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UNIQUE LOCALIZATION OF UNKNOWN BOUNDARIES
IN A CONDUCTING MEDIUM FROM BOUNDARY MEASUREMENTS

Bruno Canuto
1

Abstract. We consider the problem of localizing an inaccessible piece I of the boundary of a con-
ducting medium Ω, and a cavity D contained in Ω, from boundary measurements on the accessible
part A of ∂Ω. Assuming that g(t, σ) is the given thermal flux for (t, σ) ∈ (0, T ) × A, and that the
corresponding output datum is the temperature u(T0, σ) measured at a given time T0 for σ ∈ Aout ⊂ A,
we prove that I and D are uniquely localized from knowledge of all possible pairs of input-output data
(g, u(T0)|Aout). The same result holds when a mean value of the temperature is measured over a small
interval of time.
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1. Introduction and main results

In the present paper we are concerned with the study of some problems in thermal imaging. This is a technique
used to determine some physical proprieties of a thermic conducting medium via boundary measurements of
temperature. More precisely we denote by Ω the medium, i.e. a bounded and sufficiently smooth domain in RN ,
N ≥ 2. Suppose that a piece I of the boundary of Ω is unknown and inaccessible to direct inspections. On
the other hand we have access to the remaining part A := (∂Ω)\I of ∂Ω. Let g be the thermal flux assigned
on (0, T )× A, and u(T0)|Aout the corresponding temperature measured at a given time T0 > 0 on a piece Aout

of A. The goal is to identify the unknown part I, by knowing all possible pairs of data (g, u(T0)|Aout). In a
similar problem we might suppose that a cavity D, of which neither the form nor the position is known, is
contained in Ω (i.e. D is a domain contained in Ω), and the whole boundary of Ω is known and accessible
to measurements. In this case the goal is to identify the cavity D via the same previous data. In fact we are
concerned with the problem in which one tries to identify both a piece I of the boundary of Ω and a cavity D
in its interior from all pairs of data (g, u(T0)|Aout). This problem can occur in nondestructive tests of materials,
for example in detecting the corrosion parts of an aircraft which are not accessible to direct inspections. In this
case I and D represent the damaged and inaccessible parts of the aircraft, and u(T0)|Aout the measurements of
temperature that one disposes to attempt to recover I and D (see Bryan and Caudill [1], and their references).

We denote by u(t, x) the temperature at the time t and at the point x ∈ Ω\D, u0 the initial temperature
in Ω\D, ϕ, ψ, and g the flux on (0, T )× ∂D, (0, T )× I, and (0, T )× A respectively, and κ(x) the anisotropic
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Figure 1. The pictures (i), (ii), (iii) show the three different situations.

thermal diffusion coefficient, that is κ is a symmetric N×N matrix-valued function in Ω satisfying the following
conditions:

(i) there exists a constant α > 0, such that for all x ∈ Ω, and for all ξ ∈ RN ,

κ(x)ξ · ξ ≥ α|ξ|2 (ellipticity), (1.1)

(ii) there exists a constant C ≥ 0, such that for all x, y ∈ Ω,

|κ(x) − κ(y)| ≤ C |x− y| (Lipschitz continuity). (1.2)

For Ω, D, κ, u0, ϕ, ψ, g assigned, suppose that u solves the following parabolic problem, which we call the
direct problem: 

∂tu− div(κ(x)∇u) = 0 in (0, T )× Ω\D,
u(0) = u0 in Ω\D,

κ∇u · n = ϕ(t, σ) on (0, T )× ∂D,
κ∇u · n = ψ(t, σ) on (0, T )× I,
κ∇u · n = g(t, σ) on (0, T )×A,

(1.3)

where n denotes the outer unit normal at ∂(Ω\D). Here and in the sequel I is a relatively open piece of ∂Ω. It
is well-known that, under reasonable assumptions on the data, problem (1.3) has a unique solution, and that
the temperature u(t, σ) is well-defined for (t, σ) ∈ (0, T ) × ∂Ω. In the present paper we are interested in the
following problem:

Let Λ be the so-called input-output map, that is

Λ : g 7−→ u(T0)|Aout , (1.4)
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where T0 ∈ (0, T ] is a given fixed time and Aout is a relatively open piece of A, and let Φ be the operator

Φ : (I,D) 7−→ Λ. (1.5)

Is Φ injective?

We point out that to prove the injectivity of the operator Φ is equivalent to show the uniqueness of I and D
from knowledge of all possible pairs of input-output data

(g, u(T0)|Aout)

of the solution u of (1.3), that is from all possible measurements of temperature u(T0)|Aout at a given time T0

on Aout. We observe moreover that the temperature is measured at a given time T0 only, instead of measuring it
over a whole interval of time such as [0, T0]. We study also the problem in which a mean value of the temperature
is measured over a small interval of time. We note finally that the initial temperature u0, and the boundary
data ϕ, ψ in (1.3) are given arbitrarily. This assumption corresponds to a real situation in which the data u0,
ϕ, ψ are a priori unknown.

A similar problem has been investigated by Vessella [8]. He proves the unique localization of a thermic
insulating region D in Ω (in (1.3) he supposes κ∇u ·n = 0 on (0, T )× ∂D, I known, and A = ∂Ω) from a single
measurement of temperature u|(t0,t1)×Aout on [t0, t1] × Aout, where (t0, t1) is a subinterval of [0, T ], and Aout

is a relatively open piece of ∂Ω, provided that Ω is a contractible domain, the initial temperature u0 in (1.3)
is constant, and the input g is monotone with respect to the time variable t. Vessella’s proof is based on the
unique continuation principle and the maximum principle for parabolic equations. Moreover Vessella shows,
when N = 3, and κ = I3 (I3 is the 3× 3 identity matrix), a continuous dependence of logarithmic type of the
domain D from the temperature u|(t0,t1)×Aout .

In order to prove the injectivity of the operator Φ in (1.5), we will inspire with the so-called boundary
spectral data method, introduced in [2] by the author and Kavian to show the identifiability of coefficients in
a class of heat equations via boundary measurements. This method consists in studying the identifiability of
the boundary spectral data for the underlying elliptic operator in (1.3) from the input-output map Λ. More
precisely let (λk)∞k=1, (ϕk)∞k=1 be respectively the nondecreasing sequence of eigenvalues and the corresponding
eigenfunctions of the problem (with Neumann boundary conditions):

−div(κ∇ϕk) = λkϕk in Ω\D,
κ∇ϕk · n = 0 on ∂D,
κ∇ϕk · n = 0 on ∂Ω,∫

Ω\D

|ϕk|2 dx = 1.
(1.6)

Let us denote by DBSD(I,D) the so-called Dirichlet Boundary Spectral Data, i.e.

DBSD(I,D) := (λk, ϕk|A)∞k=1. (1.7)

The question we ask is the following:

Does the input-output map Λ determine the Dirichlet Boundary Spectral Data DBSD(I,D) uniquely?

