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ON A VOLUME CONSTRAINED VARIATIONAL PROBLEM IN SBV2(Ω):
PART I
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Abstract. We consider the problem of minimizing the energy

E(u) :=

Z
Ω

|∇u(x)|2 dx +

Z
Su∩Ω

(1 + |[u](x)|) dHN−1(x)

among all functions u ∈ SBV 2(Ω) for which two level sets {u = li} have prescribed Lebesgue measure
αi. Subject to this volume constraint the existence of minimizers for E(·) is proved and the asymptotic
behaviour of the solutions is investigated.
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1. Introduction

In this paper we study the existence of minimizers of a volume constrained variational problem. Precisely,
given real numbers αi and li, i = 0, 1, such that αi > 0, α0 + α1 ≤ LN(Ω) and l0 < l1, and defining

E(u) :=
∫

Ω

|∇u(x)|2 dx+
∫
Su∩Ω

(1 + |[u](x)|) dHN−1(x)

and
K :=

{
u ∈ SBV 2(Ω) : LN({u = li}) = αi, i = 0, 1

}
,

we consider the problem
(P ) min

u∈K
E(u)

that is, to minimize the energy E(·) among all functions u ∈ SBV 2(Ω) whose level sets {u = li} have prescribed
Lebesgue measure αi, for i = 0, 1.

The vector-valued case, u : Ω→ Rd, will be treated in a forthcoming paper.
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The minimization of an energy under similar volume constraints was originally proposed in 1992 by Gurtin [11]
who, motivated by a problem related to the interface between immiscible fluids, suggested the study of existence
of minimizers and possible optimal designs for the energy

I(u) :=
∫

Ω

|∇u(x)|2 dx

where u : Ω→ R satisfies
LN({u = 0}) = α and LN({u = 1}) = β,

and the constants α, β > 0 are such that α+ β < LN(Ω).
Considering the constraints

LN ({u = li}) = αi, i = 0, . . . , m,m ≥ 1

where αi are given positive real numbers such that

m∑
i=0

αi < LN(Ω)

and li are given vectors, this question was addressed by Ambrosio et al. in [2] who showed the existence of
minimizers of I(·), in the vector-valued case, under the assumption that the vectors li are extremal points of
their own convex hull. We refer also to [3] and [4] where related problems were treated.

A further step was taken by Tilli [12], in the scalar case, who established locally Hölder continuity of minimiz-
ers of I(·) and was able to drop the extremality assumption needed in [2] which, in the scalar case, is equivalent
to the restriction m = 1, i.e. only two level sets are allowed. In our case we were unable to drop this assumption
and that is why we only consider two level sets. We remark, however, that under the hypothesis m = 1 it was
established by Tilli [12] that minimizers of I(·) are, in fact, locally Lipschitz continuous.

In the problem originally proposed by Gurtin the matter of regularity is crucial. Nonetheless, it is easily
observed that when discontinuities in the admissible functions u are allowed, if LN(Ω) − (α0 + α1) is small
enough, in order to avoid high gradients, minimizers of the energy might prefer to “jump” between the prescribed
values li. This remark motivated our interest in problem (P ) and our goal in this paper is twofold; on one hand
to show existence of solutions of (P ), and on the other hand to show that in some cases the solution with
discontinuities is, in fact, preferred.

We organize the paper as follows. In Section 2 we introduce some notation and recall the main properties of
the spaces BV (Ω), SBV (Ω), SBV 2(Ω) and SBV0(Ω) which will be used in the sequel. In Section 3, following
the arguments given in [2], we prove the existence of minimizers of problem (P ), by first introducing a relaxed
problem (P ∗). Using a compactness theorem due to Ambrosio [1] and a lower semicontinuity result, we show
existence of solutions to problem (P ∗). Our main result of this section, Theorem 3.3, states that any solution
of (P ∗) is also a solution of (P ). Section 4 is devoted to the case N = 1. There we obtain an explicit solution to
our problem in dimension 1 and we show that, when LN(Ω)−(α0 +α1) is small enough, a discontinuous solution
is obtained. Finally, in Section 5 we study the asymptotic behaviour of the solutions as α0 + α1 ↗ LN(Ω).

2. Preliminaries and definitions

In what follows, Ω ⊂ RN is an open, bounded, connected Lipschitz domain, LN and HN−1 are, respectively,
the N -dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff measure in RN , χA denotes the
characteristic function of a set A and B(RN ) represents the set of all Borel subsets of RN . Our functions u are
real-valued and we use the standard notation for the Lebesgue and Sobolev spaces Lp(Ω) and W k,p(Ω); C∞0 (Ω)
stands for the space of real-valued smooth functions with compact support in Ω, B(x, ε) denotes the open ball
centered at x with radius ε, SN−1 := {x ∈ RN : |x| = 1} and the letter C will be used to indicate a constant
whose value might change from line to line.
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Given an L1(Ω) function u the Lebesgue set of u, Ωu, is defined as the set of points x ∈ Ω such that there
exists ũ(x) ∈ R satisfying

lim
ε→0+

1
εN

∫
B(x,ε)

|u(y) − ũ(x)| dy = 0.

