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SENSITIVITY ANALYSIS OF A NONLINEAR OBSTACLE PLATE PROBLEM ∗
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Abstract. We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with
respect to small perturbations of the middle plane of the plate. This analysis, which generalizes
the results of [9, 10] for the linear case, is done by application of an abstract variational result [6],
where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of
solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that
the hypotheses required by this abstract sensitivity result are verified for the nonlinear obstacle plate
problem. Namely, the constraint set defined by the obstacle is polyhedric and the mapping involved
in the definition of the plate problem, considered as a function of the middle plane of the plate, is
semi-differentiable. The verification of these two conditions enable to conclude that the sensitivity is
characterized by the proto-derivative of the solution mapping associated with the nonlinear obstacle
plate problem, in terms of the solution of a variational inequality.
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Introduction

The shape sensitivity analysis is a subject of extremely importance in shape optimization. In continuum
mechanics this analysis can be done applying the material derivative concept, as for example, in the case of
the linear obstacle plate problem [9, 10], where the properties of differentiability of projections on polyhedric
sets [4, 8] are used. However, this methodology can not be used to derive the sensitivity result for the nonlinear
obstacle plate problem. In fact, for the linear case the solution is unique, and it can be characterized as the
projection of the force acting on the plate, on the constraint set defined by the obstacle. For the nonlinear
obstacle plate problem, the solution may not be unique [5] and it can not be characterized in terms of a
projection on the constraint set defined by the obstacle. So the approach of [9, 10] is not adequate to analyse
the sensitivity of the nonlinear problem. Therefore in this paper we apply another methodology which uses a
generalized derivative (the proto-derivative) in order to derive the sensitivity result. The basic description of
the problem, the sensitivity result and the main results are next summarized.
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Let {Ωt}t〉0 be a family of perturbations of a given domain Ω = Ω0 ⊂ R
2. For each small parameter t we

consider a thin elastic clamped plate, with thickness h, independent of t, occupying the domain Ωt×[−h
2 ,

h
2 ], and

made of a (geometrically) nonlinear Hookean material. By the action of external loads the plate may come in
frictionless contact with a rigid obstacle. Let W (t) be a displacement describing the state of equilibrium of the
plate, whose middle plane is Ωt. By [5], W (t) may not be unique, so W can be characterized as a multifunction.
The purpose is to analyse the sensitivity of W (0), which is the set solution of the plate problem with middle
plane Ω0, with respect to small perturbations Ωt of the domain Ω0. The method presented here to obtain this
sensitivity result, is based on [6], where the sensitivity of parameterized variational inequalities in Banach spaces
(without uniqueness of solution) is quantified in terms of a generalized derivative, which is the (multifunction)
proto-derivative [7, 11]. As stated in Theorem 2.7, and proved in Sections 3, 4 the proto-derivative associated
to the nonlinear obstacle plate problem is the multifunction DW (0)(w0) : [0, δ] → H2

0 (Ω) defined in (2.15) by

DW (0)(w0)(t) =
{
w ∈ K∗ : 〈−DS(w0 , 0)(w, t), z−w〉 ≤ 0, ∀z ∈ K∗

}
, (0.1)

where w0 ∈ W (0), DS(w0 , 0) is the semi-derivative of S at (w0, t = 0), (S defined in (1.44) is the nonlinear
mapping associated to the nonlinear plate problem) and K∗ is a set defined in (2.16) by

K∗ =
[
F0 − S(w0 , 0)

]⊥ ∩ ∪λ〉0λ(K −w0) ⊂ H2
0 (Ω) (0.2)

where the symbol ⊥ means the orthogonal set, K is the set related to the constraints defined by the obstacle,
and F0 is a linear operator related to the force acting on the plate. Therefore the elements of the proto-derivative
are the solutions of the variational inequality defined in (0.1).

The main contribution of this paper is the proof that the two assumptions of the abstract sensitivity result
of [6] are satisfied for this nonlinear plate problem. One assumption imposes that, the nonlinear mapping
involved in the definition of the nonlinear plate problem, considered as a function of the middle plane Ωt,
must be semi-differentiable at t = 0. This property of semi-differentiability [6, 12] is proven in Section 4,
Propositions 4.1 and 4.2, and relies essentially on the continuity, ellipticity and differentiability properties of
the nonlinear mapping, despite the nonlinearity of the problem. The other assumption obliges the constraint
set defined by the obstacle to be a polyhedric set, in the sense of Definition 2.1. This definition includes an
orthogonal set defined by the nonlinear mapping characterizing the problem, and it coincides with the definition
of polyhedric set of [9, 10] for the linear obstacle plate problem. The proof of this polyhedricity assumption is
done in Section 3 and is a straightforward adaptation of [9, 10]. In fact, the definitions of polyhedric set in the
linear and nonlinear cases, differ by a nonlinear term, but, this does not change substantially the arguments
of [9, 10]. By the abstract sensitivity result of [6] these two conditions are enough to assure that the proto-
derivative of the multifunction W (t) exists, at t = 0, which originates the sensitivity result (Th. 2.7) for this
particular nonlinear obstacle plate problem. Moreover, we also prove, in Section 5, that the results obtained
in [9,10], for the linear obstacle plate problem, may be recovered using the methodology applied to the nonlinear
case, that is, Theorem 2.7 also applies to the linear case and the proto-derivative coincides with the material
derivative in this case.

Finally let us briefly describe the contents of the present paper. In Section 1, the differential and variational
formulations of the problem, in the perturbed domain Ωt, are introduced, as well as, the reformulation of
the variational problem in the fixed domain Ω0. In Section 2, we recall some differentiability concepts, as
the semi-differentiability and the proto-differentiability, and the definition of polyhedric set. We also state, in
Theorem 2.7, the sensitivity result for the nonlinear obstacle plate problem. In Sections 3 and 4 we prove that
the hypotheses required in Theorem 2.7 are verified. In Section 5 we show that, for the linear obstacle plate
problem the sensitivity result obtained in [9, 10], with a different methodology, coincides with the sensitivity
result expressed in terms of the proto-derivative, using Theorem 2.7. We finally present some conclusions and
future work.
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1. Notations and description of the problem

In this section, we firstly describe the family of perturbed domains {Ωt}, then we define the differential and
variational formulations of the nonlinear obstacle plate problem, posed in Ωt and finally we give the reformulation
of the variational problem in the fixed domain Ω.

For this purpose we must introduce some notations. Throughout the paper, the greek indices α, β... belong
to the set {1, 2} and the Einstein summation convention with respect to repeated index is employed, that is,
aαbα =

∑2
α=1 aαbα. We also denote by c d and c : d the outer and inner product, respectively, of tensors c

and d. For example, if cαβ and dλµ are the components of the second order tensors c and d, respectively, then,
e = c d is a fourth order tensor with components eαβλµ = cαβdλµ and c : d =

∑2
α,β=1 cαβdαβ. Moreover, if P

and Q are two matrices we denote by P.Q the matrix multiplication of P by Q. The transpose of matrix P is
denoted by P T .

1.1. The perturbed domain Ωt

Let Ω be an open, bounded and connected subset of R
2, with a Lipschtiz boundary ∂Ω. We introduce a

family of perturbations {Ωt} of Ω, for t ∈ [0, δ], with δ a small parameter, defined as follows: for each t, Ωt is
the range of the transformation Tt in Ω

Tt : R
2 −→ R

2

x −→ Tt(x) = (I + tθ)(x) = xt
(1.1)

where I is the identity mapping in R
2, and θ : R

2 → R
2 is a smooth enough mapping, at least θ ∈ [W 2,∞(R2)]2.

By definiton

Ωt = Tt(Ω), t ∈ [0, δ] (1.2)

and in particular the fixed domain Ω is equal to Ω0. Moreover, with the definition of Tt, we conclude that Ωt

is a perturbation of Ω in the direction of the vector field θ.

