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GLOBAL NON-NEGATIVE CONTROLLABILITY OF THE SEMILINEAR
PARABOLIC EQUATION GOVERNED BY BILINEAR CONTROL

Alexander Y. Khapalov
1

Abstract. We study the global approximate controllability of the one dimensional semilinear
convection-diffusion-reaction equation governed in a bounded domain via the coefficient (bilinear con-
trol) in the additive reaction term. Clearly, even in the linear case, due to the maximum principle,
such system is not globally or locally controllable in any reasonable linear space. It is also well known
that for the superlinear terms admitting a power growth at infinity the global approximate controlla-
bility by traditional additive controls of localized support is out of question. However, we will show
that a system like that can be steered in L2(0, 1) from any non-negative nonzero initial state into any
neighborhood of any desirable non-negative target state by at most three static (x-dependent only)
above-mentioned bilinear controls, applied subsequently in time, while only one such control is needed
in the linear case.
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1. Introduction

1.1. Motivation

In the mathematical models of controlled distributed parameter processes boundary and interior locally dis-
tributed or lumped controls are typically used. They enter the model as additive terms (note that the boundary
controls can be modeled by additive Dirac functions) and have localized support. In terms of applications it
appears that these controls can adequately model only those processes that do not change their principal phys-
ical characteristics due to the control action. They rather describe the affect of various external (“alien”) forces
on the process at hand. This “limitation”, however, excludes numerous new and not quite new technologies,
such as, for example, the chemical reactions, controlled by “catalysts”, and “smart materials”, which are able
to change their principal parameters under certain conditions. Moreover, in the technical aspect, it turns out
that the additive controls may not be effective when dealing with highly nonlinear problems.

In this paper we attempt to address the just-outlined issues in the context of approximate controllability of
the semilinear parabolic equation governed via a coefficient (bilinear control) in its additive reaction term. Such
(bilinear) control can change at least some of the principal parameters of the process at hand, for example, the
rate of a chemical (or chain) reaction, which can be achieved by using various catalysts and/or by the “speed”
at which the reaction ingredients are mixed.
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1.2. Problem formulation

Let us consider the following Dirichlet boundary problem, governed in a bounded domain (0, 1) by the bilinear
control α ∈ L∞(QT ):

ut = uxx + αu − f(x, t, u, ux) in QT = (0, 1)× (0, T ), (1.1)

u(0, t) = u(1, t) = 0, t ∈ (0, T ), u |t=0 = u0 ∈ L2(0, 1).
Given T > 0, we further assume that f(x, t, u, p) is Lebesgue’s measurable in x, t, u, p, and continuous in
u, p for almost all (x, t) ∈ QT , and is such that

| f(x, t, u, p) | ≤ β | u |r1 + β | p |r2 a.e. in QT for u, p ∈ R, (1.2a)∫
Ω

f(x, t, φ, φx) φ dx ≥ 0 ∀φ ∈ H1
0 (0, 1), (1.2b)

where β > 0, and
r1 ∈ (1, 5), r2 ∈ (1, 5/3). (1.2c)

A simple example of a function f satisfying conditions (1.2a–1.2c) is f(u) = u3. Note that (1.2a) and (1.2c)
mean that | f | is bounded above by a strictly superlinear function in u and p near the origin as well (see also
Rem. 4.1 below in this respect).

Here and below we use the standard notations for Sobolev spaces such as H1,0
0 (QT ) = L2(0, T ;H1

0 (0, 1)) =
{φ | φ, φx ∈ L2(QT ), φ(0, t) = φ(1, t) = 0} and H1

0 (Ω) = {φ | φ, φx ∈ L2(0, 1), φ(0) = φ(1) = 0}.
We refer, e.g., to [20] (p. 466), where it was shown that system (1.1, 1.2a–1.2c) admits at least one generalized

solution in C([0, T ];L2(0, 1))
⋂
H1,0

0 (QT )
⋂
L6(QT ), but its uniqueness is not guaranteed.

In the context of the heat (mass)-transfer α is proportional to the heat-transfer (or mass-transfer) coefficient,
which depends on the environment, the substance at hand, and its surface area. If the heat (mass)-transfer
involves fluids (air), α also depends on the speed of the fluid. (The latter can be controlled in some applications
by the artificially induced magnetic field.) Alternatively, the surface area can be changed when the substance
at hand is a polymer (e.g., a planar array of gel fibers can be controlled to maximize the surface area exposed
to the surrounding fluid). Also, we refer to the so-called “extended” surface applications (fins, pins, studs, etc.)
when one wishes to increase/decrease the exchange between source and an ambient fluid.

In this paper we are concerned with the issue of approximate controllability of system (1.1, 1.2a–1.2c). Note
that, even in the case when f = 0, that is, when (1.1) becomes the linear boundary problem

yt = yxx + αy in QT = (0, 1)× (0, T ), (1.3)

y(0, t) = y(1, t) = 0, t ∈ (0, T ), y |t=0 = y0 ∈ L2(0, 1),
its solution depends highly nonlinearly on α, which makes the associated controllability problem nonlinear as
well.

