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A MODEL-BASED FAULT DETECTION AND DIAGNOSIS SCHEME
FOR DISTRIBUTED PARAMETER SYSTEMS: A LEARNING SYSTEMS
APPROACH*

MICHAEL A. DEMETRIOU !

Abstract. In this note, fault detection techniques based on finite dimensional results are extended
and applied to a class of infinite dimensional dynamical systems. This special class of systems assumes
linear plant dynamics having an abrupt additive perturbation as the fault. This fault is assumed to
be linear in the (unknown) constant (and possibly functional) parameters. An observer-based model
estimate is proposed which serves to monitor the system’s dynamics for unanticipated failures, and its
well posedness is summarized. Using a Lyapunov synthesis approach extended and applied to infinite
dimensional systems, a stable adaptive fault diagnosis (fault parameter learning) scheme is developed.
The resulting parameter adaptation rule is able to “sense” the instance of the fault occurrence. In
addition, it identifies the fault parameters using the additional assumption of persistence of excitation.
Extension of the adaptive monitoring scheme to incipient faults (time varying faults) is summarized.
Simulations studies are used to illustrate the applicability of the theoretical results.
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1. INTRODUCTION

The motivation of this work has come from recent developments in the use of neural networks and adaptive
estimation techniques for on-line failure detection and diagnosis of finite dimensional dynamical systems using
a model-based scheme [51,54]. Extensions of these model-based schemes to infinite dimensional systems have
not received considerable attention as in the finite dimensional case. Even though in the last two decades there
has been an enormous development in the theory of control and estimation of infinite dimensional systems
(both theoretical and computational), less attention has been paid to the adaptive estimation and control of
distributed parameter systems. For adaptive control and estimation of infinite dimensional systems the reader is
referred to [8,13,15,40-42,61,63], to name a few, for various approaches where either a finite dimensional model
of a plant was assumed and an adaptive controller was based on the approximated model, or when the infinite
dimensional system was decomposed into a stabilizable finite dimensional subsystem to be controlled and an
infinite dimensional stable system. For control and estimation of infinite dimensional systems the reader is

Keywords and phrases: Fault detection, distributed parameter systems.

* Research supported in part by the Air Force Office of Scientific Research under grant AFOSR F49620-93-1-0198 while the
author was with the Center for Research for Scientific Computation, Raleigh, NC and in part by Faculty Development Grant
at Worcester Polytechnic Institute.
1 Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.;
e-mail: mdemetri@wpi.edu

© EDP Sciences, SMAI 2002



44 M.A. DEMETRIOU

referred to the books [4,10,11,14,19,39,44] for an in-depth exposition. One reason for this disparity (in minimal
representation of literature work on adaptive control of infinite dimensional systems) was the enormous size of the
systems involved (even their finite dimensional approximations) and their inherent complexities/nonlinearities
introduced due to adaptation rules, which make their on-line implementation currently not feasible (partially
feasible for special cases for 1-D and 2-D problems) in real-time.

With the advent of computing powers, computationally intensive algorithms for control and estimation of
infinite dimensional systems are now becoming applicable, and with the careful and efficient choice of implemen-
tation algorithms, real-time implementable. It is due to this fact that we undertake such an ambitious project
and extend the finite dimensional treatments of on-line fault detection schemes to a class of infinite dimensional
systems. Even though the proposed scheme requires the full state of the infinite dimensional systems, the goal
is to introduce the abstract mathematical framework necessary for the synthesis and convergence analysis of
fault detection schemes. This would serve as a departure point for the more realistic case of partial observation
(pointwise/boundary observations) of the state of a system whose dynamics are governed by equations evolving
in abstract spaces.

In this paper an abstract framework for the on-line fault detection and diagnosis for a class of infinite
dimensional dynamical systems (plants) is developed. The fault is modeled as an additive perturbation of the
dynamics that is expressed as a parametrized operator evaluated at an unknown parameter. The fault (i.e.
the additive perturbation) is assumed to commence at an unknown time instance. The nature of the additive
perturbation in the dynamics is assumed to be known, but the parameter at which is evaluated is unknown and
it is therefore desired to be identified. The state estimator, or detection observer, takes the form of an infinite
dimensional linear evolution system with time varying coefficients. This state estimator uses as its inputs (i)
the state of the plant (plant output) and (ii) the plant’s adjustable parameters estimates (adaptive estimates).
Using an argument based on Lyapunov redesign method [37,43], which essentially forces the time derivative
of a Lyapunov functional to be non positive, the update laws (adaptation rules) for parameter adjustment are
derived. The right choice of the online parameter laws guarantees the convergence of the state error to zero
with no additional conditions imposed either on the state of the plant or the input to the system. By imposing
additional conditions on the state of the plant, and implicitly on the input signal, parameter convergence can
be established, and hence failure isolation, [35].

The combined state and parameter estimator purpose is twofold: (i) to serve as a monitor of the system
dynamics and detect the time instance the failure occurs, and (ii) to diagnose the nature of the failure which in
this case is assumed to be either a perturbation of the nominal dynamics or another operator whose structure
is known but the parameter at which it is evaluated is unknown. Specifically, it is assumed that the failures
are additive and are linear with respect to the parameters. No failures in the input term (actuator failure),
commonly denoted by Bu(t) in the literature, are considered at this stage as this would be more relevant in the
context of actuator failure and its consequent plant accommodation.

The approach here represents an infinite dimensional analogue of an automated fault detection scheme devel-
oped for finite dimensional systems in [51,54] and more recently in [30]. The design of the diagnostic observers
falls under the category of model-based analytical redundancy approach. The survey papers by Frank [33],
Gertler [34], Isermann [38] and Patton [49] provide detailed overviews of the various model-base fault detection
algorithms. For an in-depth exposure the reader is directed to the books [12,35,46]. The convergence of the
state error is obtained using a Lyapunov estimate in a fashion similar to the finite dimensional case. Due to
the linearity of the parameters with respect to the additive failures, parameter convergence can be guaranteed
using the notion of persistence of excitation.

An outline of the remainder of the paper is as follows. In Section 2, the problem is formulated in an
abstract setting and the mathematical preliminaries are provided. The detection observer (estimated model)
and the on-line fault (parameter) estimator are defined in a variational form. Convergence of the proposed
adaptive monitoring scheme is investigated in Section 3 and extensions to the case of incipient failures (i.e.
slowly developing) are presented in Section 4. Examples and results of numerical simulations are presented in
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Section 5. Conclusions with directions for future research on fault detection and accommodation of systems
governed by partial differential equations are presented in Section 6.

In general all notation is standard. For X and Y Banach spaces, £(X,Y) denotes the space of bounded linear
operators from X into Y. Also, for X a linear space and Y a space of linear functionals on X, (¢, ) Xy denotes
the action of the linear functional ¢ € Y on the element x € X.

