rm), σ ∈ S,

(1.1)

where Ω ⊂ Rn is a bounded Lipschitz domain, F ′s are gradients of given functions Fs, I is weakly continuous
(with respect to H1

0 -topology) and the control set S is defined as

S =
{
σ ∈ L∞(Rn; Rs0) | σ = (σ1, . . . , σs0), σs(x) = 0 or 1, s = 1, . . . , s0, σ1(x) + · · ·+ σs0(x) = 1

}
·
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In this setting, σs corresponds to the characteristic function of a domain occupied by s th material and F ′s
corresponds to the constitutive law for the s-th material. The problem is to lay out these materials throughout
a given domain Ω with the aim to minimize the functional I associated with the state of the assembled medium.
Such problems, as a rule, have no optimal solutions and the minimizing sequences lead to highly oscillating
functions which, in the limit, can be associated with homogenized media. A well known procedure for the
relaxation of such problems is the passage to the G-closure of the set of initial operators, which, for the case of
linear constitutive laws, leads to the G-closure of a given set of nm×nm-matrices. We recall that the notion of
G-closure was introduced by Lurie et al. [5] and by G-closure is understood the closure of a given set of admissible
matrix-valued functions (or Nemitskii operators) with respect to the topology induced by G-convergence, see
e.g. Zhikov et al. [10]. From the point of view of optimal design, the G-closure is the set of all possible effective
tensors obtainable by mixing a given set of materials. The knowledge of the corresponding G-closure is not
necessary, in general, for the relaxation of the optimal control problem at hand, see e.g. Tartar [9]. This
observation leads to the another problem: find a direct description of the weak closure of the set of all feasible
states (solutions of Eq. (1.1)), preferably in the form of the level set for some integral functional. The first
question here is the existence of such integral functionals with more or less analytically defined integrands. We
do not know the existence of such integrands if only the states are involved, but we have a positive answer for
the weak closure of the set of all feasible pairs (state, flow).

More precisely, the state equation (1.1) can be rewritten as the equation

s0∑
s=1

σs(x)F ′s (v(x) + g(x))− f(x)− η(x) = 0 in Ω (1.2)

with trespect to (v, η) ∈ V ×N , where

V =
{
v ∈ L2(Ω; Rnm) | v = (v1, . . . , vm), vj = ∇uj , uj ∈ H1

0 (Ω), j = 1, . . . ,m
}
,

N = L2(Ω; Rnm)	 V.

Then, as we shall show in Section 4, the week closure of the set of all solutions of (1.2) with σ ∈ S can be
represented as {

(v, η) ∈ V ×N |
∫

Ω

QF
(
v(x) + g(x), η(x) + f(x)

)
dx ≤ 0

}
,

where the function QF does not depend on the choice of g and f and QF is the A-quasiconvex envelope (for
the operator A = (curl, div)m) of the function F ,

F(ξ′, ξ′′) = min
s

{
Fs(ξ′) + F ∗s (ξ′′)− 〈ξ′, ξ′′〉

}
with F ∗s being the conjugate function to Fs, i.e.

F ∗s (ξ′′) = sup
z∈Rnm

{
〈z, ξ′′〉 − Fs(z)

}
, s = 1, . . . , s0.

For the definition and properties of A-quasiconvex functions see Fonseca and Müller [3]. The necessary corre-
sponding results for the case of A = (curl,div)m are given in Section 2. What concerns assumptions imposed
on the functions Fs, then we assume that Fs are smooth convex functions with quadratic growth and that the
corresponding gradients F ′s are strongly monotone mappings. These assumptions are formulated in Section 2.

The next, and more serious, problem is to obtain appropriate approximations or estimates for the function
QF . For comparison of complexity of this problem, we point out here that for the linear case, i.e. F ′s(ξ)
= Asξ, s = 1, . . . , s0, where As are symmetric nm × nm-matrices, the G-closure of the set {As} can be
described by means of analogous to QF functions, see e.g. Raitums [8], the difference is only in the dimension
of the problem.
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In Sections 5, 6 we shall show that for the case of isotropic functions Fs, i.e. Fs(z) = ϕs(|z|), s = 1, . . . , s0,
the function QF on the characteristic cone Λ (for precise definition see Murat [7] or Fonseca and Müller [3])
coincides with the A-polyconvex envelope PF of F and can be computed analytically or by means of rank-one
laminates.

Finally, in Section 6, we show that analogous results are valid for infinite sets of admissible functions F
and that, in addition, the function QF belongs to C1 provided some additional smoothness properties of the
functions F .

2. Preliminaries

Let n ≥ 2, m ≥ 1 be integers, let Ω ⊂ Rn be a bounded Lipschitz domain homeomorphic to the unit ball
and let

Fs : Rnm → R, s = 1, . . . , s0,

be given functions.
Denote, for a given function F : Rnm → R, by F ∗ its conjugate function, i.e.

F ∗ : Rnm → R, F ∗(z) = sup
ξ∈Rnm

[〈z, ξ〉 − F (ξ)], z ∈ Rnm.

Here and in sequal by 〈·, ·〉 we denote the scalar product in Euclidean spaces. The standard Euclidean norm
will be denoted by | · |. The elements z ∈ Rnm we shall often represent as z = (z1, . . . , zm) with zj ∈ Rn,
j = 1, . . . ,m.

Throughout the paper we always suppose that the functions Fs, F ∗s , s = 1, . . . , s0, satisfy the following
hypotheses:
H1. Fs, s = 1, . . . , s0, are convex and continuously differentiable on Rnm.
H2. There exist constants ν1 > 0 and ν2 > 0 such that for all s = 1, . . . , s0, and all z ∈ Rnm

ν1|z|2 ≤ Fs(z) ≤ ν2(1 + |z|2),
ν1|z|2 ≤ F ∗s (z) ≤ ν2(1 + |z|2),
Fs(0) = F ∗s (0) = 0.

H3. There exists a constant ν3 such that for all s = 1, . . . , s0 and all z ∈ Rnm

|F ′s(z)| ≤ ν3(1 + |z|), |F ∗s
′(z)| ≤ ν3(1 + |z|).

H4. There exists a constant ν4 > 0 such that for all s = 1, . . . , s0 and all z, ξ ∈ Rnm

〈F ′s(z + ξ)− F ′s(z), ξ〉 ≥ ν4|ξ|2,
〈F ∗s ′(z + ξ)− F ∗s ′(z), ξ〉 ≥ ν4|ξ|2.

Here and in what follows by F ′s and F ∗s
′ we denote the gradient of Fs and F ∗s respectively.

In the last section we shall involve the additional hypothesis.
H5. There exist a constant ν5 and a continuous increasing function γ0 : R→ R with γ0(0) = 0 such that for

all s = 1, . . . , s0 and all z, ξ ∈ Rnm

|F ′s(z + ξ)− F ′s(z)|+ |F ∗s
′(z + ξ)− F ∗s

′(z)| ≤ ν5(1 + |z|)γ0(|ξ|).

Remark 2.1. It is easy to see that H3 and H5 are straight consequences from H1 and H4. The reason why H3
and H5 are involved is to indicate more exactly which properties and where are exploited. All hypotheses H1–H5
can be formulated in terms of the functions Fs as: Fs : Rnm → R, s = 1, . . . , s0, are convex and continuously
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differentiable and there exists constants ν > 0 and L > 0 such that 0 = Fs(0) ≤ Fs(z), |F ′s(z)−F ′s(ξ)| ≤ L|z−ξ|,
〈F ′s(z + ξ)− F ′s(z), ξ〉 ≥ ν|ξ|2 for all z, ξ ∈ Rnm, s = 1, . . . , s0.

Define

S0 =
{
θ ∈ Rs0 | θ = (θ1, . . . , θs0), θj = 0 or 1, j = 1, . . . , s0, θ1 + · · ·+ θs0 = 1

}
,

S =
{
σ ∈ L∞(Rn; Rs0) | σ = (σ1, . . . , σs0), σ(x) ∈ S0 a.e.x ∈ Rn

}
and let the function F ,

F : co S0 ×Rnm ×Rnm → R, F = F(θ, ξ′, ξ′′),
be defined as

F(θ, ξ′, ξ′′) =
s0∑
s=1

θsFs(ξ′) +
s0∑
s=1

θsF
∗
s (ξ′′)− 〈ξ′, ξ′′〉· (2.1)

By hypothesis H2 and Young’s inequality for all θ ∈ co S0 and all ξ′, ξ′′ ∈ Rnm

0 = F(θ, 0, 0) ≤ F(θ, ξ′, ξ′′), ν1(|ξ′|2 + |ξ′′|2)− 〈ξ′, ξ′′〉 ≤ F(θ, ξ′, ξ′′) ≤ (ν2 + 1)(|ξ′|2 + |ξ′′|2 + 2). (2.2)

Denote
F0(ξ′, ξ′′) = min

θ∈S0
F(θ, ξ′, ξ′′), ξ′, ξ′′ ∈ Rnm. (2.3)

Obviously, F0 is continuous and satisfies inequalities (2.2).
Let the spaces V and N be defined as

V =
{
v ∈ L2(Ω; Rnm) | v = (v1, . . . , vm), vj = ∇uj, uj ∈ H1

0 (Ω), j = 1, . . . ,m
}
,

N = L2(Ω; Rnm)	 V.