The first result of the present paper is the following:

Theorem 1.1. For an integer N ≥ 2, let Ωj, for j ∈ {0, 1}, be two bounded domains in RN of class C0,1, having
common boundary A := (∂Ωj)\Ij , Ij being a relatively open piece of ∂Ωj, and let Dj be a C0,1 domains such
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Figure 2. The domains Ω0, Ω1, and the cavities D0, D1.

that the closure Dj ⊂ Ωj. Let us denote by κ a symmetric N ×N matrix-valued function in Ω0 ∪Ω1 satisfying
conditions (1.1, 1.2) in Ω0 ∪ Ω1. Let uj0 ∈ H1(Ωj\Dj), ϕj ∈ C([0, T ];L2(∂Dj)), ψj ∈ C([0, T ];L2(Ij)),
g ∈ C([0, T ];L2(A)) be such that uj ∈ C((0, T ];H1(Ωj\Dj))∩C1([0, T ];L2(Ωj\Dj)) solve (1.3), when Ω := Ωj,
and D := Dj. Suppose that

Λ0(g) = Λ1(g) in L2(Aout), (1.8)

where Λj(g) := uj(T0)|Aout , for all g ∈ C([0, T ];L2(A)) such that the supp(g(t, ·)) ⊂ A for t ∈ [0, T ]. Then the
Dirichlet Boundary Spectral Data DBSD(Ij , Dj) (1.7) (when Ω := Ωj, and D := Dj in (1.6)) coincide, that is,
up to an appropriate choice of the eigenfunctions ϕ0k, for all k ≥ 1, one has

λ0k = λ1k, and ϕ0k = ϕ1k a.e on A.

We point out that the conclusion of Theorem 1.1 remains valid if we replace hypothesis (1.8) by equality of the
mean values of the temperatures in the interval [τ0 − T0, T0], that is the following result holds:

Theorem 1.2. Let 0 < τ0 < T0 be given. Under the assumptions of Theorem 1.1 assume that

T0∫
T0−τ0

u0(t)|Aoutdt =

T0∫
T0−τ0

u1(t)|Aoutdt in L2(Aout), (1.9)

for all g ∈ C([0, T ] ;L2(A)) such that the supp(g(t, ·)) ⊂ A for t ∈ [0, T ]. Then the Dirichlet Boundary Spectral
Data DBSD(Ij , Dj) (1.7) coincide, that is, up to an appropriate choice of the eigenfunctions ϕ0k, for all k ≥ 1,
one has that

λ0k = λ1k, and ϕ0k = ϕ1k a.e. on A.
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We now consider the Dirichlet case. More precisely let (µk)∞k=1, (ψk)∞k=1 be respectively the nondecreasing
sequence of eigenvalues and the corresponding eigenfunctions of the following problem (with Dirichlet boundary
conditions): 

−div(κ∇ψk) = µkψk in Ω\D,
ψk = 0 on ∂D,
ψk = 0 on ∂Ω,∫

Ω\D

|ψk|2 dx = 1.
(1.10)

Let us denote by NBSD(I,D) the so-called Neumann Boundary Spectral Data, i.e.

NBSD(I,D) := (µk, κ∇ψk · n|A)∞k=1. (1.11)

Then the conclusion of Theorem 1.1 remains valid if in (1.3) we substitute the Neumann boundary conditions
with the corresponding Dirichlet boundary conditions. More precisely the following result holds:

Theorem 1.3. Under the hypothesis of Theorem 1.1, assume that A := (∂Ωj)\Ij is of class C1,1. Let
uj0 ∈ H1(Ωj\Dj), ϕj ∈ C([0, T ];H

1
2 (∂Dj)), ψj ∈ C([0, T ];H

1
2 (Ij)), f ∈ C([0, T ];H

3
2 (A)) be such that

uj ∈ C((0, T ];H1(Ωj\Dj)) ∩ C1([0, T ];L2(Ωj\Dj)) solve
∂tuj − div(κ(x)∇uj) = 0 in (0, T )× Ωj\Dj,

uj(0) = uj0 in Ωj\Dj,
uj = ϕj(t, σ) on (0, T )× ∂Dj,
uj = ψj(t, σ) on (0, T )× Ij ,
uj = f(t, σ) on (0, T )×A.

(1.12)

We denote by

Λ̃j(f) := κ∇uj(T0) · n|Aout (1.13)

the thermal fluxes measured at a given time T0 ∈ (0, T ] on Aout. Suppose that

Λ̃0(f) = Λ̃1(f) in L2(Aout) (1.14)

for all f ∈ C([0, T ];H
3
2 (A)) such that the supp(f(t, ·) ⊂ A for t ∈ [0, T ]. Then the Neumann Boundary Spectral

Data NBSD(Ij , Dj) (1.11) (when Ω := Ωj, and D := Dj in (1.10)) coincide, that is, up to an appropriate
choice of the eigenfunctions ψ0k, for all k ≥ 1, one has:

µ0k = µ1k, and κ∇ψ0k · n = κ∇ψ1k · n a.e on A.

Remark 1.4. Theorem 1.3 holds true if we replace hypothesis (1.14) by equality of the mean values of the
fluxes in the interval [τ0 − T0, T0], i.e. we suppose that, for a fixed τ0, 0 < τ0 < T0,

T0∫
T0−τ0

κ∇u0(t) · n|Aoutdt =

T0∫
T0−τ0

κ∇u1(t) · n|Aoutdt in L2(Aout),

for all f ∈ C([0, T ];H
3
2 (A)) such that the support supp(f(t, ·)) ⊂ A for t ∈ [0, T ]. �
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Once the result of Theorem 1.1 is at hand, we can prove the injectivity of the operator Φ defined in (1.5).
This is proved in the following:

Theorem 1.5. Under the assumptions of Theorem 1.1, for N = 2, 3, suppose that the Dirichlet Boundary
Spectral Data DBSD(Ij , Dj) (1.7) (when Ω := Ωj, and D := Dj in (1.6)) coincide, that is, for all k ≥ 1,

λ0k = λ1k, and ϕ0k = ϕ1k a.e. on A.

Then I0 = I1 and D0 = D1.

The conclusion of Theorem 1.5 remains valid if we assume that the Neumann Boundary Spectral Data
NBSD(Ij , Dj) coincide:

Theorem 1.6. Under the assumptions of Theorem 1.3, for N = 2, 3, suppose that the Neumann Boundary
Spectral Data NBSD (Ij , Dj) (1.11) (when Ω := Ωj, and D := Dj in (1.10)) coincide, that is, for all k ≥ 1,

µ0k = µ1k, κ∇ψ0k · n = κ∇ψ1k · n a.e. on A.

Then I0 = I1 and D0 = D1.

The remainder of the paper is organized as follows: in Section 2 we gather some preliminary results and the
notations used throughout; in Section 3 we prove Theorems 1.1–1.3; in Section 4 we prove Theorems 1.5 and
1.6.