The Lebesgue discontinuity set Su of u is the set of points x ∈ Ω which are not Lebesgue points, that is
Su := Ω \ Ωu. By Lebesgue’s Differentiation theorem, Su is LN -negligible and the function ũ : Ω → R, which
coincides with u LN -almost everywhere in Ωu, is called the Lebesgue representative of u.

The approximate upper and lower limits of u are given by

u+(x) := inf
{
t ∈ R : lim

ε→0+

1
εN
LN ({y ∈ Ω ∩B(x, ε) : u(y) > t}) = 0

}
and

u−(x) := sup
{
t ∈ R : lim

ε→0+

1
εN
LN ({y ∈ Ω ∩B(x, ε) : u(y) < t}) = 0

}
;

if u+(x) = u−(x) then x ∈ Ωu and u+(x) = u−(x) = ũ(x). The jump set or singular set of u is defined as

Ju :=
{
x ∈ Ω : u−(x) < u+(x)

}
and we denote by [u](x) the jump of u at x, i.e. [u](x) := u+(x)− u−(x).

We recall briefly some facts on functions of bounded variation which will be used in the sequel. We refer
to [9, 10] and [13] for a detailed exposition on this subject.

A function u ∈ L1(Ω) is said to be of bounded variation, u ∈ BV (Ω), if for all j = 1, ..., N , there exists a
finite Radon measure µj such that ∫

Ω

u(x)
∂φ

∂xj
(x) dx = −

∫
Ω

φ(x) dµj(x)

for every φ ∈ C1
0 (Ω). The distributional derivative Du is the vector-valued measure µ with components µj .

The space BV (Ω) is a Banach space when endowed with the norm

‖u‖BV = ‖u‖L1 + |Du|(Ω),

where |Du|(Ω) represents the total variation of the measure Du.
If u ∈ BV (Ω) then the distributional derivative Du may be decomposed as

Du = ∇uLN + (u+ − u−)⊗ νuHN−1bSu +Cu, (2.1)

where ∇u is the density of the absolutely continuous part of Du with respect to the Lebesgue measure and
Cu is the Cantor part of Du which vanishes on all Borel sets B with HN−1(B) < +∞. The three measures
appearing in (2.1) are mutually singular.

If u ∈ BV (Ω) it is well known that Su is countably N − 1 rectifiable, i.e.

Su =
∞⋃
n=1

Kn ∪E,

where HN−1(E) = 0 and Kn are compact subsets of C1 hypersurfaces. Furthermore, for HN−1 a.e. x ∈ Su,
u+(x) 6= u−(x) and there exists a unit vector νu(x) ∈ SN−1, normal to Su at x, such that

lim
ε→0+

1
εN

∫
{y∈B(x,ε):(y−x)·νu(x)>0}

|u(y) − u+(x)| dy = 0
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and
lim
ε→0+

1
εN

∫
{y∈B(x,ε):(y−x)·νu(x)<0}

|u(y) − u−(x)| dy = 0.

In particular, HN−1(Su \ Ju) = 0.
The space of special functions of bounded variation, SBV (Ω), introduced by De Giorgi and Ambrosio in [7],

is the space of functions u ∈ BV (Ω) such that Cu = 0, i.e. for which

Du = ∇uLN + (u+ − u−)⊗ νuHN−1bSu.

Definition 2.1. Given p > 1, a function u ∈ SBV (Ω) is said to belong to SBV p(Ω) if ∇u ∈ Lp(Ω;RN) and
HN−1(Su ∩ Ω) < +∞.

In this paper we will be concerned with functions in SBV 2(Ω) and in this space we consider the following
definition of weak convergence as introduced by Braides and Chiadò–Piat in [5].

Definition 2.2. Given {un} ⊂ SBV 2(Ω) and u ∈ SBV 2(Ω) we say that un converges weakly to u in SBV 2(Ω),
un ⇀ u in SBV 2(Ω), if un → u in L1(Ω), supn |Dun|(Ω) < +∞ and ∇un ⇀ ∇u weakly in L2(Ω;RN ).

The introduction of this kind of convergence was motivated by the following compactness theorem due to
Ambrosio [1].

Theorem 2.3. Let {un} ⊂ SBV 2(Ω) be such that

sup
n
||un||BV (Ω) < +∞

and

sup
n

{∫
Ω

|∇un|2 dx+HN−1(Sun ∩ Ω)
}
< +∞.

