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REGULAR SYNTHESES AND SOLUTIONS TO DISCONTINUOUS ODES
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Abstract. In this paper we analyze several concepts of solution to discontinuous ODEs in relation to
feedbacks generated by optimal syntheses. Optimal trajectories are called Stratified Solutions in case
of regular synthesis in the sense of Boltyanskii–Brunovsky. We introduce a concept of solution called
Krasowskii Cone Robust that characterizes optimal trajectories for minimum time on the plane and
for general problems under suitable assumptions.
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1. Introduction

Given an optimal control problem Pb(x) that depends on some free initial point x, one can provide a solution
by means of an optimal synthesis. Roughly speaking, an optimal synthesis is a way of associating to every initial
point x an optimal trajectory γx. Another way of describing the solution is to define a feedback control u(x)
such that the corresponding trajectories are optimal. However, in most cases one has to admit discontinuous
feedbacks so facing the problem of defining solutions to discontinuous ODEs. In [17] it is shown that many
concepts of solution lead to not optimal trajectories or do not include all optimal trajectories. Therefore, in
general, a feedback does not describe properly the solution to the family of problems Pb(x). However, for
practical applications, the use of feedback controls is the most appropriate tool for solving many problems of
different nature such as optimal stabilization [12,14], trajectory tracking [2] and motion planning [15]. Hence, it
is of fundamental importance the question of providing a suitable definition of solution, to discontinuous ODEs,
that determines exactly the set of optimal trajectories from the discontinuous feedback.

The difficulty of the problem is illustrated by the Example 5.3 in [17] exibiting an optimal synthesis whose
corresponding feedback admits classical solutions (i.e. smooth solutions satisfying the equation at each time)
that are not optimal, even worse, some of them do not reach the target. Hence any generalized concept of
solution, for which classical solutions are admissible, is not proper.

We consider many concepts of solution to discontinuous ODEs, some already introduced in the literature and
some new, and also analyze the concept of regular synthesis in the sense of Boltyanskii–Brunovsky (see [3, 6]).
The latter is based on the concept of stratification and is the more appropriate definition of synthesis to discuss
the properties of the set of solutions to the corresponding discontinuous feedback. For reference about the
construction of stratifications see [9] and [10]. In [17] a more general definition of synthesis is introduced, which
is suitable for a general sufficiency theorem, but such syntheses are not necessarily generated by a feedback.

None of the introduced concepts of solution works properly for every optimal control problem. This is not
too surprising since, even the description of optimal synthesis for smooth systems, is usually given only under
generic assumptions, see [5, 11, 16]. If no generic assumption is taken, then any kind of singularity may occur
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in the optimal synthesis with no hope of controlling the behavior of generalized solutions to the corresponding
discontinuous feedback. Therefore, we take the point of view of studying systems in generic position.

The first results regard minimum time for single input systems on the plane. The syntheses with point target
were classified in [5,18]. Moreover, the set of extremals was studied in details in [4]. Under generic assumptions,
only 5 types of singular curves and 17 types of singular points can appear, see [16]. Thus we can analyze
the generic case thanks to this finite list of possible singularities. The results are summurized in Theorem 2,
where we show that the concept of Krasowskii Cone Robust Solution, introduced in Section 3, individuates
optimal trajectories. A Krasowskii solution is cone robust if it is robust with respect to perturbations of the
initial point along some cone with nonempty interior. Notice that, the importance of Krasowskii Cone Robust
Solutions is not bounded to the property of describing optimal trajectories, but shows up also in numerical
implementation issues. Indeed, numerical schemes, introducing rounding errors, are able to generate only
“observable” trajectories, that is trajectories robust with respect to perturbations of initial data.

We also describe a new definition of regular synthesis, already introduced in [13], that is modeled on
Boltyanskii–Brunovsky definition, and conditions such that Krasowskii Cone Robust solutions coincide with
solutions of the optimal synthesis. These conditions are again in the spirit of generic assumptions. Moreover,
each assumption is discussed with examples that illustrate the effects on the shape of the optimal synthesis.

Section 2 is dedicated to basic definitions and to the definition of regular synthesis. In Section 3 we review
some concepts of solutions to discontinuous ODEs and introduce new ones. Section 4 is dedicated to minimum
time on the plane: we prove that Krasowskii Cone Robust Solutions coincide with optimal ones. Finally, in
Section 5, we give sufficient conditions on a regular synthesis for a general system to have the same conclusion.
Moreover we show the properties of Krasowskii extremal solutions.

2. Basic definitions

We indicate by Bn the unit ball in IRn. Given a set A ⊂ IRn we denote by cl(A) the closure of A, by Int(A)
its interior and by co(A) the closed convex hull that is

co(A) def= cl
{∑

λixi; xi ∈ A, λi ∈ IR, λi ≥ 0,
∑

λi = 1
}
·

A cone K ⊂ IRn is a set such that for every λ > 0 we have λK ⊂ K. A set A ⊂ IRn is convex if λx+(1−λ)y ∈ A
for every x, y ∈ A and 0 ≤ λ ≤ 1. A point x of a convex set A is said extremal if whenever x = λy1 + (1−λ)y2,
with y1, y2 ∈ A and 0 < λ < 1, it follows x = y1 = y2.

A multifunction V is a map from a set A into the set of subsets of another set A′, thus V (x) ⊂ A′ for every
x ∈ A.

On the set of subsets of IRn we consider the Hausdorff distance d(A,A′) = sup{d(x,A′), d(A, x′) : x ∈ A, x′ ∈
A′}, where d(x,A′) = inf{d(x, x′) : x′ ∈ A′} and similarly for d(A, x′). Assume V is a multifunction from IRn

to IRn′ . Then V is continuous if it is continuous for the Hausdorff distance. We say that the multifunction
V is upper semicontinuous at x if for every ε > 0 there exists δ > 0 such that V (y) ⊂ V (x) + εBn′ for every
|y − x| < δ.