2. PROBLEM FORMULATION

In this section a procedure for designing a fault detection scheme for a class of infinite dimensional systems
is outlined. Specifically, we will be concerned with the following class of dynamical systems

z(t) + Az(t) + St — t*)D(0)z(t) = Bu(t), z(0) =x0 € H, (1)

where H is an infinite dimensional space, x denotes the state, and A, D, B denote the system operator, the
failure operator and the input operator, respectively. In this case, the failure is assumed to be abrupt [51], and
specifically the function (¢ — t*) that represents the time profile of the failure is assumed to be a step function
that is given by

1 for ¢t > t*
0 for t < t*.

st - = { @)

The nominal system dynamics given in (1) via the term Axz(t), i.e. the system
&(t) + Ax(t) = Bu(t), z(0) = zo € H, (3)

are assumed to be known. The 0—parameterized operator D(6) models the unanticipated failure and it is
assumed that the structure of the failure is known, i.e. for a given parameter 6 the operator D(-) is known, but
the parameter 6 is unknown. Below, we will provide the mathematical preliminaries required for the analysis and
well-posedness of the plant and the derivation of the on-line estimated model of (1). This estimated model, or
detection observer, will use as its inputs the output of the plant z(¢) and the adjustable (on-line) estimates (t)
of the (unknown) parameter 6. Following the definition from finite dimensional treatments on failure detection,
the estimated model has what is termed as error filtering model which is similar to the linear observer design [47]
and to the estimation schemes for finite dimensional systems in [52, 53, 56].

It will be shown in the following section that the proposed estimated model can detect the time of failure
t* and, by imposing the additional condition of persistence of excitation, the parameter 6 in the additive
term D(6)z(t) will be identified asymptotically with time. This will also be demonstrated via some numerical
simulations in Section 5 , where the time ¢* of the failure will be “sensed” by this detection observer and the

o~

parameter error 0(t) — 6 will asymptotically converge to zero in an appropriate norm.

2.1. Plant in variational form

We will consider the above equation (1) in weak or variational form. Towards this end, let H be a Hilbert
space with inner product (-,-) and corresponding norm |- |. We also let V' be a reflexive Banach space with
norm denoted by || - ||, and assume that V is embedded densely and continuously in H. We let V* denote the
conjugate dual of V' (i.e. the space of continuous conjugate linear functionals on V) with norm denoted by || - ||
(i.e. the usual uniform operator norm). It then follows that V' — H — V* with both embeddings dense and
continuous. We then have that

lo| < K|l peV, (4)
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for some positive (embedding) constant K [45,59,60,64]. The notation (-,-) will also be used to denote the
duality pairing between V* and V induced by the continuous and dense embeddings in (4).

The parameter space is denoted by @ and it is assumed to be a Hilbert space with inner product (-, '>Q and
norm | - |g. The dual Q* of @ is identified by @* = Q. For each 8 € Q, let D(f) : V — V* be an operator
satisfying the following assumptions

(D1) (Q-Linearity) The map 0 — D(0)yp is linear from @ into V* for each ¢ € V.
(D2) (V — V*-Boundedness) There exists a scalar «g > 0 such that for each § € Q

| (DO)p, ) | < calblollelldll, v eV

Remark 2.1. The fact that the parameter space @ is chosen to be a Hilbert space (as opposed to a Euclidean
space), enables the proposed scheme to identify functional parameters in the failure term D(0)x(t).

Continuing, we consider the rather standard assumptions on the nominal plant operator A that are required
for the existence and uniqueness of solutions to the nominal system (3).

(A1) (V — V*-Boundedness) There exists a scalar a,, > 0 such that
[{(Ap, ) | < aallelllll,  wd eV
(A2) (V — H-Coercivity) There exists a A, € R and a scalar 3, > 0 such that
Re (A, @) + Xalol* > Ballel®, ¢ eV

In addition, we consider the operator L : V' — V* appearing in the detection/diagnostic observer model below,
which satisfies the following assumptions.

(L1) (V —V*-Boundedness) There exists a scalar a; > 0 such that

[ (Lo, ) | < aullellllell, @, eV

(L2) (V-Coercivity) There exists a scalar 5; > 0 such that

Re (Lo, o) > Billel?, ¢eV.

Remark 2.2. The strict V-coercivity imposed on the design operator L is to affect and guarantee the as-
ymptotic convergence of the state estimation error. This, in a way, is parallel to the design matrix A,, (error
filtering model with series-parallel configuration) often appearing in the finite dimensional treatment of adaptive
estimation and control, see for example [37,43,48].

In addition, for ¢ € V' we define the linear operator G(¢) : V — Q by
(G(e)y,0)g = (D(O)p,¥), VeV, 0€Q. (5)
Using Assumption (D2), it is clear that for ¢ € V, we have G(p) € L(V, Q) with

IG(ev.@) < adllel- (6)

Using equation (5) we define, for ¢ € V, the Banach space adjoint of the operator G(¢), denoted here by
G*(p) € L(Q, V™), as

<G*(@)67¢>V*,V = <G(@)¢70>Q ’ w S ‘/7 6 S Q
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Let the initial data (0) = 2o € H and the input, or control, term Bu(t) € L2(0,T; V*), and consider the initial
value problem

#(t) + Az(t) + B(t — t*)D(O)x(t) = Bu(t),  ae. t >0, (7)

z(0) = xo. (8)

We establish the well-posedness of the above system wia the existence of a weak solution. First, we show the
well posedness of the (nominal) system for ¢ < t*, i.e. prior to the failure, and then establish the well posedness
of the system with the failure incorporated into its dynamics. Specifically, we first consider the system

- { i(t) + Az(t) = Bu(t), 0<t<tr o)

x(0) = xp,

and then (using (2)) the system
w { i(t) + Az(t) + D(0)x(t) = Bu(t), t>t*, (10)

x(t*) = @

By a weak solution to the initial value problem (9) we mean a function x € L2(0,T;V) with & € Ly(0,T;V*)
for all 0 < T' < t* that satisfies (9). Similarly, by a weak solution to (10) we mean a function x € Lo(t*,T; V)
with & € Lo(t*,T;V*) for all T > ¢* that satisfies (10). Sufficient conditions that guarantee the existence
of a unique solution are presented in [11,44,45, 50,59, 60, 64]. Specifically, the operator A being coercive and
bounded with Bu(t) € L2(0,T;V*), are sufficient conditions to guarantee the existence of a unique solution
to (9). Similarly, if the operator [A + D(0)] is coercive and bounded for all § € Q with Bu(t) € L2(0,T;V™),
are sufficient conditions for the existence of solutions to (10). The former condition can be satisfied if

Re ((A+ D)o, ) + Aalpl> > Re (Ap, @) — [{D(0)p, 0)| + Xalip|?
> Ballell? = aalflollell® = (Ba — aalblQ) llell?,

which would require 5, > aq|0|q-

2.2. Estimated model and a learning scheme

Before we present the state estimator, we give the definition of a bounded plant, which in a way is a uniform
boundedness condition on ||z(t)]|.

Definition 2.3 (Bounded plant). A bounded plant is a pair (¢,z) with = a solution to (7, 8) for which there
exists a constant v = ~y(x) such that

[(G(2()p,0) o | <v@®)lblellell, t>1t" 0€Q, peV.

It should be noted that if the pair (8, z) is a bounded plant, then we have that G(z(-)) € Lo(t*,T; L(V,Q))
for all T > t*. Tt also follows from equation (6) that if (6,z) is such that ||z(¢)| < v < oo, a.e. ¢ > t*, for
some 7 > 0, then (0, z) is indeed a bounded plant. In [13], it was shown that it is possible to provide sufficient
conditions for the uniform boundedness of ||z(t)|| for ¢ > t*.