2. Preliminary results

We denote by Ω̃ a bounded domain in RN , N ≥ 2, with boundary of class C0,1.
By κ (x) we mean a symmetric N ×N matrix-valued function in Ω̃ satisfying conditions (1.1, 1.2) in Ω̃.
We denote by (L,D(L)) the elliptic operator

Lv := −div(κ (x)∇v), (2.1)

with domain

D(L) :=
{
v ∈ L2(Ω̃); Lv ∈ L2(Ω̃), κ∇v · n|∂eΩ = 0

}
· (2.2)

Actually when κ ∈ C0,1(Ω̃) and ∂Ω̃ ∈ C0,1, then

D(L) =
{
v ∈ H2

loc(Ω̃) ∩H1(Ω̃); κ∇v · n|∂eΩ = 0
}
·

The operator L possesses a sequence of eigenvalues (λk)∞k=1 (which we suppose in a nondecreasing order) and
corresponding eigenfunctions (ϕk)∞k=1 satisfying:

−div(κ∇ϕk) = λkϕk in Ω̃,
κ∇ϕk · n = 0 on ∂Ω̃,∫

eΩ

|ϕk|2 dx = 1,
(2.3)
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which form a Hilbert basis of L2(Ω̃). We recall that the first eigenvalue λ1 = 0, and the corresponding

eigenfunction ϕ1(x) =
∣∣∣Ω̃∣∣∣− 1

2
, where |·| denotes the Lebesgue measure of Ω̃. It is also known that the domain

D(L) can be characterized by

D(L) =

{
v ∈ L2(Ω̃);

∞∑
k=1

λ2
k |(v | ϕk)|2 < +∞

}
, (2.4)

where (· | ·) is the inner product in L2(Ω̃).
We denote by mk the geometric multiplicity of λk. We recall that the eigenvalues λk behave like

λk ∼ C0k
2
N as k → +∞,

where the constant C0 depends on κ,
∣∣∣Ω̃∣∣∣, N (see Courant and Hilbert [5], pp. 442-443). Moreover there exist

two positive constants C1, C2 such that, for all k ≥ 1, one has:

C1λk ≤ ‖ϕk‖2H1(eΩ)
≤ C2λk. (2.5)

The following three lemmas, which are identical to Lemmas 2.1–2.3 respectively in Canuto and Kavian [2], are a
tools to prove Theorem 1.1 later on. First we shall need the following result concerning the linear independence,
or linear dependence, of the family (ϕk|∂eΩ)k≥1. In general these functions are not linearly independent. However

one can show that the traces on the boundary of Ω̃ of eigenfunctions corresponding to a given eigenvalue λk0

are actually independent. More precisely if λk is an eigenvalue of L having multiplicity mk ≥ 1, let us denote
by ϕk,i for 1 ≤ i ≤ mk the eigenfunctions corresponding to the eigenvalue λk which form a Hilbert basis of the
kernel N(L− λkI). We may state the following:

Lemma 2.1. For an integer N ≥ 2, let Ω̃ be a bounded domain in RN of class C0,1. If, for a fixed k ≥ 1, λk is
an eigenvalue of multiplicity mk ≥ 1 of L, and if Γ is a relatively open piece of ∂Ω̃, then the dimension of the
subspace spanned in L2(Γ) by (ϕk,i|∂eΩ)1≤i≤mk is exactly mk.

Proof of Lemma 2.1. Indeed if there exists (ci)mki=1 ∈ Rmk such that

mk∑
i=1

ciϕk,i = 0 on Γ,

then, setting ϕ :=
mk∑
i=1

ciϕk,i, one checks that

Lϕ = λkϕ in Ω̃, κ∇ϕ · n = 0 on ∂Ω̃, ϕ = 0 on Γ.

Now, following a standard argument, we extend ϕ ≡ 0 in an exterior neighborhood of Γ′ ⊂ Γ. The unique
continuation principle (see Garofalo and Lin [4]) implies then that ϕ ≡ 0 in Ω̃. Due to the fact that the
functions ϕk,i are linearly independent, we conclude that ci = 0 for 1 ≤ i ≤ mk. The proof of Lemma 2.1 is
complete. �

From this we conclude the following:

Lemma 2.2. Under the assumptions of Lemma 2.1, let Γ1 and Γ2 be two relatively open pieces of ∂Ω̃. For a
fixed k ≥ 1 consider the function Ξk defined by

Ξk(σ′, σ) :=
mk∑
i=1

ϕk,i(σ′)ϕk,i(σ) on Γ1 × Γ2.
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Then Ξk(σ′, σ) is not identically zero on any relatively open subset of Γ1 × Γ2.

Proof of Lemma 2.2. By contradiction, let Γ′1 be a relatively open piece of Γ1, and let Γ′2 be a relatively open
piece of Γ2 such that

Ξk(σ′, σ) ≡ 0 on Γ′1 × Γ′2. (2.6)

By Lemma 2.1, we have that (2.6) implies that ϕk,i ≡ 0 on Γ′1 for i = 1, · · · ,mk, and so by the unique
continuation principle it follows that ϕk,i ≡ 0 on Ω̃, which leads to a contradiction. �

We shall also need the following algebraic lemma:

Lemma 2.3. For two arbitrary integers m, n ≥ 1, let Z be a non empty set, and let X, Y be two subsets of Z.
Assume that fi : X ∪ Y → R (for 1 ≤ i ≤ m) and g` : X ∪ Y → R (for 1 ≤ ` ≤ n) are functions such that

(i)

m∑
i=1

fi(x)fi(y) =
n∑
`=1

g`(x)g`(y) for (x, y) ∈ X × Y ; (2.7)

(ii) X ∩ Y contains infinitely many points;
(iii) fi, for 1 ≤ i ≤ m, (resp. g`, for 1 ≤ ` ≤ n,) are not identically zero in X ∩ Y ;
(iv) {f1, . . . , fm} (resp. {g1, . . . , gn}) are linearly independent in X ∩ Y .

Then m = n, and denoting

F (x) :=

 f1(x)
...

fm(x)

 and G(x) :=

 g1(x)
...

gn(x)

 ,

there exists an m×m orthogonal matrix M such that for all z ∈ X ∪ Y one has F (z) = MG(z).

(Recall that by an orthogonal matrix M we mean MM∗ = M∗M = Im, where Im is the m ×m identity
matrix.) For the reader’s convenience we give the proof of Lemma 2.3, although is identical to which of
Lemma 2.3 in [2].

Proof of Lemma 2.3. Let us denote by V0 (resp. V1) the space spanned by {f1, · · · , fm} (resp. {g1, · · · , gn}).
Since f1 is not identically zero in X ∩ Y , there exists x1 ∈ X ∩ Y such that f1(x1) 6= 0; then, f2 being linearly
independent of f1, and X ∩ Y containing infinitely many points, there exists x2 ∈ X ∩ Y such that:

det
(
f1(x1) f2(x1)
f1(x2) f2(x2)

)
6= 0.

By induction one sees that we may find points x1, x2, . . . , xm in X ∩ Y such that the m×m matrix

P :=


f1(x1) f2(x1) · · · fm(x1)
f1(x2) f2(x2) · · · fm(x2)

...
...