Given a multifunction V from IRn to IRn we consider the corresponding differential inclusion that is

ẋ ∈ V (x). (1)

A solution (in Caratheodory sense) to (1) is an absolutely continuos function x such that ẋ(t) ∈ V (x(t)) for
almost every t in the domain of x. If V has convex values then we also consider the differential inclusion

ẋ ∈ ext V (x),

where ext V (x) is the set of extremal points of V (x).
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We consider a minimization problem of the type:

Pb(x̄) =


ẋ = f(x, u)
x(0) = x̄, x(T ) ∈ T ,

min
∫ T

0

L(x(t), u(t))) dt + Φ(x(T )),

(2)

with x ∈ IRn, u ∈ U where U ⊂ IRm, compact, is the control set, f : IRn × U → IRn is continuous and
continuously differentiable w.r.t. x, x̄ ∈ IRn is the initial condition, T ⊂ IRn, smooth manifold, is the target,
L : IRn × U → IRn, the Lagrangian, is continuous and continuously differentiable w.r.t. x and the final
cost Φ : IRn → IRn is differentiable. An admissible control is a measurable map u : [0, T ] → U such that
(t, x) 7→ (f(x, u(t)), L(x, u(t))) has Jacobian w.r.t. x uniformly bounded on compact sets. The minimization is
taken over all trajectories, corresponding to admissible controls, satisfying the boundary conditions x(0) = x̄
and x(T ) ∈ T .

A way of describing a solution to the collection of problems {Pb(x̄) : x̄ ∈ Ω}, where Ω is a subset of IRn, is
to provide an optimal synthesis on Ω.

Definition 1. An optimal synthesis on Ω is a collection of trajectories {γx : x ∈ Ω} such that γx is optimal,
i.e. solves the problem Pb(x).

2.1. Regular synthesis

To define a regular synthesis we first need to recall the definition of Withney stratified set.

Definition 2. Let M be a subset of IRn and assume M = ∪j∈JMj, where J ⊂ IN and Mj are disjoint nonemtpy
connected embedded C1 submanifolds of IRn. Then M is a Withney stratified set if the collection P := {Mj}j∈J ,
called the stratification of M , is locally finite and the following holds.
• If Mk ∩ cl(Mj) 6= ∅ (j 6= k) then Mk ⊂ ∂Mj and dim(Mk) < dim(Mj).
• Let xn, yn ∈ Mj , n ∈ IN, xn, yn → x̄ ∈ Mk ⊂ cl(Mj) and denote by `n the direction in IRn containing

the segment joining xn with yn. If TxnMj → T (in the Grassmannian) and `n → `, then ` ⊂ T and
Tx̄Mk ⊂ T .

We define the dimension of M by dim(M) = maxj dim(Mj).

We introduce the concept of regular synthesis that is modeled on the definitions given by Boltyanskii and
Brunovsky, see [3, 6]. For simplicity, we consider the case of optimal synthesis with target a point that we may
assume to be the origin.

Definition 3. Let Ω be an open set containing the origin. A regular synthesis on Ω is a 6–tuple Ξ =
(P ,P1,P2,Π,Σ, u) such that
(RS.1) Ω is a Withney stratified set with stratification P . {0} ∈ P . The elements of P are called “cells”;
(RS.2) P\{{0}} is the disjoint union of P1 (the set of “type I cells”) and P2 (the set of “type II cells”);
(RS.3) the feedback u : {x : x ∈ P1 ∈ P1} → U and Π : P1 → P are maps, Σ : P2 → P1 is a multifunction,

with non empty values, such that the following properties are satisfied:
(RS.A) the function u is of class C1 on each cell;
(RS.B) if P1 ∈ P1 then f(x, u(x)) ∈ TxP1 (the tangent space to P1 at x) for every x ∈ P1. In addition, for each

x ∈ P1, if we let ξx be the maximally defined solution to the initial value problem

ξ̇ = f(ξ, u(ξ)) , ξ(0) = x , ξ ∈ P1, (3)

and define tx = sup Dom(ξx), then the limit ξx(tx−) def= limt↑tx ξx(t) exists and belongs to Π(P1);
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(RS.C) if P2 ∈ P2, then for each x ∈ P2 and P ∈ Σ(P2) there exists a unique curve ξPx : [0, tPx [→ Ω such that
the restriction of ξPx to ] 0, tPx [ is a maximally defined integral curve of the vector field f(·, u(·)) on P ,
and ξPx (0) = x;

(RS.D) on every cell P1 ∈ P1, x → tx is a continuously differentiable function, and (t, x) → ξx(t), (t, x) →
ux(t) def= u(ξx(t)) are continuously differentiable maps on the set

E(P ) def= {(t, x) : x ∈ P1 , t ∈ [0, tx]}

in the sense that they can be prolonged to maps of class C1 on some open subset of IR× P1 containing
E(P1). If P2 ∈ P2 the same holds for every tPx , ξPx , uPx , with P ∈ Σ(P2);

(RS.E) for every x ∈ Ω\{0}, if we let ξ̃x denote a curve, starting at x, obtained by piecing together the
trajectories on every single cell, then ξ̃x ends at the origin in finite time.

Definition 4. The trajectories ξ̃x of (RS3.E) are called Stratified Solutions of Ξ.

Remark. The original definitions of Boltyanskii and Brunovsky are different between them and from our
definition. For a comparison of the two concepts we refer to [17]. In our definition we first ask a more restrictive
assumption on the stratification of Ω \ {0}, namely we ask the stratification of this set to be a Withney
stratification. The definition of Brunovsky only asked for a stratification, that is only the first condition of
Definition 2 is required, and the definition of Boltyanskii did not even ask for the partition P to be locally finite.

Another difference is that we do not ask for ξ̃x to have a finite number of switchings, that is to pass from
one cell to another a finite number of times.