We can now propose the estimated model of (7, 8) along with the adaptive law for the adjustment of the
parameter estimates (i.e. adaptive detection/diagnostic observer).
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They take the form of an initial value problem and are given by

Z(t) + La(t) + G*(x(£))0(t) = Bu(t) — Az(t) + La(t), (11)
0(t) — Gz(1)Z(t) = —G(z(t)z(t), ae. t>0, (12)
Z(0) = 2(0), 6(0)=0 (13)

To establish the well posedness of the (state and parameter) estimator (11-13), we follow a procedure similar to
the one taken for the adaptive parameter estimation of distributed parameter systems in [20]. We let X = H xQ
and Y =V x . When X and Y are endowed with the usual product norm topologies, X becomes a Hilbert
space and Y a reflexive Banach space. We then have the dense and continuous embeddings Y — X — Y™*. We
define the operator A(t) : ¥ — Y* by

L @@@W’ (14)

(15)

A
~
~—
I
—
\
Q
—~
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—~
~
~—
~—
=
—~
~
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for almost every t > 0.

The fact that (6, ) is a bounded plant (Def. 2.3) and Bu(t) € L(0,T; V*) implies that F € Ly(0,T;Y™*) for
all T > 0. Assumptions (L1) and (L2) together with (6, z) being a bounded plant imply that A(¢) € L(Y,Y™),
t > 0 and that for ¢t > 0

Re(Alt)p, 0)y-y +ololx > allelly,  ¢ev,

where |- |x and || - ||y denote respectively, the norms on X and Y, and p, o > 0. It follows (see, for example [44,
45,59, 60,64]) that the initial value problem

() + ADER) = F(t), ae. t>0,
£(0) € X,

admits a unique solution £ € L2(0,7T;Y) with § € La(0,T;Y™), all.T > 0. Consequently, the estimator (11-13)
admits a unique solution (é\, Z) € La(0,T;Q) x La(0,T; V) with (5, 3?) € L2(0,T;Q) x L2(0,T;V*), all T > 0.
Moreover, for each T' > 0, 9 and 7 agree almost everywhere with functions in C([0,T]; Q) and C([0,T]; H),
respectively.

We denote the output estimation error or state error, by e(t) = Z(t) — z(t) and the parameter estimation
error or parameter error, by r(t) = A(t) — 6. Using the linearity assumption (D1) and the fact that for ¢ < t*
the parameter 8 = 0, we have

t<t*

I
S
o
=
]
—
~
=

and that for ¢ > t*
B(t — +)D(O)a(t) = 1- DO)a(t)

|
-
—~
>
N
8
—~
~
=
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we can then write the error equations as

é(t) + Le(t) + G*(x(t))r(t) =0, ae. t >0, (16)

7(t) — G(z(t))e(t) =0, ae.t>0, (17)

where for ¢ < ¢* the parameter error is given by r(t) = A(t) —0 and for t > t* it is given by r(t) = /9\(15) — 6. The
initial conditions are given by

~

e(0) = 7(0) — (0) = 2(0) — z(0) =0, 7(0) = H(0) — 0 = 0. (18)

Equivalently, the error equations (16, 17) can be written as

4 [Em A [83] —0,  aet>0, (19)

with the operator A(t) given by (14).

The choice (9\(0) = 0 will be explained in the next section where it will be shown that for ¢t < ¢* the parameter
estimator @ will estimate the zero parameter (i.e. 6(t) =0) and at ¢ > ¢t* will adaptively estimate the nonzero
parameter 6. In addition, the choice Z(0) = x(0) will be shown to guarantee that for ¢t < t*, e(¢t) = 0 and for
t > t*, le(t)| > 0. The latter is a means of sensing the failure in the system, i.e. when e(t) becomes nonzero it
means that the system dynamics changed from Az(t) to [A+ D(0)]z(t). With no additional assumptions, it will
be shown that the state error e(t) converges to zero asymptotically after the failure occurs. Additionally, the
parameter estimate will be shown to estimate the zero parameter (i.e. 0 remain at zero) for t < t* and after the
failure occurs, it will attempt to estimate the parameter 6. In order to guarantee that the parameter estimator
will asymptotically estimate the parameter 6 after the failure, we must impose the additional assumption of
persistence of excitation, see [43,48].

3. CONVERGENCE OF THE LEARNING SCHEME

In this section, we make the standing assumption that the pair (6, ) is a bounded plant (Def. 2.3). We use
a Lyapunov-like argument to show convergence of the state error e(t) to zero. Toward this end, we define the
function E : [0,00) — RT by

E(t) = % {le® + r@)[3}, t=>o0. (20)

As a first result we get a bound on this energy function E(t).

Lemma 3.1. For all t < t* we have

B(t) + / le(r)12 dr < E(0), (21)
and for t > t* we have
E(t)+ 3 /t le(r)||?dr < B(t*). (22)

Proof. Using (16-18) and Assumption (L2) we have that for ¢ < ¢*

50 = (e + (50 = = (Lelo).e0) < ~leCo (23)
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When equation (23) is integrated from 0 to some t < t* we obtain the desired result (21). Similarly, when we
integrate from ¢* to some t > t* we get (22). O

The above lemma is used to show that the state error e(t) either remains at zero for ¢ < t* or it assumes a
nonzero value at t* (jump) and converges asymptotically to zero for some ¢ > t*. This is stated as a theorem
below.

Theorem 3.2. The error equations (16—18) that result by combining the plant (7, 8) with the detection/diagnostic
observer (11-13), satisfy:

(i) fort <t* we have E(t) =e(t) =r(t) =0;

(ii)  fort > t* the function E(t) is nonincreasing and lim;_, |e(t)| = 0.

Proof. (Case (i), t < t*.) Using the fact that at ¢ = 0 the initial conditions e(0) = Z(0) — z(0) = 0 and

~

r(0) = 6(0) — 0 = 0, and the result of Lemma 3.1, we have that
t
E(t) +Bz/ le()|?dr < E(0)=0, t<t",
0

which implies that E(t) = 0 for all ¢ < t*.
(Case (ii), t > t*.) Using equation (22)

t
B(t) + Bl/ le()||?dr < E(t*), t>t*
o

we have that E (with E(t*) # 0) is nonincreasing. The convergence of |e(t)| to zero follows from the same
arguments used in [20] for the adaptive parameter estimation of distributed parameter systems. It is essentially
based on Barbdlat’s lemma [55] often used in the adaptive estimation and control of finite dimensional systems,
[43,48,55]. O

Remark 3.3. It can be observed from Theorem 3.2 that the estimator will sense the time t* of failure, since
the state error is identical to zero for all time ¢ up to failure time t*. The state error becomes nonzero after
t* and converges to zero afterwards. When the state error attains a nonzero value it indicates that the failure
occurred and hence the time ¢* can be detected by monitoring the state error e(t). Another way to detect the

failure is by monitoring the parameter estimate 6(t), as it too remains at zero for ¢ < t* and becomes nonzero
thereafter.

Remark 3.4. Another way of showing asymptotic convergence of the state error to zero, is to use a method
employed in a lemma by Curtain and Oostveen in [18]. Basically, it uses the fact that the operator L generates
an exponentially stable Cy semigroup and that x is square integrable along with the boundendness of r in
equation (16).

Remark 3.5. In the above design, it was assumed that the initial condition x(0) was known. If this is not
known, one can actually built a monitoring observer of the healthy system in the infinitely remote past and
assume that the state error e(t) is relaxed at time to, [36]. Alternatively, if an upper bound on the norm of e(ty)
is known, then a dead-zone adaptive law can be augmented in the design to ensure that false alarms due to
nonzero e(tg) are avoided, see [30,51,54] for the finite dimensional treatment and [32] for the infinite dimensional
case.