Let us recall that, in its general form, it is said that the system at hand is globally approximately controllable
in the given (linear phase-) space H at time T > 0 if it can be steered from any initial state in H into any
neighborhood of any desirable target state in H at time T , by selecting a suitable available (traditionally, linear
additive) control.

However, it is not unnatural to expect that the use of bilinear controls and/or the presence of superlinear
nonlinearity can give rise to certain conceptual modifications of this property. We refer in this respect to the
early pioneering work [5] by Ball et al. on controllability of the abstract infinite dimensional bilinear system.
In [5], the global approximate controllability of the rod equation utt + uxxxx + k(t)uxx = 0 with hinged ends
and of the wave equation utt−uxx+k(t)u = 0 with Dirichlet boundary conditions, where k is control (the axial
load), was shown making use of the nonharmonic Fourier series approach under the additional (nontraditional)
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assumption that all the modes in the initial data are active. (We also refer to [19] further exploring the ideas
of [5] in the context of simultaneous control of the rod equation and Schrödinger equation.)

Let us discuss now some of the inherent difficulties arising in the context of bilinear controllability of parabolic
pde’s like (1.1, 1.3) and suggest a new definition of approximate controllability, which seems to be quite natural
and consistent with potential applications.

First of all, whenever the zero state is a fixed point for the system at hand, it is immediately clear that such
a system is not globally controllable from y0 = 0 and its exact null controllability is out of question as well.
Furthermore, even if y0 6= 0 and f = 0 the resulting seemingly “simpler” linear system (1.3) still cannot be
approximately controllable by bilinear control α in any “reasonable” linear space. Indeed, e.g., if y0(x) is non-
negative, then, the maximum principle implies that y(x, t) must remain non-negative for all t > 0, regardless
of the choice of α ∈ L∞(QT ). In other words, one is unable to reach any of the “negative” (or, alternatively,
positive) target states from a non-negative (or, alternatively, non-positive) initial state.

Accordingly, it seems of interest to study the approximate controllability of (1.1, 1.3) while dealing exclusively
with non-negative initial and target states. In terms of applications, such modification is very natural. For
example, if (1.3) describes a diffusion process with y(x, t) being the concentration of a substance at point x at
time t, then, of course, it cannot accept the negative values. Alternatively, if (1.3) describes a heat-transfer
process, with y(x, t) being the temperature at point x at time t, then it is also natural to assume that the
temperature cannot fall below certain level (one may also recall the concept of absolute zero).

Secondly, the fact that the bilinear control α in (1.1, 1.3) is a coefficient opens certain possibilities to steer
the system at hand to the desirable target state by creating suitable “drift” motions towards it. Namely, by
making this target state a new equilibrium. This can be achieved by static (time-independent) bilinear controls,
i.e., of a much simpler structure to implement, compared to, e.g., the traditional x- and t-dependent locally
distributed L2(QT )-controls. On the other hand, such static controls will not allow us to comply with the
“traditional approximate controllability” requirement that the control time should be the same for any pair of
the initial and target states.

Thirdly, the above-cited classical definition of approximate controllability becomes ill-posed (and rather
“questionable” in terms of applications) when the system at hand admits multiple solutions.

We summarize the above discussion by introducing the following definition:

Definition 1.1. We will say that system (1.1, 1.2a–1.2c), generally admitting multiple solutions, is
“non-negatively” globally approximately controllable in L2(Ω) if for every ε > 0 and non-negative u0, ud ∈
L2(Ω), u0 6= 0 there is a T = T (ε, u0, ud) and bilinear control α ∈ L∞(QT ) such that for all (i.e., possibly
multiple) solutions of (1.1, 1.2a–1.2c), corresponding to it,

‖ u(·, T )− ud ‖L2(Ω) ≤ ε. (1.4)

1.3. Main results

Our first result deals with the linear boundary problem (1.3).

Theorem 1.1. System (1.3) is “non-negatively” approximately controllable in L2(0, 1) in the sense of
Definition 1.1 by means of static controls α = α(x), α ∈ L∞(0, 1) only. Moreover, the corresponding solu-
tion to (1.3) remains non-negative at all times. (No multiple solutions in this case.)

Theorem 1.2. System (1.1, 1.2a–1.2c) is “non-negatively” approximately controllable in L2(Ω) in the sense
of Definition 1.1. The corresponding steering can be achieved by subsequent applying of three suitable static
bilinear controls.
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Corollary 1.3. The condition that the initial states y0 and u0 in Theorems 1.1 and 1.2 are nonzero and non-
negative can be replaced with the following more general assumptions:

1∫
0

y0yddx > 0,

1∫
0

u0uddx > 0. (1.5)

(However, y(x, t) may now accept both negative and positive values during the steering process.)

Corollary 1.3 extends the results of Theorems 1.1 and 1.2 to a wider set of initial states (i.e., not necessarily
non-negative), but, formally, it excludes the zero target states yd = ud = 0. However, we show below in the
first step of the proof of Theorem 1.2 that the zero target state can approximately be reached arbitrarily fast
from any initial state in L2(0, 1).