In Boltyanskii definition a set N exists such that from every point of N more than one optimal trajectory
can start. This was done to include the case of overlaps (see Sect. 5.3). This set N was not a cell of type I or
II. While in Brunovsky there is not such set and the overlaps are admitted as II cells for which we must decide
which cell of type I we are going to enter. We choose not to have such a set N but we allow the map Σ of
(RS.3) to be multivalued (while in Boltyanskii and Brunovsky definitions it was single valued). So we have that
overlaps are II cells but we allow all optimal trajectories to be included as Stratified solutions.

Hence we introduce another concept of solution:

Definition 5. If we set the multifunction Σ of (RS.3) of Definition 3 to be single valued then we call the
corresponding trajectories ξ̃x, of (RS.E), Brunovsky Stratified solutions to Ξ.

3. Solutions to discontinuous ODEs

In this section we describe various concepts of solution to discontinuous ODEs, which are used in the following
sections for regular synthesis.

We consider an ODE with a discontinuous righthand side:

ẋ = v(x), x ∈ IRn, (4)

where v : IRn → IRn is a measurable bounded function. In our case v denotes f(x, u(x)). We start recalling the
definition of Caratheodory solution.

Definition 6. A Caratheodory solution to (4) is an absolutely continuous function x : [0, T ]→ IRn that verifies
(4) for almost every t ∈ [0, T ].

Next we use the theory of differential inclusions to introduce the concepts of Krasowskii and Filippov solution,
see [8].
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Definition 7. Given a measurable bounded function v : IRn → IRn we associate two multifunctions VK and
VF in the following way:

VK(x) =
⋂
δ>0

co v(x+ δBn)

VF (x) =
⋂
δ>0

⋂
meas(N)=0

co v((x+ δBn) \N)

where N ⊂ IRn, meas is the Lebesgue measure on IRn.

Notice that if v is continuous at x then VK(x) = VF (x) = v(x).

Definition 8. A Krasowskii (resp. Filippov) solution to ẋ = v(x) is a solution to the differential inclusion
ẋ ∈ VK(x) (resp ẋ ∈ VF (x)).

Since v is bounded, the multifunctions VK and VF are upper semicontinuous, with compact convex values.
It follows (see [1]) the following:

Proposition 1. Since v is bounded, for every x ∈ IRn and every T > 0, the set of Krasowskii (Filippov)
solutions defined on [0, T ] starting at x is a nonempty, connected, compact subset of C([0, T ], IRn).

Remark. The concept of Krasowskii solution is more appropriate for regular synthesis than the one of Filippov.
Indeed, if we are on a cell P of type I with positive codimension then the multifunction VF contains only the
limiting direction from neighboring cells of maximal dimension. Thus the feedback v(x), for x in P , is not in
general contained in VF (x). On the contrary, we always have v(x) ∈ VK(x). Hence in Section 5 we restrict our
analysis to Krasowskii solutions.

For our purposes we need to select among Krasowskii solutions those that present some robustness with
respect to perturbations of initial data. We thus introduce the following:

Definition 9. A Krasowskii solution x : [0, T ]→ IRn is called Krasowskii Cone Robust if, for every t ∈ [0, T ],
there exist a(x(t)) ≥ a > 0 and a cone K(x(t)) ⊂ IRn, called Robustness Cone, with Int(K(x(t))) 6= 0, such
that the following holds. The multifunction t 7→ K(x(t)) ∩ Bn is continuous. Moreover, for every yn → x(t),
yn = x(t) + εnw + o(εn), with w ∈ K(x(t)) and εn → 0, and every xn(·), Krasowskii solutions with xn(t) = yn,
we have that xn(·) converge to x uniformly on [t,min{t+ a(x(t)), T}]. If K(x(t)) = IRn for every t, then we say
that x is a Krasowskii Robust solution. Similar definitions are given for Filippov solutions.

Remark. Notice that we ask K to depend continuously on x(t). This might prevent the choice of the maximal
Cone of Robustness. However, this definition guarantees results as the next theorem.

We have the following:

Theorem 1. Let x : [0, T ]→ IRn be a Krasowskii solution and assume that there exists a cone with non empty

interior K ⊂ IRn s.t. v is smooth on A
def= {x(t) + w : t ∈ [0, T ], w ∈ K} and ẋ(t) = limy→x(t), y∈A v(y). Then

x(·) is Krasowskii Cone Robust with robustness cone Int(K).

Proof. Let yn be a sequence converging to x(t) along a direction w ∈ Int(K). Since v is smooth on A, there
exists a unique solution xn(·), defined in a neighborhood of t, such that xn(t) = yn and ẋn(s) = v(xn(s)), as
long as such a solution remains inside the set A. Let w(s) be the solution to the variational equation

ẇ(s) = ∇v(x(s)) ·w(s),

with initial data w(t) = w. For ε sufficiently small w(s) ∈ Int(K) for all s ∈ [t, t+ε]. The continuous dependence
from initial data of solutions to the equation ẏ = v(y) ensures that xn(s) ∈ x(s) +K for n sufficiently big and
s ∈ [t, t+ ε]. Since yn converges to x(t) and v(xn(s)) converges to ẋ(s) we get the conclusion. �
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We will also consider solutions taking extremal velocities.

Definition 10. A Krasowskii Extremal solution is a solution to the differential inclusion ẋ ∈ ext VK(x).
Similarly for Filippov solutions.

Finally we recall the definition of “sample and hold” solutions introduced in [7].

Definition 11. Given [0, T ] and a partition 0 = t0 < t1 < · · · < tm = T an Euler solution is a solution for
ẋ(t) = v(x(ti)) for every t ∈ [ti, ti+1[, i = 0, . . . , N − 1. A CLSS solution x is a uniform limit of Euler solutions
corresponding to partitions such that sup{|ti+1 − ti| : i = 1, . . . , N − 1} tends to zero.