Then there exists a subsequence {unj} ⊂ {un} converging weakly to a function u in SBV 2(Ω). Moreover,

HN−1(Su ∩ Ω) ≤ lim inf
j→∞

HN−1(Sunj ∩ Ω).

Remark 2.4. Using this compactness result one can show the lower semicontinuity, with respect to L1 conver-
gence, of the functional ∫

Ω

|∇u(x)|2 dx+
∫
Su∩Ω

|[u](x)|dHN−1(x) +HN−1(Su ∩Ω);

see, for instance [5].

An LN -measurable set A ⊂ Ω is said to be of finite perimeter in Ω if χA ∈ BV (Ω). The perimeter of A in Ω
is defined by

PerΩ(A) := sup
{∫

A

divϕ(x) dx : ϕ ∈ C1
0(Ω;RN), ‖ϕ‖∞ ≤ 1

}
·

Given a set A ⊂ Ω of locally finite perimeter the reduced boundary of A in Ω, ∂∗A, consists of those points
x ∈ Ω for which the following conditions hold:

i) |DχA|(B(x, r)) > 0 for all r > 0;
ii) the limit

νA(x) := lim
r→0

DχA(B(x, r))
|DχA|(B(x, r))

exists and |νA(x)| = 1.
The function νA : ∂∗A→ SN−1 is called the generalised inner normal to A.
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In Section 3 we will need the following result which can be found in [9].

Proposition 2.5. Let E ⊂ RN be a set of locally finite perimeter. Then there exists a positive constant A,
depending only on N , such that, for each x0 ∈ ∂∗E

lim inf
r→0+

HN−1 (∂∗E ∩B(x0, r))
rN−1

≥ A > 0.

As in [5], we will use the symbol SBV0(Ω) to denote the space

SBV0(Ω) =
{
u ∈ SBV (Ω) : HN−1(Su ∩ Ω) < +∞,∇u = 0 a.e. in Ω

}
·

We say that a sequence (Ei) is a Borel partition of a given set B ∈ B(RN ) if and only if

Ei ∈ B(RN ), ∀i ∈ N; Ei ∩Ej = ∅ if i 6= j;
∞⋃
i=1

Ei = B.

We say that (Ei) is a Caccioppoli partition if each Ei is a set of finite perimeter. The relation between Caccioppoli
partitions and functions in SBV0(Ω) is expressed in the following result, whose proof can be found in [6] (see
Lem. 1.4, 1.10 and Rem. 1.5).

Lemma 2.6. If u ∈ SBV0(Ω) then there exist a Borel partition (Ei) of Ω, and a sequence (ui) in R with ui 6= uj
for i 6= j, such that

u =
∞∑
i=1

uiχEi a.e. in Ω,

HN−1(Su ∩Ω) =
1
2

∞∑
i=1

HN−1(∂∗Ei ∩Ω) =
1
2

∞∑
i 6=j

HN−1(∂∗Ei ∩ ∂∗Ej ∩ Ω)

(u+, u−, νu) ∼ (ui, uj, νi) HN−1 a.e. on ∂∗Ei ∩ ∂∗Ej ∩ Ω
where νi is the inner normal to Ei.

3. Existence of solutions

Let αi and li, i = 0, 1, be given real numbers satisfying αi > 0, α0 + α1 ≤ LN(Ω) and l0 < l1. Define

E(u) :=
∫

Ω

|∇u(x)|2 dx+
∫
Su∩Ω

(1 + |[u](x)|) dHN−1(x)

and
K :=

{
u ∈ SBV 2(Ω) : LN({u = li}) = αi, i = 0, 1

}
·

Our goal in this section is to prove existence of solutions of the problem

(P ) min
u∈K

E(u)·

In order to do so we consider the auxiliary problem (P ∗), which is to minimize the energy E(·) among all
functions u ∈ SBV 2(Ω) satisfying the relaxed conditions

LN({u = li}) ≥ αi, i = 0, 1.

The following simple application of Fatou’s lemma, proved in [2], will enable us to prove existence of solutions
of (P ∗).
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Proposition 3.1. For any sequence {un} of Lebesgue measurable functions converging a.e. to a Lebesgue
measurable function u, and for any closed set A ⊂ R we have

LN ({x ∈ Ω : u(x) ∈ A}) ≥ lim sup
n→+∞

LN ({x ∈ Ω : un(x) ∈ A}) ·

Proposition 3.2. Problem (P ∗) admits a solution. Moreover, if u ∈ SBV 2(Ω) is a minimum for (P ∗), then
l0 ≤ u(x) ≤ l1 for a.e. x ∈ Ω.