1.2. Formulation of the nonlinear obstacle plate problem in Ωt

The differential formulation of the nonlinear obstacle plate problem, for a plate with middle plane Ωt is the
following [5]:

Find (ut, wt) : Ωt ⊂ R
2 → R

3, such that: (1.3)

D∆2wt − h
[
σαβ(ut, wt)wt,β

]
,α

≥ f, in Ωt, (1.4)

wt ≥ ψ, in Ωt, (1.5)(
D∆2wt − h

[
σαβ(ut, wt)wt,β

]
,α

− f

)
(wt − ψ) = 0, in Ωt, (1.6)

σαβ(ut, wt),β = 0, in Ωt, (1.7)

ut = 0, wt =
∂wt

∂n
= 0, in ∂Ωt. (1.8)

In (1.3–1.8) the set Ωt represents the middle plane of the undeformed thin plate. For each point xt = (xt1, xt2) ∈
Ωt we denote by ut(xt) = (ut1(xt), ut2(xt)) and wt(xt) the horizontal and vertical displacements of xt, respec-
tively. The plate is subjected to a transverse load of intensity f , per unit of area of the middle plane. The shape
of the obstacle is given by the prescribed function ψ. The functions f : R

2 → R and ψ : R
2 → R are assumed

smooth enough. The constant D = Eh3

12(1−ν2)
is the flexural rigidity of the plate with E the modulus of elasticity,
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ν the Poisson ratio and h the thickness of the plate. The conditions (1.8) are the boundary conditions for a
clamped plate. Moreover ∆2 is the biharmonic operator, ∂.

∂n is the normal operator and the index notation .,α
means partial derivative with respect to xtα. Finally, σ(ut, wt) = (σαβ(ut, wt)) is the second order membrane
stress tensor defined by

σ(ut, wt) = C :
(
e(ut) +

1
2
∇wt∇wt

)
, σαβ(ut, wt) = Cαβλµ

(
eλµ(ut) +

1
2
wt,λwt,µ

)
. (1.9)

The fourth order elasticity tensor C has components

Cαβλµ =
E

2(1− ν2)

[
(1 − ν)(δαλδβµ + δαµδβλ) + 2νδαβδλµ

]
, (1.10)

with δαβ the standard Kronecker delta notation and e(ut) = (eαβ(ut)) the second order strain tensor defined by

e(ut) =
1
2

(
∇ut + (∇ut)

T
)
, eαβ(ut) =

1
2

(
utα,β + utβ,α

)
. (1.11)

The tensors ∇wt and ∇ut are the gradients of wt and ut, which are matrices of order 1×2 and 2×2, respectively,
and defined by

∇wt = (wt,α), ∇ut = (utα,β). (1.12)

The variational formulation of the system (1.3–1.8) corresponds to the following system of variational inequality
and equation [5]:

Find (ut, wt) ∈ [H1
0(Ωt)]2 ×Kt :

At(wt, zt − wt) + at(ut;wt, zt − wt) ≥ Ft(zt − wt), ∀zt ∈ Kt, (1.13)
Bt(ut, vt) + bt(wt, vt) = 0, ∀vt ∈ [H1

0(Ωt)]2, (1.14)

where Kt is the constraint set defined by the obstacle

Kt = {zt ∈ H2
0 (Ωt) : zt ≥ ψ in Ωt}, (1.15)

and H1
0 (Ωt), H2

0 (Ωt) are the usual Sobolev spaces defined by

H1
0(Ωt) =

{
vt ∈ H1(Ωt) : vt|∂Ωt

= 0
}

(1.16)

H2
0(Ωt) =

{
zt ∈ H2(Ωt) : zt|∂Ωt

=
∂zt

∂n |∂Ωt

= 0
}
· (1.17)
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The expressions of the forms At, at, Ft, Bt and bt are


At : H2

0(Ωt) ×H2
0(Ωt) → R,

At(wt, zt) = D

∫
Ωt

{ν∆wt∆zt + (1 − ν)wt,αβzt,αβ} dxt =

h3

12

∫
Ωt

Cαβλµwt,αβzt,λµ dxt =
h3

12

∫
Ωt

C :
(∇2wt∇2zt

)
dxt,

(1.18)


 Bt : [H1

0(Ωt)]2 × [H1
0(Ωt)]2 → R,

Bt(ut, vt) = h

∫
Ωt

Cαβλµeαβ(ut)eλµ(vt) dxt = h

∫
Ωt

C :
(
e(ut)e(vt)

)
dxt,

(1.19)



at : [H1

0(Ωt)]2 ×H2
0 (Ωt) ×H2

0 (Ωt) → R,

at(ut;wt, zt) = h

∫
Ωt

σαβ(ut, wt)wt,αzt,β dxt =

h

∫
Ωt

C :
([
e(ut) +

1
2
∇wt∇wt

]∇wt∇zt

)
dxt,

(1.20)


 bt : H2

0 (Ωt) × [H1
0(Ωt)]2 → R,

bt(wt, vt) = h
2

∫
Ωt

Cαβλµwt,λwt,µeαβ(vt) dxt =
h

2

∫
Ωt

C :
(
e(vt)∇wt∇wt

)
dxt,

(1.21)


 Ft : H2

0 (Ωt) → R,

Ft(wt) =
∫

Ωt

fwt dxt.
(1.22)

In (1.18), ∇2wt = (wt,αβ) and ∇2zt = (zt,αβ) are the matrices of the second derivatives of the scalar functions
wt and zt, respectively. The symbol ∆ denotes the laplacian, that is, for example, ∆wt = wt,αα.

It is easy to verify that the horizontal displacement ut can be eliminated from the variational formulation
(1.13, 1.14). In fact, by the Lax–Milgram theorem, Equation (1.14) has a unique solution, for each wt. So there
is a mapping

Gt : H2
0 (Ωt) −→ [H1

0(Ωt)]2

wt −→ Gt(wt),
(1.23)

such that Gt(wt) is the solution of the equation

Bt(Gt(wt), vt) = −bt(wt, vt), ∀vt ∈ [H1
0(Ωt)]2. (1.24)

So (1.13, 1.14) is equivalent to the following nonlinear variational inequality{
Find wt ∈ Kt

At(wt, zt −wt) + at(Gt(wt);wt, zt −wt) ≥ Ft(zt − wt), ∀zt ∈ Kt.
(1.25)

The existence of solution of (1.25) is based on an existence lemma for nonlinear operators [1] and relies on the
fact that the operator involved in the definition of inequality (1.25) is coercive and the sum of a monotone
operator with a completely continuous operator [5].

1.3. Variational problem posed in the fixed domain Ω

The nonlinear obstacle plate problem (1.25) posed in Ωt, can be transported to the fixed domain Ω, using
the transformation Tt. In order to do this we first express the forms At, Bt, at, bt and Ft defined in (1.18–1.22)
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in the domain Ω. We observe that

∇Tt = I + t∇θ, ∇T−1
t = I − t∇θ+ O(t2)

∇2T−1
t = −t∇2θ + O(t2)

det∇Tt = 1 + tdivθ + t2det∇θ.
(1.26)

The second order matrices ∇Tt, ∇T−1
t and ∇θ are the gradients of Tt, T−1

t and θ, respectively, I is the identity
matrix of order 2, O(t2) means a term that verifies ||O(t2)||[W2,∞(R2)]2 ≤ ct2, with c a constant independent
of t, ∇2T−1

t and ∇2θ are the second order matrices of the second derivatives of T−1
t and θ, respectively. For

example, if θ = (θ1, θ2) we have ∇2θ = (∇2θ1 ∇2θ2)T . The divergence of θ is denoted by divθ = θα,α. Finally,
det∇Tt and det∇θ are the determinants of matrices ∇Tt and ∇θ, respectively.