The remainder of the paper is organized as follows. Theorem 1.1 is proven in Section 2. Section 3 deals with
some preliminary estimates, further used in Section 4 to prove Theorem 1.2. In Section 4 we discuss our main
results, some open questions, and related additional references.

Remark 1.1. It is noteworthy that the global approximate controllability of the semilinear heat equation
with superlinear power-like terms as in (1.1, 1.2a–1.2c) is not possible by means of additive locally distributed
controls [11, 12]. More precisely, solutions to such an equation remain uniformly bounded outside the control
support, regardless of the magnitude of control applied. (Hence, the non-negative global controllability in the
sense of Def. 1.1 is out of question as well.) On the positive global controllability results for semilinear parabolic
equations with superlinear terms and additive controls of localized support we refer to [1,6,8,9,13–15] (see also
the discussion on [16] in the beginning of Sect. 4).

2. Proof of Theorem 1.1

Our central idea here is to try to select α = α(x) in such a way that the target state yd (or its “close”
approximation) becomes co-linear to the first (non-negative) eigenfunction for the diffusion-reaction term yxx+
α(x)y in (1.3), which is then approached by the corresponding trajectory of (1.3) as t increases.

2.1. Preliminaries

Denote by λk and ωk(x), k = 1, . . . respectively the eigenvalues and orthonormalized in L2(0, 1) eigen-
functions of the spectral problem ωxx + α(x)ω = λω, ω ∈ H1

0 (0, 1) (which, in fact, is a linear ode). It is known
that

‖ α ‖L∞(0,1) ≥ λ1 > λ2 > . . . , (2.1)

and λk → −∞ as k increases. The unique solution to (1.3) in C([0, T ];L2(0, 1))
⋂
H1,0

0 (QT ) admits the
following representation:

y(x, t) =
∞∑
k=1

eλkt

 1∫
0

y0(r)ωk(r)dr

ωk(x). (2.2)

Note that, for the given α, we can endow the space H1
0 (0, 1) with the norm

‖ ω ‖H1
0 (0,1) =

 1∫
0

(ω2
x + (−α(x) + c)ω2(x))dx

1/2

,
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where c is any positive constants exceeding ‖ α ‖L∞(0,1). Then,

‖ ωk ‖H1
0(0,1) =

(c− λk)

1∫
0

ω2
k(x))dx

1/2

,

and

‖ y(·, t) ‖L2(0,1) ≤ eλ1t ‖ y0 ‖L2(0,1), t ≥ 0, (2.3)

‖ y(·, t) ‖C[0,1] ≤ C∗ ‖ y(·, t) ‖H1
0(0,1) ≤ C(t) ‖ y0 ‖L2(0,1), t > 0, (2.4)

where C∗ is a positive constant associated with the continuous embedding H1
0 (0, 1) ⊂ C[0, 1] and the function

C(t), t > 0 is nondecreasing. (Both C∗ and C(t) depend on α.)

2.2. Proof of Theorem 1.1

Our plan of the proof of Theorem 1.1 is as follows:
(i) We intend to show that for “almost any” given non-negative target state yd ∈ L2(0, 1) we can select an

α∗(x) such that yd/ ‖ yd ‖L2(0,1) becomes the first eigenfunction for (1.3), associated with the largest
eigenvalue in the representation (2.2). In other words, in (2.2),

ω1(x) =
yd(x)

‖ yd ‖L2(0,1)
· (2.5)

(ii) Then we will show that the actual control can be selected as

α(x) = α∗(x) + a,

where a is a constant chosen so that the first term in the corresponding representation (2.2) converges to
yd, while the remainder of the series converges to zero as t increases. Note that adding a in the above
does shift the eigenvalues corresponding to α∗ (denote them by {λk}∞k=1 now) from λk to λk + a, but the
eigenfunctions remain the same for α∗ and α∗ + a.

Step 1. Maximum principle. Let us recall first that according to the generalized maximum principle

0 ≤ y(x, t) ≤ ebt ‖ y0 ‖L∞(0,1), b = ‖ α ‖L∞(0,1), t > 0, (2.6)

whenever y0 ∈ L∞(0, 1) and is a.e. non-negative. Indeed, if α(x) ≤ 0 this is true with b = 0 [16] (in this
case (2.6) becomes the standard generalized maximum principle). Otherwise, equation (2.6) follows from the
maximum principle applied to the function z(x, t) = e−bty(x, t), satisfying

zt = zxx + (α(x) − b)z in QT ,

z(0, t) = z(1, t) = 0, t ∈ (0, T ), z |t=0 = y0 ∈ L∞(0, 1)

with α(x)− b ≤ 0.
Note now that any non-negative y0 ∈ L2(0, 1) can be approximated in L2(0, 1) by a sequence of non-negative

y0k ∈ C[0, 1]. Due to (2.4) the solutions to (1.3) corresponding to y0 and y0k converge to each other in C[0, 1]
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for every positive t. Hence, in view of (2.6), we also have

y(x, t) ≥ 0 in (0, 1)× (0,∞), (2.7)

whenever y0 is non-negative element of L2(0, 1).