-~

The convergence of 6(t) to the actual parameter 6 is established by imposing the additional assumption of
persistence of excitation, [43,48]. Below, we provide the equivalent definition of this persistence of excitation
condition as it extends to infinite dimensional systems, [20].
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Definition 3.6 (Persistence of Excitation). A bounded plant (6, z) is said to be persistently excited, if there
exists T, 6o, €0 > 0 such that for each p € @ with unit norm (i.e. |p|g = 1) and each t > 0 sufficiently large (in
this case t > t*), there exists a t € [t,t + Tp] such that

where G*(z(t)) € L(Q, V™) is the Banach space adjoint of the operator defined in (5).

t+30
| e tmmar| = (24)

*

Remark 3.7. Using equation (5) we can write the above persistence of excitation condition (24) as

+60 +60 460
/{ G* (e(r))pdr / (G (). B}y dr / (G((7)d,p) g dr

= sup = Ssup
. lsl<t Isl<1
t~+60
= sup / (D(p)x(71),¢) d7| > €9, ¢ V.
loll<1|Jt

Theorem 3.8. If the plant (q,x) is persistently excited then

~

tlim Ir(t)|o = tlim |6(t) — 0| = 0.

Proof. The proof is identical to the one used for the adaptive parameter identification of infinite dimensional
dynamical systems in [13] and it is therefore omitted. O

Remark 3.9. In the case that the operator A satisfies a (stronger) coercivity assumption like Assumption (L2),
i.e. V-coercive, then we can set L = A in (11) to get a simplified estimator

Z(t) + AZ(t) + G*(x(t))0(t) = Bul(t).

This of course would affect the convergence properties of the estimator since the error equation (16) is now
given by

é(t) + Ae(t) + G*(x(t))r(t) =0, a.e. t >0,

and due to assumption (A2), the constant 3, can not be chosen in a way to affect the convergence of |e(t)|
to zero in a desired way. An in-depth study of the effects of the choice of the constant 3; on the speed of
convergence of |e(t)| to zero and its relation to the speed of convergence of |r(t)| to zero was presented in [31] for
the adaptive parameter estimation of parabolic and hyperbolic distributed parameter systems and in [9] in the
context of hyperbolic distributed parameter systems with time varying parameters. In summary, a large value
of §; in assumption (L2) would introduce a form of a high gain with oscillatory behavior and faster convergence
of the state error to zero whereas a small value of 3; would affect the convergence of the parameter error to
zZero.

Remark 3.10. It is interesting to note that persistence of excitation implies identifiability of the parameter
6, see [10]. For if the plant is persistently excited and the parameter # is not identifiable, then there would
exist 61,02 € Q such that x(t) is a solution to the initial value problem (10) (with to = ¢t* and initial condition
x(to) = x(t*)) with either § = 0y or § = 2. Subtracting the two equations (that correspond to #; and 605), we
have that (D(61 — 02)x(t),p) =0, a.e. t > t*, ¢ € V, or using (5), that G*(x(¢)) (01 — 62) = 0, a.e. t > t*. This
of course contradicts Definition 3.6, and therefore identifiability is concluded.
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4. EXTENSIONS TO TIME-VARYING PARAMETERS

In this section we briefly describe an extension of the above learning scheme. We will consider the case where
the nature of failure is incipient (slowly developing), see [51], and in this case the function (¢ —t*) (time profile
of the failure) is assumed to be of the following form

Bt 1) =

1 4+ re—ot—t") for t > t*
, K, > 0.

for t < t*

This in a way restricts the type of temporal variations of the parameter . This time profile corresponds to an
exponentially distributed random variable which models the failure occurrence, [17]. The parameter is assumed
to exponentially converge to some steady state value 6,5. The finite dimensional approach to time varying plants
is presented for example in [5,6,48,62]. An infinite dimensional analogue for parabolic distributed parameter
systems appeared in [21] and for hyperbolic distributed parameter systems in [9]. Using the linearity assumption
(D1) with (5), the term S(t — t*)D(0)x(t) takes the form

(1 + re=o(=t) D(8,,)a(t) for t > t*
0 for t < t*

Bt —t*)D(0)x(t) = {

| D (0ss [1 4 e 2] 2(t) for t > t*
1o for t < t*’

or, equivalently the parameter 6(t) is given by

055 [1 + ke—at=t") for t > t*
0(t) = [ ] -
0 for t < t*.

When the above definition of the parameter 6(¢) is written as a differential equation, it yields, for ¢ > t*, the
following

C00) ~0) = ~al0) ~0.), 121" (25)

or when we set ¢(t) to be the difference of 6(¢) from its steady state value 6,4, we have

Cot)=—0olt), 121 6(1%) = 0") — 0us = Kl (26)

Equation (26) defines the class of plants with time varying parameters, namely plants whose parameters converge
to their steady state value in an exponential fashion. The well-posedness of the plant after the failure, given
here by

(t) + [A+ B(t —t*)D(0ss)] x(t) = Bu(t), =(t*) € H,
with B(t —t*) = H(t — t*)[1 + ke~ *(=*)], with H(t) denoting the Heaviside step function, can be established

in a similar fashion as the one presented in Section 2. Additional assumptions must be imposed. In this case,
the inequality

Re ([A+ B(t = t)D(0ss)l0, @) + Aalo® > (Ba = aal Bt = )| lbss]Q) oIl
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must at least satisfy
0 < fa — alB(t —17)|oolbss|@ = Ba — aa (1 + |5]) |0ss]@
which is a condition on both the steady state value 05, of the parameter 6(¢) and the parameter .
The estimator equations are the same used for the time-invariant case, namely equations (11-13). The error
equations will be different in the sense that the previously defined parameter error r(t) will be written as

~

r(t) = 0(t) = 6(t) = (B(t) — 0s) + (s — (1)) = (1) — (1),

where ((t) = é\(t) — 045 and ¢(t) is as defined in (26) above, see [9] for similar treatment of adaptive estimation
of second order distributed parameter systems. Therefore, the error equations are written as

é(t) + Le(t) + G*(2(1))[C(1) — ¢()] = O, (27)
¢(t) = Ga(t)e(t) = 0. (28)

The arguments leading to the well posedness of the estimator are identical to those presented in Section 2. The
energy function now becomes

=—{| OF +1COIG +vIe®G} (29)

where v is some positive constant to be defined below (see [48] for similar definition in the finite dimensional
case). Using (26-28) and Definition 2.3, the time derivative of (29) is given by

G0 = (et ) + (Geo.co).
F(GL)elt), C0) — v (00(1), (1)
= (Left). e(8) + (G ((1)0l1).e(8) — aw (6(0). (D)
Bl + e le(Dlq — avlo(n)?

~ (A= 5) et = (o =, ) oo
el ~ ealotr)lh.

where ¢; = ) — 'y% and ¢ = av — 72% and p is such that ¢; > 0 and ¢y > 0. The choice of the constant

+v <§t¢>(t) ¢>(t)> = — (Le(t), e(t)) — (G*(z(t))[C(t) — (1)), e(t))

Q

INIA

2
v > 4a Tah, with p < Q—ﬁl will ensure that both ¢; and ¢ are strictly positive. It is worth mentioning that in the
above calculations we rnade use of the following arithmetic-geometric mean inequality a - b < & a + 5 L b2
Remark 4.1. A somewhat different method of using an alternative expression of the Lyapunov functlonal
appeared in the finite dimensional treatment of fault detection in [30]. There, the temporal variation of the
parameter 6(t) was manipulated as an additional term in the definition of the Lyapunov functional.