To each function zt or vt = (vt1, vt2) defined in Ωt we associate the corresponding functions zt or vt = (vt
1, v

t
2)

defined in Ω by

zt = zt ◦ Tt, vt = vt ◦ Tt. (1.27)

Then we immediately obtain from (1.26),

∇zt = ∇zt.∇T−1
t = ∇zt − t∇zt.∇θ+ O(t2), (1.28)

where the point . means matrix multiplication and O(t2) is a term that verifies ||O(t2)||H2
0(Ω) ≤ ct2||zt||H2

0(Ω),
with c a constant independent of t. Also because e(vt) = 1

2 (∇vt + ∇vt
T ), then

e(vt) = e(vt) − tê(vt, θ) + O(t2), with ê(vt, θ) =
1
2
(∇vt.∇θ+ (∇θ)T

.(∇vt)T ), (1.29)

where ê(vt, θ) depends linearly on vt and O(t2) is a term that verifies ||O(t2)||[H1
0 (Ω)]2 ≤ ct2||vt||[H1

0(Ω)]2 , with c
a constant independent of t.

By the chain rule derivative we can relate ∇2zt = (zt,αβ) with ∇2zt = (zt
,αβ), by the following matrix equation

∇2zt = (∇T−1
t )

T
.∇2zt.∇T−1

t +
[ ∇zt 0

0 ∇zt

]
.

[ ∇2T−1
t

∇2T−1
t

]
, (1.30)

where 0 means the zero matrix of order 1 × 2. So using (1.26) in (1.30) we deduce that


∇2zt = ∇2zt − td̂(θ, zt) + O(t2)

d̂(θ, zt) = (∇θ)T
.∇2zt + ∇2zt.∇θ+

[ ∇zt.∇2θ
∇zt.∇2θ

]
,

(1.31)

where d̂(θ, zt) is a matrix of order 2 that depends linearly on zt and O(t2) is a term that verifies ||O(t2)||H2
0(Ω) ≤

ct2||zt||H2
0(Ω), with c a constant independent of t.

Now, with the formula of det∇Tt and formulas (1.28, 1.29) and (1.31) we can write the integrals of (1.18–1.22)
in Ω. We have 



At(wt, zt) = A0(wt, zt) − tA1(wt, zt) + OA(t2)
Bt(ut, vt) = B0(ut, vt) − tB1(ut, vt) + OB(t2)
at(ut;wt, zt) = a0(ut;wt, zt) − ta1(ut;wt, zt) + Oa(t2)
bt(wt, vt) = b0(wt, vt) − tb1(wt, vt) + Ob(t2)
Ft(wt) = F0(wt) + tF1(wt) + OF (t2).

(1.32)
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where the scalars terms OA(t2), OB(t2), Oa(t2), Ob(t2) and OF (t2) verify

|OA(t2)| ≤ ct2||wt||H2
0(Ω)||zt||H2

0(Ω)

|OB(t2)| ≤ ct2||ut||[H1
0(Ω)]2 ||vt||[H1

0(Ω)]2

|Oa(t2)| ≤ ct2||ut||[H1
0(Ω)]2 ||wt||H2

0(Ω)||zt||H2
0(Ω)

|Ob(t2)| ≤ ct2||wt||H2
0(Ω)||vt||[H1

0 (Ω)]2

|OF (t2)| ≤ ct2||wt||L2(Ω)

(1.33)

with c different constants independent of t, but depending on θ.
For the decomposition of At


A0(wt, zt) = h3

12

∫
Ω

C :
(∇2wt∇2zt

)
dx

A1(wt, zt) = h3

12

∫
Ω

C :
(
−∇2wt∇2ztdivθ + ∇2wtd̂(θ, zt) + d̂(θ, wt)∇2zt

)
dx,

(1.34)

and A1 is a bilinear form. For the decomposition of Bt


B0(ut, vt) = h

∫
Ω

C :
(
e(ut)e(vt)

)
dx

B1(ut, vt) = h

∫
Ω

C :
(
e(ut)ê(vt, θ) + ê(ut, θ)e(vt) − e(ut)e(vt)divθ

)
dx,

(1.35)

with B1 a bilinear form. For the decomposition of at




a0(ut;wt, zt) = h

∫
Ω

C :
{
e(ut) +

1
2
∇wt∇wt

}
∇wt∇zt dx

a1(ut;wt, zt) = h

∫
Ω

C :
{
e(ut)∇wt(−∇ztdivθ + ∇zt∇θ + ∇θ∇zt)

+ê(ut, θ)∇wt∇zt + 1
2

[∇wt∇wt∇wt(∇zt∇θ + ∇θ∇zt + ∇ztdivθ)+

(∇wt∇wt∇θ+ ∇wt∇θ∇wt)∇wt∇zt
]}

dx.

(1.36)

For the decomposition of bt




b0(wt, vt) = h
2

∫
Ω

C :
(
e(vt)∇wt∇wt

)
dx

b1(wt, vt) = h
2

∫
Ω

C :
{
− e(vt)∇wt∇wtdivθ + e(vt)∇wt∇θ∇wt+

ê(vt, θ)∇wt∇wt + e(vt)∇wt∇wt∇θ
}

dx.

(1.37)

Finally for the decomposition of Ft


F0(wt) =
∫

Ω

fwt dx

F1(wt) =
∫

Ω

((∇f)T .θ+ fdivθ)wt dx,
(1.38)
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because, as f is smooth enough, for example f ∈ C2(R2), we can apply the Taylor–Young formula to f ◦ Tt,
which gives for any x ∈ Ω

f ◦ Tt(x) = f(x + tθ(x)) = f(x) + t(∇f(x))T .θ(x) + O(t2) (1.39)

where the term O(t2) satisfies |O(t2)| ≤ ct2, with c a constant independent of t. With the definition (1.27) the
set of constraints Kt in (1.15) becomes Kt defined by

Kt = {z ∈ H2
0 (Ω) : z ≥ ψt = ψ ◦ Tt in Ω} · (1.40)

Therefore, the nonlinear obstacle problem (1.25) is equivalent to the following variational inequality posed in Ω:


Find wt ∈ Kt :
A0(wt, zt − wt) − tA1(wt, zt − wt)+
a0(Gt(wt)t;wt, zt − wt) − ta1(Gt(wt)t;wt, zt −wt)
≥ F0(zt −wt) + tF1(zt − wt) + O(t2), ∀zt ∈ Kt,

(1.41)

where O(t2) = −OA(t2) −Oa(t2) + OF (t2) and with

wt = wt ◦ T−1
t , Gt(wt)t = Gt(wt) ◦ Tt (1.42)

and Gt(wt)t is the solution of

{
B0(Gt(wt)t, v) − tB1(Gt(wt)t, v) =
−b0(wt, v) + tb1(wt, v) + O(t2), ∀v ∈ [H1

0(Ω)]2 (1.43)

(with O(t2) = −OB(t2) − Ob(t2)) which corresponds to equation (1.24), using the decompositions (1.35)
and (1.37) of Bt and bt, respectively. Defining the mapping S : H2

0 (Ω) × [0, δ] → [H2
0(Ω)]

′
, with range in

the dual space of H2
0(Ω), by

{ 〈S(w, t), z〉 = A0(w, z) − tA1(w, z) + a0(Gt(wt)t;w, z)−
ta1(Gt(wt)t;w, z) − tF1(z) + O(t2), ∀(w, t) ∈ H2