Step 2. To prove Theorem 1.1, it is sufficient to consider any set of non-negative target states yd which
is dense in the set of all non-negative elements of L2(0, 1). To this end, we will consider only (a) nonzero
non-negative continuously differentiable functions yd = yd(x), x ∈ [0, 1] that (b) vanish at x = 0, 1 and (c)
whose second derivatives are piecewise continuous with finitely many discontinuities of the first kind (hence,
yd ∈ H2(0, 1)

⋂
H1

0 (0, 1)) such that (d)

yd(x) > 0 in (0, 1) and
ydxx
yd

∈ L∞(0, 1). (2.8)

To ensure the last condition in (2.8) it is sufficient to select yd that, in addition to the above, is linear near the
endpoints x = 0, 1. This would guarantee that ydxx = 0 near x = 0, 1, while elsewhere, due to the first condition
in (2.8), the denominator in (2.8) is strictly separated from 0.

Let us show that any non-negative element g ∈ L2(0, 1) can indeed be approximated in this space by a
sequence of functions described in the above.

Firstly, note that without loss of generality, we can assume that g(x) ≥ c > 0 for almost all x ∈ (0, 1) (since
any non-negative function g can be approximated, e.g., by a sequence of positive functions g(x) + 1/k, where
k →∞).

Secondly, recall that any g ∈ L2(0, 1), positive a.e. in (0, 1) as described in the above, can be approximated
in this space by a sequence of piecewise constant positive functions gk(x) with possible jumps at xj = j/k, j =
1, . . . , k, x0 = 0, xk = 1, where

gk(x) =
1
k

xj∫
xj−1

g(x)dx, x ∈ [xj−1, xj), j = 1, . . . , k.

Note that gk(x) are strictly separated from zero in (0, 1).
Thirdly, each of such piecewise constant functions can in turn be approximated in L2(0, 1) by continuous

piecewise linear functions that vanish at x = 0, 1 and everywhere else are strictly positive, whose graphs,
accordingly, do not have vertical pieces. (Namely, for that one just needs, e.g., to connect the graphs of the
former functions by the pieces of straight lines near the discontinuity points.)

Finally, each of these broken lines can be “smoothened” at the corners, e.g., by using pieces of circles of “suffi-
ciently small” radia with centers located on the bisectors of the angles generated by the corresponding adjacent
straight lines of the graphs (so that these lines are tangent to the associated circles). These “smoothened”
lines are the graphs of the functions satisfying all the conditions (a–d) described in the above and approxi-
mate in L2(0, 1) the above-constructed broken lines (and, hence, eventually an arbitrarily selected non-negative
g ∈ L2(0, 1)) as the above-mentioned radia tend to zero.

Step 3. Select any non-negative nonzero y0 ∈ L2(0, 1) and any yd as described in the above. Set

α∗(x) = −ydxx(x)
yd(x)

, x ∈ (0, 1). (2.9)

Note that α∗(x) is not identically zero in L∞(0, 1) (otherwise, yd ≡ 0.) The eigenvalues associated with this
α∗ we further denote by {λk}∞k=1.

(2.9) means that the function
yd(x)

‖ yd ‖L2(0,1)
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is an eigenfunction for (1.3) with α = α∗, say

yd(x)
‖ yd ‖L2(0,1)

= ωk∗(x), (2.10a)

associated with the zero eigenvalue λk∗ = 0.
Note now that, since all the eigenfunctions are orthogonal in L2(0, 1), that is,

1∫
0

ωkωmdx = 0 for k 6= m,

and ωk∗ > 0 in (0, 1), the function (2.10a) is the only non-negative eigenfunction for (1.3) with α = α∗ as in
(2.9) (more precisely, it is the only eigenfunction that does not change sign in (0, 1)).

Also, since ωk∗ > 0, whenever y0 ≥ 0, y0 6= 0 in (0, 1),

1∫
0

y0ωk∗dx > 0 (2.11)

(see also Rem. 2.1 below).

Step 4. Moreover,

k∗ = 1 (that is, λ1 = 0). (2.10b)

Indeed, otherwise (i.e., if k∗ > 1 and ω1(x) ∈ H1
0 (0, 1) ⊂ C[0, 1] changes sign in (0, 1)) we can select a nonzero

non-negative y0 such that
1∫
0

y0ω1dx 6= 0.

Therefore, the solution to (1.3) with α = α∗ − λ1 = α∗, according to the (generic) formula (2.2), is represented
by the series

1∫
0

y0(r)ω1(r)drω1(x) +
∞∑
k=2

eλkt

 1∫
0

y0(r)ωk(r)dr

 ωk(x),

converging as t increases in C[0, 1] to the function (recall that λk < λ1 = 0 for k = 2, . . . )

1∫
0

y0(r)ω1(r)drω1(x)

excepting (as we assumed it arguing by contradiction) negative values somewhere in (0, 1). This contradicts to
the maximum principle (2.7) and hence (2.10b) holds.

Step 5. Select now the bilinear control α of the type

α = α∗ + a, a ∈ R.
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Then, the corresponding solution to (1.3) is as follows:

y(x, t) = eat
1∫
0

y0(r)ω1(r)drω1(x) + r(x, t)

= eat
1∫
0

y0(r)ω1(r)drω1(x) +
∑
k>1

e(λk+a)t

 1∫
0

y0(r)ωk(r)dr

 ωk(x), (2.12)

where
λk < 0 for k > 1.