Proof. Let {un} be a minimizing sequence for (P ∗). Substituting, if necessary, un by wn = max{l0,min{l1, un}},
we can assume, without loss of generality, that {un} is uniformly bounded in L∞(Ω) and hence also in L1(Ω).
Then, it is easy to check that {un} satisfies the hypotheses of Theorem 2.3 and thus there exists a subsequence
{unj} of {un} and a function u in SBV 2(Ω) such that unj ⇀ u in SBV 2(Ω). It follows immediately from
Proposition 3.1 that

LN({u = li}) ≥ αi, i = 0, 1.

This, together with Remark 2.4, leads to the result.

Clearly the previous result holds true also in the case where more than two level sets are considered.
Our next step is to show that if u is a minimum for (P ∗) then u ∈ K, thus proving that u is also a minimum

for (P ).

Theorem 3.3. If u minimizes (P ∗), then u also minimizes (P ).

Proof. It suffices to show that LN ({u = li}) = αi, for i = 0, 1.
Suppose that LN({u = l0}) > α0 and assume for simplicity that l0 = 0. Let r > 0 be such that LN({u =

0})−r > α0 and consider a smooth cut-off function φ ∈ C∞0 (RN ; [0, 1]) such that LN(supp φ) < r. Let 0 < ε < 1
and consider the perturbations

uε := u+ εφ(l1 − u).

It is clear that
LN({uε = l1}) ≥ LN({u = l1}) ≥ α1.

On the other hand,

LN({uε = 0}) ≥ LN({u = 0})−LN (suppφ) > LN ({u = 0})− r ≥ α0

and so uε ∈ SBV 2(Ω) is admissible for (P ∗). Therefore, the minimality of u yields E(u) ≤ E(uε), ∀ε ∈ (0, 1).
Noticing that Suε ⊆ Su and

|[uε(x)]| = |u+
ε (x)− u−ε (x)| = |(1− εφ(x))(u+(x)− u−(x))| ≤ |[u(x)]|

for the prescribed values of ε, since φ takes values between 0 and 1, the comparison of the energies leads to∫
Ω

|∇u(x)|2 dx ≤
∫

Ω

|∇uε(x)|2 dx

for ε ∈ (0, 1). Expanding ∇uε in the previous expression, dividing by ε and letting finally ε→ 0+, one arrives at

2
∫

Ω

(
−|∇u(x)|2φ(x) + (l1 − u)∇u(x) · ∇φ(x)

)
dx ≥ 0. (3.1)
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Using a partition of unity argument, the function φ ≡ 1 in Ω can be written as a finite sum of smooth cut-off
functions, each of small compact support and for which (3.1) holds. We may therefore replace φ ≡ 1 in (3.1) in
order to obtain

−2
∫

Ω

|∇u(x)|2 dx ≥ 0

and we conclude that ∇u = 0 LN a.e. in Ω, i.e. u ∈ SBV0(Ω).
Next we use a characterization of such functions in order to derive a contradiction. Indeed, by Lemma 2.6,

there exist a Cacciopoli partition {Ei} of Ω and a sequence of real numbers {ui} with ui 6= uj for i 6= j, such that

u =
∞∑
i=0

uiχEi a.e. in Ω.

Assume without loss of generality that E0 := {u = 0}. Since E0 is a Cacciopoli set, we know that ∂∗E0 = ∂E0

(cf. [10]), and so we can choose a point x0 ∈ ∂∗E0 ∩ Ω. Next, for ε, k, satisfying

0 < wNε
N < LN({u = 0})− α0, 0 <

ε

2k
< u+(x0), (3.2)

where wN denotes the volume of the unit ball in RN , and for x ∈ B(x0, ε), set

fε,k(x) :=


ε

2k
if x ∈ B

(
x0,

ε

2

)
ε− |x|
k

if x ∈ B(x0, ε) \B
(
x0,

ε

2

)
·

and define

uε,k(x) :=

{
u(x) in Ω \B(x0, ε)

max{u(x), fε,k(x)} in B (x0, ε) ·
Clearly

uε,k ∈ SBV 2(Ω),
Suε,k = {x ∈ Su : u+(x) > fε,k(x)} ⊆ Su,

and by (3.2)
LN({uε,k = 0}) ≥ α0, LN({uε,k = l1}) ≥ α1.

Therefore, uε,k is admissible for (P ∗). Also, due to the definition of the approximate upper and lower limits
and the continuity of fε,k, we have

[uε,k](x) =


[u](x) if u−(x) ≥ fε,k(x)

u+(x)− fε,k(x) if u−(x) < fε,k(x) < u+(x)

0 if u+(x) ≤ fε,k(x).