Let the elements g, f ∈ L2(Ω; Rnm) be fixed. Denote, for a chosen σ ∈ S, by (v(σ), η(σ)) a pair (v(σ), η(σ))
∈ V ×N such that

s0∑
s=1

σs(x)F ′s(v(σ)(x) + g(x)) = η(σ)(x) + f(x) a.e.x ∈ Ω. (2.4)

Obviously, if such a pair exists, then

div

(
s0∑
s=1

σs(x)F ′s(v(σ)(x) + g(x))− f(x)

)
= 0 in Ω

in the sense of distributions and v(σ) is the minimizer of the functional

v →
∫

Ω

{
s0∑
s=1

σs(x)Fs(v(x) + g(x))− 〈v(x), f(x)〉
}

dx

over v ∈ V.
By construction and by virtue of H1–H4, such minimizer v(σ) always exists and is unique. Since N is the

orthogonal complement of V, then for every σ ∈ S there exists an unique pair (v(σ), η(σ)) ∈ V × N that
satisfies (2.4). Denote the set of all such pairs with σ ∈ S by Z(g, f), i.e.

Z(g, f) =
{

(v(σ), η(σ)) ∈ V ×N | σ ∈ S
}
·

We are interested to find a description for the closure wcl Z(g, f) of the set Z(g, f) in the weak topology.
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Let K ⊂ Rn be the unit cube, i.e. K = (0, 1)n.

Definition 2.1. A function ϕ : Rn → R is said to be K-periodic if for all integers k1, . . . , kn and all x ∈ Rn

ϕ(x1 + k1, . . . , xn + kn) = ϕ(x).

Introduce the spaces

V# =
{
v ∈ L2(K; Rnm) | v = (v1, . . . , vm), vj = ∇uj, uj ∈W 1

2 loc(Rn), uj isK − periodic, j = 1, . . . ,m
}
,

N# =
{
η ∈ L2(K; Rnm) | η = (η1, . . . , ηm), ηj =

l0∑
l=1

Tl∇ujl, ujl ∈W 1
2 loc(Rn), ujl isK − periodic, (2.6)

l = 1, . . . , l0 = n(n− 1)/2, j = 1, . . . ,m
}
·

Here by Tl, l = 1, . . . , l0, we denote arranged in a given order all skew-symmetric n× n-matrices with only two
nonzero entries equal to +1 and −1 respectively.

It is well known, see, for instance, Zhikov et al. [10], that

L2(K; Rnm) = V# ⊕N# ⊕Rnm

and that there exists a constant c0 such that the elements ujl in (2.6) can be chosen so that

‖ |∇ujl| ‖L2(K) ≤ c0‖η‖, l = 1, . . . , l0; j = 1, . . . ,m.

By construction, V# × N# is the closure in L2(K; Rnm) × L2(K; Rnm) of the kernel of the operator
A = (curl,div)m in the space of K-periodic functions from C∞(Rn; Rnm) × C∞(Rn; Rnm) with zero mean
value.

Denote, for (ξ′, ξ′′) ∈ Rnm ×Rnm,

QF0(ξ′, ξ′′) = inf
v∈V#

inf
η∈N#

∫
K

F0(ξ′ + v(x), ξ′′ + η(x))dx. (2.7)

By virtue of H1–H4, the function QF0 is the A-quasiconvex envelope of F0 for the operator A = (curl,div)m.
We emphasize that A = (curl,div)m has a constant rank, see Murat [7], what is essential for Proposition 2.2
below.

Let us recall, for convenience of the reader, the results on A-quasiconvexity from Fonseca and Müller [3],
reformulated for the case A = (curl,div)m.

Definition 2.2. A continuous function F : Rnm ×Rnm → R is said to be A-quasiconvex if

F (ξ′, ξ′′) ≤
∫
K

F (ξ′ + v(x), ξ′′ + η(x))dx

for all (ξ′, ξ′′) ∈ Rnm ×Rnm and all (v, η) ∈ C∞(Rn; Rnm ×Rnm) such that

A(v, η) = 0, (v, η) isK − periodic,
∫
K

(v(x), η(x))dx = 0.
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Definition 2.3. Given a continuous function F : Rnm ×Rnm → R we define the A-quasiconvex envelope of
F at (ξ′, ξ′′) ∈ Rnm ×Rnm as

QF (ξ′, ξ′′) = inf

{∫
K

F (ξ′ + v(x), ξ′′ + η(x))dx | (v, η) ∈ C∞(Rn; Rnm ×Rnm), A(v, η) = 0,

(v, η) isK − periodic,
∫
K

(v(x), η(x))dx = 0

}
·

Proposition 2.1 (Fonseca and Müller [3]). If F : Rnm × Rnm → R is upper semicontinuous then QF is
A-quasiconvex and upper semicontinuous. Moreover, QF is Λ-convex, i.e. for all 0 < t < 1

QF (tξ′ + (1− t)z′, tξ′′ + (1− t)z′′) ≤ tQF (ξ′, ξ′′) + (1− t)QF (z′, z′′) whenever (ξ′ − z′, ξ′′ − z′′) ∈ Λ

where

Λ =
⋃

e∈Rn, |e|=1

{
(ξ′, ξ′′) ∈ Rnm ×Rnm | ξ′ = (α1e, . . . , αme),

αj ∈ R, j = 1, . . . ,m, ξ′′ = (ξ′′ 1, . . . , ξ′′m), 〈ξ′′ j , e〉 = 0, j = 1, . . . ,m
}
·

(2.8)

Proposition 2.2 (Fonseca and Müller [3]). Let Ω′ ⊂ Rn be a bounded open domain, let 1 ≤ q <∞ and suppose
that F : Ω′×Rl×Rnm×Rnm → R is measurable in x ∈ Ω′ and continuous in (z, ξ′, ξ′′) ∈ Rl×Rnm×Rnm,
and that for a.e. x ∈ Ω′ and all z ∈ Rl the mapping (ξ′, ξ′′)→ F (x, z, ξ′, ξ′′) is A-quasiconvex. Assume further
that there exists a locally bounded nonnegative function ϕ : Ω′ ×Rl → R such that

0 ≤ F (x, z, ξ′, ξ′′) ≤ ϕ(x, z)(1 + |ξ′|q + |ξ′′|q).

If
wk → w0 in measure in Ω′

and
(vk, ηk) ⇀ (v0, η0) weakly in Lq(Ω′; Rnm ×Rnm), A(vk, ηk) = 0 in Ω′

then ∫
Ω′
F (x,w0(x), v0(x), η0(x))dx ≤ lim

k→∞
inf
∫

Ω′
F (x,wk(x), vk(x), ηk(x))dx.

We shall need a few additional notions.

Definition 2.4. A continuous function h : Rnm × Rnm → R is said to be A-quasiaffine if h and −h
are A-quasiconvex.

Definition 2.5. A continuous function F : Rnm ×Rnm → R is said to be A-polyconvex if

F (ξ′, ξ′′) = ϕ(h1(ξ′, ξ′′), . . . , hr0(ξ′, ξ′′))

where the functions hr, r = 1, . . . , r0, are A-quasiaffine and the function ϕ : Rr0 → R is convex.
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Definition 2.6. Given a bounded below continuous function F0 : Rnm×Rnm → R we define the A-polyconvex
envelope of F0 at (ξ′, ξ′′) ∈ Rnm ×Rnm as

PF0(ξ′, ξ′′) = sup
{
F (ξ′, ξ′′) | F is A-polyconvex, F (z′, z′′) ≤ F0(z′, z′′) for all (z′, z′′) ∈ Rnm ×Rnm

}
·

Definition 2.7. A function F : Rnm → R is said to be isotropic if there exists a function ϕ : R → R such
that for all z ∈ Rnm F (z) = ϕ(|z|).

Now we are able to formulate the main results of this paper.

Theorem 2.1. Let the hypotheses H1–H4 hold. Then the functional

(v, η)→
∫

Ω

QF0(v(x) + g(x), η(x) + f(x))dx

is sequentially weakly lower semicontinuous on V × N for every fixed pair (g, f) ∈ L2(Ω; Rnm) × L2(Ω; Rnm)
and

wcl Z(g, f) =
{

(v, η) ∈ V ×N |
∫

Ω

QF0(v(x) + g(x), η(x) + f(x))dx = 0
}
·

Theorem 2.2. Let the hypotheses H1–H4 hold and let the functions Fs, s = 1, . . . , s0, be isotropic. Then for
every (ξ′, ξ′′) ∈ Λ

QF0(ξ′, ξ′′) = PF0(ξ′, ξ′′)

= inf
σ∈S, σ=σ(x1)

inf
v∈V#, v=v(x1)

inf
η∈N#, η=η(x1)

∫
K

{
s0∑
s=1

σs(x1)[Fs(v(x1) +Rξ′) + F ∗s (η(x1) +Rξ′′)]

}
dx

where Rξ′ = (Rξ′1, . . . , Rξ′m), Rξ′′ = (Rξ′′1, . . . , Rξ′′m) and R ∈ SO(n) is such that the vectors Rξ′1, . . . , Rξ′m

are parallel to e1 = (1, 0, . . . , 0) and the vectors Rξ′′1, . . . , Rξ′′m are orthogonal to e1.

3. Auxiliary results

Throughout the paper the constants whose precise values are not important we shall denote by c, if necessary,
we shall write, for instance, c(n,Ω) to indicate that this particular constant depends only on n and Ω. For a
measurable set E ⊂ Rn by |E| we shall denote the Lebesgue measure of E, the characteristic function of E we
shall denote by χE .

Lemma 1. For every fixed f ∈ L2(Ω; Rnm) and σ ∈ S

∫
Ω

s0∑
s=1

σs(x)F ∗s (f(x))dx =
∫
Ω

{
s0∑
s=1

σs(x) sup
zs∈Rnm

[〈zs, f(x)〉 − Fs(zs)]
}

dx

= sup
α∈L2(Ω;Rnm)

∫
Ω

{
s0∑
s=1

σs(x)[〈α(x), f(x)〉 − Fs(α(x))]

}
dx.