Remark 4.2. It should be noted that the above extension to time varying systems is defined for the case of
constant-in-space parameter 6, i.e. no spatially varying functional parameters. The case of functional time
varying parameters would require the equivalent Gelfand triple for the parameter space @) as it is often the case
that the differential operator that describes the time evolution of the functional parameter is unbounded. This
is the subject of future study since the purpose of this note is to give a basic exposition to the fault detection
schemes of infinite dimensional systems. In the event that the unknown parameter is a single time varying
functional parameter that satisfies an equation of the form

C00,6) ~ 0.4(6) = ~0 (010, €) — 0.,(6)) (30)
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where ¢ is the spatial parameter in a bounded domain €2, and it is assumed that the initial condition 6(t*, &) is
a constant multiple of the steady state 0,4(&) for all £ € Q, i.e. 6(¢,€) is of the form

o(t.€) Oss(&) [1 4 re= =] if t > ¢
o ift <t

with 0(t*,&) = (1 + k)0ss(€) for all £ € Q, then the above proposed adaptation scheme can still be employed to
detect failures in the infinite dimensional system (7, 8) with both temporally (slowly time varying) and spatially
varying parameters.

Remark 4.3. It might appear, due to equation (25), that the parameter 6 is only a single scalar time varying
parameter. In fact the above extension is also valid in the case where the parameter 6 is a vector (denoted by

—

) that satisfies a differential equation of the form

< (00— 0.) = A (6~ ..) (31)

where the matrix A is a stable matrix with diagonal elements. It might be the case that the matrix A is not
diagonal and still the above would hold. In this case we must impose the condition that A is diagonalizable and
that by the appropriate weighting of the @-inner product we can have a diagonal matrix in (31). For the sake
of simplicity, we used equation (25) instead of (31), but all the calculations presented above are still valid in
the vector case.

The same convergence results presented in Section 3 can be used in the case of time varying parameters. The
corresponding lemma to Lemma 3.1 is

Lemma 4.4. For all t > t* we have

Et)+a . le(T)||?dr + c2 /t |¢(T)|é dr < E(t"). (32)

Identical convergence results are obtained in this case, with the exception that Theorem 3.2 applies to the error
equations (27, 28).

5. EXAMPLES

In this section we present some examples to demonstrate the applicability of the proposed fault detection
scheme. We first examine a one dimensional heat equation with constant coefficients and then a one dimensional
heat equation with time varying parameters. In addition to these examples, we also examine a second order (in
time) hyperbolic pde (wave equation) with spatially varying fault of the stiffness parameter and then a nonlinear
parabolic pde in which the fault is modeled as a nonlinear perturbation of the thermal diffusivity involving a
function of the heat flux.

All computations are carried out by a numerical approximation method using finite element methods with the
linear spline elements [7,16,57] and the Fehlberg fourth-fifth order Runge-Kutta method for time integration [58].
The numerical implementation of the proposed learning scheme and its finite dimensional approximation and
convergence proofs will appear in greater detail in a forthcoming paper, see [20] for similar results on the
adaptive parameter identification of abstract parabolic and hyperbolic distributed parameter systems.

5.1. Example 1
As a first example, we consider the one dimensional diffusion equation with spatially varying parameter

given by

570(0.6) = g (a(©)5galt.©)) + £+ 56~ 10) 3 (80 7g(1.9)
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and with boundary and initial conditions x(¢,0) = z(¢,1) =0, ¢ > 0, (0,£) = 0, 0 < £ < 1. The Hilbert space
H is taken to be H = L(0,1) and the Sobolev space V is V' = H} (0, 1); the reader is directed to the books of
Adams [3] or Lions and Magenes [45] for an exposition to Sobolev spaces. The parameter space in this case is
Q = H'(0,1) endowed with the weighted inner product

1

(4,P)g = w1 /0 a(6) - p(€) € + /0 (&) -p()de, g,pe H(0,1),

where the weights w; and ws are assumed to be positive. The operators A and D(-) in (1) are given by

(Ad, ) = /0 a(€) - #(€) - W(©)de,  (DO)d ) = /0 B(6) - &(€) - ¥/(€) de.

The operator G(z(t)) in (5) is given in weak form by

(GO)6rD) 11 0.1 = (D)D), ) = / p(f)a%x(t,&) L (€) de

for ¢ € H}(0,1), p € H'(0,1), and the estimator operator L is given by
1
(Lo.w) =2 [ 9l w(©)dE o0 < HIO.D).
0
In this case, the effect of the fault is a change in the thermal diffusivity from a(€) to a(§) +6(§). In other words,
D(0)lg(e)=a(e) ©(t) = Az(t)
or the f-parameterized operator D(f) is the same as the nominal operator A evaluated at a different diffusivity

parameter. The thermal diffusivity is given by a(¢) = 1.5 x 1073 (1.5 — sin(n€)), 0 < € < 1, and the unknown
perturbation 6(§) of the diffusivity is chosen as

9(6) =1.5x% 107‘3 (1 - \/75 - s1n(37r§)> X[0.3,0.7] (E), 0 S E S 1,

where x[0.3,0.77 denotes the characteristic function over the interval [0.3,0.7]. This is also illustrated in Figure 1
where both a(&) and a(€) + () are depicted. It can be easily verified that assumptions (D1), (D2), (A1), (A2)
and (L1), (L2) are satisfied with ag = 1.0, Ay = 0, @, = 2.25 x 1073, 8, = 0.75 x 1073, ay = ; = 2. The
embedding constant in (4) is K = 7~ 1. It follows that

([A+D@)e, @) =/0 (a(€) = 0(&)) [pe(€)]* dg > 1 x 1077

will guarantee the existence of a unique solution as mentioned in Section 2. The forcing function is given by

ft, &) =102 { {3 +0.1sin (g—é)} x 27001 4 gin (271-_0750) } X[0.3,0.7(§)-

In Figure 2, we observe that both |e(t)| and |r(t)| remain at zero for 0 < ¢ < t*. The estimated model
approximates the system after failure and the state increases (sudden jump) at the time of the system failure
at t = 10 seconds but converges to zero within 6 seconds. Additionally, we observe that the on-line parameter
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FIGURE 1. Example 1; Diffusivity parameter «(§) before failure and a(€) + () after failure.

approximator can also serve as an indicator of the system’s failure. The large magnitudes of these jumps can
be attributed to the large values of both the coercivity of the operator L and the adaptive gains (reciprocals of
the weights of the inner-product of the parameter space). Figure 3 shows the parameter approximator a(t,f)
compared to the actual parameter 6(§) at four different time instances. It is observed that the parameter
approximator identifies the location (i.e. function is nonzero on the spatial interval 0.3 < ¢ < 0.7) and the
shape of the failure (i.e. the function 1— g — sin(37€)) within 4 seconds of the failure occurrence, from ¢ = 11
seconds to t = 14 seconds. It should be noted that smaller value of L would result in a prolonged diagnosis.

5.2. Example 2

In the next example, we consider a heat equation of the form

5500.6) = g (a(©)5go(t.€) ) + £+ 8~ 100(0)e(r. ). (33)

with boundary and initial conditions given by x(¢,0) = x(t,1) =0, ¢t > 0, 2(0,£) = 0, 0 < ¢ < 1. Once again we
set H = Ly(0,1) and V = H{(0,1) endowed with the usual inner products and corresponding induced norms,
with the parameter space now given by @ = R'. We endowed the parameter space with the weighted Euclidean
inner product <q,p)Q = wpq, ¢,p € R where the weight w > 0. The embedding constant K = 7! (see, for
example [7,57]). The operator A in (1) and the estimator operator L in (11) are given by

<A¢,¢>=/O a(§) - ¢'(§) - ¥'(§) d¢, (L¢,¢>=2/0 ¢(&) - ¥(§) ¢,
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FIGURE 2. Example 1; Evolution of state error, e(t) = Z(t) — x(¢), and parameter error r(t) =
o(t) — 6.

for ¢,9 € H}(0,1), and for § € Q, the operator D(f) is given by

1
D)0 ==00) [ 9w, 6.0 T

with the parameter 6, defined for ¢ > 10, given by
o(t) = 0.01 (1 v 3e*0‘02<t*10>) . 0, =0.01, 6(10) = 0.04.