In next section we use the following symbols for solutions to discontinuous ODEs:
• St stands for Stratified solutions and B − St stands for Brunovsky Stratified solutions;
• Ca stands for Caratheodory solutions;
• Kr (Fi) stands for Krasowskii (Filippov) solutions;
• KrCR (FiCR) stands for Krasowskii (Filippov) Cone Robust solutions;
• KrR (FiR) stands for Krasowskii (Filippov) Robust solutions;
• KrE (FiE) stands for Krasowskii (Filippov) Extremal solutions.

4. Planar synthesis

In this section we consider the problem of minimum time stabilization to the origin for the control system:

ẋ = F (x) + uG(x), (5)

where x ∈ IR2, |u| ≤ 1 and F,G are smooth vector fields on IR2 with bounded derivatives and we assume
F (0) = 0. Thus, for every x ∈ IR2, we have the problem Pb(x) of steering x to the origin in minimum time.
Given τ > 0, the controllable set C(τ) in time τ is the set of all points that can be steered to the origin by a
trajectory of (5) in time less than or equal to τ . An optimal synthesis exists on C(τ) for generic smooth planar
systems, see [5,16] (for analytic systems see [18]). Moreover, the optimal synthesis is a regular synthesis and the
generic singularities of these syntheses were classified in [16]. The classification is topological and two points
are equivalent if the synthesis, near these points, has the same shape.

The generic singular curves are of five types: Y 1, Y 2 (or equivalently X1, X2), C, S and K. Each singular
point arises from the intersection of two singular curves. We use the notation of [16] so a point is said type of
(F1, F2) if it is intersection of two singular curves of type F1 and F2. There are 17 generic equivalence classes
of singular points: (X,Y ), (Y,C)1,2,3, (Y, S), (Y,K)1,2,3, (C,C)1,2, (C,S)1,2, (C,K)1,2, (S,K)1,2 and (K,K).
We represent in Figures 1 and 2 the optimal synthesis near each singularity.

Each open region is covered by bang–bang trajectories that correspond either to constant control u ≡ 1 or to
constant control u ≡ −1. The singular curves Y 1 and Y 2 are trajectories, hence cells of type I, corresponding
to constant control +1 and are equivalent to singular curves X1 and X2, respectively, that are trajectories
corresponding to constant control −1. S is also a trajectory but corresponds to a control u /∈ {−1,+1}
(generically for almost all times). The curves C and K are not trajectories and are cells of type II.

In the rest of the section we analyze the properties of solutions to the corresponding discontinuous optimal
feedback, according to the definitions of solutions introduced in the previous section. CLSS solutions are
discussed in Section 4.3, while Extremal solutions are examined in some remarks.

For each singularity we consider all solutions passing through it, not only those starting from a point of the
singularity. Thus robustness is considered for all these trajectories.

4.1. Singular curves

Curves X1, X2 and C

In these cases all solutions coincide.
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Y1
Y2

S
C

K

Figure 1. Singular curves.

Curve S

In this case we have that B − St = St = Ca. Since the system is single input we also have that VK = VF
and Fi = Kr = Ca and all solutions coincide.

Remark. In this case the set of Extremal solutions is empty. If otherwise the system is not single input then it
can happen that VK ⊃ VF with strict inclusion. More precisely, given x ∈ S, if v1(x) and v2(x) are the limiting
direction of F + uG from the left and the right of S, we may have that F (x) + u(x)G(x) is not in the segment
with end points v1(x), v2(x). Therefore Kr = Fi∪Ca, i.e. while the set of Filippov solutions does not contain
the Stratified ones, the set of Krasowskii solutions is comprised also of those which are not stratified. In this
case the Stratified solutions St coincide exactly with KrE solutions.

Curve K

Here VK = VF hence Kr = Fi ⊃ Ca. Indeed there are Krasowskii (Filippov) solutions that run on the
curve K, while Caratheodory solutions exit the curve K. Moreover Ca = St ⊃ B−St. The last relation comes
from the fact that K is a II cell and B − St solutions exit only towards one of the two sides of K. The set of
KrCR (FiCR) solutions coincide with St solutions where for each curve the corresponding cone of robustness
is contained on the side (w.r.t. K) where the curve points into. No stratified solution is robust, that is the
Robustness Cone can not be taken to be the whole space.

Remark. Observe that solutions corresponding to the extremal points of VK (VF ) coincide with St.

4.2. Singular points

We analyze the case (C,K)1 in detail, because at this singular point there is a non trivial behavior of solutions.
The other points are analyzed more quickly since many arguments can be repeated in almost the same manner.

Point (C,K)1

Let x be the (C,K)1 point. There are two Stratified solutions through x. Both are bang–bang, i.e. cor-
responding to control ±1: one corresponds to constant control near x, the other switches from control +1 to
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S
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C
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K
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K

(S,K)
1
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K

(S,K)
2

S K K

K
(K,K)

(C,S)
2

S

S

Figure 2. Singular points.

control −1 (or vice versa) at x. The set of Krasowskii (Filippov) Solutions includes trajectories that reach x
and then run on the curve K. Thus Kr = Fi ⊃ Ca = St ⊃ B − St (see also the discussion of K curves).

The two stratified solutions are also Krasowskii Cone Robust Solutions indeed, referring to Figure 2, let Ω1

(Ω2) be the bigger (smaller) region enclosed by C and K, γ1 (γ2) the Stratified solutions that, after x, run on
Ω1 (Ω2). Then γ1 is stable for any perturbation to its right, while γ2 is stable at x for any perturbation in Ω2.
However neither γ1 nor γ2 is Krasowskii Robust. Indeed perturbation of γ1 to its left do not converge to γ1 and
the same for γ2 and perturbations to its right.

Finally KrCR = FiCR = St ⊃ KrR = FiR = ∅.
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Point (X,Y )

We have VK = VF = ±G. It is easy to check that all solutions coincide.