(3.1)

Proof. Let us denote by βs(x) the maximizer of the expression

〈β, f(x)〉 − Fs(β)
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over β ∈ Rnm. By virtue of H1–H4, the element βs(x) is uniquely defined and

|βs(x)| ≤ c1(|f(x)| + 1). (3.2)

Let ε > 0 be given. There exists a closed set D ⊂ Ω such that |Ω \ D| < ε and f is continuous on D. The
values |f(x)| on D are bounded too. We want to show that βs(·) is continuous on D. Let a sequence {xk} ⊂ D
converges to some x0 ∈ D. Without loss of generality we can assume that the sequence {βs(xk)} converges to
an element β0 ∈ Rnm. Elements βs(xk) satisfy the Euler equation

F ′s(βs(xk)) = f(xk), k = 1, 2, . . .

We can pass to the limit k →∞ in these relationships (hypothesis H1) what gives

F ′s(β0) = f(x0).

But F ′s(βs(x0)) = f(x0) and from H4 it follows immediately that β0 = βs(x0). Therefore, βs is continuous on
D. From this, from arbitrariness of ε > 0 and from the estimate (3.2) it follows that βs is measurable on Ω and
that βs ∈ L2(Ω; Rnm). Clearly, the function α0, defined as

α0(x) =
s0∑
s=1

σs(x)βs(x), x ∈ Ω,

belongs to L2(Ω; Rnm), and, by construction of α0,

∫
Ω

{
s0∑
s=1

σs(x)[〈α0(x), f(x)〉 − Fs(α0(x))]

}
dx =

∫
Ω

{
s0∑
s=1

σs(x)F ∗s (f(x))

}
dx.

On the other hand, the functions σs are nonnegative and for every α ∈ L2(Ω; Rnm)

∫
Ω

{
s0∑
s=1

σs(x)[〈α(x), f(x)〉 − Fs(α(x))]

}
dx ≤

∫
Ω

{
s0∑
s=1

σs(x) sup
zs∈Rnm

[〈zs, f(x)〉 − Fs(zs)]
}

dx

what concludes the proof. �

Lemma 3.2. Let g, f ∈ L2(Ω; Rnm) be fixed. Then

inf
σ∈S

sup
α∈L2(Ω;Rnm)

∫
Ω

{
s0∑
s=1

σs(x)Fs(g(x)) −
s0∑
s=1

σs(x)Fs(α(x)) + 〈α(x), f(x)〉 − 〈g(x), f(x)〉
}

dx

=
∫
Ω

{
inf
θ∈S0

[
s0∑
s=1

θsFs(g(x)) +
s0∑
s=1

θsF
∗
s (f(x)) − 〈g(x), f(x)〉

]}
dx.

(3.3)

Proof. By virtue of Lemma 3.1, we can bring the supremum over α inside the integral. Thus, the expression in
the left hand side of (3.3) is equal to

inf
σ∈S

∫
Ω

{
s0∑
s=1

σs(x)[Fs(g(x)) + F ∗s (f(x))] − 〈g(x), f(x)〉
}

dx. (3.4)
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Let Ω′ ⊂ Ω be the set of all Lebesgue points for all functions g(·), f(·), Fs(g(·)), F ∗s (f(·)), s = 1, . . . , s0. Clearly
|Ω′| = |Ω|. Define sets E0, E1, . . . , Es0 as

E0 = ∅,
Es =

{
x ∈ Ω′ \ (E0

⋃
E1

⋃
· · ·
⋃
Es−1) | Fs(g(x)) + F ∗s (f(x))

≤ min
l=s+1,...,s0

[Fl(g(x)) + F ∗l (f(x))]
}
, s = 1, . . . , s0 − 1,

Es0 = Ω′ \
s0−1⋃
s=1

Es.

By construction, the sets Es are measurable, Es1
⋂
Es2 = ∅ if s1 6= s2,

s0⋃
s=1

Es = Ω′ and the inner infimum over

θ ∈ S0 in the right hand side of (3.3) for a.e. x ∈ Ω is attained at θ = θ(x),

θ(x) = (χE1(x), . . . , χEs0 (x)), x ∈ Ω′,
θ(x) = (1, 0, . . . , 0), x ∈ Ω \ Ω′.

The function σ0, defined as σ0(x) = θ(x), x ∈ Ω, belongs to S, hence, the right hand side in (3.3) is greater
than or equal to the left hand side in (3.3). The inverse inequality is obvious. �

We recall that the expression in square brackets in the right hand side of (3.3) is equal to F(θ, g(x), f(x)),
but the integrand in the right hand side of (3.3) is equal to F0(g(x), f(x)). In turn, the integrand in (3.4) is
equal to F(σ(·), g(·), f(·)). Thus, we have the following:

Corollary 3.1. For every fixed g, f ∈ L2(Ω; Rnm)∫
Ω

F0(g(x), f(x))dx = inf
σ∈S

∫
Ω

F(σ(x), g(x), f(x))dx.

Corollary 3.2. For every (ξ′, ξ′′) ∈ Rnm ×Rnm

QF0(ξ′, ξ′′) = inf
σ∈S

inf
v∈V#

inf
η∈N#

∫
K

{
s0∑
s=1

σs(x)[Fs(v(x) + ξ′) + F ∗s (η(x) + ξ′′)− 〈ξ′, ξ′′〉
}

dx.

Let us introduce, for a given σ ∈ S, the functional

J(σ, ·, ·) : L2(Ω; Rnm)× L2(Ω; Rnm)→ R, J(σ, g, f) =
∫

Ω

F(σ(x), g(x), f(x))dx.

Lemma 3.3. The functional J(σ, ·, ·) is continuous and Gateaux differentiable.

Proof. The proof follows immediately from hypotheses H1–H4. �

Lemma 3.4. For every fixed σ ∈ S, g, f ∈ L2(Ω; Rnm) the functional

J(σ, g + ·, f + ·) : V ×N → R,

J(σ, g + v, f + η) =
∫
Ω

F(σ(x), g(x) + v(x), f(x) + η(x))dx
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is continuous, Gateaux differentiable, strictly convex and

J(σ, g + v, f + η) ≥ 0 for all (v, η) ∈ V ×N ,
J(σ, g + v, f + η) ≥ c(ν1, g, f)(‖v‖2 + ‖η‖2 − 1) for all (v, η) ∈ V ×N

for some positive constant c(ν1, g, f).

Proof. The statements of Lemma are straight consequences from hypotheses H1–H4, inequalities (2.2) and the
fact that N is the orthogonal complement of V. �

Lemma 3.5. For every fixed σ ∈ S, g, f ∈ L2(Ω; Rnm) the functional J(σ, g+ ·, f+ ·) attains its minimum over
(v, η) ∈ V ×N on a unique pair (v(σ), η(σ)) defined by the relationship (2.4) and J(σ, g+ v(σ), f + η(σ)) = 0.

Proof. The existence of an unique minimizer for the functional J(σ, g+·, f+·) on V×N is a straight consequence
from Lemma 3.4 and the reflexivity of Lebesgue spaces Lp for 1 < p < ∞. Let the pair (v(σ), η(σ)) ∈ V × N
satisfies (2.4). For every ξ′′ ∈ Rnm and a.e. x ∈ Ω the equation

s0∑
s=1

σs(x)F ′s(z) = ξ′′

with respect to z ∈ Rnm has an unique solution. From this, the definition of conjugate functions, the properties
of σ ∈ S (σ represents a s0-tuple of characteristic functions of pairwise disjoint sets) and (2.4) it follows

s0∑
s=1

σs(x)F ∗s (f(x) + η(σ)(x)) = 〈g(x) + v(σ)(x), f(x) + η(σ)(x)〉 a.e.x ∈ Ω.

This and the analytical expressions (2.1) for F(θ, ξ′, ξ′′) give that

F(σ(x), g(x) + v(σ)(x), f(x) + η(σ)(x)) = 0 a.e.x ∈ Ω.

Since J(σ, g + v, f + η) ≥ 0 for all (v, η) ∈ V × N , then (v(σ), η(σ)) is the minimizer of J(σ, g + ·, f + ·) on
V ×N . �

Lemma 3.6. Let the sequences

{εk} ⊂ R, {σk} ⊂ S, {(vk, ηk)} ⊂ V ×N , {(ak, bk)} ∈ L2(Ω; Rnm)× L2(Ω; Rnm)

be such that

εk > 0, εk → 0 as k →∞, ‖(ak, bk)‖ → 0 as k →∞, J(σk, g + ak + vk, f + bk + ηk) < εk, k = 1, 2, . . .

Then
(i) ‖(vk − v(σk), ηk − η(σk)‖ → 0 as k→∞;

(ii) there exists a subsequence, still denoted by {(vk, ηk)}, such that

(vk, ηk) ⇀ (v0, η0) weakly in V ×N as k →∞
and
(v0, η0) ∈ wclZ(g, f).