The nominal plant parameter (i.e. the diffusivity parameter o(€)) is given by a(¢) = 1.5x1072 {1 — $sin (27 [£ — 1]) },
0 < ¢ < 1. The forcing function is given by

t
f(t,&) =102 [3 +0.1sin <§—0)] x 270y 0 5.0.71(€).
Using the above, we can easily verify again that assumptions (D1), (D2), (A1), (A2), (L1), (L2) are satisfied
with ag = 1/7%, g =225 x 1072, X\, =0, B, = 7.5 x 1073, and oy = 3; = 2. In addition, we see that

1

1
(A+ D00 9) = [ aOleele 0O dE > (B — aal1 + Ix)n) [ oe(e)) e
> 3.4 x 10732,
which guarantees the existence of a unique solution to (33). The estimator in this case is given by

5770.6) = g (a(©)5ge(t.6)) + £ = 2[E(0.9) — (0] + De)e(r. €
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FIGURE 3. Example 1; Parameter 0(¢,&) (dashed) and 6(£) (solid) at different time epochs
t=11,12,13 & t = 14 seconds.

and the parameter adaptation rule is given by
~ 1 ~
0t) = = (e(t), z(t)) = *7/0 [2(t,€) — «(t, )] - 2(t,£) dg,  0(0) = 0.

In this case the adaptive gain [43,48] is v = % and is chosen to be v = 100.

In a similar way as in the previous example, it can be observed from Figure 4 that both |e(t)| and |r(t)]
remain at zero for ¢ < 10. Both become nonzero for ¢ > 10 and eventually converge to zero within 6 seconds.
A natural question that arises is whether é\(t) converges to 6(t) before 6(t) converges to its steady state value
0ss, or while 6(t) is moving towards 65. This is depicted in Figure 5, where we see that g(t) converges to 0(t)
around the 16" second (Fig. 5b) whereas 6(t) converges to its steady state value 6, after ¢ > 100 seconds. The
parameter convergence theory (via the persistence of excitation) in Section 4 does not provide any answer as to
whether the parameter estimate will converge to 6, or to 6(t) before the latter converges to .s. This certainly
would depend on the rate of convergence « of 8(t) to .5 and the level of persistence of excitation. This is an

issue still under investigation by the author.
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FIGURE 5. Example 2; Parameter 0(¢) (dashed) and 6(t) (solid); (a) time interval [0, 100],

(b) enlarged time window [8, 25].

5.3. Example 3

In this example we consider a second order system that can be written as a first order system. The plant is
given by the wave equation with Kelvin—Voigt viscoelastic damping

0? 0
ww(ta 6) - a_§

2

(@Hﬁgaw@®+EH®%w@O)—mvﬁmg

0 .
5 (10500.9) = r0g. o

(34)
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where w(t, &) denotes the displacement and wy(t, £) the velocity. The boundary and initial conditions are given
by w(t,lon = wa(t,&)lo — 0, w(0,€) = do(€) € H(0,0), wi(0,€) = v(€) € L2(0,1). Since equation (34)
has strong damping, we can use the same techniques in [20] applied for the adaptive parameter estimation of
hyperbolic distributed parameter systems, to write equation (34) as a first order system with H = H}(0,1) x
L2(0,1), V = H}(0,1) x H}(0,1) and the parameter space Q = H'(0,1). We briefly describe the procedure.
When the above system is written as an abstract second order initial value problem, we arrive at

wy(t) + Kywe(t) + Kow(t) + 6(t — 10)K3(0)w(t) = f(t), a.e. t >0
with w(0) = do, w(0) = vg, which when written in a weak (or variational) form becomes

(wie(t), 9) + (Kawi(t), @) + (Kaw(t), ¢) + B(t — 10) (K3(0)w(t), ¢) = (f(t), 9),

w(0) = do € HE(0,1), w(0) = vo € L?(0,1). The state and parameter estimators are given, for ¢ = (¢, ¢2) €
H;(0,1) x L*(0,1), by

<L2%zﬁ(t),¢1> = (Lo@i(t), 61) + M (Lae(t), dn) .
<_wt(t),¢2> + (L1es(t), ¢2) + (Lae(t), d2) + A(ex(t), ¢2) + <K3(§(t))w(t)’¢2> = (). 02)
and

d ~
<§e<t>,p>m = )t pEH O

The design operators Ly, Ls € L(Hg(0,1), H=1(0,1)) are chosen to satisfy assumptions (L1) and (L2) and the
operators K; € L(H}(0,1), H=1(0,1)), i = 1,2, K3(0) € L(H}(0,1), H~1(0,1)), 6 € Q, are given by
!

epl(§) - wi(t,€) - ¥'(€) dg,

l

EI(&) - w'(t,€) - ' (§) dE,

Ft)v) = [
awl.v) = [
(K5 (0) / (e ) (€) de.

The fault is modeled as a change (decrease) in the stiffness parameter EI which is given below and depicted in
Figure 6,

6(5) = —15 X 1074X[0‘370‘7] (6) (1 — g — sm(37r§)> 5 0 < § < Z

Since in this case EI(£) 4+ 60(£) > 0 V€ € [0,1] and hence (K1 + K3(0))p,p) > all¢l|?, we can conclude well
posedness using already established results on second order systems.

The stiffness and damping parameters E1(¢) and cpl(€) are chosen as EI(§) = 3 x 1072 and cpl(§) =
5x 1073, 0 < & < I respectively. The input f(¢,&) is given by

f(t,€) = X[0.4,0.6(§) (Sin (20t0> +5 (3 +0.1sin (5(t)>) eO'Olt) ,

The constant A is set to A = 1 and the initial conditions do(§), vo(€) are given by do(§) = 0.01sin(wé/1),
vo(§) = 0.001sin(47&/1), 0 < £ < . The design operators L1, Lo are chosen to have the same structure as the
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FIGURE 6. Example 3; Pre-damage stiffness parameter FEI(£) and post-damage stiffness

EI(§) +06(5).

damping and stiffness operators K7, K3 evaluated at different (and constant) damping and stiffness parameters,
and are given by

l

l
(Law(t), ) = 2 % 10*2/0 wie(t,§) Y€ dE,  (Low(t),¥) =4 x 10*2/ we(t,§) - ¥'(€) dg,

0

for ¢ € HZ(0,1). The adaptation rule for (¢, &) is given by

d l
(@), = [ powdo ccuods peron

Both displacement and velocity state errors (in their respective norms) converge to zero after the failure occurs
as depicted in Figure 7. The norm of the parameter estimate 0(t,&) converges to the norm of the actual
parameter 0(¢) as observed in Figure 8. The graph of the parameter estimate and its adaptive estimate are
plotted (pointwise) in Figure 9. The pointwise convergence is established at 100 seconds.