Accordingly, making use of (2.3) and (2.10a, 2.10b), we have the following estimate:

‖ y(·, t)− yd ‖L2(0,1) ≤ | eat
1∫
0

y0ω1dx− ‖ yd ‖L2(0,1)| + ‖ r ‖L2(0,1)

≤ | eat
1∫
0

y0ω1dx− ‖ yd ‖L2(0,1)| + e(λ2+a)t ‖ y0 ‖L2(0,1) . (2.13)

Select now a and T > 0 such that

eaT
1∫
0

y0ω1dx = ‖ yd ‖L2(0,1),

that is,

a =
1
T

ln

(
‖ yd ‖L2(0,1)∫ 1

0
y0ω1dx

)
·

Then, it follows from (2.13) that

‖ y(·, T )− yd ‖L2(0,1) ≤ eλ2T
‖ yd ‖L2(0,1)∫ 1

0 y0ω1dx
‖ y0 ‖L2(0,1) → 0 (2.14)

as T increases. This ensures (1.4) for some pair {a, T} and ends the proof of Theorem 1.1. �

Remark 2.1. Given a nonzero non-negative yT , in the above argument we used the condition that y0 is a
nonzero non-negative function only to ensure that the first Fourier coefficient in the solution representation
(2.12) is positive. This proves Corollary 1.3 in respect of Theorem 1.1.

3. Proof of Theorem 1.2: Preliminaries

To prove Theorem 1.2 we will need the following estimates.
Denote B(0, T ) = C([0, T ];L2(0, 1))

⋂
H1,0

0 (QT ) and put

‖ q ‖B(0,T )=

 max
t∈[0,T ]

‖ q(·, t) ‖2L2(0,1) + 2

T∫
0

1∫
0

q2
xdxds

1/2

.
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We have the following a priori estimate:

Lemma 3.1. Given T > 0 and α(x) ≤ 0, any solution to (1.1, 1.2a–1.2c) (if there are multiple solutions)
satisfies the following two estimates:

‖ u ‖B(0,T ), ‖ u ‖L6(QT ) ≤ C ‖ u0 ‖L2(0,1) . (3.1)

The difference z = u− y between any solution u to (1.1, 1.2a–1.2c) (if there are multiple ones) and the unique
solution to (1.3) with y0 = u0 satisfies the following two estimates:

‖ z ‖B(0,T ), ‖ z ‖L6(QT ) ≤ C
(
T

5
6 (1− r15 ) ‖ u0 ‖r1L2(0,1) + T

5
6 (1− 3r2

5 ) ‖ u0 ‖r2L2(0,1)

)
. (3.2)

Here and below we routinely use symbols c and C to denote (different) generic positive constants.

Proof. Recall [20] that f(·, ·, w, wx) ∈ L6/5(QT ) and that the following energy equality holds for (1.1) treated
as a linear equation with the source term f(x, t, u, ux), e.g. [20] (p. 142):

1
2
‖ u ‖2L2(0,1)|t0 +

t∫
0

1∫
0

(u2
x − αu2 + f(x, s, u, ux)u) dxds = 0 ∀t ∈ [0, T ]. (3.3)

Here and everywhere below, if there exist several solutions to (1.1), we always deal separately with one of them
at a time, while noticing that all the estimates involved hold uniformly.

Combining (3.3) and (1.2b) and the assumption that α(x) ≤ 0 immediately yields:

‖ u(·, t) ‖2L2(0,1) + 2

t∫
0

1∫
0

u2
x(x, s) dxds ≤ ‖ u0 ‖2L2(0,1) ∀t ∈ [0, T ]. (3.4)

This provides the first estimate in (3.1) with respect to the B(0, T )-norm. The second estimate (with properly
arranged generic constant) follows by the continuity of the embedding B(0, T ) into L6(QT ) (e.g. [20], pp. 467,
75):

‖ u ‖L6(QT ) ≤ c ‖ u ‖B(0,T ) . (3.5)
We now intend to evaluate the difference between the solution u to (1.1) with α(x) ≤ 0 and that to its truncated
version (1.3). If z = u− y, then

zt = zxx + αz − f(x, t, u, ux) in QT ,

z |x=0,1= 0, z |t=0 = 0.
Similar to (3.3) and (3.4) we have for any δ > 0,

‖ z(·, t) ‖2L2(0,1) + 2

t∫
0

1∫
0

z2
x(x, s) dxds ≤ −2

t∫
0

1∫
0

zf(x, s, u, ux)dxds

≤ 2 ‖ z ‖L6(Qt)‖ f(·, ·, u, ux) ‖L6/5(Qt) ≤ 2c ‖ z ‖B(0,t)‖ f(·, ·, u, ux) ‖L6/5(QT )

≤ δ ‖ z ‖2B(0,t) +
c2

δ
‖ f(·, ·, u, ux) ‖2L6/5(QT ) ∀t ∈ [0, T ], (3.6)

where we have used Hölder’s and Young’s inequalities and, again, equation (3.5).
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From (3.6), we have

max
τ∈(0,t)

‖ z(·, τ) ‖2L2(0,1) ≤ δ ‖ z ‖2B(0,t) +
c2

δ
‖ f(·, ·, u, ux) ‖2L6/5(QT ) ∀t ∈ [0, T ].