Proof. Recall that by definition and Lemma 3.5

0 = J(σk, g + v(σk), f + η(σk)) ≤ J(σk, g + v, f + η) for all (v, η) ∈ V ×N .
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Since the pair (v(σk), η(σk)) is the minimizer, then the Gateaux derivative J ′(σk, g + v(σk), f + η(σk)) as an
element of L2(Ω; Rnm)× L2(Ω; Rnm) is orthogonal to V ×N . Hence,

J(σk, g + ak + vk, f + bk + ηk)− J(σk, g + v(σk), f + η(σk))
−〈J ′(σk, g + v(σk), f + η(σk)), (vk − v(σk), ηk − η(σk))〉 < εk, k = 1, 2, . . . ,

or, what is the same,∫
Ω

{
s0∑
s=1

σks (x)
[
Fs(g(x) + ak(x) + vk(x)) − Fs(g(x) + v(σk)(x))

− 〈F ′s(g(x) + v(σk)(x)), vk(x) − v(σk)(x)〉
+ F ∗s (f(x) + bk(x) + ηk(x)) − F ∗s (f(x) + η(σk)(x))
− 〈F ∗s ′(f(x) + η(σk)(x)), ηk(x)− η(σk)(x)〉

]
− 〈g(x), ηk(x) − η(σk)(x)〉 − 〈f(x), vk(x)− v(σk)(x)〉

}
dx

< εk,
k = 1, 2, . . .

(3.5)

Since F ′s and F ∗s
′ are continuous, then H4 implies

Fs(z+ ξ)−Fs(z)−〈F ′s(z), ξ〉 ≥ ν4|ξ|2/2, F ∗s (z+ ξ)−F ∗s (z)−〈F ∗s
′(z), ξ〉 ≥ ν4|ξ|2/2 for all z, ξ ∈ Rnm. (3.6)

By virtue of Lemma 3.4, the set Z(g, f) is bounded, hence, from (3.5) and (3.6) it follows∫
Ω

{
|vk(x) + ak(x) − v(σk)(x)|2 + |ηk(x) + bk(x)− η(σk)(x)|2

}
dx ≤ 8εk/ν4 + c(ν3, ν4, ‖g‖, ‖f‖)(‖ak‖2 + ‖bk‖2)

what together with the assumptions of lemma give the statements of lemma. �

Corollary 3.3. For every fixed g, f ∈ L2(Ω; Rnm) the set Z(g, f) is bounded,

Z(g, f) =
{

(v, η) ∈ V ×N | J(σ, g + v, f + η) = 0, σ ∈ S
}

and the closure cl Z(g, f) of the set Z(g, f) in the strong topology is equal to

cl Z(g, f) =
{

(v, η) ∈ V ×N | J(σ, g + v, f + η) = 0, σ ∈ co S
}
·

Proof. The boundedness of Z(g, f) is a straight consequence from Lemma 3.4, and the representation for Z(g, f)
follows from Lemma 3.5.

Let {σk} ⊂ S and let the sequence {v(σk), η(σk)} converges strongly to an element (v0, η0). Without loss
of generality we can assume that the sequence {σk} converges weak -∗ in L∞(Ω; Rs0) to an element σ0 ∈ co S,
and also that the sequence {v(σk), η(σk)} converges almost uniformly in Ω. This and the hypotheses H1-H4
ensure that we can pass to the limit

0 = J(σk, g + v(σk), f + η(σk))→ J(σ0, g + v0, f + η0) as k →∞.

On the other hand, let us suppose that J(σ0, g + vo, f + η0) = 0 for some triple (σ0, v0, η0) ∈ co S × V × N .
Since the integrand in J depends on σ in an affine way, then there exists a sequence {σk} ⊂ S such that

σk ⇀ σ0 weak− ∗ ask →∞,
J(σk, g + v0, f + η0) ≤ 1/k, k = 1, 2, . . .
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From this and Lemma 3.6 it follows that the sequence {v(σk), η(σk)} converges strongly to (v0, η0) as k →∞.
�

4. Proof of Theorem 2.1

Throughout this section the pair (g, f) ∈ L2(Ω; Rnm)× L2(Ω; Rnm) is fixed.
The function F0,

F0(ξ′, ξ′′) = inf
θ∈S

{
s0∑
s=1

θs[Fs(ξ′) + F ∗s (ξ′′)− 〈ξ′, ξ′′〉
}

is continuous and satisfies inequalities (2.2). From this, the definition of spaces V and N , Corollary 3.2 and
Young’s inequality we get that for all ξ′, ξ′′ ∈ Rnm

QF0(ξ′, ξ′′) = inf
σ∈S

inf
v∈V#

inf
η∈N#

∫
K

{
s0∑
s=1

σs(x)[Fs(v(x) + ξ′) + F ∗s (η(x) + ξ′′)]− 〈v(x) + ξ′, η(x) + ξ′′〉
}

dx

≥ inf
v∈V#

inf
η∈N#

∫
K

{
ν1[|v(x) + ξ′|2 + |η(x) + ξ′′|2]− 〈ξ′, ξ′′〉

}
dx

≥ ν1(|ξ′|2 + |ξ′′|2)− 〈ξ′, ξ′′〉·

(4.1)

0 ≤ QF0(ξ′, ξ′′) ≤ F0(ξ′, ξ′′) ≤ (1 + ν2)(|ξ′|2 + |ξ′′|2 + 2). (4.2)

By Proposition 2.1, the function QF0 is convex with respect to the characteristic cone Λ defined by (2.8). The
cone Λ contains all basis vectors in Rnm×Rnm, hence, QF0 is separately convex what gives that QF0 is locally
Lipschitz, see Dacorogna [2] or Ball et al. [1].

The continuity of QF0 and estimates (4.1) and (4.2) are sufficient for that the mapping

(x, z, ξ′, ξ′′)→ F̃(x, z, ξ′, ξ′′) = QF0(z′ + ξ′, z′′ + ξ′′), z = (z′, z′′) ∈ Rnm ×Rnm

withy w(x) = (g(x),f(x)) satisfies all assumptions of Proposition 2.2. This gives that the functional

(v, η)→
∫

Ω

QF0(g(x) + v(x), f(x) + η(x))dx (4.3)

is sequentially weakly lower semicontinuous on V ×N .
As an immediate consequence we have that the set

QZ(g, f) =
{

(v, η) ∈ V ×N |
∫

Ω

QF0(g(x) + v(x), f(x) + η(x))dx = 0
}

is bounded (estimates (4.1)) and weakly closed.
Since

0 ≤ QF0(ξ′, ξ′′) ≤ F(θ, ξ′, ξ′′),

then, by virtue of Corollary 3.3,
Z(g, f) ⊂ QZ(g, f),

and, as a straight consequence
wcl Z(g, f) ⊂ QZ(g, f).

It remains to show that
QZ(g, f) ⊂ wcl Z(g, f).
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Let (v0, η0) ∈ QZ(g, f). We want to show that there exists a sequence {(σk, v(σk), η(σk))} ⊂ S × V ×N such
that

(v(σk), η(σk)) ⇀ (v0, η0) weakly ask →∞.
It is well known, see, for instance, Zhikov et al. [10], that the space N has the representation (we recall that Ω
is homeomorphic to the unit ball)

N =
{
η ∈ L2(Ω; Rnm) | η = (η1, . . . , ηm), ηj =

l0∑
l=1

Tl∇ujl, ujl ∈W 1
2 (Ω), l = 1, . . . , l0; j = 1, . . . ,m

}
(4.4)

and there exists a constant c(n,Ω) such that the functions ujl in (4.4) can be chosen so that

‖ujl‖W1
2 (Ω) ≤ c(n,Ω)‖η‖, l = 1, . . . , l0; j = 1, . . . ,m. (4.5)

Here matrices Tl are the same as in the definition of the space N# by (2.6). The representation (4.4) and
estimate (4.5) ensure that N contains a dense subset of piecewise constant elements. Clearly, the same property
has the space V.

Let ε > 0 be given. The estimates (4.1, 4.2) and continuity of QF0 ensure that there exist piecewise constant
elements (vε, ηε) ∈ V ×N and (gε, fε) ∈ L2(Ω; Rnm) such that

‖(vε, ηε)− (v0, η0)‖ < ε/8, ‖(gε, fε)− (g, f)‖ < ε/8,
∫
Ω

QF0(vε(x) + gε(x), ηε(x) + fε(x))dx < ε/8. (4.6)

In addition, the elements vε, ηε, gε, fε can be chosen so that there exists a partition

Ω = Ω0 ∪E1 ∪ · · · ∪Er0 , |Ω0| < ε,

such that {Er} are pairwise disjoint cubes,

Er = xr + τrK, r = 1, . . . , r0,

that in every Er the functions vε, ηε, gε, fε are constant, say

vε(x) + gε(x) = ar ∈ Rnm, ifx ∈ Er,
ηε(x) + fε(x) = br ∈ Rnm, if x ∈ Er,

r = 1, . . . , r0,

and that for all σ ∈ S∫
Ω0

∣∣F(σ(x), vε(x) + gε(x), ηε(x) + fε(x))
∣∣dx+

∫
Ω0

∣∣QF0(vε(x) + gε(x), ηε(x) + fε(x))
∣∣dx < ε/8. (4.7)

The estimates (4.6) and (4.7) give

0 ≤
r0∑
r=1

|Er|QF0(ar, br) < ε/4. (4.8)

Denote by V#(Er) and N#(Er) the spaces defined by (2.6) with Er instead of K, r = 1, . . . , r0. Then, after
an obvious transform of co-ordinates, from Corollary 3.2 it follows

|Er|QF0(ar, br) = inf
v∈V#(Er)

inf
η∈N#(Er)

inf
σ∈S

∫
Er

F(σ(x), v(x) + ar, η(x) + ar)dx.
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By continuity of F and by estimates (2.2), there exist piecewise constant elements

(σr, vr, ηr) ∈ S × V#(Er)×N#(Er)

such that
|Er|QF0(ar, br) ≥

∫
Er

F(σr(x), vr(x) + ar, ηr(x) + br)dx− δ/2, δ = ε/(2r0 + 1).