Remark. The set of Extremal solutions is empty.

Points (Y,C)1, (Y,C)2 and (Y,C)3

Here VK = VF and Kr = Fi = Ca = St. Moreover every Stratified solution is also robust, i.e. St = KrR
(St = FiR).

Point (Y, S)

Since the system is single input, VK = VF and Kr = Fi = Ca = St. Stratified solutions are also robust and
all solutions coincide.

Point (Y,K)1

Here we refer to the discussion we have done for the case of the singular curve K. Also in this case we have
that VK = VF and Kr = Fi ⊃ Ca. Moreover Ca = St ⊃ B − St. The set of KrR (FiR) solutions coincide
with St solutions.

Points (Y,K)2 and (Y,K)3

These two cases differ from the case (Y,K)1 in the fact that robustness of Stratified solutions is only with
respect to a cone and not with respect to the whole space.

Points (C,C)1 and (C,C)2

In these two cases all solutions coincide.

Points (C,S)1 and (C,S)2

Here we refer to the discussion we have done for the case of the singular curve S. Since the system is single
input all solutions coincide.

Point (C,K)2

This case differs from the case (C,K)1 because the trajectory passing through the singular point is robust.
Hence Kr = Fi ⊃ Ca = St, St ⊃ B − St and KrR = FiR = St.

Point (S,K)1

On the curve K, we have that Kr = Fi ⊃ Ca = St and St ⊃ B − St and, on curve S, we have that
Kr = Fi = St. Moreover the Stratified solutions are Krasowskii Cone Robust and some are also Krasowskii
Robust. Hence KrCR = FiCR = St.

Point (S,K)2

This case differs from the previous one because there is no Krasowskii Robust solution passing through the
singular point. But also in this case KrCR = FiCR = St.

Point (K,K)

The analysis of this case is consequence of the properties of the curve K only. Krasowskii and Filippov
solutions coincide and strictly contain Caratheodory and Stratified solutions, i.e. Fi = Kr ⊃ Ca = St ⊃ B−St.
Moreover Stratified solutions are only Cone Robust, i.e. St = KrCR = FiCR.
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Figure 3. Solutions to planar synthesis.

4.3. Planar stratified solutions

From the above analysis on generic singularities we obtain the following

Theorem 2. Consider the minimum time problems Pb(x), x ∈ IR2, with initial point x and final point the
origin for the control system (5). Then, given τ > 0, under generic conditions there exists an optimal synthesis
on C(τ) such that the set of Stratified solutions coincide with the set of Krasowskii Cone Robust solutions. More
precisely we have the situation of Figure 3.

Remark. Notice that many concepts of solutions introduced in the previous section do not work to isolate
Stratified solutions. The situation of CLSS solutions is quite special. Consider a singular curve of type K.
Then there is no feedback defined on it. This is not a problem to define solutions in Krasowkii, Filippov or
Caratheodory sense. However for CLSS we need the control at initial point to be specified. Thus we have to
define a control on the singular curve. Whatever control we define on the singular curve, the corresponding set
of CLSS solutions can not encompass both Stratified solutions starting from a point x of K, unless the following
occurs. Let O be a neighborhood of x such that (IR2 \K) ∩ O has two connected components Ω1, Ω2. There
exists w ∈ IR2 and a control u ∈ U such that w = F (x) + uG(x) and for every δ > 0 there exist λ1, λ2, with
|λi| < δ and x+ λiw ∈ Ωi, i = 1, 2. However, the latter condition is not generic.

5. General case

We introduce in Section 5.1 the definition of Krasowskii Admissible Regular Synthesis and discuss it. Then
in Section 5.2 we give our main result ensuring that, for Krasowskii Admissible Regular Synthesis, the set
of Stratified solutions coincide with the set of Krasowskii Cone Robust solutions. Moreover we illustrate the
role of Caratheodory solutions. Section 5.3 is dedicated to special II cells called overlaps. In Section 5.4 the
assumptions of Theorem 3 are analysed and some properties of Stratified solutions are given. Finally, Section 5.5
is dedicated to Krasowskii Extremal solutions.

5.1. Krasowskii admissible regular synthesis

We introduce the notion of Krasowskii admissible regular synthesis. This definition contains some assump-
tions additional to those of regular synthesis, in order to guarantee that Krasowskii Cone Robust solutions
coincide with Stratified ones. We first need some more notation.

Definition 12. Consider a regular synthesis Ξ = (P ,P1,P2,Π,Σ, u) and assume that every trajectory ξ̃x (see
(RS.E) of Def. 3) is a Krasowskii Cone Robust solution. Given a cell P1 of type I, for every x ∈ P1 we let K(x)
be the Robustness Cone as in Definition 9 associated to ξx (defined in Def. 3 (RS.B)). Given a cell P2 of type II,
for every x ∈ P2 and every P ∈ Σ(P2) we let KP (x) be the Robustness Cone as in Definition 9 associated to
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Figure 4. Example of synthesis.

ξPx (defined in Def. 3 (RS.C)). Moreover, we define KII(x) to be the maximal cone for which there exists a > 0
such that for every yn → x(t), yn = x+ εnw+ o(εn) with w ∈ KII(x) and εn → 0, there exist xn(·) Krasowskii
solutions with xn(0) = yn and P ∈ Σ(P2) such that xn converge to ξPx uniformly on [0, a].

Remark. Roughly speaking, KII(x) is the Cone of Weak Robustness for the collection of Stratified solutions
{ξPx : P ∈ Σ(P2)} with the meaning that KII(x) can be taken as Robustness Cone if we replace in Definition 9
the condition that “every sequence of Krasowskii solution xn from yn converge to x” with the condition “there
exists a sequence of Krasowskii solution xn from yn converging to x”.