...
...

f1(xm) f2(xm) · · · fm(xm)


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is invertible. So, setting x = xj in (2.7), it follows that PF (y) = P̃G(y) in Y , where P̃ is the following m× n
matrix

P̃ :=


g1(x1) g2(x1) · · · gn(x1)
g1(x2) g2(x2) · · · gn(x2)

...
...

...
...

g1(xm) g2(xm) · · · gn(xm)

 .

From this it follows that F (y) = P−1P̃G(y) for all y ∈ Y , where P−1 is the inverse matrix of P .
Similarly, changing the role of the variables x and y, we obtain that F (x) = P−1P̃G(x) in X , that is

F (z) = MG(z) in X ∪ Y

where M := P−1P̃ . Therefore, recalling that the functions {f1, . . . , fm} and {g1, . . . , gn} are linearly indepen-
dent in X ∩ Y , it follows that V0 ⊆ V1, that is m ≤ n. In the same way one may prove that n ≤ m, and so we
conclude that m = n.

Finally we prove that the matrix M = P−1P̃ is orthogonal. Indeed, recalling that F (z) = MG(z) for all
z ∈ X ∪ Y and using (2.7), we obtain

(M∗M − Im)G(x) ·G(y) = 0 in X × Y,

where a · b denotes the euclidean scalar product in Rm, M∗ is the transpose matrix of M , and Im is
the m × m identity matrix. Since the functions {g1, · · · , gm} are linearly independent in X ∩ Y it follows
that M∗M = MM∗ = Im, that is M is orthogonal.

The proof of Lemma 2.3 is complete. �

3. Proof of Theorems 1.1, 1.2 and 1.3

The first task in this section is to prove Theorem 1.1. Before doing so we need to establish some preliminary
lemmas.

Lemma 3.1. For an integer N ≥ 2, let Ω̃ be a bounded domain in RN of class C0,1. For g ∈ C([0, T ];L2(∂Ω̃)),
let u ∈ C((0, T ];H1(Ω̃)) ∩C1([0, T ];L2(Ω̃)) solve

∂tu− div(κ(x)∇u) = 0 in (0, T )× Ω̃,
u(0) = 0 in Ω̃,

κ∇u · n = g on (0, T )× ∂Ω̃,
(3.1)

where κ satisfies assumptions (1.1, 1.2) in Ω̃. Then u can be written in the following Fourier expansion:

u(t) =
∞∑
k=1

αk(t)ϕk in L2(Ω̃), (3.2)

where ϕk is defined in (2.3), and

αk(t) := −
t∫

0

∫
∂eΩ

ϕk(σ′)e−λk(t−τ)g(τ, σ′)dσ′dτ. (3.3)
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Proof of Lemma 3.1. Since (ϕk)∞k=1 is a Hilbert basis in L2(Ω̃), we can write u in the following Fourier
expansion:

u(t) =
∞∑
k=1

αk(t)ϕk in L2(Ω̃),

where αk(t) := (u(t) | ϕk). Multiplying the equation in (3.1) by ϕk, and integrating by parts over Ω̃, we obtain,
for all k ≥ 1, 

α′k(t) + λkαk(t) = −
∫
∂eΩ

ϕk(σ′)g(t, σ′)dσ′ in (0, T ),

αk(0) = 0,

(3.4)

where α′k(t) denotes the derivative of αk(t). The thesis of the lemma follows then trivially. �

Lemma 3.2. Under the assumptions of Lemma 3.1, let g satisfy the following condition:

g ≡ 0 on [T0 − ε0, T0]× ∂Ω̃, (3.5)

where T0 ∈ (0, T ], and 0 < ε0 < T0. Then u(T0)|∂eΩ can be written in the following way

u(T0)|∂eΩ = −

 T0−ε0∫
0

∫
∂eΩ

∞∑
k=1

ϕk (σ′) e−λk(T0−τ)g(τ, σ′)dσ′dτ

ϕk|∂eΩ in H
1
2 (∂Ω̃).

Proof of Lemma 3.2. We divide the proof into two steps:

Step 1. If g satisfies (3.5), then u(T0) ∈ D(L), where D(L) is defined in (2.2). So it follows that (see (2.4))

∞∑
k=1

λ2
k |αk(T0)|2 < +∞,

where αk(T0) := (u(T0) | ϕk). Setting um(T0) :=
m∑
k=1

αk(T0)ϕk, then

um(T0)→ u(T0) in L2(Ω̃) as m→ +∞,

and

Lum (T0)− Lu (T0)→ 0 in L2(Ω̃) as m→ +∞.

By the fact that ‖um(T0)‖H1(eΩ) ≤ C ‖Lum(T0)‖L2(eΩ), we have

u (T0) =
∞∑
k=1

αk (T0)ϕk in H1(Ω̃). (3.6)



UNIQUE LOCALIZATION OF UNKNOWN BOUNDARIES OF A CONDUCTING MEDIUM 11

Now, since the trace operator γ : u(T0)→ u(T0)|∂eΩ is continuous from H1(Ω̃) to H
1
2 (∂Ω̃), one has, in the sense

of H
1
2 (∂Ω̃):

u(T0)|∂eΩ = −
∞∑
k=1

 T0−ε0∫
0

∫
∂eΩ

ϕk(σ′)e−λk(T0−τ)g(τ, σ′)dσ′dτ

ϕk|∂eΩ. (3.7)

Step 2. In this step we prove that we can commute the series sign with the integral signs in the right hand
side of (3.7). By Fubini’s theorem it is sufficient, for example, to show that

I :=

T0−ε0∫
0

∞∑
k=1

‖ϕk‖
H

1
2 (∂eΩ)

∫
∂eΩ

∣∣∣ϕk(σ′)e−λk(T0−τ)g(τ, σ′)
∣∣∣ dσ′dτ < +∞.

In fact, denoting by 〈·, ·〉 the duality H−
1
2 (∂Ω̃), H

1
2 (∂Ω̃), we have

I ≤
T0−ε0∫

0

∞∑
k=1

|〈ϕk, g(τ)〉| ‖ϕk‖
H

1
2 (∂eΩ)

e−λkε0dτ

≤
T0−ε0∫

0

‖g(τ)‖
H−

1
2 (∂eΩ)

dτ
∞∑
k=1

‖ϕk‖2
H

1
2 (∂eΩ)

e−λkε0

≤ C
∞∑
k=1

λke−λkε0 ,

where the last inequality is obtained upon using the fact that, by the trace inequality, and (2.5), we have:

‖ϕk‖
H

1
2 (∂eΩ)

≤ C ‖ϕk‖H1(eΩ) ≤ Cλ
1
2
k .