Hence, again from (3.6),

‖ z ‖2B(0,t) ≤ 2δ ‖ z ‖2B(0,t) +
2c2

δ
‖ f(·, ·, u, ux) ‖2L6/5(QT ) ∀t ∈ [0, T ]

and

(1− 2δ) ‖ z ‖2B(0,t) ≤
2c2

δ
‖ f(·, ·, u, ux) ‖2L6/5(QT ) (3.7)

or

‖ z ‖B(0,T ) ≤
√

2c√
δ(1− 2δ)

‖ f(·, ·, u, ux) ‖L6/5(QT ), (3.8)

provided that

0 < δ <
1
2
·

Now, using (1.2a) and Hölder’s inequality (as in [16], p. 469; and [10], p. 863), we obtain:

‖ f(·, ·, u, ux) ‖L6/5(QT ) ≤ βT
5
6 (1− r15 ) ‖ u ‖r1L6(QT ) + βT

5
6 (1− 3r2

5 ) ‖ ux ‖r2L2(QT ) . (3.9)

Combining (3.8, 3.9) with (3.1) and, again, with (3.5) yields (3.2). This completes the proof of Lemma 3.1. �
Remark 3.1. Remark 3.1. In [16] we derived the estimates of type (3.1) and (3.2) (in somewhat more general
situation) for the case when α is a positive constant. They are as follows:

‖ u ‖B(0,T ), ‖ u ‖L6(QT ) ≤ CeαT ‖ u0 ‖L2(0,1), (3.10)

‖ z ‖B(0,T ), ‖ z ‖L6(QT ) ≤ Ce
2αT
1−δ

1√
δ

(T
5
6 (1− r15 ) ‖ u ‖r1L6(QT )

+ T
5
6 (1− 3r2

5 ) ‖ ux ‖r2L2(QT )) ∀δ ∈ (0, 1/2), (3.11)
where C does not depend on α. We will also use them in the proof of Theorem 1.2 below.

4. Proof of Theorem 1.2

In [16] we proved the global approximate controllability in L2(0, 1) at any time T > 0 of the following
Dirichlet boundary problem

wt = wxx + k(t)w − f(x, t, w,wx) + v(t)χ(l1,l2)(x) in QT , (4.1)

w |x=0,1= 0, w |t=0 = w0 ∈ L2(0, 1), k ∈ L∞(0, T ), v ∈ L2(0, T ),
governed by the combination of two controls – the bilinear lumped piecewise constant control k = k(t) and the
additive lumped control v(t)χ(l1,l2)(x) supported in the given subinterval (l1, l2) ⊂ (0, 1) (l1 ± l2 are irrational),
also assuming that conditions (1.2a–1.2c) hold. (In [16] the case of several dimensions was treated as well with
the locally distributed controls in place of the lumped additive ones.)

More precisely, it was noticed in [16] that one can steer a system like (4.1) with v = 0 in L2(Ω) from any
initial state w0 arbitrarily close to any state like s∗w0 for any s∗ > 0, given in advance, by applying “suitably
large” constant bilinear controls for a “very short” time. The global controllability result in [16] then follows
by combining this property with available “quasi-local” controllability of the system at hand when it is governed
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solely by means of the additive controls of localized support, namely, along the following scheme:

• given the initial and target states w0 and wd, we steer (4.1) “close enough” to the zero state (equilibrium),
while employing a suitable constant negative bilinear control k only;
• using (a sort of) locally controllability technique with only additive controls v active, we then steer (4.1)

to a state s∗wd + o(s∗) for some small parameter s∗ > 0;
• again, employing only a suitable constant positive bilinear control k, we “stretch” the latter state to the

desirable target state wd.

As one can see, the additive controls play the most crucial role to achieve the principal “fine” steering in the
above scheme.

Now note that if we manage to replace them somehow by (principally different) bilinear static controls, then
the above scheme can be used to prove Theorem 1.2 in the framework of the non-negative controllability (recall
that the traditional approximate controllability never holds by means of bilinear controls, as we discussed it in
the introduction). This replacement is the crux of our proof below.

We intend to modify the first two of the above three steps, making use of Theorem 1.1 and Lemma 3.1. Our
goal will be to steer system (1.1, 1.2a–1.2c) from u0 to a state s∗ud + o(s∗) for some small parameter s∗ > 0.
To this end, we will make use of the “superlinearity” assumptions (1.2a–1.2c), which ensure that the system at
hand behaves “almost” like the linear one near the origin. Then the last step from the above scheme applies.

Proof. of Theorem 1.2. Fix any non-negative u0 6= 0 in L2(0, 1) and ud satisfying the assumptions on yd
described in (2.8).