Denote by wrj and wrjl, l = 1, . . . , l0; j = 1, . . . ,m, the functions from the representation (2.6) for vr and ηr
respectively (more precisely, analogues of (2.6) with Er instead of K), and let us extend these functions via
Er-periodicity to the whole Rn. Then, for any integer k = 1, 2, . . .∫

Er

F
(
σr(kx),

(
1
k
∇wr1(kx) + a1

r , . . . ,
1
k
∇wrm(kx) + amr

)
,(

1
k

l0∑
l=1

Tl∇wr1l(kx) + b1r, . . . ,
1
k

l0∑
l=1

Tl∇wrml(kx) + bmr

))
dx

≤ |Er|QF0(ar, br) + δ/2.

(4.9)

Now, by means of appropriate cut-off functions, which are equal to zero near the boundary of Er, we obtain
the existence of elements

(vrk, ηrk) ∈ V#(Er)×N#(Er), k = 1, 2, . . . ,
which are equal to zero near the boundary of Er, such that for k large enough, k ≥ c(δ, vr, ηr, ar, br),∫

Er

F(σr(kx), vrk(x) + ar, ηrk(x) + br)dx ≤ |Er|QF0(ar, br) + δ (4.10)

and

(vrk, ηrk) ⇀ 0 weakly ask →∞.

This procedure and the estimates (4.7)-(4.10) give that for

σk = σk(x) =


r0∑
r=1

χEr(x)σr(kx), x ∈ Ω \ Ω0.

(1, 0, . . . , 0) x ∈ Ω0,

(vk, ηk) = (vk(x), ηk(x)) =
r0∑
r=1

χEr(x)
(
vrk(x), ηrk(x)

)
, x ∈ Ω,

and for k large enough ∫
Ω

F
(
σk(x), vε(x) + gε(x) + vk(x), ηε(x) + fε(x) + ηk(x)

)
dx

<

∫
Ω0

QF0

(
vε(x) + gε(x), ηε(x) + fε(x)

)
dx+ 1/2ε+ δr0

< 2ε.

In addition, {(vk, ηk)} ⊂ V ×N and (vk, ηk) ⇀ 0 weakly ask →∞.
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After an appropriate diagonal process with ε→ 0 and k →∞ we have a new sequence

{(σk, vk, ηk)} ⊂ S × V ×N

such that
(vk, ηk) ⇀ (v0, η0) weakly as k →∞,
J(σk, vk + g + (gk − g), ηk + f + (fk − f))→ 0 as k →∞,
(gk, fk) = (gε + vε − g − v0, fε + ηε − f − η0)→ 0 as k →∞.

These convergences and Lemma 3.6 give that (v0, η0) ∈ wcl, Z(g, f), what completes the proof. �

5. Evaluation of QF0 on the characteristic cone Λ

In the first part of this section we shall give the proof of Theorem 2.2.
Recall that the characteristic cone Λ is

Λ =
⋃

e∈Rn, |e|=1

{
(ξ′, ξ′′) ∈ Rnm ×Rnm | ξ′ = (α1e, . . . , αme),

αj ∈ R, j = 1, . . . ,m; ξ′′ = (ξ′′ 1, . . . , ξ′′m), 〈ξ′′ j , e〉 = 0, j = 1, . . . ,m
}
·

From Proposition 2.1 it follows immediately that every A-quasiaffine function h is affine with respect to Λ, i.e.

h
(
λ(ξ′, ξ′′) + (1− λ)(z′, z′′)

)
= λh(ξ′, ξ′′) + (1− λ)h(z′, z′′)

whenever (ξ′, ξ′′)− (z′, z′′) ∈ Λ and 0 ≤ λ ≤ 1. (5.1)

The linear hull of Λ is equal to Rnm×Rnm, therefore, from Murat [7] it follows that the function h is a polynom
of degree less than or equal to n. After that, a simple observation gives that h has the representation

h(ξ′, ξ′′) = c0 + 〈a, ξ′〉+ 〈b, ξ′′〉+ γ〈ξ′, ξ′′〉+
∑
α
cαXα(ξ′) if n ≥ 3,

h(ξ′, ξ′′) = c0 + 〈a, ξ′〉+ 〈b, ξ′′〉+ γ〈ξ′, ξ′′〉+
∑
α
cαXα(ξ′)

+
∑
α
dαYα(ξ′′) if n = 2,

(5.2)

where a, b ∈ Rnm; c0, γ, cα, dα are arbitrary constants, Xα are minors of the n × m-matrix X constructed
from ξ′ = (ξ′ 1, . . . , ξ′m) with ξ′ j as columns, Yα are minors of the n × m-matrix Y constructed from ξ′′ =
(ξ′′ 1, . . . , ξ′′m) with ξ′′ j as columns.

Indeed, let us show, for instance, that, if n ≥ 3, then h is affine with respect to ξ′′. Denote by hij n × n-
matrices, i, j = 1, . . . ,m, which corresponds to the second derivative of h with respect to ξ′′ i and ξ′′ j from
the representation ξ′′ = (ξ′′ 1, . . . , ξ′′m). Clearly, hii are symmetric matrices and hji = htij where htij is the
transpose to hij matrix. From (5.1) it follows immediately that

m∑
i,j=1

〈hijzi, zj〉 = 0 whenever (0, (z1, . . . , zm)) ∈ Λ. (5.3)

If one chooses z2 = · · · = zn = 0 then there are not restrictions on z1 ∈ Rn and from (5.3) it follows that
h11 = 0 (hii are symmetric). Exactly in the same way we get hii = 0, i = 1, . . . ,m. In the second step we
choose z3 = · · · = zm = 0. (5.3) gives

〈h12z
1, z2〉 = 0 for all z1, z2 ∈ Rn,
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because for n ≥ 3 every element of the form

(0, (z1, z2, 0, . . . , 0))

belongs to Λ. Thus, hij = 0, i, j = 1, . . . ,m, and, as a consequence, h is affine with respect to ξ′′ if n ≥ 3.
Other properties of h can be shown in an analogous way, we only point out that for a fixed ξ′′ the function

ξ′ → h(ξ′, ξ′′) must have the same properties as quasiaffine functions for the standard variational case, i.e., with
the operator (curl)m.

Now, as we know the type of all A-quasiaffine functions, exactly in the same way as in Dacorogna [2] one
can show that for a given continuous function Φ : Rnm ×Rnm its A-polyconvex envelope is

PΦ(ξ′.ξ′′) = sup

{
inf

ζ′,ζ′′∈Rnm

[
〈z′, ξ′ − ζ′〉+ 〈z′′, ξ′′ − ζ′〉+ γ〈ξ′, ξ′′〉 − γ〈ζ′, ζ′′〉+

∑
α

cα
(
Xα(ξ′)−Xα(ζ′)

)
+
∑
α

dα
(
Yα(ξ′′)− Yα(ζ′′)

)
+ Φ(ζ′, ζ′′)

] ∣∣∣ z′, z′′ ∈ Rnm, (5.4)

γ, cα, dα ∈ R, dα = 0 if n > 2

}
·

We want to estimate PF0 from below on Λ. Clearly, one will get such an estimate by choosing in the repre-
sentation (5.4) for PF0 some parameters in a special way, say γ = −1, cα = dα = 0. Such a choice gives, for
(ξ′, ξ′′) ∈ Λ,

F0(ξ′, ξ′′) ≥ PF0(ξ′, ξ′′) ≥ sup
z′,z′′∈Rnm

inf
ζ′,ζ′′∈Rnm

{
〈z′, ξ′〉+ 〈z′′, ξ′′〉

+ min
s

[Fs(ζ′) + F ∗s (ζ′′)]− 〈z′, ζ′〉 − 〈z′′, ζ′′〉
}
·

(5.5)

By bringing the minimum over s outsaid the braces and by using the definition of conjugate functions (recall
that Fs are convex and 〈ξ′, ξ′′〉 = 0), we get

PF0(ξ′, ξ′′) ≥ sup
z′,z′′∈Rnm

min
s

{
−F ∗s (z′)− Fs(z′′) + 〈z′, ξ′〉+ 〈z′′, ξ′′〉

}
= inf
θ∈coS0

sup
z′,z′′∈Rnm

{
−

s0∑
s=1

θs
[
F ∗s (z′) + Fs(z′′)

]
+ 〈z′, ξ′〉+ 〈z′′, ξ′′〉

}

= inf
σ∈S σ=σ(x1)

sup
z′,z′′∈Rnm

1∫
0

{
−

s0∑
s=1

σs(x1)
[
F ∗s (z′) + Fs(z′′)

]
+ 〈z′, ξ′〉+ 〈z′′, ξ′′〉

}
dx1

= inf
σ∈S σ=σ(x1)

inf
ϕ∈L0

2

inf
ψ∈L0

2

1∫
0

{
s0∑
s=1

σs(x1)
[
Fs(ϕ(x1) + ξ′) + F ∗s (ψ(x1) + ξ′′)

]}
dx1

(5.6)

where by L0
2 is denoted the subspace of L2((0, 1); Rnm) of functions with the zero mean value.