Note that
∑∞
k=1 λke−λkε0 < +∞ since λk ∼ k

2
N , as k → +∞. Therefore we may write equation (3.7) as:

u(T0)|∂eΩ = −

 T0−ε0∫
0

∫
∂eΩ

∞∑
k=1

ϕk(σ′)e−λk(T0−τ)g(τ, σ′)dσ′dτ

ϕk|∂eΩ in H
1
2 (∂Ω̃). (3.8)

The proof of Lemma 3.2 is complete. �

Lemma 3.3. Under the assumptions of Theorem 1.1, for j ∈ {0, 1}, let uj be solutions of (1.3) when Ω := Ωj,
and D := Dj, with initial data uj0 ≡ 0 in Ωj\Dj, and boundary data ϕj ≡ 0 on (0, T )× ∂Dj, and ψj ≡ 0 on
(0, T )× Ij. Then

Λ0(g) = Λ1(g) in L2(Aout),

where Λ
j
(g) := uj(T0)|Aout , for all g ∈ ([0, T ];L2(A)) such that the supp(g(t, ·)) ⊂ A for t ∈ [0, T ].

Proof of Lemma 3.3. Following Rakesh and Symes [6], we put uj(t, x) := uj(t, x)−vj(t, x), where vj solve (1.3)
when Ω := Ωj , D := Dj , with data vj(0) = uj0 in Ωj\Dj, vj = ϕj on (0, T ) × ∂Dj, vj = ψj on (0, T ) × Ij ,
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and vj ≡ 0 on (0, T )×A. Then uj0 ≡ 0 in Ωj\Dj , ϕj ≡ 0 on (0, T )× ∂Dj, and ψj ≡ 0 on (0, T )× Ij . So, if we
denote by Λ

j
(g) := uj(T0)|Aout , it follows that

Λ
j
(g) = Λ

j
(g)− Λ

j
(0).

Hence Λ0(g) = Λ1(g) for all g ∈ C([0, T ];L2(A)) such that the support supp(g(t, ·)) ⊂ A for t ∈ [0, T ].
The proof of Lemma 3.3 is complete. �

Lemma 3.4. Under the assumptions of Theorem 1.1, for all k ≥ 1, we have

λ0k = λ1k,

and

m0k∑
i=1

ϕ0k,i (σ′)ϕ0k,i(σ) =
m1k∑
`=1

ϕ1k,` (σ′)ϕ1k,`(σ)

a.e. on A×Aout.

(As we have mentioned in Sect. 2, mjk is the multiplicity of the eigenvalue λjk.)

Proof of Lemma 3.4. First of all, using Lemma 3.3, we can always reduce to the case where the initial data
uj0 ≡ 0 in Ωj\Dj , and the boundary data ϕj ≡ 0 on (0, T )× ∂Dj , and ψj ≡ 0 on (0, T )× Ij . We recall that by
hypothesis we have

u0(T0)|Aout = u1(T0)|Aout in L2(Aout), (3.9)

for all g ∈ C([0, T ];L2(A)) such that the support supp(g(t, ·)) ⊂ A for t ∈ [0, T ]. By Lemma 3.2 we know that
if g ≡ 0 on [T0 − ε0, T0] × A, then uj(T0)|Aout on Aout can be written in the following way (in the sense of
H

1
2 (Aout)):

uj(T0)|Aout = −
T0−ε0∫

0

∫
A

∞∑
k=1

Φjk(σ′, T0 − τ)g(τ, σ′)dσ′dτ,

where

Φjk(σ′, τ) :=
∞∑
k=1

ϕjk (σ′) e−λjkτϕjk|Aout . (3.10)

Then, from (3.9), it follows that

T0−ε0∫
0

∫
A

∞∑
k=1

(Φ0k(σ′, T0 − τ)− Φ1k(σ′, T0 − τ)) g(τ, σ′)dσ′dτ = 0 in L2(Aout). (3.11)

In particular we may assume that g(τ, σ′) ≡ 0 for τ 6= [T ′ − ε′, T ′ + ε′], and σ′ ∈ A, where T ′ is a fixed time,
T ′ ∈ (0, T0 − ε0), and 0 < ε′ < T ′. Then (3.11) becomes

T ′+ε′∫
T ′−ε′

∫
A

∞∑
k=1

(Φ0k(σ′, T0 − τ)− Φ1k(σ′, T0 − τ)) g(τ, σ′)dσ′dτ = 0
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for all such functions g. Hence we have

∞∑
k=1

Φ0k(σ′, τ) =
∞∑
k=1

Φ1k(σ′, τ) in L2(Aout)

for all σ′ ∈ A, τ ∈ [T ′ − ε′, T ′ + ε′]. By the unique continuation principle for analytic functions of the variable τ ,
we obtain

∞∑
k=1

Ξ0k(σ′)e−λ0kτ =
∞∑
k=1

Ξ1k(σ′)e−λ1kτ in L2(Aout) (3.12)

for all σ′ ∈ A, τ ∈ (0,∞), where Ξjk(σ′) :=
mjk∑
i=1

ϕjk,i (σ′)ϕjk,i|Aout , j ∈ {0, 1}. By Lemma 2.2 we know that, for

all fixed k ≥ 1, Ξjk(σ′) is not identically zero on any relatively open subset of A. Therefore, using the classical
results on Dirichlet’s series, equation (3.12) yields that, for all k ≥ 1,

λ0k = λ1k,

and

Ξ0k = Ξ1k in L2(A)× L2(Aout),

that is
m0k∑
i=1

ϕ0k,i (σ′)ϕ0k,i(σ) =
m1k∑
i=1

ϕ1k,i (σ′)ϕ1k,i(σ) (3.13)

a.e. on A×Aout. The proof of Lemma 3.4 is complete. �
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We prove that (3.13) implies that, for all k ≥ 1, m0k = m1k, and, up to an appropriate
choice of the eigenfunctions ϕ0k, ϕ0k = ϕ1k a.e. on A.

For a fixed k ≥ 1, let us note that, by Lemma 2.1, ϕjk,i, for i = 1, · · · ,mjk, and j ∈ {0, 1}, are linearly
independent on L2(A). Now, applying the algebraic Lemma 2.3 with m := m0k, n := m1k, Z = X := A,
Y := Aout,

fi := ϕ0k,i|A for 1 ≤ i ≤ m0k,

g` := ϕ0k,`|A for 1 ≤ i ≤ m1k,

and F and G respectively the vectors

F :=

 f1

...
fm0k

 and G :=

 g1

...
gm1k

 ,

we derive that m0k = m1k, and that there exists an m×m orthogonal matrix M , where m := m0k = m1k, such
that

F (z) = MG(z) for z ∈ A. (3.14)
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We prove now that ϕ0k,i = ϕ1k,i a.e. on A, for i = 1, · · · ,m, up to an appropriate choice of the eigenfunctions
ϕ0k,i. To prove this, let us define the vector

ϕ̃0 := M∗ϕ∗0,

where M∗ is the transpose matrix of M , that is M∗ir = Mri, and ϕ∗0 is the transpose vector of ϕ0 =
(ϕ0k,1, · · · , ϕ0k,m). First let us note that

(ϕ̃0k,i | ϕ̃0k,`) = δi` for 1 ≤ i, ` ≤ m,

where (· | ·) denotes the scalar product in L2(Ω0\D0), and δi` is the Kronecker’s symbol. In fact ϕ̃0k,i =
m∑
r=1

M∗irϕ0k,r, and ϕ̃0k,` =
m∑
s=1

M∗`sϕ0k,s =
m∑
s=1

ϕ0k,sMs`, so

(ϕ̃0k,i | ϕ̃0k,`) =
m∑
r=1

m∑
s=1

M∗irMs`δrs =
m∑
r=1

M∗irMr` = δi`,

where the last equality follows since the matrix M is orthogonal.