Step 1. Select any t∗ > 0. On the interval (0, t∗) we intend to apply a negative constant control α(x) = λ (its
value will be chosen later). Then for the corresponding solution y to (1.3) with y0 = u0 we have (using the
generic representation (2.2)):

y(x, t∗) = eλt∗
∞∑
k=1

eλkt∗

 1∫
0

y0(r)ωk(r)dr

 ωk(x), (4.2)

where in this case λk = −(πk)2, ωk(x) =
√

2 sinπkx.
Fix any s ∈ (0, 1) and select now (a constant on (0, t∗) bilinear control) λ = λ(t∗, s) < 0 such that

eλt∗ = s.

Then, it follows from (4.2) that
y(·, t∗) → sy0(·) = su0 as t∗ → 0 + .

Furthermore, using the estimates (3.2) we also obtain the same convergence for the corresponding solution to
(1.1) (uniform over all the possible multiple solutions). In other words, we can steer, arbitrarily fast, (1.1) from
any initial state u0 = y0 to a state

u(·, t∗) = sy0 + o(s) = su0 + o(s) as s→ 0+ (4.3)

for some t∗ = t∗(s), where
‖ o(s)/s ‖L2(0,1) → 0 as s→ 0. (4.4)

We further assume that s is “small” (to ensure (4.3) and (4.4) whenever it will be necessary).

Step 2. Select

α∗(x) = −udxx(x)
ud(x)
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as in (2.9). The corresponding first eigenfunction for the parabolic operator in (1.3) (see (2.10a, 2.10b)) will be

ud(x)
‖ ud ‖L2(0,1)

= ω1(x).

We now apply Theorem 1.1 for the linear system (1.3) on some interval (t∗, t∗), where t∗ will be selected later,
with

su0 + o(s) (4.5)
from (4.3) in place of the initial state (note that for small s Rem. 2.1 applies – this will eventually yield Cor. 1.3
for Th. 1.2) and with

s1+ξud, where ξ ∈ (0,min{r1, r2} − 1) (4.6)
(r1 and r2 are from (1.2a–1.2c)), in place of the target state. Accordingly (along the lines (2.12–2.14) and using
(4.5) and (4.6)), we will have the estimate as in (2.14):

‖ y(·, t∗)− s1+ξud ‖L2(0,1) ≤ eλ2(t∗−t∗) s1+ξ ‖ ud ‖L2(0,1)∫ 1

0
(sy0 + o(s))ω1dx

‖ sy0 + o(s) ‖L2(0,1) (4.7)

for some t∗ > t∗ (where λk’s are the eigenvalues associated with α∗, λ1 = 0). Here, as in Step 5 of the proof of
Theorem 1.1, y is the solution to (1.3) on (t∗, t∗) with bilinear control α(x) = α∗(x) + a such that

ea(t∗−t∗)
1∫
0

(sy0 + o(s))ω1dx = s1+ξ ‖ ud ‖L2(0,1)

or, whenever a 6= 0,

t∗ = t∗ +
1
a

ln

(
s1+ξ ‖ ud ‖L2(0,1)∫ 1

0(sy0 + o(s))ω1dx
,

)
(4.8)

and λ1 and λ2 are the first two eigenvalues for (1.3) with α = α∗.
Select now

a = − ‖ α∗ ‖L∞(0,1) − ρ, (4.9)
where ρ > 0 is some (fixed) constant. Since λ1 = 0,

a < 0 and α(x) = α∗(x) + a < 0, x ∈ [0, 1].

Hence, by (4.8),
t∗ − t∗ = t∗(s)− t∗(s) → ∞ as s→ 0+

and also the estimate (3.2) applies on the interval (t∗, t∗):

‖ u(·, t∗)− s1+ξud ‖L2(0,1) ≤ ‖ u(·, t∗)− y(·, t∗) ‖L2(0,1) + ‖ y(·, t∗)− s1+ξud ‖L2(0,1)

≤ C(t∗ − t∗)max{ 5
6 (1− r15 ), 56 (1− 3r2

5 )}smin{r1,r2} +
(
Csξλ2/a

)
s1+ξ ‖ ud ‖L2(0,1)

= o(s1+ξ) as s→ 0+
(we remind the reader that C denotes a generic positive constant). Here we also used (4.7) and (4.9) to show
that as s→ 0+:

eλ2(t∗−t∗) =

(
s1+ξ ‖ ud ‖L2(0,1)∫ 1

0(sy0 + o(s))ω1dx

)λ2
a

≤ Csξλ2/a
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(with λ2 < λ1 = 0 and a as in (4.9)) and that

(t∗ − t∗)max{ 5
6 (1− r15 ), 56 (1− 3r2

5 )}smin{r1,r2}

=

(
1
a

ln

(
s1+ξ ‖ ud ‖L2(0,1)∫ 1

0
(sy0 + o(s))ω1dx

))max{ 5
6 (1− r15 ), 56 (1− 3r2

5 )}

smin{r1,r2}

≤
(
C | ln s |max{ 5

6 (1− r15 ), 56 (1− 3r2
5 )} smin{r1,r2}−1−ξ

)
s1+ξ,

also recalling that r1, r2 > 1 in (1.2a–1.2c) and ξ ∈ (0,min{r1, r2} − 1).
Thus, we showed that

u(·, t∗) = s1+ξud + o(s1+ξ) as s→ 0 + .