(3.3)

Comparing the energies of u and uε,k (which are equal outside B(x0, ε)), we claim that

E(uε,k) < E(u),

for some appropriate choice of ε, k, thus contradicting the minimality of u. Indeed,

E(uε,k) < E(u) ⇔
∫
B(x0,ε)

|∇uε,k(x)|2 dx

≤
∫
Su∩B(x0,ε)

(1 + [u](x)) dHN−1(x)−
∫
Suε,k∩B(x0,ε)

(1 + [uε,k](x)) dHN−1(x).
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Since Suε,k ⊆ Su and ∫
B(x0,ε)

|∇uε,k(x)|2 dx ≤ εNwN
k2

,

it suffices to show that

εNwN
k2

≤
∫
Suε,k∩B(x0,ε)

([u](x)− [uε,k](x)) dHN−1(x) +
∫
Su\Suε,k∩B(x0,ε)

[u](x) dHN−1(x)

=
∫
Su∩B(x0,ε)∩{u−<fε,k<u+}

(fε,k(x)− u−(x)) dHN−1(x) +
∫
Su∩{u+≤fε,k}∩B(x0,ε)

[u](x) dHN−1(x),

by (3.3). In fact, since the last integral is nonnegative and as fε,k = ε
2k

in B(x0,
ε
2
) and u−(x) = 0 for x ∈ ∂∗E0,

it is enough to prove that
εNwN
k2

≤
∫
∂∗E0∩B(x0,

ε
2 )∩{u+> ε

2k }

ε

2k
dHN−1(x).

Therefore, if we can show that

wN
k
≤
HN−1(∂∗E0 ∩B(x0,

ε
2
) ∩ {u+ > ε

2k
})

2εN−1
, (3.4)

for some appropriate choice of ε, k, the desired contradiction follows.
By Proposition 2.5, there exists C > 0, such that

lim inf
r→0+

HN−1(∂∗E0 ∩B(x0,
r
2
))

rN−1
> C > 0.

Hence we can fix ε1 satisfying (3.2), and such that

0 < C <
HN−1(∂∗E0 ∩B(x0,

ε1
2 ))

εN−1
1

·

Choose k satisfying (3.2). Then, by the general properties of nested families of measurable sets,

HN−1(∂∗E0 ∩B(x0,
ε1
2 ))

εN−1
1

= lim
ε→0+

HN−1(∂∗E0 ∩B(x0,
ε1
2 ) ∩ {u+ > ε

2k})
εN−1

1

and therefore, there exists ε2 ≤ ε1 such that

HN−1(∂∗E0 ∩B(x0,
ε1
2 ) ∩ {u+ > ε2

2k})
εN−1

1

> C > 0.

Thus,

0 < CεN−1
1 = HN−1

(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{
u+ >

ε2

2k

})
= HN−1

(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{
u+ >

ε1

2k

})
+HN−1

(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{ ε2

2k
< u+ ≤ ε1

2k

})
·

Since

HN−1
(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{ ε2

2k
< u+ ≤ ε1

2k

})
≤ HN−1

(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{

0 < u+ ≤ ε1

2k

})
,



ON A VOLUME CONSTRAINED VARIATIONAL PROBLEM IN SBV 2(Ω): PART I 231

again, due to the fact that this is a nested family of measurable sets, we conclude that

lim
k→+∞

HN−1
(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{ ε2

2k
< u+ ≤ ε1

2k

})
= 0

and so we can choose k1 sufficiently large so that

HN−1

(
∂∗E0 ∩B

(
x0,

ε1

2

)
∩
{
u+ >

ε1

2k1

})
≥ CεN−1

1 > 0. (3.5)

Finally, letting

k2 > max
{
k1,

2wN
C

}
,

where C is the constant appearing in (3.5), it follows from (3.5) that

HN−1(∂∗E0 ∩B(x0,
ε1
2 ) ∩ {u+ > ε1

2k2
})

2εN−1
1

≥
HN−1(∂∗E0 ∩B(x0,

ε1
2 ) ∩ {u+ > ε1

2k1
})

2εN−1
1

≥ C

2
>
wN
k2

,

and (3.4) is proved.
Since the assumption that LN ({u = 0}) > α0 yielded a contradiction we conclude, therefore, that LN ({u =

0}) = α0.
A similar argument allows us to show that LN({u = l1}) = α1.