Now ϕ̃0k,i =
m∑̀
=1

M∗i`ϕ0k,`, and, by (3.14), we know that ϕ0k,` =
m∑
j=1

M`jϕ1k,j on A, so, substituting in ϕ̃0k,i,

we obtain

ϕ̃0k,i =
m∑
`=1

M∗i`

m∑
j=1

M`jϕ1k,j =
m∑
j=1

ϕ1k,j

m∑
`=1

M∗i`M`j = ϕ1k,i

on A, for 1 ≤ i ≤ m, where the last equality follows since the matrix M is orthogonal.
The proof of Theorem 1.1 is complete. �
Now we prove Theorem 1.2.

Proof of Theorem 1.2. First of all, by Lemma 3.3, we can suppose that the initial data uj0 ≡ 0 in Ωj\Dj,
and the boundary data ϕj ≡ 0 on (0, T ) × ∂Dj, and ψj ≡ 0 on (0, T ) × Ij . Choosing g such that g ≡ 0
on [T0 − ε0, T0] × A, where ε0 is such that τ0 < ε0 < T0, we can write uj in the following Fourier expansion
(see (3.2)):

uj(t) = −
∞∑
k=1

T0−ε0∫
0

∫
A

ϕjk(σ′)e−λjk(t−τ)g(τ, σ′)dσ′dτϕjk in L2(Ωj\Dj),

for t ∈ [T0 − τ0, T0]. By Lemma 3.2 we obtain

uj(t)|Aout = −
T0−ε0∫

0

∫
A

∞∑
k=1

Φjk(σ′, t− τ)g(τ, σ′)dσ′dτ in H
1
2 (Aout) (3.15)

for t ∈ [T0 − τ0, T0], where Φjk are defined in (3.10). Now (1.9), and the change of variable t − τ = s in the
right hand side of (3.15), imply

∫ T0

T0−τ0

t∫
t−T0+ε0

∫
A

∞∑
k=1

(Φ0k(σ′, s)− Φ1k(σ′, s)) g(t− s, σ′)dσ′ds dt = 0. (3.16)
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We may assume that the input g(s, σ′) ≡ 0 for s /∈ [T ′ − ε′, T ′ + ε′], and σ′ ∈ A, where T ′ ∈ (T0−τ0
2 , T0

2 ) is a
fixed time, and 0 < ε′ < T ′. Then (3.16) becomes

∫ T0

T0−τ0

t−T ′+ε′∫
t−T ′−ε′

∫
A

∞∑
k=1

(Φ0k(σ′, s)− Φ1k(σ′, s))g(t− s, σ′)dσ′ds dt = 0 (3.17)

for all such functions g. Hence it follows that

∞∑
k=1

Φ0k(σ′, s) =
∞∑
k=1

Φ1k(σ′, s) in L2(Aout), (3.18)

for all σ′ ∈ A, s ∈ [T ′ − ε′, T ′ + ε′]. By the unique continuation principle for analytic functions of the variable s
we obtain

∞∑
k=1

Ξ0k(σ′)e−λ0ks =
∞∑
k=1

Ξ1k(σ′)e−λ1ks in L2(Aout), (3.19)

for all σ′ ∈ A, s ∈ (0,∞), where Ξjk(σ′) :=
mjk∑
i=1

ϕjk,i (σ′)ϕjk,i|Aout . Repeating the same argument in order to

prove Lemma 3.4 and Theorem 1.1, we obtain the thesis of Theorem 1.2. �
Proof of Theorem 1.3. The proof is obtained similarly to the proof of Theorem 1.1, up to obvious changes (see
also Canuto and Kavian [2]). �

4. Proof of Theorems 1.5 and 1.6

In this section we prove Theorems 1.5 and 1.6.

Proof of Theorem 1.5. We divide the proof into two steps. In the first step we prove that I0 = I1, in the second
that D0 = D1.

Step 1. By contradiction suppose that I0 6= I1. By hypothesis we know that the Dirichlet Boundary Spectral
Data DBSD(Ij,Dj), j ∈ {0, 1}, coincide, i.e.

λ0k = λ1k =: λk, and ϕ0k = ϕ1k =: ϕk a.e. on A.

(We recall that A := (∂Ωj)\Ij is the common part of the boundaries of Ωj .) We denote by

ω0 := (Ω0\D0) ∩ (Ω1\D1),

and vk := ϕ0k − ϕ1k in ω0. Then, for all k ≥ 1, vk solves −div(κ∇vk) = λkvk in ω0,
κ∇vk · n = 0 on A,

vk = 0 on A.

The unique continuation principle (see Garofalo and Lin [4]) implies that vk ≡ 0 in ω0 (ω0 denotes the closure
of ω0), that is

ϕ0k = ϕ1k in ω0,
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A:

D1

to observations

Ω 0

ω
1Ω 

 1

ω
1

D
 0

the part accessible

Figure 3. The arrows show the domain ω1.

which yields that

κ∇ϕ0k · n = κ∇ϕ1k · n on ∂ω0. (4.1)

Let us denote by

Ω := Ω0 ∪ Ω1,

and

ω1 := Ω\Ω1.

Then Green’s formula gives ∫
ω1

ϕ0k dx = − 1
λk

∫
∂ω1

κ∇ϕ0k · n dσ,

for all k ≥ 2. Since κ∇ϕjk · n = 0 on ∂Ωj , for all k ≥ 1, and using (4.1), it follows that
∫
∂ω1

κ∇ϕ0k · n dσ = 0,

i.e., for all k ≥ 2, ∫
ω1

ϕ0k dx = 0. (4.2)

Let χ be the characteristic function of the set ω1 in Ω0\D0, i.e.

χ(x) =
{

1 for x ∈ ω1,
0 for x /∈ ω1.
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D   0

D    1

Figure 4. The picture shows the domains D0, D1.

By the fact that (ϕ0k)∞k=1 is a Hilbert basis in L2(Ω0\D0), we have

χ =
∞∑
k=1

(χ | ϕ0k)ϕ0k in L2(Ω0\D0),

where (χ | ϕ0k) :=
∫

Ω0\D0

χϕ0k dx =
∫
ω1

ϕ0k dx. Since ϕ01(x) := |Ω0\D0|−
1
2 , and since by (4.2)

∫
ω1

ϕ0k dx = 0

for all k ≥ 2, it follows that χ = 1 in Ω0\D0. This implies that ω1 = Ω0\D0, which leads to a contradiction.
Then I0 coincide with I1.