0(Ω) × [0, δ], ∀z ∈ H2
0(Ω), (1.44)

with wt = w ◦ T−1
t and O(t2) the symmetric of the term O(t2) defined in (1.41), we immediately obtain

that (1.41) is equivalent to

{
Find wt ∈ Kt :
〈F0 − S(wt, t), zt − wt〉 ≤ 0, ∀zt ∈ Kt,

(1.45)

where F0 is defined in (1.38).
We finish this section with a proposition that states that the solution of (1.45) can be obtained by solving

an analogous problem posed in the set

K = {z ∈ H2
0 (Ω) : z ≥ 0 in Ω}, (1.46)

which is independent of t. The objective of this proposition is to show that the variational inequality (1.45),
defining the nonlinear obstacle plate problem in Ω, with a constraint set dependent of t, can be reduced to a
variational inequality whose constraint set is independent of the parameter t. This is crucial in order to apply
the abstract result of [6] for parameterized variational inequalities, where the constraint set is independent of
the parameters.
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Proposition 1.1. The function wt ∈ Kt is a solution of problem (1.45) if and only if

wt = ϕt + ψt (1.47)

where ϕt ∈ K is the solution of the following problem{
Find ϕt ∈ K :
〈F0 − V (ϕt, t), z − ϕt〉 ≤ 0, ∀z ∈ K,

(1.48)

where 


〈V (ϕ, t), z〉 = 〈S(ϕ + ψt, t), z〉 =
A0(ϕ + ψt, z) − tA1(ϕ+ ψt, z) + a0(Gt(ϕt + ψ)t;ϕ+ ψt, z)
−ta1(Gt(ϕt + ψ)t;ϕ+ ψt, z) − tF1(z) + O(t2),
∀(ϕ, t) ∈ H2

0 (Ω) × [0, δ], ∀z ∈ H2
0(Ω) and ϕt = ϕ ◦ T−1

t .

(1.49)

Proof. Suppose that ϕt is a solution of (1.45), then wt = ϕt + ψt ∈ Kt. Using the definitions of S and V , and
because the mapping z → z + ψt is a bijection between the sets K and Kt we have the following equivalences:

〈F0 − V (ϕt, t), z− ϕt〉 ≤ 0, ∀z ∈ K ⇐⇒
〈F0 − S(ϕt + ψt, t), z + ψt − (ϕt + ψt)〉 ≤ 0, ∀z ∈ K ⇐⇒
〈F0 − S(wt, t), zt − wt)〉 ≤ 0, ∀zt ∈ Kt,

(1.50)

which proves the result.

Remark 1.2. By this proposition we conclude that it is enough to solve (1.48) in order to determine the
solution of (1.45). In the following sections we always consider problem (1.48) and the special case ψt = 0, that
is ψ = 0, which means that the problem that will be considered is{

Find wt ∈ K :
〈F0 − S(wt, t), z −wt〉 ≤ 0, ∀z ∈ K,

(1.51)

where S and K are defined by (1.44) and (1.46), respectively. The reason of the choice ψ = 0 is just to simplify
the calculus of a semi-derivative, that is done in Section 4. In fact, as is observed in Remarks 3.5 and 4.3, the
results of Sections 3, 4 still hold for the more general problem (1.48, 1.49) with ψt 6= 0. This makes possible to
compute the sensitivity of wt, solution of (1.45).

2. Differentiability and polyhedricity concepts. Main result

As mentioned at the end of the last section, the problem we want to analyse is the sensitivity of the solutions
wt ∈ K of the variational inequality (1.51) with respect to t, near t = 0. In (1.51) F0 is given in the dual
space [H2

0(Ω)]
′
, t is a parameter in the Banach space [0, δ], S : H2

0 (Ω) × [0, δ] → [H2
0(Ω)]

′
is a single-valued

mapping defined by (1.44), and finally K ⊂ H2
0(Ω) is a closed, nonempty, convex set defined in (1.46). As the

solution wt of (1.51) may not be unique, the study of the sensitivity of wt, corresponds to the sensitivity of the
multifunction W : [0, δ] → H2

0 (Ω) defined by

W (t) =
{
wt ∈ K : 〈F0 − S(wt, t), z −wt)〉 ≤ 0, ∀z ∈ K

}
· (2.1)

The quantification of the sensitivity of W with respect to t in the neighbourhood of t = 0, may be analysed in
terms of a generalized derivative, which is the multifunction proto-derivative, as is proved in [6]. In order to
describe this sensitivity result for the multifunction W (t), in Theorem 2.7, we need to introduce the concepts



144 I.N. FIGUEIREDO AND C.F. LEAL

of polyhedric set, semi-derivative and proto-derivative. The concept of polyhedric set [6] in infinite-dimension
is a generalization of finite-dimensional polyhedral set and its definition is the following:

Definition 2.1. A subset K of a Banach space is called polyhedric at x ∈ K, for x∗ ∈ X
′

(dual of X) if the
identity holds

(x∗)⊥ ∩ ∪λ〉0λ(K − x) = (x∗)⊥ ∩ ∪λ〉0λ(K − x), (2.2)

where

(x∗)⊥ = {y ∈ X : 〈x∗, y〉 = 0} (2.3)

and the overbar denotes the strong closure of the set.

The concept of semi-derivative [6, 12], which is related with the notion of directional derivative, is defined
below:

Definition 2.2. A continuous function S : X → Y between two Banach spaces X and Y is semi-differentiable
at x, with semi-derivative DS(x) : X → Y , if for every φ : R

+ → X, for which φ(s)−x
s converges strongly to

some point x ∈ X, as s→ 0+, then

DS(x)(x) = lim
s→0+

S
(
φ(s)

)− S(x)
s

in Y strongly. (2.4)

For the definition of proto-derivative of a multifunction, we need the definition of graph convergence [7]:

Definition 2.3. A family of multifunctions {Vs} parameterized by s〉0 and mapping X into Y , with X and Y
Banach spaces, graph converges to the multifunction V : X → Y , when s→ 0+ if

lim
s→0+

sup gphVs = lim
s→0+

inf gphVs = gphV, (2.5)

where gphVs (or gphV ) denotes the graph of Vs (or the graph of V ), that is

gphVs =
{
(x, Vs(x)) : x ∈ X

}
, (2.6)

and lim
s→0+

infgphVs is the set

{
(x, y) : ∀(sn), sn → 0+, (x, y) = lim

n→∞(xn, Vsn(xn)) in X × Y strongly, xn ∈ X
}
, (2.7)

while lim
s→0+

supgphVs is the set

{
(x, y) : ∃(sn), sn → 0+, (x, y) = lim

n→∞(xn, Vsn(xn)) in X × Y strongly, xn ∈ X
}
· (2.8)

The following definition of proto-derivative of a multifunction, was first introduced by Rockafeller [11]:

Definition 2.4. Let W : X → Y be a multifunction and x ∈ X, y ∈ W (x). If, for each s, the difference
quotient multifunctions (∆sW )x,y, defined by

(∆sW )x,y(ξ) =
W (x + sξ) − y

s
, ξ ∈ X, (2.9)

graph converge as s→ 0+, then W is proto-differentiable at x, for y. The proto-derivative denoted byDW (x)(y)
is the multifunction whose graph is the limit of the multifunctions (∆sW )x,y, as s→ 0+.
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The relationship between the proto-derivative and the semi-derivative in the case of continuous functions
between two Banach spaces is indicated in the following proposition [6]:

Proposition 2.5. Let X and Y be two Banach spaces and S : X → Y .
(i) If S is a continuous function and semi-differentiable at x, then S is proto-differentiable at x, for y = S(x),

with proto-derivative DS(x)(y) equal to the semi-derivative DS(x).
(ii) If S is a multifunction and proto-differentiable at x, for y = S(x), then for every φ : R

+ → X, such that

lim
s→0+

φ(s) − x

s
= x in X strongly and lim

s→0+

S(φ(s)) − S(x)
s

= y in Y strongly, (2.10)

then the limit y is in the image set of the proto-derivative DS(x)(y)(x).