Remark 4.1. We would like to point out here that the “superlinearity” condition (1.2c) is essential in the
above to ensure that min{r1, r2} > 1.

Step 3. Now we apply the argument in the last step of the proof in [16] as outlined in the beginning of this
section with s∗ = s1+ξ. Namely, on some interval (t∗, T ) (with T to be selected later) we apply positive constant
control

α(x) ≡ α > 0, t ∈ (t∗, T ).
In the fashion of Steps 1 and 2 in the above, but based on the estimates (3.10) and (3.11) in Remark 3.1 in place
of Lemma 3.1, it was shown in [16] that with parameters ε = T − t∗ = T − t∗(s), s∗ = s1+ξ, and α = α(ε, s∗),
selected so that

(A) s∗ → 0+;

(B) eαε =
1
s∗

;

(C) ε→ 0, so that

e
2αε
1−δ εmin{ 5

6 (1− r15 ); 5
6 (1− 3r2

5 )} = εmin{ 5
6 (1− r15 ); 5

6 (1− 3r2
5 )}s

− 2
1−δ
∗ → 0,

we will have for some T > 0 that
‖ u(·, T )− ud ‖L2(0,1) → 0. (4.10)

This completes the proof of Theorem 1.2.

5. Concluding remarks

It is worth noticing that, in terms of applications, the method used to prove our main linear result –
Theorem 1.1– allows one to deal with relatively small and simple (and hence “practical”) static controls, which,
however, may need to be applied for a relatively long time. (These controls were also used in the crucial part
of the proof of Th. 1.3.) On the other hand, this method requires the first eigenvalues be always simple, which
was achieved by assuming that n = 1.

Accordingly, with the changes necessary to take care about the regularity of solutions to (1.1, 1.3) and the
approximation procedure described in Step 2 of the proof of Theorem 1.1, the arguments of Theorem 1.1 and
1.2 may apply in the general n-dimensional case as well, provided that the first eigenvalue of (1.1, 1.3) associated
with α∗ as in (2.9) is simple. In other words, the corresponding n-dimensional version of systems (1.3) and (1.1)
can be steered from any nonzero non-negative initial state arbitrarily close to any of the non-negative target
states generating such α∗’s.

In the recent work [18] (written after the current paper was submitted) we obtained a different non-negative
controllability result for a system like in (1.1) in several space dimensions with the terms f which can be
superlinear at infinity but are not necessarily superlinear near the origin. The result in [18] always requires
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at least three “large” static bilinear controls (whose magnitude increases as the precision of steering increases)
applied subsequently for very short times. Unlike the present paper, based on the use of the dynamics imposed
by the diffusion-reaction term like yxx + α(x)y in (1.3) in the first place, the method of [18] focuses on
the “suppression” of the effect of the diffusion term like the above-mentioned yxx. It makes use of the part
of the dynamics of (1.1) which can be approximated by the trajectories of the ordinary differential equation
dz/dt = α(x)z in L2(Ω). Accordingly, the method of [18] does not apply to obtain the results of Theorem 1.1,
allowing the use of “small” single static controls, and of Corollary 1.3, allowing the principal extension of the
set of non-negative initial states to the set described in conditions (1.5).

Additional related references:

• The works [17] and [10] (which also appeared after the present paper was submitted) deal with a different
approach to the bilinear controllability, which is as follows. It is known that the heat equation is approx-
imately controllable in L2(Ω) by the additive static controls v = v(x) with support everywhere in the
space domain Ω. Then a suitable bilinear control for (1.3) can be sought as some “well-posed modifica-
tion” of the expression α(x, t) = v(x)/y(x, t), in which case the “original” additive static control v(x)
is artificially “transformed” into the bilinear term α(x, t)y(x, t). Note however, that this approach deals
with essentially more “complex” controls (e.g., in terms of practical implementation), namely, as functions
of both x and t. In the paper [10] it was applied in the context of the non-negative approximate con-
trollability for a special class of the semilinear parabolic equations whose solutions satisfy the maximum
principle. In [17] it was used to investigate the exact null-controllability of a semilinear nonhomogeneous
version of (1.3) with the bilinear term like α(x, t)(f(x, t, y) − θ(x)), where f is sublinear and θ is given.
(Note that the exact null-controllability discussed in [17] is out of question for the homogeneous bilinear
system like (1.1) (or (1.3)), since the origin is always a fixed point for such a system for any control α.)
• We also would like to mention the works [7,21] (and the references therein) on the issue of optimal bilinear

control for various pde’s.
• An extensive and thorough bibliography on controllability on bilinear ode’s is available, see, e.g., the

survey [2]. The research in this area was originated in the 60s, on the one hand, by the works of Kucera,
who linked this area to Lie Algebra approach, and, on the other hand, by the works of Mohler, who
pursued the qualitative approach and numerous applications.
• A side from controllability, a very close issue is stabilization by means of bilinear controls. Again, we can

point out only at a very limited publications in this area in terms of pde’s, see [3, 4, 22].
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