Step 2. In this step we prove that D0 = D1. First we prove that D1 ⊆ D0. By contradiction suppose that D1

is not contained in D0. By the previous step I0 = I1, so Ω0 = Ω1 := Ω. Let D := D0 ∪D1, and let ω be the
connected component of Ω\D such that ∂Ω ⊂ ∂ω. Putting vk := ϕ0k − ϕ1k in ω, then vk solves: −div(κ∇vk) = λkvk in ω0,

κ∇vk · n = 0 on ∂Ω,
vk = 0 on A.

By the unique continuation principle, it follows that vk ≡ 0 in ω (ω denotes the closure of ω), i.e.

ϕ0k = ϕ1k in ω,

which yields

κ∇ϕ0k · n = κ∇ϕ1k · n on ∂ω. (4.3)

Let us denote by

ω2 := (Ω\ω)\D0.
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Green’s formula gives ∫
ω2

ϕ0k dx = − 1
λk

∫
∂ω2

κ∇ϕ0k · n dσ,

for all k ≥ 2. By the fact that κ∇ϕjk · n = 0 on ∂(Ω\Dj), for all k ≥ 1, and using (4.3), it follows

that
∫
∂ω2

κ∇ϕ0k · n dσ = 0, i.e., for all k ≥ 2,

∫
ω2

ϕ0k dx = 0. (4.4)

Let χ be the characteristic function of the set ω2 in Ω\D0, i.e.

χ(x) =
{

1 for x ∈ ω2,
0 for x /∈ ω2.

Then

χ =
∞∑
k=1

(χ | ϕ0k)ϕ0k in L2(Ω\D0),

where (χ | ϕ0k) :=
∫

Ω\D0

χϕ0k dx =
∫
ω2

ϕ0k dx. Since ϕ01 = |Ω\D0|−
1
2 , and since by (4.4)

∫
ω2

ϕ0k dx = 0, for

all k ≥ 2, it follows that χ = 1 in Ω\D0. This implies that ω2 = Ω0\D0, which leads to a contradiction. Then
D1 must be contained in D0. By the same argument one can prove that D0 must be contained in D1, that
is D0 = D1.

The proof of Theorem 1.5 is complete. �

Now we prove Theorem 1.6, that is the identifiability of I and D from the Neumann Boundary Spectral Data
NBSD(I,D).

Proof of Theorem 1.6. Without loss of generality we can suppose that the boundaries Ij , j ∈ {0, 1}, coincide,
so Ω0 = Ω1 =: Ω. We prove that D0 = D1. Suppose, by contradiction, that D1 is not contained in D0.
Let D := D0 ∪D1, and ω be the connected component of Ω\D such that ∂Ω ⊂ ∂ω. By hypothesis we know
that the Neumann Boundary Spectral Data NBSD(Ij,Dj), j ∈ {0, 1}, coincide, i.e.

µ0k = µ1k =: µk, and κ∇ψ0k · n = κ∇ψ1k · n on A.

Putting vk := ψ0k − ψ1k, then vk solves: −div(κ∇vk) = µkvk in ω,
vk = 0 on ∂Ω,

κ∇vk · n = 0 = 0 on A.

By the unique continuation principle, it follows that vk ≡ 0 in ω, for all k ≥ 1, i.e.

ψ0k = ψ1k in ω,
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which implies

ψ0k = ψ1k on ∂ω. (4.5)

Now, since ψ1k = 0 on ∂D1 ∩ ∂ω, equation (4.5) yields that the first eigenfunction ψ01 = 0 on ∂D1 ∩ ∂ω,
which leads to a contradiction since ψ01 must be positive in Ω\D0 (see Courant and Hilbert [3], pp. 452-453).
Then D1 must be contained in D0. By the same argument one can prove that D0 must be contained in D1,
that is D0 = D1.

The proof of Theorem 1.6 is complete. �

5. Concluding remark

Until now we have supposed that the known thermal diffusion coefficient κ in (1.3) is independent of the
time variable t. The aim of this section is to prove the identifiability of I and D in (1.3), in the case where the
anisotropic diffusion coefficient κ(t, x) depends also on the time variable t. Clearly the above boundary spectral
data method does not apply anymore, because of the t dependence of κ. In spite of that, under the hypothesis
that κ(t, x) is analytic in t, we can prove the following

Theorem 5.1. Under the hypothesis of Theorem 1.1, let κ(t, x) be a symmetric N ×N matrix-valued function
in [0, T ]× (Ω0 ∪Ω1), satisfying assumption (1.1) in [0, T ]× (Ω0 ∪Ω1), such that κ(·, x) is analytic in [0, T ], for
all x ∈ Ω0 ∪ Ω1, and κ(t, ·) ∈ C1

(
Ω0 ∪Ω1

)
for all t ∈ [0, T ]. Let uj0 ∈ H1(Ωj\Dj), ϕj ∈ C([0, T ];L2(∂Dj)),

ψj ∈ C([0, T ];L2(Ij)), g ∈ C([0, T ];L2(A)) be such that uj ∈ C((0, T ];H1(Ωj\Dj)) ∩ C1([0, T ];L2(Ωj\Dj))
solve (1.3), when Ω := Ωj, D := Dj, and κ(x) is replaced by κ(t, x). Suppose that, for a given time T0 ∈ (0, T ],
and a fixed τ0, 0 < τ0 < T0,

u0(t)|Aout = u1(t)|Aout in L2(Aout) (5.6)

for t ∈ [T0 − τ0, T0], and for all g ∈ C([0, T ];L2(A)) such that the supp(g(t, ·)) ⊂ A for t ∈ [0, T ]. Then I0 = I1
and D0 = D1.

We obseve that in Theorem 5.1 the thermic diffusion coefficient κ(t, ·) ∈ C1
(
Ω0 ∪Ω1

)
, and that the temper-

atures uj(t)|Aout coincide in the whole interval of time [T0 − τ0, T0].

We premise the proof of Theorem 5.1 with the following:

Lemma 5.2. Under the hypothesis of Theorem 5.1, we have

u0 = u1 in [0, T0 − τ0]× ((Ω0\D0) ∩ (Ω1\D1))

for all g as in Theorem 5.1.

Once this result is at hand we can prove Theorem 5.1.

Proof of Theorem 5.1. We divide the proof into two steps. In the first step we prove that I0 = I1, in the second
that D0 = D1.

Step 1. As usual (see Lem. 3.3) we reduce to the case where the data uj0, ϕj , ψj are identically zero. By
contradiction suppose that I0 6= I1. By Lemma 5.2 we know that

u0 = u1 in [0, T0 − τ0]× ω0, (5.7)

where ω0 := (Ω0\D0) ∩ (Ω1\D1). In particular (5.7) yields

κ∇u0 · n = κ∇u1 · n on [0, T0 − τ0]× ∂ω0. (5.8)
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Let us denote by

Ω := Ω0 ∪ Ω1,

and

ω1 := Ω\Ω1.