Using these concepts, the sensitivity result of [6] (for parameterized variational inequalities, in Banach spaces,
whose solution may not be unique) is the following:

Theorem 2.6. Let F : X × U → X
′
be single-valued mapping, with X and U Banach spaces and consider the

variational inequality {
Find x ∈ C :
〈v − F (x, u), c− x〉 ≤ 0, ∀c ∈ C

(2.11)

where v and u are fixed parameters in X
′

and U , respectively, and x is a solution of (2.11), for the fixed
parameters (v, u). If C is a convex set that is polyhedric at x, for v − F (x, u) and F is semi-differentiable at
(x, u), with semi-derivative mapping DF (x, u) : X × U → X

′
, then the solution multifunction mapping

W (u, v) = {x ∈ C : 〈v − F (x, u), c− x〉 ≤ 0, ∀c ∈ C} (2.12)

is proto-differentiable at (u, v) for x, and DW (u, v)(x) : X × U → X
′
is the proto-derivative mapping given by

DW (u, v)(x)(u, v) = {x ∈ C∗ : 〈v −DF (x, u)(x, u), c− x〉 ≤ 0, ∀c ∈ C∗} (2.13)

where C∗ is defined by

C∗ =
[
v − F (x, u)

]⊥ ∩ ∪λ〉0λ(C − x). (2.14)

We can now state this theorem for the particular nonlinear obstacle plate problem considered in this paper.
We remark that, as the force F0 is fixed, the variational inequality (1.51) has only one parameter, which is t,
and not two as in is the case of the abstract variational inequality (2.11). So, for the plate problem (1.51)
Theorem 2.6 becomes:

Theorem 2.7. Let w0 ∈W (0) be a solution of problem (1.51), for t = 0. If K is a convex set, that is polyhedric
at w0, for F0 − S(w0 , 0), and S is semi-differentiable at (w0, 0), with semi-derivative mapping DS(w0 , 0), then
the multifunction mapping W (t) is proto-differentiable at t = 0, for w0. The proto-derivative (multifunction)
mapping DW (0)(w0) : [0, δ] → H2

0 (Ω) is defined by

DW (0)(w0)(t) =
{
w ∈ K∗ : 〈−DS(w0 , 0)(w, t), z−w〉 ≤ 0, ∀z ∈ K∗

}
, (2.15)

where K∗ ⊂ H2
0(Ω) and

K∗ =
[
F0 − S(w0, 0)

]⊥ ∩ ∪λ〉0λ(K − w0). (2.16)
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The next two sections show that the assumptions of Theorem 2.7 are satisfied. In Section 3 we prove that
the set K is polyhedric, under an additional condition imposed on F0 and consequently on w0, and we present
another characterization of K∗. In Section 4 we compute the semi-derivative DS(w0 , 0).

3. The constraint set K

The first assumption of Theorem 2.7 requires that K must be a polyhedric set at w0 for
F0 − S(w0, 0), that is

[
F0 − S(w0 , 0)

]⊥ ∩ CK(w0) =
[
F0 − S(w0, 0)

]⊥ ∩ CK(w0) (3.1)

where

CK(w0) = ∪λ〉0λ(K − w0) =
{
ϕ ∈ H2

0 (Ω) : ∃λ〉0, w0 + λϕ ∈ K
}
· (3.2)

We will show in Proposition 3.4, that (3.1) is satisfied under an additional condition on F0 and w0. The proof
of this proposition is very similar to the proof of [9, 10], for the linear obstacle plate problem. To explain this
similarity, we first remark that if

S(w0, 0) = A0(w0, .) (3.3)

then (3.1) becomes

[
F0 − A0(w0, .)

]⊥ ∩ CK(w0) =
[
F0 − A0(w0, .)

]⊥ ∩ CK(w0) (3.4)

where w0 is the unique solution of the linear obstacle plate problem defined below{
Find w0 ∈ K :
A0(w0, z −w0) ≥ F0(z −w0), ∀z ∈ K.

(3.5)

The problem (3.5) is obtained from the nonlinear one (1.51), at t = 0, by neglecting the nonlinear terms, in the
definition of S (see (5.1–5.3)). Denoting by Λ : H2

0(Ω) → [H2
0(Ω)]

′
the isometry between H2

0 (Ω) and its dual,
by the Riesz theorem, that is 〈Λw, z〉 = A0(w, z), for any w and z in H2

0 (Ω), then

w0 = PK(Λ−1F0) (3.6)

where the operator PK is the A0-projection on the set K (see (5.5)). So (3.4) is equivalent to the following set
equation

[
F0 − PK(Λ−1F0)

]⊥ ∩ CK(w0) =
[
F0 − PK(Λ−1F0)

]⊥ ∩ CK(w0). (3.7)

The differences between (3.1) and (3.7) are the following: in (3.1) w0 is not the A0-projection on the set K of
Λ−1F0, w0 may not be unique and the definition of S(w0, 0) contains the additional nonlinear term a0(G0(w0);w0, .),
that is

S(w0, 0) = A0(w0, .) + a0(G0(w0);w0, .). (3.8)

So, (3.1) differs from (3.7) in the definition of the orthogonal set, since CK(w0) is defined by (3.2), for both
cases. For (3.1), that is, for the nonlinear case

[F0 − S(w0, 0)]⊥ = {z ∈ H2
0 (Ω) : 〈F0, z〉 −A0(w0, z) − a0(G0(w0);w0, z) = 0} (3.9)
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while for (3.7), that is, for the linear case

[F0 − S(w0 , 0)]⊥ =
[
F0 − PK(Λ−1F0)

]⊥ = {z ∈ H2
0 (Ω) : 〈F0, z〉 − A0(w0, z) = 0} · (3.10)

In [9, 10] the equality (3.7), or (3.4), is proven assuming an extra condition on the force F0. It is a matter of
verification that the arguments presented in [9, 10] to achieve this conclusion are still valid for the nonlinear
case that is, when the orthogonal set (3.10) is replaced by the set (3.9), which includes the nonlinear term
a0(G0(w0);w0, z), resulting from the nonlinearity of the problem. So, in this section we state, whithout proof,
the analogous of the propositions of [9, 10], which are fundamental for the proof of (3.1), under an additional
condition on F0 and w0 as established in Proposition 3.4.

We first remark that because
[
F0 − S(w0, 0)

]⊥ is a closed set, then

[
F0 − S(w0 , 0)

]⊥ ∩ CK(w0) ⊂ [F0 − S(w0 , 0)
]⊥ ∩ CK(w0), (3.11)

so it is enough to prove that

[
F0 − S(w0 , 0)

]⊥ ∩ CK(w0) ⊂ [F0 − S(w0 , 0)
]⊥ ∩ CK(w0), (3.12)

in order to conclude that K is a polyhedric set, at w0, for F0 − S(w0 , 0). The first result is the following:

Proposition 3.1. Let w0 ∈ W (0), then, there exists a positive Radon measure µ, defined by∫
Ω

ξdµ = −〈F0 − S(w0 , 0), ξ〉, ∀ξ ∈ C∞
0 (Ω), (3.13)

whose support verifies

suppµ ⊂ I = {x ∈ Ω : w0(x) = 0}, (3.14)

where I is the set of points in Ω where w0 touches the obstacle.

Proof. The proof is analogous to the proof of Theorem 1 in [10].

Before stating the next proposition, which gives a characterization of the set

[
F0 − S(w0, 0)

]⊥ ∩ CK(w0) (3.15)

we need to introduce the definition of admissible set ([10], Def. 2).

Definition 3.2. A compact set L ⊂ Ω is admissible if for every ϕ ∈ H2
0 (Ω), such that ϕ = 0 C2-q.e in L, then

ϕ ∈ H2
0(Ω\L). The notation C2-q.e in L, means that, the property ϕ = 0 is satisfied in L, except in a subset

M of L, with C2-capacity zero, that is [16]

0 = C2(M) = inf
{∫

Ω

|∆ϕ|2 : ϕ ≥ 1 in M, 0 ≤ ϕ ∈ C∞
0 (Ω)

}
· (3.16)

Proposition 3.3. Let µ be the positive measure defined in Proposition 3.1 and assume suppµ is admissible.
Then,

[
F0 − S(w0, 0)

]⊥ ∩ CK(w0) =
{
ϕ ∈ H2

0 (Ω\suppµ) : ϕ ≥ 0, C2-q.e in I
}
· (3.17)



148 I.N. FIGUEIREDO AND C.F. LEAL

Proof. The proof is a straightforward adaptation of the proof of Theorem 2 in [10].