We are now ready to give the following:

Definition 13. The regular synthesis Ξ = (P ,P1,P2,Π,Σ, u) is Krasowskii admissible if the following holds
(with the notation of Def. 12).
H) Each trajectory ξ̃x (see (RS.E) of Def. 3) is a Krasowskii Cone Robust solution.

HI) If P1 is a cell of type I then
HIα) For every x ∈ P1 there exists a cone KI(x) such that x + KI(x) ⊂ {x : x ∈ P, P ∈ P1} and

VK(x) ⊂ Int(K(x) ∪KI(x)).
HIβ) For each cell M of type I such that ∂M ⊃ P1 the vector field f(x, u(x)) on M can be prolonged

continuously to P1 and we call vM the obtained vector field on P1. For each x ∈ P1 let N(x) be
the space normal to TxP1 then there exists w ∈ N(x) such that for every sequence {yn} in M with
yn → x, if ω = limn

x−yn
‖x−yn‖ then vM (x) · w > 0 and ω ·w ≥ 0.

HII) If P2 is of type II then for every x ∈ P2

VK(x) ⊂ Int

 ⋃
P∈Σ(P2)

KP (x) ∪ KII(x)

 ·
Remark. Condition HIβ) requires that the limiting field vM , from cells M of type I, points into the cell P1.

In Figure 4 we represent an optimal synthesis to illustrate assumption HII). The cell of type II under consider-
ation is the point P . We have Σ(P ) = {M,M ′} where M and M ′ are the support of the two trajectories exiting
P vertically and horizontally, respectively. Let P1 and P ′1 be the type I cells such that Π(P1) = Π(P ′1) = P as in
Figure 4. K is the II cell from which trajectories start parallel to M and M ′. Consider a sequence of points yn
that tends to P staying in the open region bounded by P1, K and containing M . Then the trajectories starting
from yn converge to the stratified trajectory that runs on P1 and then on M . Hence we get that KM is the
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open region bounded by P1, K and containing M . In a similar manner it is easy to check that KM′ is the open
region enclosed by P ′1 and K, containing M ′. Moreover, if we take a sequence yn tending to x along K and
let xn be trajectories from yn, then clearly each xn runs either parallel to M or parallel to M ′. Then every
converging subsequence of xn converge either to the trajectory running on M or to that running on M ′. So we
get KII = K ∪ KM ∪ KM′ .

Regarding the robustness of Stratified Solutions we have the following:

Lemma 1. Let Ξ = (P ,P1,P2,Π,Σ, u) be a regular synthesis such that assumption HI) and HII) of Defini-
tion 13 hold. Let P be a cell of type I, x ∈ P and ξx as in (RS.B) of Definition 3. Assume that there exists a
cell M of type I, dim(M) = n, such that ∂M ⊃ P , the feedback u restricted to M can be prolonged to a smooth
feedback ũ on IRn and ξx is a trajectory of f(x, ũ(x)). Then ξx is Krasowskii Cone Robust at time 0.

Proof. We can apply Theorem 1 with f(·, ũ(·)) playing the role of v. The cone K is here any cone with non
empty interior such that x+K ⊂M . �
Remark. The same conclusion of the Lemma holds also if trajectories from M enters P . Thus, in many cases,
condition H) of Definition 13, for cells of type I, is indeed a consequence of conditions HI). Therefore we have
to ensure condition H) only for cells of type II.

5.2. Main result

Theorem 3. Let Ξ = (P ,P1,P2,Π,Σ, u) be a Krasowskii admissible regular synthesis then Krasowskii Cone
Robust solutions (not passing through the origin) coincide with Stratified solutions.

Proof. We first prove by induction on codimension that on cells of type I Krasowskii Cone Robust solutions
coincide with Stratified ones. Assume that P1 is a cell of type I of maximal dimension then VK = f(·, u(·)) on
P1 and the conclusion is trivial.

We now prove the induction step. Let P1 be a cell of type I of codimension r and assume that the conclusion
holds up to codimension r − 1.

Consider a point x ∈ P1. From condition (RS.1) of Definition 3, there exists a neighborhood O of x such that
a finite number of cells intersect O and the closure of each of them intersect P1. Then, from the first condition
of Definition 2, all of them, except P1, have dimension strictly greater than the dimension of P1.

Assume, by contradiction, that there exists a Krasowskii Cone Robust solution η : [0, ε]→ IRn with η(0) = x
such that for every ε′ > 0 there exists t ∈]0, ε′] for which η(t) 6= ξx(t). From assumption HIα) and the
semicontinuity of VK , we have that either there exists a strictly decreasing sequence tn → 0 such that η(tn) ∈
x+K(x), or η([0, ε′]) ⊂

⋃
{y : y ∈ P, P ∈ P1} for some 0 < ε′ < ε.

If the former case happens, define η̂n to be the restriction of η to the interval [tn, tn + ε]. Passing to a
subsequence we can assume that there exists w ∈ K(x) such that η̂n(tn) = x+ εw + o(εn) with εn → 0. Then
by assumption H) and the definition of K(x), there exists a > 0 such that η̂n restricted to [tn, tn + a] converge
uniformly to ξx obtaining a contradiction. Hence, from now on we assume to be in the latter case.

Assume that η([0, ε′′]) ⊂ P1 for some ε′′ > 0. Since η is Cone Robust there exists a sequence of Krasowskii
solutions ηn converging to η on [0, a′] for some 0 < a′ < ε′′. Now, from condition HIα) and the upper
semicontinuity of VK , we have that for n sufficiently big ηn eiher enters x+K(x) or the set {y : y ∈ P, P ∈ P1}.
In the former case we would have that ηn converge to ξx obtaining a contradiction.

Assume the latter case and take t ∈]0, a′[ such that η̇(t) 6= f(η(t), u(η(t))). There exists a cell M of type I
such that ηn(t) ∈M for infinitely many n.