The functions Fs and F ∗s are isotropic and (ξ′, ξ′′) ∈ Λ, therefore, by introducing a rotation R ∈ SO(n) such
that the vectors Rξ′ j , j = 1, . . . ,m, are parallel to e1 = (1, 0, . . . , 0) and the vectors Rξ′′ j , j = 1, . . . ,m, are
orthogonal to e1, we can rewrite (5.6) as

PF0(ξ′, ξ′′) ≥ inf
σ∈S σ=σ(x1)

inf
ϕ∈L0

2

inf
ψ∈L0

2

∫
K

{
s0∑
s=1

σs(x1)
[
Fs(ϕ(x1) +Rξ′) + F ∗s (ψ(x1) +Rξ′′)

]}
dx. (5.7)
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Since Fs and F ∗s are isotropic, then from Euler equations it follows that the inner infimum over (ϕ,ψ) in (5.7) is
attained on elements (ϕ(σ), ψ(σ)) such that for a.e. x1 ∈ (0, 1) the vectors ϕ(σ)(x1) and ψ(σ)(x1) are parallel
to Rξ′ and Rξ′′ respectively. In turn, the special structure of elements of Λ (clearly (Rξ′, Rξ′′) ∈ Λ) gives that
the elements ϕ(σ) and ψ(σ) coincide with some v ∈ V#, v = v(x1), and η ∈ N#, η = η(x1), respectively. Thus,
we have, for (ξ′, ξ′′) ∈ Λ,

PF0(ξ′, ξ′′) ≥ inf
σ∈S σ=σ(x1)

inf
v∈V# v=v(x1)

inf
η∈N# η=η(x1)

∫
K

{
s0∑
s=1

σs(x1)
[
Fs(v(x1) +Rξ′) + F ∗s (η(x1) +Rξ′′)

]}
dx

≥ QF0(ξ′, ξ′′). (5.8)

From definitions (2.2–2.6), Jensen’s inequality and properties of F0 it follows that PF0 is nonnegative, A-
quasiconvex and that PF0(ξ′, ξ′′) ≤ F0(ξ′, ξ′′) for all ξ′, ξ′′ ∈ Rnm. These properties ensure that

PF0(ξ′, ξ′′) ≤ QF0(ξ′, ξ′′) for all (ξ′, ξ′′) ∈ Rnm ×Rnm.

From this and estimate (5.8) follows the statement of Theorem 2.2.
In the remaining part of this section we shall give an estimate on Λ for homogenized functions.

Definition 5.1. A function Fσ : Rnm → R is said to be homogenized function (corresponding to a chosen
σ ∈ S) if for every ξ′ ∈ Rnm

Fσ(ξ′) = inf
v∈V#

∫
K

{
s0∑
s=1

σs(x)Fs(v(x) + ξ′)

}
dx. (5.9)

The corresponding conjugate function F ∗σ has the representation

F ∗σ (ξ′′) = sup
z∈Rnm

〈z, ξ′′〉 − inf
v∈V#

∫
K

{
s0∑
s=1

σs(x)Fs(v(x) + z)

}
dx


= sup

z∈Rnm

inf
η∈N#⊕Rnm

〈z, ξ′′〉+
∫
K

{
s0∑
s=1

σs(x)F ∗s (η(x)) − 〈η(x), z〉
}

dx


= inf

η∈N#

∫
K

{
s0∑
s=1

σs(x)F ∗s (η(x) + ξ′′)

}
dx.

(5.10)

Clearly, Fσ and F ∗σ are continuous convex functions and they satisfy hypothesis H2. Indeed, by analogous
constructions as in (5.10) we get that (F ∗σ )∗ = Fσ, hence, they both are convex. The estimates from below in
H2 for Fσ and F ∗σ follow from the estimates for Fs as F ∗s , from (5.9) and (5.10) and from Jensen’s inequality.
The estimates from above for Fσ and F ∗σ follow immediately from (5.9) and (5.10) with v = η = 0. Finally, the
continuity of Fσ and F ∗σ follows from H2 and convexity of Fσ and F ∗σ .

Definition 5.2. A continuous function F 1 : Rnm → R is said to be rank-one laminate if there exist a σ ∈ S,
σ = σ(x1)), and R ∈ SO(n) such that for all ξ′ ∈ Rnm

F 1(ξ′) = inf
v∈V#

∫
K

{
s0∑
s=1

σs(x1)Fs(v(x) +Rξ′)

}
dx.
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The same argument as above gives

F 1∗(ξ′′) = inf
η∈N#

∫
K

{
s0∑
s=1

σs(x1)F ∗s (η(x) +Rξ′′)

}
dx

and that F 1 and F 1∗ are continuous and convex, and satisfy H2.
Introduce the space

C2 =
{
F : Rnm → R

∣∣∣F is continuous and ‖F‖2 = sup
z∈Rnm

|F (z)|
1 + |z|2 <∞

}
·

By construction, C2 is a Banach space with the norm ‖ · ‖2.

Theorem 5.1. Let the hypotheses H1–H4 hold and let the functions Fs and F ∗s , s = 1, . . . , s0, be isotropic.
Then for every fixed homogenized function Fσ there exists a function F 1, which belongs to the closure in C2 of
the set of all rank-one laminates, such that for every (ξ′, ξ′′) ∈ Λ

Fσ(ξ′) + F ∗σ (ξ′) ≥ min
R∈SO(n)

[
F 1(Rξ′) + F 1∗(Rξ′′)

]
.

Proof. In the first step we shall prove the statement of this theorem for a piecewise constant σ ∈ S.
Let (ξ′, ξ′′) ∈ Λ and let

K = E0 ∪E1 ∪ · · · ∪Er0 , |E0| = 0, r0 = Nn,

be a partition of K by pairwise disjoint cubes Er,

Er =
{
x ∈ K | xri < xi < xri + 1/N, i = 1, . . . , n

}
, r = 1, . . . , r0,

and let σ ∈ S be constant , say σr, in every Er. From (5.9, 5.10) and Jensen’s inequality we get

Fσ(ξ′) + F ∗σ (ξ′′) ≥
r0∑
r=1

|Er|
s0∑
s=1

σrs
[
Fs(vr + ξ′) + F ∗s (ηr + ξ′′)

]
= J1,

where, for f ∈ L2(K; Rnm),

fr =
1
|Er|

∫
Er

f(x)dx,

and vr, ηr are the corresponding mean values in Er of the minimizers in the right hand side of (5.9) and (5.10)
respectively.

By construction,
r0∑
r=1

|Er |vr = 0,
r0∑
r=1

|Er|ηr = 0. (5.11)

Let R0 ∈ SO(n) be such that all components of R0ξ
′ are parallel to e1 = (1, 0, . . . , 0) and all components of

R0ξ
′′ are orthogonal to e1. Let ar and br be projections of vr and ηr respectively on the subspace generated by

(ξ′, ξ′′), i.e.

ar = (〈v1
r , e〉e, . . . 〈vmr , e〉e),

br = (b1r − 〈b1r, e〉e, . . . , bmr − 〈bmr , e〉e),
r = 1, . . . , r0, e = R−1

0 e1.
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Since Fs, F ∗s are isotropic, then

Fs(vr + ξ′) ≥ Fs(ar + ξ′), F ∗s (ηr + ξ′′) ≥ F ∗s (br + ξ′′)

and

J1 ≥
r0∑
r=1

|Er|
s0∑
s=1

σrs
[
Fs(R0(ar + ξ′)) + F ∗s (R0(br + ξ′′))

]
=

1∫
0

{
s0∑
s=1

σ0
s(x1)

[
Fs(ϕ(x1) +R0ξ

′) + F ∗s (ψ(x1) +R0ξ
′′)
]}

dx1,

where σ0, ϕ, ψ are piecewise constant (in intervals Ir = (r − 1)Nn < x1 < rN−r, r = 1, . . . , r0) functions,

σ0(x1) = σr if x1 ∈ Ir ,
ϕ(x1) = R0ar if x1 ∈ Ir,
ψ(x1) = R0br if x1 ∈ Ir,
r = 1, . . . , r0.

By construction and by virtue of (5.11), σ0 ∈ S, the functions ϕ and ψ have zero mean value and can be treated
as elements of V# and N# respectively. That gives

Fσ(ξ′) + F ∗σ (ξ′′) ≥ inf
v∈V#

inf
η∈N#

∫
K

{
s0∑
s=1

σ0
s(x1)

[
Fs(v(x) +R0ξ

′)

+F ∗s (η(x) +R0ξ
′′)
]}

dx = F 1(R0ξ
′) + F 1∗(R0ξ

′′),

(5.12)

where the rank-one laminate F 1 is defined by σ0 ∈ S, σ0 = σ0(x1), and R = 0.
In the second step we shall consider arbitrary σ ∈ S.
Let σ0 ∈ S be chosen. For every fixed ξ′, ξ′′ the values Fσ(ξ′) and F ∗σ (ξ′′) are continuous with respect to the

convergence
σ → σ0 in measure.

Therefore, there exists a sequence {σk} ⊂ S of piecewise functions (analogous to σ in the first step), which
converges to σ0 in measure, such that for every ξ′, ξ′′

Fσk(ξ′)→ Fσ0(ξ′) as k →∞,
F ∗σk(ξ′′)→ F ∗σ0(ξ′′) as k →∞.

Fix a pair (ξ′, ξ′′) ∈ Λ and let R0 be the corresponding matrix from SO(n) from the first step.
According to the first step, for each k = 1, 2, . . . ,, there exists a rank-one laminate F 1

k such, that F 1
k does

not depend on the choice of (ξ′, ξ′′) ∈ Λ and that

Fσk(ξ′) + Fσk(ξ′′) ≥ F 1
k (R0ξ

′) + F 1
k
∗
(R0ξ

′′). (5.13)

In the left hand side of (5.13) we can pass to the limit as k →∞. It remains to show that it is possible to do
it in the right hand side of (5.13) too.

We have shown above that all functions Fσ and F ∗σ with σ ∈ S are convex and satisfy H2. Clearly, the
functions F 1

k , F
1
k
∗ have the same property. Estimates from hypothesis H2 and convexity of F 1

k and F 1
k
∗ ensure

that these functions are equi-locally Lipschitz, i.e. for every N > 0 there exists a constant L > 0 such that for
all k = 1, 2, . . . ,

|F 1
k (ξ′)− F 1

k (z′)| ≤ L|ξ′ − z′|, |F 1
k
∗(ξ′′)− F 1

k
∗(z′′)| ≤ L|z′′ − ξ′′|

whenever |ξ′|+ |ξ′′|+ |z′|+ |z′′| ≤ N.
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These properties together are sufficient for that the sequences {F 1
k } and {F 1

k
∗} are precompact in the space C2.