Finally the next proposition specifies the conditions on µ, and consequently on F0 and w0, that imply the
set K is polyhedric in the sense of (3.1).

Proposition 3.4. If supp µ is admissible, then the set K is polyhedric in the sense of (3.1).

Proof. As observed before and because of Proposition 3.3, it is enough to prove that

[
F0 − S(w0, 0)

]⊥ ∩ CK(w0) ⊂
{
ϕ ∈ H2

0(Ω\suppµ) : ϕ ≥ 0, C2-q.e in I
}
· (3.18)

Let ϕ ∈ [F0 − S(w0 , 0)
]⊥ ∩ CK(w0). Then,

ϕ = lim
n→+∞ϕn, with ϕn ∈ CK(w0).

So by definition of CK(w0), for each n,

w0 + λnϕn ≥ 0, for some λn > 0,

so ϕn ≥ 0 in I. Then (ϕn) has a subsequence that converges to ϕ C2-q.e [16], which implies also ϕ ≥ 0 C2-q.e
in I. On the other hand, as ϕ ∈ [F0 − S(w0 , 0)

]⊥, and by the definition of µ we have

0 = 〈F0 − S(w0 , 0), ϕ〉 =
∫

Ω

ϕdµ.

As ϕ ≥ 0 C2-q.e in I and µ ≥ 0, we must have ϕ = 0 C2-q.e in suppµ. As suppµ is an admissible set, then
ϕ ∈ H2

0(Ω\suppµ) and so

ϕ ∈
{
ϕ ∈ H2

0(Ω\suppµ) : ϕ ≥ 0, C2-q.e in I
}
·

As a consequence of this proposition the set K∗ in Theorem 2.7 is defined by

K∗ =
{
w ∈ H2

0(Ω\suppµ) : w ≥ 0, C2-q.e in I
}
· (3.19)

Remark 3.5. The set K is also a polyhedric set at ϕ0 for F0 − V (ϕ0, 0), that is

[
F0 − V (ϕ0, 0)

]⊥ ∩ CK(w0) =
[
F0 − V (ϕ0, 0)

]⊥ ∩ CK(w0) (3.20)

where ϕ0 is the solution of (1.48) for t = 0 and V (ϕ0, 0) = S(ϕ0 + ψ, 0) is defined by (1.49), that is, for any z
in H2

0 (Ω)

〈V (ϕ0, 0), z〉 = A0(ϕ0 + ψ, z) + a0(G0(ϕ0 + ψ);ϕ0 + ψ, z). (3.21)

In fact, Propositions 3.3 and 3.4 are still valid with the measure µ of Proposition 3.1 defined by
∫

Ω

ξdµ = −〈F0 − V (ϕ0, 0), ξ〉, ∀ξ ∈ C∞
0 (Ω). (3.22)
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4. The semi-derivative DS(w0, 0)

In this section we verify the second assumption of Theorem 2.7, that is, S is semi-differentiable at (w0, 0),
and we compute this semi-derivative. In order to do the calculus of DS(w0 , 0) we need some results about the
operator Gt. The next proposition exhibits a continuity and a derivative result for Gt.

Proposition 4.1. Let φ = (φ1, φ2) : R
+ → H2

0(Ω) × [0, δ] such that

lim
s→0+

φ1(s) −w0

s
= w in H2

0 (Ω) strongly and lim
s→0+

φ2(s)
s

= t in [0, δ]. (4.1)

For each s we define φ̂1(s) = φ1(s) ◦ T−1
φ2(s) and Gφ2(s)(φ̂1(s))φ2(s) = Gφ2(s)(φ̂1(s)) ◦ Tφ2(s). Then

lim
s→0+

Gφ2(s)(φ̂1(s))φ2(s) = G0(w0) in [H1
0(Ω)]2 strongly, (4.2)

and

lim
s→0+

Gφ2(s)(φ̂1(s))φ2(s) −G0(w0)
s

= hw,w0 in [H1
0(Ω)]2 strongly (4.3)

where hw,w0 ∈ [H1
0(Ω)]2 is the solution of the equation

B0(hw,w0 , v) = −b∗(w0;w, v) + tB1(G0(w0), v) − tb1(w0, v), ∀v ∈ [H1
0(Ω)]2 (4.4)

with

b∗(w0;w, v) = h

∫
Ω

C :
(
e(v)∇w∇w0

)
dx. (4.5)

Proof. By (4.1) we first remark that

lim
s→0+

φ1(s) = w0 in H2
0(Ω) strongly, and lim

s→0+
φ2(s) = 0 in [0, δ]. (4.6)

We now prove (4.2). From the definitions of Gφ2(s), G0 and using the decompositions of Bφ2(s), bφ2(s), we have,
for each s {

B0(Gφ2(s)(φ̂1(s))φ2(s), v) − φ2(s)B1(Gφ2(s)(φ̂1(s))φ2(s), v) =
−b0(φ1(s), v) + φ2(s)b1(φ1(s), v) + O(φ2(s)2), ∀v ∈ [H1

0(Ω)]2,
(4.7)

B0(G0(w0), v) = −b0(w0, v), ∀v ∈ [H1
0(Ω)]2, (4.8)

where O(φ2(s)2) is the term of order (φ2(s)2) defined in (1.43). Subtracting these equations we obtain{
B0(Gφ2(s)(φ̂1(s))φ2(s) −G0(w0), v) = −b0(φ1(s), v) + b0(w0, v)

+φ2(s)B1(Gφ2(s)(φ̂1(s))φ2(s), v) + φ2(s)b1(φ1(s), v) + O(φ2(s)2), ∀v ∈ [H1
0(Ω)]2.

(4.9)

But from the definition of b0 we have


b0(φ1(s), v) − b0(w0, v) = h
2

∫
Ω

C :
{
e(v)

(∇φ1(s)∇φ1(s) −∇w0∇w0
)}

=

h
2

∫
Ω

C :
{
e(v)(∇φ1(s) + ∇w0) (∇φ1(s) −∇w0)

}
·

(4.10)
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Now, because the norm ‖e(v)‖[L2(Ω)]4 is a norm equivalent to ‖v‖[H1
0 (Ω)]2 in [H1

0(Ω)]2, we have

|b0(φ1(s), v) − b0(w0, v)| ≤ c0 ‖v‖[H1
0 (Ω)]2‖∇(φ1(s) +w0)‖[L4(Ω)]2‖∇(φ1(s) − w0)‖[L4(Ω)]2 , (4.11)

where c0 is a constant independent of s. Also from the definition of b1

|φ2(s)b1(φ1(s), v)| ≤ c1 |φ2(s)|‖v‖[H1
0 (Ω)]2‖∇φ1(s)‖2

[L4(Ω)]2 (4.12)

where c1 is a constant independent of s. If we choose now in (4.9)

v = Gφ2(s)(φ̂1(s))φ2(s) −G0(w0), (4.13)

and using the ellipticity of B0, the continuity of B1 and estimates (4.11, 4.12), we obtain from (4.9)




‖Gφ2(s)(φ̂1(s))φ2(s) −G0(w0)‖[H1
0 (Ω)]2 ≤

c2|φ2(s)|‖Gφ2(s)(φ̂1(s))φ2(s)‖[H1
0 (Ω)]2 + c3|φ2(s)|‖∇φ1(s)‖2

[L4(Ω)]2

+c4‖∇φ1(s) −∇w0‖[L4(Ω)]2‖∇φ1(s) + ∇w0‖[L4(Ω)]2 + O(φ2(s)2)

(4.14)

where c2, c3 and c4 are constants independent of s. But ‖Gφ2(s)(φ̂1(s))φ2(s)‖[H1
0 (Ω)]2 is majorated by a constant

independent of s. In fact, from the definition of Gφ2(s)(φ̂1(s)) we obtain, for each s,