If M = P1 we let η̃n be the concatenation of ηn restricted to [0, t] with the trajectory ξηn(t) restricted to [t, a′].
Then η̃n can not converge to η. Indeed the right derivatives in t of η̃n converge to f(η(t), u(η(t))) obtaining a
contradiction.

If otherwise M 6= P1, let τn = sup{s ∈ [t, a′] : ηn(σ) ∈ M for all σ ∈ [t, s]}. Since M is of type I, by
induction, we have τn > t. If τn − t > δ > 0 for infinitely many n then we contradict assumption HIβ).
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Otherwise, there exists M ′ of type I such that ηn(τn) ∈M ′ for infinitely many n. Since cl(M) ∩M ′ 6= ∅, from
(RS.1) of Definition 3, we get dim(M ′) < dim(M). Now we can reason for M ′ as for M . After a finite number
of steps we obtain that ηn enters P1 again, reaching a contradiction, as in the previous case.

Assume now that for every δ > 0, η([0, δ]) is not entirely contained in P1. If η(]0, δ[) ⊂ M for some δ > 0
and M 6= P , then we contradict assumption HIβ). Indeed, using the notation of HIβ) of Definition 13, we

define ϕ(t) def= v · (η(t)−x). Then ϕ is absolutely continuous, ϕ(0) = 0 and for t sufficiently small ϕ̇(t) > 0 and
ϕ(t) < 0. Therefore we obtain a contradiction.

Otherwise, there exists a cell M and a strictly decreasing sequence tn converging to zero such that η(tn) ∈M
and for every n there exists s ∈]tn+1, tn[ such that η(s) /∈ M . Taking n sufficiently big we can assume that
η([0, tn]) ⊂ O and we define:

τ = inf{t ∈ [0, tn] : η(s) ∈M ∀s ∈ [t, tn]} · (6)

We have that τ > tn+1 > 0. Moreover M is of type I, hence, by induction, the only Krasowskii solution from
η(tn) stays in M in a neighborhood of tn so τ < tn.

If η(τ) ∈ M ′ with M ′ 6= M then M ′ ∩ cl(M) 6= ∅ hence dim(M ′) < dim(M). Now if M ′ = P1 then we
contradict HIβ), otherwise we contradict the induction hypothesis.

If η(τ) ∈M then there exists a strictly increasing sequence σn, σn → τ , η(σn) ∈M ′ with M ′ of type I, hence
cl(M ′)∩M 6= ∅ so dim(M ′) > dim(M). If this is the case, we can reason for M ′ as for M . But this can happen
only a finite number of times. This concludes the inductive step.

Let now P2 be a cell of type II and x ∈ P2. From condition HII) and the upper semicontinuity of VK , there
exists ε > 0 such that for every y with |y − x| < ε

VK(y) ⊂ K′ def= Int

 ⋃
P∈Σ(P2)

KP (x) ∪KII(x)

 . (7)

Let η be a Krasowskii Cone Robust Solution starting at x and assume that there exists no P ∈ Σ(P2) such that
η = ξPx on some interval [0, ε′], ε′ > 0. From the robustness of η there exist yn → x and Krasowskii Solutions
ηn, with ηn(0) = yn, converging uniformly to η on some interval [0, a], a > 0. By equation (7), since yn → x,
for n sufficiently big there exists εn such that εn → 0 and ηn(εn) ∈ x+K′.

If there exists P ∈ Σ(P2) such that, for infinitely many n, ηn(εn) ∈ x + KP (x) then ηn converges to ξPx
obtaining a contradiction.

If otherwise, for infinitely many n, ηn(εn) ∈ x+KII(x) then there exist P ∈ Σ(P2) and Krasowskii Solutions
η̂n, with η̂n(0) = ηn(εn), such that η̂n converges to ξPx . Define η̃n to be the concatenation of η̂n (time shifted)
with ηn restricted to [0, εn]. Then η̃n converge to ξPx and contradict the robustness of η.

This concludes the proof of the theorem. �
Remark. For generic planar systems the set of Caratheodory solutions coincides with the set of Stratified
solutions as seen in the previous section. Moreover the proof of Theorem 3 for cells of type I can be applied
to Caratheodory solutions. Indeed Caratheodory solutions are Krasowskii solutions and the proof applies to
Krasowskii solutions except for the case in which the considered trajectory η lies entirely on the cell P1, when
the Cone Robustness of η is used. However, it is clear that there is only one Caratheodory solution lying on P1,
namely the Stratified solution.

In general we do not expect Caratheodory solutions to coincide with Krasowskii Cone Robust and Stratified
ones as shown in next example.

Example. Consider the synthesis depicted in Figure 5. The set of Stratified Solutions through the cell of
type II, P , is given by two trajectories: one running on M1 and then on M2, the other running on M1 and then
on M3. It is easy to check that the set of Krasowskii Cone Robust Solutions coincide with the set of Stratified
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Figure 5. Example of synthesis.

OVERLAP

Figure 6. Overlap hypersurface.

ones. The set of Caratheodory Solutions through P contains also the trajectories running on M1 and then
entering the two dimensional cell M .

5.3. Overlaps

In Figure 6 we represent an overlap hypersurface that typically occurs in optimal syntheses, see [11, 16].
From each point of this hypersurface we have two Stratified trajectories starting towards opposite sides of
the hypersurface. Notice that both VK and VF on the hypersurface contain a direction tangent to it. Thus
Krasowskii and Filippov solutions strictly contain the stratified ones. However a Krasowskii (Filippov) solution
ξ running on this hypersurface can not be Cone Robust. Indeed for every cone K with nonempty interior,
there exists a sequence {xn} of points tending to the initial point of ξ that are outside the hypersurface. Thus
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Figure 7. Example of synthesis.

every Krasowskii solution ξn starting from xn is completely outside the hypersurface. It easily follows that the
sequence ξn can not converge to ξ.