5.4. Example 4

In the last example we consider a heat equation with the fault modeled as a nonlinear thermal conductivity.
Specifically, the plant is given by

570(8:€) = 5 (ague(t,€0) + A(t — 10) 7 (0 (ue) ue(t.€) + 0,6),
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~

estimate 0(t, €).

for 0 < £ < 1 and t > 0 together with the Dirichlet boundary conditions w(t,0) = u(¢,1) =1, ¢t > 0, and initial
condition u(0,&) = up(§), 0 < £ < 1. The thermal conductivity is a function of the heat flux ug(¢,€) and is

given by 0(r) = 0.9 (1 - 0.56_0'5*’"2), r > 0. It is assumed that the initial condition ug € L2(0,1) and that
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FIGURE 9. Example 3; Parameter () (dashed) and its adaptive estimate 0(t,&) (solid) at
t =100 sec for 0 < £ < I.

the input f(t,-) € H=1(0,1) for t > 0. The state space H = Ly(0,1) with the standard inner product and the
reflexive Banach space of test functions is taken to be V = Hg (0, 1). Unlike the previous examples, the Hilbert
space @ is defined as follows, see [13] for additional details regarding the setup of this specific example. Let

Q= {¢: ¢ € HL (RT) and ¢, ¢’ € Loo(RT)}. The inner product (-, g on Q is defined by

@0)g = | oo dr+ [ ad 0 dn 60 e Q
0 0
with wo, w1 € Loo(RT) positive weight functions. The Hilbert space @ is defined as the completion of the inner

product space {Q, (-, gl lo}, where || is the norm induced by the inner product (-,-),. For § € Q we
define the operator D(0) : V — V* by

1
DO)0.0) = [ 00516 (©de. o0 € H(0.1)
The nominal plant operator A : V' — V* and estimator operator L are given by
1 1
o0 = [ 0 (© (Ot (Low) = [ and'(©) w©)ds
0 0
for ¢,9 € H}(0,1). The adaptation law for the parameter estimate is given by
_ 1
(0010}, == [ 9wt (. O @ (0.0~ ()0, £ >0

for ¢ € Q. Both norms of the state error e and the parameter estimate 9 are depicted in Figure 10, where we
observe that they attain a nonzero value at the failure time ¢* = 10 seconds. The (norm of the) state error
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FIGURE 10. Example 4; Evolution of the state error e(¢,£) and the adaptive estimate 9.

converges to zero within 5 seconds of the failure occurrence and the parameter norm remains at a fixed value.
The latter does not provide any specific insight of the pointwise behavior of §. Figure 11 compares the function
0 and its estimate for the time instance ¢ = 30 where the parameter convergence is observed.

Using the results in the above example, it should be observed that the proposed on-line fault detection
scheme provided reasonable results in systems whose parameters appear linearly albeit themselves are nonlinear
functions of the state.

6. CONCLUSIONS AND FURTHER RESEARCH

In this note the finite dimensional theory of model-based fault diagnosis was extended into a class of infinite
dimensional dynamical systems. The proposed state estimator (adaptive detection/diagnostic observer) with
the parameter identifiers can detect the failure time. These on-line parameter estimators can identify (isolate)
the location of the fault (in the spatial domain) and assess the nature of the fault thus allowing for the successful
design of a control policy to accommodate such a system. The proposed scheme was designed with the appli-
cations for flexible structures in mind, but this general framework encompass systems governed by parabolic
and hyperbolic partial differential equations. Delay differential equations can also be included in the proposed
framework.

This scheme is by no means complete as it requires full state measurements, often impossible to acquire,
and assumes known initial conditions with no modeling uncertainties and no external inputs present. It does
however lay down the abstract framework for the study of a wide class of infinite dimensional systems with
unbounded state and input operators. Such a class of systems includes the Pritchard-Salamon class [19,39] of
infinite dimensional systems.

Future direction would involve failures in actuators and in the form of nonlinear dynamics (as opposed to
the current case of linear perturbations with linearly parametrized operators) or exogenous failures. This could
possibly employ neural networks as used in the finite dimensional case in [51]. As it is often the case, restricted
plant information is available, which means that only a noise-corrupted system output is available to assess
failures in the system. This type of failure would be studied in the context of flexible structures. Some attempts
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FIGURE 11. Example 4; Parameter 6(r) (dashed) and its adaptive estimate 4/9\(7“) (solid) at
t = 30 sec.

were made to detect the failure in a model for a nonlinear beam in [23-25] and in [22] to detect failures in
thermal processes.

Another avenue of interest involves the detection of actuator failure and consequent controller design for the
accommodation of flexible structures. Some preliminary studies on this appeared in [1,2,26-29]. Many flexible
structures are using smart actuators and sensors for control and observation. These sensors and actuators
need to be monitored in order to detect their failures. On-line schemes for actuator/sensor failure detection
are therefore needed to accommodate these intelligent structures. Some of the difficulties for these partially
observable nonlinear systems lie in the existence and uniqueness of solutions [2] and the strict identifiability
conditions that must be imposed in order to avoid false alarms.

The author would like to gratefully thank Professor I.G. Rosen of the University of Southern California for valuable
discussions regarding the coding of some of the examples and Professor M.M. Polycarpou of the University of Cinncinnati
for fruitful discussions regarding model-based diagnosis schemes using neural networks. Furthermore the author would
like to thank Professor Constantine Dafermos of Brown University, Professor Kazufumi Ito of North Carolina State
University, Professor Simeon Reich of Technion-Israel Institute of Technology and Professor Ruth Curtain of University
of Groningen to issues pertaining to well-posedness of the on-line estimator. Lastly, the author would like to thank
Professor C.D. Charalambous of McGill University for valuable input regarding an alternative view of failure time
profiles with a stochastic flavor.

REFERENCES

[1] A. Ackleh, M.A. Demetriou and S. Reich, Detection and accommodation of second order distributed parameter systems with
abrupt changes in input term: Existence and approximation, in Proc. of the 6th IEEE Mediterranean Conference on Control
and Systems. Alghero, Sardinia (1998).

[2] A.S. Ackleh, S. Aizicovici, M.A. Demetriou and S. Reich, Existence and uniqueness of solutions to a second order nonlinear
nonlocal hyperbolic equation, in Proc. of International Workshop on Differential Equations and Optimal Control. Marcel
Dekker (2001).

[3] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).



66

[4]
[5]

[6]

7]

M.A. DEMETRIOU

N.U. Ahmed and K.L. Teo, Optimal Control of Distributed Parameter Systems. North Holland, New York (1981).

A.M. Annaswamy and K.S. Narendra, Adaptive control of a first order plant with time-varying parameter, in Proc. of the
1989 American Control Conference (1989) 975-980.

, Adaptive control of simple time-varying systems, in Proc. of the 28th IEEE Conference on Decision and Control.
Tampa, Florida (1989) 1014-1018.

O. Axelsson and V.A. Barker, Finite Element Solutions of Boundary Value Problems. Academic Press, Orlando, Florida
(1984).

M.J. Balas, Finite dimensional direct adaptive control for discrete-time infinite dimensional linear systems, in Proc. of the
38rd IEEE Conference on Decision and Control. Lake Buena Vista, FL, USA (1994) 3424-3429.

H.T. Banks and M.A. Demetriou, Adaptive parameter estimation of hyperbolic distributed parameter systems: Non-symmetric
damping and slowly time varying systems. ESAIM: COCV 3 (1998) 133-162.

H.T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston (1989).

H.T. Banks, R.C. Smith and Y. Wang, Smart Material Structures: Modeling, Estimation and Control. Wiley, Masson, Paris
(1996).