Bφ2(s)(Gφ2(s)(φ̂1(s)), vφ2(s)
) = −bφ2(s)(φ̂1(s), vφ2(s)

), ∀vφ2(s)
∈ [H1

0(Ωφ2(s))]
2, (4.15)

and choosing vφ2(s) = Gφ2(s)(φ̂1(s)), using the ellipticity of Bφ2(s), the continuity of bφ2(s) and the relations
between the norms of the spaces [H1

0(Ωφ2(s))]2, [H1
0(Ω)]2 and [L4(Ωφ2(s))]

2, [L4(Ω)]2 we deduce

‖Gφ2(s)(φ̂1(s))φ2(s)‖[H1
0(Ω)]2 ≤ c5‖∇φ1(s)‖2

[L4(Ω)]2 , (4.16)

with c5 a constant independent of s. As φ1(s) converges to w0 in H2
0 (Ω), and since H2

0 (Ω) is compactly
embedded in W 1,4(Ω), also ∇φ1(s) converges to ∇w0 in [L4(Ω)]2. So ∇φ1(s) is a limited sequence in [L4(Ω)]2

and from (4.16) we have

‖Gφ2(s)(φ̂1(s))φ2(s)‖[H1
0 (Ω)]2 ≤ c6, (4.17)

with c6 a constant independent of s. Finally, taking the limit as s → 0+, in the second member of (4.14) we
have (4.2), since lims→0+ O(φ2(s)2) = 0, because of (4.17, 1.43) and (4.6).

The proof of (4.3) follows the same reasoning of (4.2). In fact, if we divise by s, the equations (4.7, 4.8), and
subtract, we find




B0

(
1
s
(Gφ2(s)(φ̂1(s))φ2(s) −G0(w0)), v

)
= −1

s
b0(φ1(s), v) + 1

sb0(w
0, v)

+
φ2(s)
s

B1(Gφ2(s)(φ̂1(s))φ2(s), v) +
φ2(s)
s

b1(φ1(s), v) +
1
s
O(φ2(s)2), ∀v ∈ [H1

0(Ω)]2.
(4.18)

We now analyse the limits of the terms in the second member of (4.18). From (4.10) and because




lim
s→0+

∇φ1(s) = ∇w0 in [L4(Ω)]2 strongly,

lim
s→0+

∇φ1(s) −∇w0

s
= ∇w in [L4(Ω)]2 strongly

(4.19)
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then

lim
s→0+

[
1
s
b0(φ1(s), v) − 1

s
b0(w0, v)

]
= h

∫
Ω

C :
(
e(v)∇w0∇w) = b∗(w0, w, v). (4.20)

On the other hand, equations (4.1, 4.2) and the continuity of B1 give

lim
s→0+

φ2(s)
s

B1(Gφ2(s)(φ̂1(s))φ2(s), v) = tB1(G0(w0), v). (4.21)

Using also the definition of b1, equations (4.1) and (4.6) we obtain

lim
s→0+

φ2(s)
s

b1(φ1(s), v) = tb1(w0, v). (4.22)

Observing finally that, from (4.17, 1.43) and (4.6), lims→0+
1
sO(φ2(s)2) = 0, the statement (4.3) follows

from (4.18), because of (4.20–4.22).

We have now all the results to compute DS(w0 , 0)(w, t).

Proposition 4.2. Let φ = (φ1, φ2) : R
+ → H2

0 (Ω) × [0, δ] satisfying (4.1). Then the semi-derivative of S
DS(w0 , 0)(w, t) exists and its definition, for each z ∈ H2

0(Ω), is the following:
 DS(w0 , 0)(w, t)(z) = lim

s→0+

〈
S(φ1(s), φ2(s)) − S(w0, 0)

s
, z

〉
=

A0(w, z) − tA1(w0, z) − tF1(z) − ta1(G0(w0);w0, z) + ta∗(w0;w, z)
(4.23)

where

a∗(w0;w, z) = h

∫
Ω

C :
{
[e(hw,w0)∇w0 + e(G0(w0))∇w]∇z +

3
2
∇w0∇w0∇w∇z

}
dx (4.24)

and hw,w0 is the solution of equation (4.4).

Proof. For any z ∈ H2
0(Ω) we have, due to the definition of S that



〈
S(φ1(s), φ2(s)) − S(w0, 0)

s
, z

〉
=
A0(φ1(s), z) − A0(w0, z)

s
− φ2(s)

s
A1(φ1(s), z)

+
1
s
[a0(Gφ2(s)(φ̂1(s))φ2(s); φ1(s), z) − a0(G0(w0);w0, z)]

−φ2(s)
s

F1(z) − φ2(s)
s

a1(Gφ2(s)(φ̂1(s))φ2(s); φ1(s), z) +
1
s
O(φ2(s)2),

(4.25)

where O(φ2(s)2) is defined in (1.41).
We compute now the limit of each term in the second member in (4.25). Using the definitions of A0 and A1

we directly obtain

lim
s→0+

A0(φ1(s), z) − A0(w0, z)
s

= A0

(
lim

s→0+

φ1(s) −w0

s
, z

)
= A0(w, z)

lim
s→0+

φ2(s)
s

A1(φ1(s), z) = tA1(w, z).
(4.26)

Also it is clear that

lim
s→0+

φ2(s)
s

F1(z) = tF1(z) and lim
s→0+

1
s
O(φ2(s)2) = 0. (4.27)
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The second limit in (4.27) is a consequence of (4.17, 1.41) and (4.6).
From (4.2, 4.6) and the continuity of a1

lim
s→0+

φ2(s)
s

a1(Gφ2(s)(φ̂1(s))φ2(s); φ1(s), z) = ta1(G0(w0);w0, z). (4.28)

Finally using the definition of a0


lim
s→0+

1
s
[a0(Gφ2(s)(φ̂1(s))φ2(s); φ1(s), z) − a0(G0(w0);w0, z)] =

lim
s→0+

h

s

∫
Ω

C : [e(Gφ2(s)(φ̂1(s))φ2(s))∇φ1(s) − e(G0(w0))∇w0]∇z dx+

lim
s→0+

h

2s

∫
Ω

C : [∇φ1(s)∇φ1(s)∇φ1(s) −∇w0∇w0∇w0]∇z dx.

(4.29)

But 


lim
s→0+

h

s

∫
Ω

C : [e(Gφ2(s)(φ̂1(s))φ2(s))∇φ1(s) − e(G0(w0))∇w0]∇z dx =

lim
s→0+

h

∫
Ω

C :
[
e

(
Gφ2(s)(φ̂1(s))φ2(s) −G0(w0)

s

)
∇φ1(s)+

e(G0(w0))∇φ1(s)−∇w0

s

]
∇z dx =

h

∫
Ω

C :
[
e(hw,w0)∇w0 + e(G0(w0))∇w

]
∇z dx,

(4.30)

and 


lim
s→0+

h

2s

∫
Ω

C : [∇φ1(s)∇φ1(s)∇φ1(s) −∇w0∇w0∇w0]∇z dx =

lim
s→0+

h

2

∫
Ω

C :
[
(∇φ1(s)∇φ1(s) + ∇φ1(s)∇w0 + ∇w0∇w0)

∇φ1(s) −∇w0

s

]
∇z dx =

3h
2

∫
Ω

C : [∇w0∇w0∇w]∇zdx.