5.4. Stratified solutions

We want to discuss the assumptions of Theorem 3.
The assumption H) is obviously necessary to guarantee the validity of the theorem. It is not clear if this

can hold for general systems, however, as we saw in Section 4, it is true for minimum time on the plane (for
single input systems). Moreover, we observed that on cells of type I, under suitable assumptions, H) follows
from conditions HI).

Notice that to violate H) on a cell P of type I, we should have a Krasowskii Cone Robust solution that is
not a Stratified one, starting from a point x of P . We give below further conditions under which there is no
trajectory running on P but the Stratified one.

Proposition 2. Let Ξ = (P ,P1,P2,Π,Σ, u) be a Krasowskii admissible regular synthesis. Consider a cell P of
type I and assume that all neighboring cells are of type I. Then for every x ∈ P , VK(x) ∩ TxP = f(x, u(x)).

Proof. Assume by contradiction that there exists a control ω such that f(x, ω) ∈ VK(x) ∩ TxP and f(x, ω) 6=
f(x, u(x)). Since f(x, ω) is obtained as convex combination of limits of f(x, u(x)) along I cells, we can extend ω
to a feedback defined on a neighborhood of x in P in a smooth way. By assumption H), for every sequence
yn ∈ K(x), yn → x and xn Krasowskii solutions starting at point yn, xn converge uniformly to ξx. There exists
a I cell M such that yn ∈M for infinitely many n. Using HIβ) and reasoning as in the proof of Theorem 3 we
get that xn enter P . Then xn could use the control ω contradicting H). �

Observe that, Proposition 2 is based on condition HIβ). If we relax this condition then singularities on
the synthesis, as in Figure 7, may arise. In this case the conclusion of Proposition 2 is still guaranteed if the
following condition is required:

HIβ̃) The assumption HIβ) holds for every cell P of type I with the condition vM (x) · w > 0 replaced by
vM (x) · w ≥ 0. Let P be a cell of type I of codimension r then, for every x ∈ P , K(x) contains a
subspace of dimension r.

Proposition 3. Let Ξ = (P ,P1,P2,Π,Σ, u) be a Krasowskii admissible regular synthesis with condition HIβ)
replaced by HIβ̃). Consider a cell P of type I of codimension r and assume that all neighboring cells are of
type I. Then for every x ∈ P , VK(x) ∩ TxP = f(x, u(x)).
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Proof. Assume by contradiction that there exists a control ω such that f(x, ω) ∈ VK(x) ∩ TxP and f(x, ω) 6=
f(x, u(x)). Since f(x, ω) is obtained as convex combination of limits of f(x, u(x)) along I cells, there exist
two cells P ′ and P ′′ of type I such that the convex hull of limits of f(x, u(x)) along these cells contains
f(x, ω) and the following holds. Define the limiting tangent spaces Π′ and Π′′ by Π′ = limy→x,y∈P ′ TyP ′ and
Π′′ = limy→x,y∈P ′′ TyP

′′. Then, by condition (RS.1) of Definition 3, Π′ ∩ Π′′ strictly contains TxP hence
dim(Π′ ∩ Π′′) > n − r . Therefore (x + K(x)) ∩ (P ′ ∪ P ′′) 6= ∅. If yn ∈ (x + K(x)) ∩ (P ′ ∪ P ′′) and xn are
Krasowskii solutions starting at yn then xn enter P . Hence xn could use the control ω contradicting H). �

5.5. Extremal solutions

In this section we want to discuss the role of Krasowskii Extremal solutions in cases where the conclusion of
Proposition 2 does not hold.

Assume that P is a cell of type I and VK(x) ∩ TxP ⊃ f(x, u(x)) where the inclusion is strict. We can try to
isolate Stratified Solutions looking for Extremal Krasowskii Solutions.

Definition 14. Let Ξ = (P ,P1,P2,Π,Σ, u) be a regular synthesis on Ω. Given a point x ∈ Ω let KrCR(x) be
the set of Krasowskii Cone Robust Solutions through x. Assume that each ξ ∈ KrCR(x) is differentiable from
the right at time t with ξ(t) = x and define

RK(x) def= {D+ξ(t) : ξ ∈ KrCR(x), ξ(t) = x}·

Proposition 4. Let Ξ = (P ,P1,P2,Π,Σ, u) be a regular synthesis on Ω, P a cell of type I and x ∈ P then:
a. if w ∈ VK(x) ∩ TxP , w 6= f(x, u(x)) then w 6∈ extVK(x);
b. extRK(x) ⊃ extVK(x) ∩RK(x).

Proof. Assume that w ∈ VK(x) ∩ TxP and w 6= f(x, u(x)) then w is obtained as convex combination of limits
of f(·, u(·)) restricted to neighboring cells of type I. Hence w can not be an extremal point of VK(x). Thus a.
is proved.

The conclusion b. follows from the fact that if w is an extremal point of VK(x) then it is also an extremal
point of the smaller set RK(x). �

We can give suitable conditions in such a way that Extremal Solutions help in selecting Stratified solutions.

Proposition 5. Let Ξ = (P ,P1,P2,Π,Σ, u) be a regular synthesis on Ω, P a cell of type I. Assume that, for
every x ∈ P , f(x, u(x)) ∈ RK(x). Moreover, either

i. RK(x) ∩ TxP = f(x, u(x)) for every x ∈ P , or
ii. f(x, u(x)) ∈ extVK(x) for every x ∈ P .

Then Stratified Solutions are either the only Krasowskii Cone Robust Solutions contained in P or the only
Krasowskii Cone Robust Solutions that are extremal and contained in P .

Proof. We have that Stratified Solutions are Krasowskii Cone Robust. If i. holds then Stratified Solutions
are clearly the only Krasowskii Cone Robust Solutions contained in P . If otherwise ii. holds then Stratified
Solutions are extremal and we conclude by a. of Proposition 4. �
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