4. The case N = 1

This section is devoted to the characterization of solutions of problem (P ) in the 1-dimensional case (N = 1),
when Ω is an interval. We remark that explicit minimizers for the energy

I(u) :=
∫

Ω

|∇u(x)|2 dx

under the constraints
LN({u = l0}) = α0, LN({u = l1}) = α1,

with α0 + α1 < LN(Ω), are only known when N = 1 and Ω is an interval, where each minimizer is a monotone
and piecewise affine function and the minimal energy is given by

(l1 − l0)2

LN (Ω)− (α0 + α1)

(see [2]).
We begin by showing that if

LN(Ω) − (α0 + α1) <
(l1 − l0)2

1 + (l1 − l0)
, (4.1)

then the minimum obtained in [2] is no longer a solution to our problem. In fact, it is easy to see that if (4.1)
holds, the energy of such a piecewise affine function is larger than the energy associated with w ∈ SBV 2(Ω)
which takes only the two prescribed values l0 and l1 and has only one discontinuity point (consequently, for at
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least one i ∈ {0, 1}, LN({w = li}) > αi). This does not contradict Theorem 3.3 since it is possible to construct
a function u satisfying the constraints

LN({u = li}) = αi, i ∈ {0, 1}

and such that E(u) < E(w). Indeed, taking for simplicity l0 = 0, l1 = 1 and Ω = (0, 1), and assuming that
α0 + α1 < 1, define

uh(x) =



0 if x ∈ ]0, α0[

(x− α0)
h

l
if x ∈

[
α0,

1 + α0 − α1

2

[
1 + (x− 1 + α1)

h

l
if x ∈

[
1 + α0 − α1

2
, 1− α1

[
1 if x ∈ [1− α1, 1[

where l = 1−(α0+α1)
2 and 0 < h < 1

2 is to be determined. One can check easily that the energy associated
with uh is

E(uh) = 2
h2

l
+ 2− 2h

while the energy associated with the function taking only the two prescribed values l0 = 0 and l1 = 1, and
having only one discontinuity point, equals 2. Hence, for h < l the energy associated with uh is less than 2, and
the minimum is attained at h0 = l

2 , the energy in this case being

E(uh0) = 2− l

2
= 2− 1− (α0 + α1)

4
·

We could also attain the same values of E(·) with the functions vh defined by

vh(x) =


0 if x ∈ ]0, α0[
(x− α0)h

l
if x ∈ [α0, 1− α1[

1 if x ∈ [1− α1, 1[·

Actually, considering λ ∈ (0, 1], µ1, µ2 > 0 such that 1 + λlµ2 − λlµ1 − 2lµ2 > 0, and the functions

uλ,µ1,µ2(x) =


0 if x ∈ ]0, α0[

(x− α0)µ1 if x ∈ [α0, α0 + λl[

1 + (x− 1 + α1)µ2 if x ∈ [α0 + λl, 1− α1[

1 if x ∈ [1− α1, 1[

and minimizing E(uλ,µ1,µ2) with respect to the parameter λ and to the slopes of the affine parts of uλ,µ1,µ2 we
arrive at the same value, 2− l

2 , attained by any λ ∈ (0, 1] and for µ1 = µ2 = 1
2 .

Is this the minimum of the energy? In fact, it is easy to see that minima for the energy are either of the form
obtained in [2] or are attained at these functions. In the first case the minimal energy is given by 1

1−(α0+α1) . If
there are discontinuities in the solution, there is only one, since E(u) > 2 if more than one jump is allowed, and
the energy attained with just one discontinuity point can be as low as 2− 1−(α0+α1)

4
, as seen before. Applying

the reasoning given in [2] we see that this is in fact the minimum of the energy in the presence of a discontinuity
and that the number of connected components of {y ∈ (0, 1) : y = u(x)} in this situation is at most 2. Hence,
we have

E(u) ≥ min
{

1
1− (α0 + α1)

, 2− 1− (α0 + α1)
4

}
·

We conclude that for 1− (α0 + α1) < 4− 2
√

3, the solution with a jump is preferred.
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In the case of a general interval Ω and levels l0 and l1 we have

E(u) ≥ min
{

(l1 − l0)2

LN(Ω)− (α0 + α1)
, 1 + (l1 − l0)− L

N(Ω)− (α0 + α1)
4

}
so a discontinuous solution is obtained if

1 + (l1 − l0)− L
N (Ω)− (α0 + α1)

4
<

(l1 − l0)2

LN(Ω) − (α0 + α1)
·

5. Asymptotic behaviour of the solutions

Our goal in this section is to study the asymptotic behaviour of the solutions uαβ of the problem

(Pαβ) min
{
E(u) : u ∈ SBV 2(Ω),LN({u = 0}) = α,LN({u = 1}) = β

}
as (α+ β) ↗ LN(Ω). We denote by mαβ := E(uαβ) and, for any constant γ ∈ (0,LN(Ω)), we set

pγ := min
{

PerΩ(A) : A ⊂ Ω,LN(A) = γ
}
, (5.1)

where PerΩ(A) denotes the perimeter of A in Ω.
Our first result identifies the Γ-limit of a suitable sequence of functionals. In order to prove it we need the

following approximation lemma which can be found in [2].