(4.31)

Remark 4.3. The mapping V (z, t) defined in (1.49) is also semi-differentiable at (ϕ0, 0), with ϕ0 a solution
of (1.48), for t = 0. In fact, as V (z, t) = S(z + ψ, t), with the obstacle ψ smooth enough, and because S is
semi-differentiable at (ϕ0 + ψ, 0), a simple calculus shows that the semi-derivative of V at (ϕ0, 0) is defined by

DV (ϕ0, 0)(ϕ, t) = DS(ϕ0 + ψ, 0)(ϕ+ t(∇ψ)T .θ, t), ∀(ϕ, t) ∈ H2
0(Ω) × [0, δ]. (4.32)

So, taking into account the Remark 3.5, we conclude that Theorem 2.7 applies to problem (1.48), with ψ 6= 0.
That is, the proto-derivative of the multifunction mapping

Φ(t) = {ϕt : ϕt solution of problem (1.48)}

exists at t = 0, and is defined by

DΦ(0)(ϕ0)(t) =
{
ϕ ∈ K∗ : 〈−DV (ϕ0, 0)(ϕ, t), z− w〉 ≤ 0, ∀z ∈ K∗

}
, (4.33)
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with

K∗ =
[
F0 − V (ϕ0, 0)

]⊥ ∩ ∪λ〉0λ(K − w0). (4.34)

Consequently, the multifunction mapping

W (t) = Φ(t) + ψt = {wt = ϕt + ψt}, (4.35)

whose elements are solutions of problem (1.45), is proto-differentiable at t = 0, with proto-derivative equal to

DW (0)(w0)(t) = DΦ(0)(ϕ0)(t) + (∇ψ)T .θ (4.36)

for any t ∈ [0, δ]. This proto-derivative quantifies the shape sensitivity of the solution of problem (1.45) at t = 0.

5. Sensitivity of the linear obstacle plate problem

The shape sensitivity analysis of the linear obstacle plate problem is done in [9, 10]. This analysis is based
on the differentiability of the projection operator [4, 8] and on a sensitivity result for an abstract variational
inequality [13]. In this section we show that this sensitivity result can also be obtained using the proto-derivative.
That is, Theorem 2.7 also applies to the linear obstacle plate problem, and gives exactly the same result as
in [9, 10].

In fact the linear obstacle plate problem is characterized by the following variational inequality obtained from
the nonlinear system (1.13, 1.14), by neglecting the nonlinear terms,

{
Find wt ∈ Kt :
At(wt, zt −wt) ≥ Ft(zt −wt), ∀zt ∈ Kt.

(5.1)

This problem can be transported to the fixed domain Ω, as in the nonlinear case, and for the obstacle ψ equal
to zero (5.1) becomes

{
Find wt ∈ K = {z ∈ H2

0(Ω) : z ≥ 0 in Ω} :
〈F0 − S(wt, t), z−wt〉 ≤ 0, ∀z ∈ K,

(5.2)

with S defined by

{
〈S(w, t), z〉 = A0(w, z) − tA1(w, z) − tF1(z) + O(t2),
∀(w, t) ∈ H2

0 (Ω) × [0, δ], ∀z ∈ H2
0(Ω).

(5.3)

A direct application of the results of [8–10, 13] enable to conclude that the unique solution of (5.2) is right-
differentiable at t = 0, with the derivative ẇ(0) (which is the material derivative) verifying

lim
t→0+

wt − w0

t
= ẇ(0) in H2

0(Ω) strongly and ẇ(0) = PK∗
(
Λ−1(F1 +A1(w0, .))

)
. (5.4)

In (5.4) the function w0 is the unique solution of (5.2) for t = 0, and is equal to PK(Λ−1F0), where Λ is the
isometry (defined in Sect. 3) between H2

0(Ω) and its dual and PK the A0-projection on the set K, that is,

{
w0 = PK(Λ−1F0) ∈ K
A0(w0, z − w0) ≥ 〈F0, z − w0〉, ∀z ∈ K.

(5.5)



154 I.N. FIGUEIREDO AND C.F. LEAL

Moreover the set K∗ is defined by

K∗ =
[
F0 −A0(w0, .)

]⊥ ∩ CK(w0), (5.6)

and PK∗ denotes the A0-projection on the set K∗, that is{
ẇ(0) = PK∗

(
Λ−1(F1 +A1(w0, .))

)
∈ K∗

A0(ẇ(0), z− ẇ(0)) ≥ 〈F1 +A1(w0, .), z− ẇ(0)〉, ∀z ∈ K∗.
(5.7)

The next result shows that for the linear obstacle plate problem (5.2) the results of Theorem 2.7 recover the
sensitivity result (5.4).

Proposition 5.1. Let W (t) be the function that assigns to each t the unique solution of problem (5.2) and
w0 = W (0). Then, the proto-derivative DW (0)(w0) exists, coincides with the semi-derivative DW (0) and is
defined by

DW (0)(w0)(t) = tPK∗
(
Λ−1(F1 + A1(w0, .))

)
, (5.8)

for each t ∈ [0, δ]. In addition the semi-derivative satisfies

DW (0)(t) = t lim
s→0+

ws −w0

s
, in H2

0(Ω) strongly (5.9)

and consequently (5.8, 5.9) give (5.4).

Proof. By (4.23), the semi-derivative of function S, defined in (5.3), at (w0, 0) is

DS(w0 , 0)(w, t)(z) = A0(w, z) − tF1(z) − tA1(w0, z). (5.10)

On the other hand, as proved in [9, 10], K is a convex set, that is polyhedric at w0, for F0 − S(w0, 0), and

[
F0 − S(w0, 0)

]⊥ ∩ ∪λ〉0λ(K − w0) =
[
F0 − S(w0, 0)

]⊥ ∩ CK(w0) =
[
F0 − S(w0 , 0)

]⊥ ∩CK(w0) = K∗. (5.11)

Thus the two assumptions of Theorem 2.7 are fulfilled and therefore the proto-derivative of the single-valued
function W (t), solution of (5.2), at t = 0 is defined by

DW (0)(w0)(t) =
{
w ∈ K∗ : A0(w, z− w) ≥ 〈tF1 + tA1(w0, .), z−w〉, ∀z ∈ K∗

}
· (5.12)

But this means, by definition of PK∗ , that each element w of DW (0)(w0)(t) is the projection of Λ−1(tF1 +
tA1(w0, .)) on the closed subspace K∗. So the set DW (0)(w0)(t) has only one element, that is

DW (0)(w0)(t) = PK∗
(
Λ−1(tF1 + tA1(w0, .))

)
= tPK∗

(
Λ−1(F1 + A1(w0, .))

)
, (5.13)

because PK∗ is linear, and t is a scalar. Finally, by the Proposition 2.5(i), the proto-derivative DW (0)(w0)
is equal to the semi-derivative DW (0) and it is also simple to deduce, using the definition of semi-derivative,
that (5.9) is verified, that is, DW (0)(t) = tẇ(0), where ẇ(0) is the material derivative defined in (5.4). So

tẇ(0) = DW (0)(t) = DW (0)(w0)(t) = tPK∗
(
Λ−1(F1 +A1(w0, .))

)
(5.14)

which is precisely the result (5.4) established by [9, 10].



SENSITIVITY ANALYSIS OF A NONLINEAR OBSTACLE PLATE PROBLEM 155

6. Conclusion

In this paper we prove two properties that guarantee the existence of the proto-derivative of the solution
multifunction mapping associated to the variational inequality defining the nonlinear obstacle plate problem.
This proto-derivative characterizes the shape sensitivity of the solution mapping. As proved in an abstract
setting by [6], these two properties concern the set of constraints defined by the obstacle, which must be a
polyhedric set, in the sense of Definition 2.1, and the operator defining the variational inequality, that must be
semi-differentiable in the sense of Definition 2.2. Using a straightforward adaptation of the proof of [9, 10] for
the linear case, we show that the set of constraints is polyhedric, under an additional condition imposed on the
force acting on the plate, as explained in Proposition 3.4. The semi-differentiability of the operator is proven
in Section 4, and relies on the continuity, ellipticity and differentiability properties of the operators (1.18–1.22),
despite the nonlinearity of the problem. We intend to apply this methodology to analyse the sensitivity of
other problems, as shell problems, and to develop numerical methods to solve the corresponding finite element
approximations [2, 3].
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