Without loss of generality we can assume that there exists a functions F 1 : Rnm → R, F ∗ : Rnm → R such
that

‖F 1
k − F 1‖2 → 0 as k →∞,

‖F 1
k
∗ − F ∗‖2 → 0 as k →∞.

From these convergences and inequalities from H2 it follows immediately that

F ∗ = F 1∗

and that (after the passage to the limit as k →∞ in (5.13))

Fσ0(ξ′) + F ∗σ0(ξ′′) ≥ F 1(R0ξ
′) + F 1∗(R0ξ

′′). (5.14)

�

6. Infinite number of functions

In this section we shall extend results of previous sections to the case of infinite number of functions F .
Let M be a set of functions F : Rnm → R, which satisfies the following hypotheses:

H6. Every F ∈M , together with its adjoint function F ∗, satisfies hypotheses H1–H5.
H7. For every ε > 0 there exists a finite subset Mε = {F1, . . . , Fsε} ⊂ M such that for every F ∈ M there

exists a function Fs ∈Mε such that

‖F − Fs‖2 + ‖F ∗ − F ∗s ‖2 < ε,
‖F ′ − F ′s‖1 + ‖F ∗′ − F ∗s ′‖1 < ε,

(6.1)

where the norms ‖ · ‖1 and ‖ · ‖2 are defined as

‖F‖2 = sup
z∈Rnm

{|F (z)|/(1 + |z|2)},

‖F ′‖1 = sup
z∈Rnm

{|F ′(z)|/(1 + |z|)}·

Denote by M the set of all measurable on Ω×Rnm functions Φ = Φ(x, ξ′) such that
(i) Φ together with its derivative Φ′ξ′ is measurable in x ∈ Ω and continuous in ξ′ ∈ Rnm;
(ii) for a.e. x ∈ Ω Φ(x, ·) ∈M ;
(iii) the mapping x → Φ(x, ·) ∈ M is measurable, i.e. for every δ > 0 there exists a closed set D ⊂ Ω with

|Ω \D| < δ such that for every δ′ > 0 there exists τ > 0 with the property

‖Φ(x1, ·)− Φ(x2, ·)‖2 + ‖Φ∗(x1, ·)− Φ∗(x2, ·)‖2 < δ′,
‖Φ′ξ′(x1, ·)− Φ′ξ′(x

2, ·)‖1 + ‖Φ∗ξ′ ′(x1, ·)− Φ∗ξ′
′(x2, ·)‖1 < δ′

whenever |x1 − x2| < τ and x1, x2 ∈ D.

Here and in sequal, by definition,

Φ∗(x, ξ′′) = sup
z∈Rnm

{
〈ξ′′, z〉 − Φ(x, z)

}
·

We are interested, for given g, f ∈ L2(Ω; Rnm), in the weak closure of the set

Z(g, f) =
{

(v, η) ∈ V ×N | Φ′ξ′(x, v(x) + g(x)) = η(x) + f(x) a.e. x ∈ Ω, Φ ∈ M
}
·
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Denote, for given ε > 0,

Mε =
{

Φ ∈M | Φ(x, ·) ∈Mε a.e. x ∈ Ω
}
,

Zε(g, f) =
{

(v, η) ∈ V ×N | Φ′ξ′(x, v(x) + g(x)) = η(x) + f(x) a.e. x ∈ Ω, Φ ∈ Mε

}
·

From properties of Φ ∈M it follows immediately that every Φ ∈ Mε has the representation

Φ(x, ξ′) =
sε∑
s=1

σs(x)Fs(ξ′)

with some σ ∈ Sε and Fs ∈Mε, where

Sε =
{
σ ∈ L∞(Rn; Rsε) | σ = (σ1, . . . , σsε), σj(x) = 0 or 1, j = 1, . . . , sε,

σ1(x) + · · ·+ σsε (x) = 1 a.e. x ∈ Rn
}
·

Clearly, to the sets Mε and Zε(g, f) can be applied all results from the previous sections.
In the first step we want to show that the set Z(g, f) can be approximated in the strong topology by means

of sets Zε(g, f).
Let ε0 > 0 be given and let Φ ∈M. By virtue of H6, H7 and the measurability of the mapping x→ Φ(x, ·),

for every 0 < ε < ε0 there exist a closed subset D ⊂ Ω and a function Φε ∈ Mε0 such that

|Ω \D| < ε,
‖Φ′ξ′(x, ·) − Φ′εξ′(x, ·)‖1 < ε0.

(6.2)

Let
Φ′ξ′(x, v0(x) + g(x)) = η0(x) + f(x) a.e. x ∈ Ω,
Φ′εξ′(x, vε(x) + g(x)) = ηε(x) + f(x) a.e. x ∈ Ω. (6.3)

From (6.3) and monotonicity properties of Φ′ξ′ we have

ν4‖v0 − vε‖2 ≤
∣∣∣∫
Ω

〈Φ′ξ′(x, v0(x) + g(x))− Φ′εξ′(x, v0(x) + g(x)), v0(x) − vε(x)〉dx
∣∣∣

+2ε0

∫
D

(
1 + |v0(x)| + |g(x)|

)
|v0(x)− vε(x)|dx

+2ν3

∫
Ω\D

(
1 + |v0(x)|+ |g(x)|

)
|v0(x)− vε(x)|dx.

(6.4)

From the hypotheses H6, H3 and H4 and from (6.4) with ε→ 0 (i.e. |Ω \D| → 0) we get that for ε > 0 small
enough

‖v0 − vε‖ ≤ c(ν4, ν3, g, f)ε0.

The same procedure we can repeat to the equations

Φ∗ξ′
′(x, η0(x) + f(x)) = v0(x) + g(x) a.e. x ∈ Ω,

Φ∗εξ′
′(x, ηε(x) + f(x)) = vε(x) + g(x) a.e. x ∈ Ω,

what gives an analogous estimate
‖η0 − ηε‖ ≤ c(ν4, ν3, g, f)ε0

for ε > 0 small enough.
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Here we had used the relationship
(F ′)−1 = F ∗′.

Thus, we have established that for every δ0 > 0 there exist ε0 > 0 and a corresponding finite set Mε0 ⊂M such
that

sup
(v′,η′)∈Z(g,f)

inf
(v,η)∈Zε0 (g,f)

‖(v′, η′)− (v, η)‖ < δ0,

i.e. the sets Zε(g, f) approximate the set Z(g, f) in the strong topology and

cl Z(g, f) = cl
⋃
ε>0

Zε(g, f),

wcl Z(g, f) = wcl
⋃
ε>0

Zε(g, f).

In the second step we shall show the approximability of the corresponding A-quasiconvex envelope.
Denote, for (ξ′, ξ′′) ∈ Rnm ×Rnm,

F(ξ′, ξ′′) = inf{F (ξ′) + F ∗(ξ′′)− 〈ξ′, ξ′′〉 | F ∈M},
Fε(ξ′, ξ′′) = inf{F (ξ′) + F ∗(ξ′′)− 〈ξ′, ξ′′〉 | F ∈Mε},

and denote by QF and QFε the corresponding A-quasiconvex envelopes.
By definition of the sets Mε, for all (ξ′, ξ′′) ∈ Rnm ×Rnm

|F(ξ′, ξ′′)−Fε(ξ′, ξ′′)| < 2ε(1 + |ξ′|2 + |ξ′′|2), QFε(ξ′, ξ′′) ≥ QF(ξ′, ξ′′).

Let δ > 0 be given and let, for a fixed (ξ′, ξ′′),

QF(ξ′, ξ′′) ≥
∫
K

F
(
vδ(x) + ξ′, ηδ(x) + ξ′′

)
dx− δ,

where (vδ, ηδ) ∈ V# ×N#. Then

QFε(ξ′, ξ′′) ≤
∫
K

Fε
(
vδ(x) + ξ′, ηδ(x) + ξ′′

)
dx

≤
∫
K

F
(
vδ(x) + ξ′, ηδ(x) + ξ′′

)
dx+

∫
K

{
Fε
(
vδ(x) + ξ′, ηδ(x) + ξ′′

)
−F

(
vδ(x) + ξ′, ηδ(x) + ξ′′

)}
dx

→ QF(ξ′, ξ′′) + δ as ε→ 0.

(6.5)

This way, for every (ξ′, ξ′′) ∈ Rnm ×Rnm,

QFε(ξ′, ξ′′)→ QF(ξ′, ξ′′) as ε→ 0.

Moreover, to Fε we can apply results of Sections 3, 4, which give the estimate

‖(vδ, ηδ)‖ ≤ c(ν3, ν4)(1 + |ξ′|+ |ξ′′|+ δ).

This estimate, together with (6.5), ensure the uniform (in the norm ‖ ·‖2) estimate for all (ξ′, ξ′′) ∈ Rnm×Rnm

|QF(ξ′, ξ′′)−QFε(ξ′, ξ′′)| ≤ εc(ν3, ν4)(1 + |ξ′|2 + |ξ′′|2). (6.6)
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Let (v0, η0) ∈ V ×N be such that ∫
Ω

QF
(
v0(x) + g(x), η0(x) + f(x)

)
dx = 0.