Lemma 5.1. Let A ⊂ Ω be a set of finite perimeter such that 0 < LN(A) < LN(Ω). There exists a sequence of
bounded, open sets Dn ⊂ RN with smooth boundary in RN such that LN (A) = LN(Dn ∩ Ω), χDn converges to
χA in L1(Ω), and

lim
n→+∞

HN−1(∂Dn ∩ Ω) = PerΩ(A).

Theorem 5.2. For any u ∈ L1(Ω) and any α, β > 0 with α+ β < LN(Ω), we define

Fαβ(u) :=
{
E(u) if u ∈ SBV 2(Ω), LN({u ≤ 0}) ≥ α, LN({u ≥ 1}) ≥ β
+∞ otherwise

and

Gγ(u) :=
{

2PerΩ(A) if u = χA and LN(A) = γ
+∞ otherwise.

Then
Γ(L1) − lim

α→ LN (Ω)− γ
β → γ

α+ β < LN (Ω)

Fαβ(u) = Gγ(u), ∀u ∈ SBV 2(Ω).

Proof. We adapt the proof of a similar result obtained in [2].
Without loss of generality we can assume that LN(Ω) = 1. We fix sequences {αn} and {βn}, converging to

(1− γ) and γ, respectively, and we denote by F+(u), F−(u), the upper and lower Γ-limits

F+(u) := inf
{un}

{
lim sup
n→+∞

Fαnβn(un) : un → u in L1(Ω)
}

and

F−(u) := inf
{un}

{
lim inf
n→+∞

Fαnβn(un) : un → u in L1(Ω)
}
·
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We must prove that F− ≥ Gγ ≥ F+.

Step 1. We first establish the inequality F− ≥ Gγ by showing that

lim inf
n→+∞

Fαnβn(un) ≥ Gγ(u) (5.2)

for any sequence {un} converging to u in L1(Ω) . It is not restrictive to assume that the lim inf in (5.2) is
a finite limit, and to assume, by a truncation argument, that 0 ≤ un ≤ 1. We first prove that u = χA is a
characteristic function and that LN(A) = γ. Indeed, by Proposition 3.1 applied to the closed sets {0} and {1},
we deduce that

LN({u = 0}) ≥ lim sup
n→+∞

LN({un = 0}) ≥ 1− γ

and
LN({u = 1}) ≥ lim sup

n→+∞
LN({un = 1}) ≥ γ.

In particular, there exists a Borel set A ⊂ Ω such that u = χA and from the previous inequalities we obtain

γ ≤ LN({u = 1}) ≤ LN(A)

and
1− γ ≤ LN({u = 0}) ≤ LN(Ω \A) = 1− LN(A)

so that LN(A) = γ as claimed. We now show that

lim inf
n→+∞

E(un) ≥ 2PerΩ(A)

thus establishing (5.2). Indeed, since un → u in L1(Ω), by the lower semicontinuity of the total variation we
have

2PerΩ(A) = 2|DχA|(Ω) ≤ 2 lim inf
n→+∞

|Dun|(Ω)

= 2 lim inf
n→+∞

[∫
Ln

|∇un(x)| dx+
∫
Sun∩Ω

|[un](x)| dHN−1(x)

]
,

where Ln := {0 < un < 1}. By Hölder’s inequality, and as |[un](x)| ≤ 1, it follows that

2PerΩ(A) ≤ lim inf
n→+∞

[
2
(∫

Ω

|∇un(x)|2 dx
) 1

2 (
LN(Ln)

) 1
2 +

∫
Sun∩Ω

2|[un](x)| dHN−1(x)

]

≤ lim inf
n→+∞

[∫
Ω

|∇un(x)|2 dx+ LN(Ln) +
∫
Sun∩Ω

1 + |[un](x)| dHN−1(x)

]
≤ lim inf

n→+∞
[E(un) + (1− (αn + βn))]

= lim inf
n→+∞

E(un)·

Step 2. We now prove that F+(u) ≤ Gγ(u). It is not restrictive to assume that u = χA is a characteristic
function, LN(A) = γ and PerΩ(A) < +∞.

We first assume that A = D ∩ Ω for some bounded, open set D with smooth boundary in RN , and we
prove that

F+(u) ≤ 2HN−1(∂D ∩ Ω) · (5.3)
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Let d(x) be the signed-distance function from ∂D, i.e.

d(x) :=
{

dist(x, ∂D) if x /∈ D
−dist(x, ∂D) if x ∈ D.

Since 1− (αn + βn)→ 0, for any σ > 0 and for n large enough,

LN({x ∈ Ω : |d(x)| < σ}) > 1− (αn + βn),

and hence we may find λn, µn ∈ (−σ, σ) such that λn < 0 < µn and

LN({x ∈ Ω : d(x) ≤ λn}) = βn, LN({x ∈ Ω : d(x) ≥ µn}) = αn.