M. Basseville and 1. Nikiforov, Detection of abrupt changes: Theory and applications. Prentice Hall, Englewood Cliffs, New
Jersey (1993).

J. Baumeister, W. Scondo, M.A. Demetriou and I.G. Rosen, On-line parameter estimation for infinite dimensional dynamical
systems. SIAM J. Control Optim. 35 (1997) 678-713.

A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems,
Vols. I, II. Birkauser, Boston-Basel-Berlin (1992).

M. Bohm, M.A. Demetriou, I.G. Rosen and S. Reich, Model reference adaptive control of distributed parameter systems.
SIAM J. Control Optim. 36 (1998).

S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994).

C.D. Charalambous and J. Hibey, Conditional densities for continous-time nonlinear hybrid systems with applications to fault
detection. IEEE Trans. Automat. Control 44 (1999) 2164-2169.

R.F. Curtain and J.C. Oostveen, Riccati equations for strongly stable, bounded linear systems. Automatica 34 (1998) 953-967.
R.F. Curtain and H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag, Berlin, Texts
Appl. Math. 21 (1995).

M.A. Demetriou, Adaptive Parameter Estimation of Abstract Parabolic and Hyperbolic Distributed Parameter Systems, Ph.D.
Thesis, Department of Electrical Engineering — Systems. University of Southern California, Los Angeles, California (1993).

, Model reference adaptive control of slowly time-varying parabolic distributed parameter systems, in Proc. of the 33rd
Conference on Decision and Control. Lake Buena Vista, Florida (1994).

, Fault diagnosis for a parabolic distributed parameter system, in Proc. of the 13th World Congress. International
Federation of Automatic Control, San Francisco, California, July (1996).

M.A. Demetriou and B.G. Fitzpatrick, On line estimation of stiffness in nonlinear beam models with piezoceramic actuators, in
Proc. of the 1995 ASME Fifteenth Biennial Conference on Mechanical Vibration and Noise & 1995 ASME Design Technical
Conferences. Boston, Mass (1995).

, Results on the adaptive estimation of stiffness in nonlinear beam models, in Proc. of the 8rd IEEE Mediterranean
Symposium on New Directions in Control and Automation. Limassol, CYPRUS (1995).

, An adaptive change detection scheme for a nonlinear beam model. Kybernetika 33 (1997) 103-120.

M.A. Demetriou and M.M. Polycarpou, Fault accommodation of output-induced actuator failures for a flexible beam with
collocated input and output, in Proc. of the 5th IEEE Mediterranean Conference on Control and Systems. Paphos, CYPRUS
(1997).

, Fault detection and diagnosis of a class of actuator failures via on-line approximators, in Proc. of the 1997 36th IEEE
Conference on Decision and Control. San Diego, CA (1997).

, Fault diagnosis of output-induced actuator failures for a flexible beam with collocated input and output, in Proc. of
the IFAC Symposium on Fault Detection, Supervision and Safety for Processes (SAFEPROCESS). Hull, England (1997).

, Fault detection, diagnosis and accommodation of dynamical systems with actuator failures via on-line approximators,
in Proc. of the 1998 American Control Conference. Philadelphia, PA (1998).

, Incipient fault diagnosis of dynamical systems using on-line approximators. IEEE Trans. Automat. Control 43 (1998)
1612-1617.

M.A. Demetriou and I.G. Rosen, On the persistence of excitation in the adaptive identification of distributed parameter
systems. IEEE Trans. Automat. Control 39 (1994) 1117-1123.

, Robust adaptive estimation schemes for parabolic distributed parameter systems, in Proc. of the 36th Conference on
Decision and Control. San Diego, California, USA (1997) 3448-3453.

P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy — a survey and some new
results. Automatica 26 (1990) 459-474.

J.J. Gertler, Survey of model-based failure detection and isolation in complex plants. IEEE Control System Magazine 8 (1988)
3-11.




ADAPTIVE FAULT DETECTION AND DIAGNOSIS OF DISTRIBUTED PARAMETER SYSTEMS 67

[35] J.J. Gertler, Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998).
[36] M. Green and D.J. Limebeer, Linear Robust Control. Prentice Hall, Englewood Cliffs, New Jersey (1995).
[37] P.A. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, Englewood Cliffs, NJ (1995).
[38] R. Isermann, Process fault detection based on modeling and estimation methods: A survey. Automatica 20 (1984) 387-404.
[39] B.V. Keulen, Hoo-Control for Distributed Parameter Systems: A State-Space Approach. Birkhduser, Boston-Basel-Berlin
(1993).
0] T. Kobayashi, Global adaptive stabilization of infinite-dimensional systems. Systems Control Lett. 9 (1987) 215-223.
, Finite dimensional adaptive control for infinite dimensional systems. Internat. J. Control 48 (1988) 289-302.
, Input-output representations of spectral systems and adaptive controls. Internat. J. Systems Sci. 19 (1988) 713-732.
M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and adaptive control design. Wiley, New York (1995).
J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971).
J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, I. Springer-Verlag, New York (1972).
G.P. Liu and R.J. Patton, Figenstructure Assignment for Control System Design. John Wiley & Sons, Chichester (1998).
D.G. Luenberger, An introduction to observers. IEEE Trans. Automat. Control 16 (1971) 596-602.
K.S. Narendra and A.M. Annaswamy, Stable Adaptive Systems. Prentice Hall, Englewood Cliffs, NJ (1989).
R.J. Patton, Robust model-based fault diagnosis: The state of the art, in Proc. of the IFAC Symposium on Fault Detection,
Supervision and Safety for Processes (SAFEPROCESS). Espoo, Finland (1994) 1-24.
[50] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York
(1983).
[51] M.M. Polycarpou and A.J. Helmicki, Automated fault detection and accomodation: A learning systems approach. IEEE
Trans. Systems Man Cybernet. 25 (1995) 1447-1458.
[52] M.M. Polycarpou and P.A. Ioannou, Neural networks as on-line approximators of nonlinear systems, in Proc. of the 81st IEEE
Conference on Decision and Control. San Antonio, Texas (1993) 7-12.
, Stable nonlinear system identification using neural network models, in Neural Networks in Robotics, edited by G. Bekey
and K. Goldberg. Kluwer Academic Publishers (1993) 147-164.
[54] M.M. Polycarpou and A.T. Vemuri, Learning methodology for failure detection and accomodation. Control Systems Magazine,
special issue on Intelligent Learning Control 15 (1995) 16-24.
[55] V.M. Popov, Hyperstability of Control Systems. Springer-Verlag, Berlin (1973).
[56] L. Praly, G. Bastin, J.B. Pomet and Z.P. Jiang, Adaptive stabilization of nonlinear systems, in Foundations of Adaptive
Control, edited by P.V. Kokotovic. Springer-Verlag (1991) 347-433.
] M.H. Schultz, Spline Analysis. Prentice-Hall, Englewood Cliffs, NJ (1973).
] L.F. Shampine, Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York (1994).
9] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations. Pitman, London (1977).
]
]

]
]
]
]
]
5]
]
]
]
]

H. Tanabe, Equations of Evolution. Pitman, London (1979).

S. Townley, Simple adaptive stabilization of output feedback stabilizable distributed parameter systems. Dynam. Control 5
(1995) 107-123.

62] K.S. Tsakalis and P.A. Ioannou, Time- Varying Systems: Control and Adaptation. Prentice Hall, Englewood Cliff, NJ (1993).
[63] J. Wen and M. Balas, Robust adaptive control in Hilbert space. J. Math. Anal. Appl. 143 (1989) 1-26.

[64] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987).