Multiplying u0 by u0, and integrating over (0, t0)× ω1, where 0 < t0 ≤ T0 − τ0, we obtain

∫
ω1

t0∫
0

∂tu0u0 dt dx−
∫
ω1

t0∫
0

div(κ(t, x)∇u0)∇u0 dt dx = 0. (5.9)

Hence integrating by parts the second term over ω1, using (5.8), and since κ∇uj ·n = 0 on (0, T )× Ij , we have

0 =
∫
ω1

t0∫
0

∂tu0u0 dt dx+
∫
ω1

t0∫
0

κ(t, x)∇u0 · ∇u0 dt dx

≥ 1
2

∫
ω1

t0∫
0

∂t |u0|2 dt dx+ α

∫
ω1

t0∫
0

|∇u0|2 dt dx

=
1
2

∫
ω1

|u0(t0)|2 dx+ α

∫
ω1

t0∫
0

|∇u0|2 dt dx,

where the first step is obtained recalling that κ(t, x)ξ · ξ ≥ α, for a constant α > 0. This implies

0 ≥ 1
2

∫
ω1

|u0(t0)|2 dx+ α

∫
ω1

t0∫
0

|∇u0|2 dt dx,

which leads to a contradiction.

Step 2. In this step we prove that D0 = D1. First we prove that D1 ⊆ D0. By contradiction we suppose
that D1 is not contained in D0. By the previous step I0 = I1, so Ω0 = Ω1 := Ω. Let D := D0 ∪D1, and ω be
the connected component of Ω\D such that ∂Ω ⊂ ∂ω. Now let us denote by

ω2 := (Ω\ω)\D0.

Multiplying the solution u0 of (1.3) by u0, and integrating over (0, t0)× ω2, where 0 < t0 ≤ T0 − τ0, we obtain

∫
ω2

t0∫
0

∂tu0u0 dt dx−
∫
ω2

t0∫
0

div(κ(t, x)∇u0)∇u0 dt dx = 0. (5.10)
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Hence integrating by parts over ω2, using (5.8), and since κ∇uj · n = 0 on (0, T )× ((∂Ω\A) ∪ ∂Dj), we have

0 =
∫
ω2

t0∫
0

∂tu0u0 dt dx+
∫
ω2

t0∫
0

κ(t, x)∇u0 · ∇u0 dt dx

≥ 1
2

∫
ω2

|u0(t0)|2 dx+ α

∫
ω2

t0∫
0

|∇u0|2 dt dx,

which leads to a contradiction. Then D1 must be contained in D0. By the same argument one can prove that D0

must be contained in D1, that is D0 = D1.
The proof of Theorem 5.1 is complete. �
Now we prove Lemma 5.2.

Proof of Lemma 5.2. We divide the proof into three steps.

Step 1. Let us denote by u := u0−u1 in (0, T )×ω0 (we recall that the data uj0, ϕj , ψj are identically zero).
Then u solves:  ∂tu− div(κ(t, x)∇u) = 0 in (0, T )× ω0,

u(0) = 0 in ω0,
κ∇u · n = 0 on (0, T )×A,

where A := (∂Ωj)\Ij . By hypothesis u = 0 on [T0 − τ0, T0] × Aout. So, by the unique continuation principle
(see Saut and Scheurer [7]), it follows that u ≡ 0 in [T0 − τ0, T0]× ω0, that is

u0 ≡ u1 in [T0 − τ0, T0]× ω0, (5.11)

for all g ∈ C([0, T ];L2(A)) such that the support supp(g(t, ·)) ⊂ A for t ∈ [0, T ].

Step 2. Let Gj(t, τ ;x, y) be the Green functions related to problem (1.3) when Ω := Ωj , D := Dj , and κ(x)
is replaced by κ(t, x), that is

∂tGj(t, τ ;x, y) − div(κ(t, x)∇Gj(t, τ ;x, y)) = 0 in (τ, T )× Ωj\Dj,
Gj(τ, τ ;x, y) = δy in Ωj\Dj,

κ∇Gj(t, τ ;σ, y) · n = 0 on (τ, T )× ∂Dj ,
κ∇Gj(t, τ ;σ, y) · n = 0 on (τ, T )× ∂Ωj ,

where 0 ≤ τ < T , y ∈ Ωj\Dj, and δy is the delta Dirac with pole in y. Let us note that, since the coef-
ficient κ(t, x) is analytic in t, the Green functions κj(t, τ ;x, y) are analytic in the variables t, τ for t > τ .
Moreover (see for example Ladyzhenskaja et al. [5], p. 408) the solutions uj can be written in the following
form:

uj(t, y) =

t∫
0

∫
A

Gj(t, τ ;σ′, y)g(τ, σ′)dσ′dτ (5.12)

for (t, y) ∈ [0, T )× Ωj\Dj . Choosing g such that g ≡ 0 on [T0 − ε0, T0]×A, where τ0 < ε0 < T0, we have

uj(t, y) =

T0−ε0∫
0

∫
A

Gj(t, τ ;σ′, y)g(τ, σ′)dσ′dτ, (5.13)
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for (t, y) ∈ [T0 − τ0, T0]× Ωj\Dj. So, from (5.11), and using (5.13), it follows that

T0−ε0∫
0

∫
A

(G0(t, τ ;σ′, y)−G1(t, τ ;σ′, y))g(τ, σ′)dσ′dτ = 0 (5.14)

for (t, y) ∈ [T0 − τ0, T0] × ω0. Assuming that g(τ, σ′) ≡ 0 for τ 6= [T ′ − ε′, T ′ + ε′], and σ′ ∈ A, where T ′ is a
fixed time, T ′ ∈ (0, T0 − ε0), and 0 < ε′ < T ′, (5.14) becomes

T ′+ε′∫
T ′−ε′

∫
A

(G0(t, τ ;σ′, y)−G1(t, τ ;σ′, y))g(τ, σ′)dσ′dτ = 0, (5.15)

for all such functions g. Hence we have

G0(t, τ ;σ′, y) = G1(t, τ ;σ′, y) (5.16)

in [T0 − τ0, T0]× [T ′ − ε′, T ′ + ε′]×A× ω0.

Step 3. In this step we prove the assertion of the lemma. For a fixed t ∈ [T0 − τ0, T0], since the Green
functions Gj(t, τ ;σ′, y) are analytic in τ for τ < t, the unique continuation principle of analytic functions of the
variable τ implies that (5.16) holds for τ ∈ [0, t). So (5.16) holds in

[T0 − τ0, T0]× [0, T0 − τ0)×A× ω0.

Conversely, for a fixed τ ∈ [0, T0 − τ0), since the Green functions Gj(t, τ ;σ′, y) are analytic in t for t > τ ,
by the unique continuation principle of analytic functions of the variable t (5.16) holds for t ∈ (τ, T0]. So,
from (5.12), we conclude that u0(t, y) = u1(t, y) in [0, T0 − τ0] × ω0, for all g ∈ C([0, T ];L2(A)) such that the
support supp(g(t, ·)) ⊂ A for t ∈ [0, T ].

The proof of Lemma 5.2 is complete. �

The author is grateful to Prof. Otared Kavian and Prof. Sergio Vessella for useful discussions and very helpful suggestions
of the results.
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