From here and the estimate (6.6) we have∫
Ω

QFε
(
v0(x) + g(x), η0(x) + f(x)

)
dx = dε → 0 as ε→ 0. (6.7)

The function Fε is defined as minimum over a finite subset Mε

Fε(ξ′, ξ′′) = min
F∈Mε

{
F (ξ′) + F ∗(ξ′′)− 〈ξ′, ξ′′〉

}
,

hence, by results of Section 3,

QFε(ξ′, ξ′′) = inf
σ∈Sε

inf
v∈V#

inf
η∈N#

∫
K

{
sε∑
s=1

σs(x)
[
Fs(v(x) + ξ′) + F ∗s (η(x) + ξ′′)

]
− 〈ξ′, ξ′′〉

}
dx,

where the set Sε corresponds to the set Mε according the hypothesis H7. Therefore, exactly in the same way
as in the proof of Theorem 2.1 in Section 4, from (6.7) we have the existence of sequences

{σk} ⊂ Sε, {(vεk, ηεk)
}
⊂ V ×N ,

{gk} ⊂ L2(Ω; Rnm), {fk} ⊂ L2(Ω; Rnm)

such that ∫
Ω

{
sε∑
s=1

σks (x)
[
Fs(vεk(x) + v0(x) + g(x) + gk(x)) + F ∗s (ηεk(x) + η0(x) + f(x) + fk(x))

]
−〈vεk(x) + v0(x) + g(x) + gk(x), ηεk(x) + η0(x) + f(x) + fk(x)〉

}
dx ≤ 2dε,

‖gk‖+ ‖fk‖ → 0 as k →∞,
(vεk, ηεk) ⇀ 0 weakly as k →∞.

Further, in the same way as in the proof of Lemma 3.6 we obtain the existence of a pair

(vε, ηε) ∈ Zε(g, f)

such that for k large enough
‖(vε, ηε)− (v0, η0)− (vεk, ηεk)‖ ≤ c(ν4)dε,
(vεk, ηεk) ⇀ 0 weakly as k →∞.

Now, after an appropriate diagonal process we have the existence of a sequence

{(vr, ηr)} ⊂ Z1/r(g, f) ⊂ V ×N ,
(vr, ηr) ⇀ (v0, η0) as r →∞,

which gives

Z0 =
{

(v, η) ∈ V ×N |
∫

Ω

QF
(
v(x) + g(x), η(x) + f(x)

)
dx = 0

}
⊂ wcl Z(g, f).
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The inverse inclusion follows immediately from the inequality

QF(ξ′, ξ′′) ≤ F(x, ξ′, ξ′′), F ∈M,

and from that the mapping

(v, η)→
∫

Ω

QF
(
v(x) + g(x), η(x) + f(x)

)
dx

is sequentially weakly lower semicontinuous.
This way, we have proved the following result.

Theorem 6.1. Let the hypotheses H6-H7 hold and let the set M satisfies (i–iii). Then for every fixed pair
(g, f) ∈ L2(Ω; Rnm)× L2(Ω; Rnm)

wcl Z(g, f) =
{

(v, η) ∈ V ×N |
∫

Ω

QF
(
v(x) + g(x), η(x) + f(x)

)
dx = 0

}
,

where QF is the A-quasiconvex envelope, associated with the operator A = (curl,div)m, for the function

F(ξ′, ξ′′) = inf
F∈M

{
F (ξ′) + F ∗(ξ′′)− 〈ξ′, ξ′′〉

}
·

Corollary 6.1. Let the assumptions of Theorem 6.1 hold and let, in addition, all functions F ⊂M are isotropic.
Then for every (ξ′, ξ′′) ∈ Λ, Λ being the characteristic cone for the operator A = (curl,div)m,

QF(ξ′, ξ′′) = PF(ξ′, ξ′′) = sup
z′,z′′∈Rnm

inf
F∈M

{
−F ∗(z′)− F (z′′) + 〈z′, ξ′〉+ 〈z′′, ξ′′〉

}
= inf

ε>0
inf

σ∈Sε σ=σ(x1)
inf

v∈V# v=v(x1)
inf

η∈N# η=η(x1)

∫
K

{
sε∑
s=1

σs(x1)[Fs(v(x1)

+Rξ′) + F ∗s (η(x1) +Rξ′′)

}
dx,

(6.8)

where PF is A-polyconvex envelope of F and R ∈ SO(n) is such that Rξ′ 1, . . . , Rξ′m are parallel to e1 =
(1, 0, . . . , 0) and Rξ′′ 1, . . . , Rξ′′m are orthogonal to e1.

Proof. By Theorem 2.2 and by construction

QFε(ξ′, ξ′′) = PFε(ξ′, ξ′′)

= inf
σ∈Sε σ=σ(x1)

inf
v∈V# v=v(x1)

inf
η∈N# η=η(x1)

∫
K

{
sε∑
s=1

σs(x1)[Fs(v(x1) +Rξ′) + F ∗s (η(x1) +Rξ′′)]

}
dx,

provided (ξ′, ξ′′) ∈ Λ.
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Clearly, the left hand side and the right hand side in this relationship give the corresponding terms in (6.8)
as ε→ 0. In turn, exactly in the same way as in Section 5 we have the estimate (on Λ)

PF(ξ′, ξ′′) ≥ sup
z′,z′′∈Rnm

inf
ζ′,ζ′′∈Rnm

{
〈z′, ξ′〉+ 〈z′′, ξ′′〉

+ inf
F∈M

[F (ζ′) + F ∗(ζ′′)]− 〈z′, ζ′〉 − 〈z′′, ζ′′〉
}

= sup
z′,z′′∈Rnm

lim
ε→0

inf
F∈Mε

{
−F ∗(z′)− F (z′′) + 〈z′, ξ′〉+ 〈z′′, ξ′′〉

}
= lim
ε→0

sup
z′,z′′∈Rnm

inf
F∈Mε

{
−F ∗(z′)− F (z′′) + 〈z′, ξ′〉+ 〈z′′, ξ′′〉

}
≥ lim
ε→0

inf
σ∈Sε σ=σ(x1)

inf
v∈V# v=v(x1)

inf
η∈N# η=η(x1)

∫
K

{
sε∑
s=1

σs(x1)[Fs(v(x1) + ξ′) + F ∗s (η(x1) + ξ′′)]

}
dx

by virtue of H6, H7. These estimates are sufficient for validity of (6.8). �
Finally, we want to show that QF ⊂ C1. i.e. that the function QF is continuously differentiable.
Let us recall, in a slightly reformulated form, the necessary results from Ball et al. [1] and Miettinen and

Raitums [6].

Proposition 6.1 (Ball et al. [1]). Let the function G : RN → R is separately convex and let for every z0 ∈ RN

there exists an element a0 ∈ RN such that

G(z0 + z)−G(z0)− 〈a0, z〉 ≤ o(|z|). (6.9)

Then G ∈ C1.

Proposition 6.2 (Miettinen and Raitums [6]). Let the family {G(β, ·, ·)} of functions G(β, ·, ·) : Rnm ×Rnm

→ R, β ∈ B ⊂ L∞(Rn; RN), be such that
(i) G(β, ·, ·) ∈ C1 and G(β(·), z′, z′′) is measurable;
(ii) there exist a constant ν6 and a continuous increasing function γ1 : R→ R with γ1(0) = 0 such that

0 ≤ G(β(x), z′, z′′) ≤ ν6(1 + |z′|2 + |z′′|2),
|G′(β(x), z′, z′′)| ≤ ν6(1 + |z′|+ |z′′|),
|G′(β(x), ξ′ + z′, ξ′′ + z′′)−G′(β(x), ξ′, ξ′′)|
≤ ν6(1 + |ξ′|+ |ξ′′|)γ1(|z′|+ |z′′|);

(iii) if β ∈ B then, for every integer r, the function x→ β(rx) belongs to B too.
Then the function

G(ξ′, ξ′′) = inf
β∈B

inf
v∈V#

inf
η∈N#

∫
K

G(β(x), v(x) + ξ′, η(x) + ξ′′)dx

belongs to C1.

Proposition 6.3 (Miettinen and Raitums [6]). Let the family {G(α, ·)} of functions G(α, ·) : RN → R, α ∈ A,
A being a set of parameters of a general nature, be such that

(i) G(α, z) ≥ 0;
(ii) there exist a constant ν7 and a continuous increasing function γ2 : R → R with γ2(0) = 0 such that for

every (α, z0) ∈ A×RN there exists an element a(α, z0) ∈ RN with the properties

|a(α, z0)| ≤ ν7(1 + |z0|),
G(α, z0 + z)−G(α, z0)− 〈a(α, z0), z〉 ≤ (1 + |z0|)γ2(|z|)|z|. (6.10)
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Then the function G0,
G0(z) = inf

α∈A
G(α, z),

has the same properties (6.10) with elements a(z0) ∈ RN instead of a(α0, z0).

From Proposition 6.2, Corollary 3.3 and Hypotheses H6, H7 it follows immediately that the functions QFε,
0 < ε, are continuously differentiable on Rnm ×Rnm.

Exactly in the same way as in the proofs of Lemma 1 and Lemma 2 in Miettinen and Raitums [6] we get
that the family {QFε} satisfies assumptions of Proposition 6.3. Clearly,

QF(ξ′, ξ′′) = inf
ε>0

QFε(ξ′, ξ′′),

which, together with Proposition 6.3, gives that the function QF satisfies (6.9). Since QF is convex with respect
to Λ, then QF is separately convex too. From here and Proposition 6.1 it follows immediately that QF ∈ C1.
Thus, we have proved the following result.

Theorem 6.2. Let the hypotheses H6 and H7 hold. Then QF ∈ C1.
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constant. Ann. Scuola Norm. Super. Pisa 8 (1981) 69-102.
[8] U. Raitums, Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential
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