By construction, the functions

un(x) :=


1
2

min(d(x), µn)− 1
2
µn if x /∈ D

1− λn + µn
2

− 1
2

max(d(x), λn) +
1
2
µn + λn if x ∈ D

converge to u in L1(Ω) and satisfy the constraints

LN({un ≤ 0}) ≥ LN({un = 0}) ≥ αn,
LN({un ≥ 1}) ≥ LN({un = 1}) ≥ βn.

Thus, using the identity |∇d| = 1, we have

F+(u) ≤ lim sup
n→∞

E(un)

≤ lim sup
n→∞

(∫
Ω

|∇un(x)|2 dx+
∫
Sun∩Ω

1 + |[un](x)| dHN−1(x)

)

= lim sup
n→∞

(
1
4
LN({λn < d(x) < µn}) +

(
1 +

∣∣∣∣1 +
λn + µn

2

∣∣∣∣)HN−1(∂D ∩ Ω)
)

= lim
n→∞

(
1
4

(1− αn − βn) + 2HN−1(∂D ∩Ω)
)

= 2HN−1(∂D ∩ Ω)

and (5.3) is proved.
It remains to show that

F+(u) ≤ 2PerΩ(A)
for a general set A of finite perimeter. By the previous lemma we can find a sequence of bounded, open sets Dn
with smooth boundary in RN such that un := χDn∩Ω converge to u = χA in L1(Ω), LN(Dn ∩Ω) = LN(A) = γ
and

lim
n→+∞

HN−1(∂Dn ∩ Ω) = PerΩ(A).

Hence, by inequality (5.3) and using the lower semicontinuity of u 7→ F+(u) (see, for instance [8]), we obtain

F+(u) ≤ lim inf
n→+∞

F+(un) ≤ 2 lim inf
n→+∞

HN−1(∂Dn ∩ Ω) = 2PerΩ(A).
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From Theorem 5.2, recalling that Γ-convergence ensures that minimizers of (Pαβ) converge to minimizers of (5.1),
and that minima for (Pαβ) tend to the minimum for the limit problem, follows the main result of this section.

Theorem 5.3. For any γ ∈ (0,LN(Ω)),

lim
α→ LN (Ω)− γ
β → γ

α+ β < LN (Ω)

mαβ = 2pγ .

Moreover, any limit point in the L1(Ω) topology of uαβ is the characteristic function of a minimizing set for (5.1).

Proof. Let {αn} and {βn} be sequences converging to 1−γ and γ, respectively, and let un ∈ SBV 2(Ω; [0, 1]) be
the corresponding solutions of (Pαnβn). As before, we may assume that 0 ≤ un ≤ 1. By the general properties
of Γ-convergence (see [8]), it suffices to show that the sequence {un} is relatively compact in L1(Ω).

Let A ⊂ Ω be a set of finite perimeter with LN(A) = γ, and, in view of Theorem 5.2, let {vn} be a sequence
converging to χA in L1(Ω) such that

lim
n→+∞

Fαnβn(vn) = 2PerΩ(A).

Since un are minimizers of E(·), we have

lim sup
n→+∞

Fαnβn(un) ≤ 2PerΩ(A).

Setting Ln := {0 < un < 1}, by Hölder’s inequality it follows that

|Dun|(Ω) =
∫
Ln

|∇un(x)| dx+
∫
Sun∩Ω

|[un(x)]| dHN−1(x)

≤
(∫

Ln

|∇un(x)|2 dx
) 1

2 (
LN(Ln)

) 1
2 +

∫
Sun∩Ω

1 + |[un(x)]| dHN−1(x)

≤
∫

Ω

|∇un(x)|2 dx+ LN(Ln) +
∫
Sun∩Ω

1 + |[un(x)]| dHN−1(x)

= E(un) +LN(Ln).

Thus,

lim sup
n
|Dun|(Ω) ≤ lim sup

n
(E(un) + 1− αn − βn) ≤ 2PerΩ(A).

On the other hand, |un| ≤ 1 and so un is uniformly bounded in BV (Ω). Since the embedding BV (Ω) ⊂ L1(Ω)
is compact, the conclusion follows.
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partially supported by a FCT grant through the Research Units Pluriannual Funding Program.



ON A VOLUME CONSTRAINED VARIATIONAL PROBLEM IN SBV 2(Ω): PART I 237

References

[1] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3-B (1989)
857-881.

[2] L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume constrained variational problem. Arch. Rat. Mech. Anal.
149 (1999) 23-47.

[3] N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim. 24
(1986) 191-198.

[4] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math.
325 (1981) 105-144.
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