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UNIQUE LOCALIZATION OF UNKNOWN BOUNDARIES
IN A CONDUCTING MEDIUM FROM BOUNDARY MEASUREMENTS

BruNO CANUTO!

Abstract. We consider the problem of localizing an inaccessible piece I of the boundary of a con-
ducting medium 2, and a cavity D contained in 2, from boundary measurements on the accessible
part A of 9. Assuming that g(t,0) is the given thermal flux for (¢,0) € (0,7) x A, and that the
corresponding output datum is the temperature u(To, o) measured at a given time Ty for o € Aqut C A,
we prove that I and D are uniquely localized from knowledge of all possible pairs of input-output data
(9,u(T0)| Ay, )- The same result holds when a mean value of the temperature is measured over a small
interval of time.
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1. INTRODUCTION AND MAIN RESULTS

In the present paper we are concerned with the study of some problems in thermal imaging. This is a technique
used to determine some physical proprieties of a thermic conducting medium wvia boundary measurements of
temperature. More precisely we denote by  the medium, i.e. a bounded and sufficiently smooth domain in R¥,
N > 2. Suppose that a piece I of the boundary of €2 is unknown and inaccessible to direct inspections. On
the other hand we have access to the remaining part A := (OQ)\I of 9Q. Let g be the thermal flux assigned
on (0,7) x A, and u(T0)| Ao, the corresponding temperature measured at a given time 7y > 0 on a piece Aoyt
of A. The goal is to identify the unknown part I, by knowing all possible pairs of data (g, u(70)4,,,). In a
similar problem we might suppose that a cavity D, of which neither the form nor the position is known, is
contained in € (i.e. D is a domain contained in 2), and the whole boundary of  is known and accessible
to measurements. In this case the goal is to identify the cavity D wvia the same previous data. In fact we are
concerned with the problem in which one tries to identify both a piece I of the boundary of €2 and a cavity D
in its interior from all pairs of data (g,u(Tp)|a,,,). This problem can occur in nondestructive tests of materials,
for example in detecting the corrosion parts of an aircraft which are not accessible to direct inspections. In this
case I and D represent the damaged and inaccessible parts of the aircraft, and u(7p)4,,, the measurements of

out

temperature that one disposes to attempt to recover I and D (see Bryan and Caudill [1], and their references).

We _denote by u(t,z) the temperature at the time ¢ and at the point x € Q\D, ug the initial temperature
in Q\D, ¢, ¥, and g the flux on (0,T) x 9D, (0,T) x I, and (0,T) x A respectively, and x(z) the anisotropic
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FIGURE 1. The pictures (i), (ii), (iii) show the three different situations.

thermal diffusion coefficient, that is & is a symmetric N x N matrix-valued function in (2 satisfying the following
conditions:

(i) there exists a constant o > 0, such that for all z € Q, and for all £ € RY,
k()€€ > ale]*  (ellipticity), (1.1)
(ii) there exists a constant C' > 0, such that for all z, y € Q,
|k(z) — k(y)| < Clr—y| (Lipschitz continuity). (1.2)

For Q. D, k, ug, p, ¥, g assigned, suppose that u solves the following parabolic problem, which we call the
direct problem:

Opu — div(k(z)Vu) = 0 in  (0,7) x Q\D,
u(0) = wo in  Q\D,
kVu-n = ¢(t,o) on (0,T)x 9D, (1.3)
kVu-n = (t,o) on (0,T)x1,
kVu-n = g(t,o) on (0,T)x A,

where n denotes the outer unit normal at 9(2\ D). Here and in the sequel I is a relatively open piece of 9. It
is well-known that, under reasonable assumptions on the data, problem (1.3) has a unique solution, and that
the temperature u(t, o) is well-defined for (¢,0) € (0,7) x 9Q. In the present paper we are interested in the
following problem:
Let A be the so-called input-output map, that is
A:gr— u(Tp)a (1.4)

out?
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where T € (0,7] is a given fixed time and Ao, is a relatively open piece of A, and let ® be the operator
®:(I,D)— A. (1.5)

Is ® injective?

We point out that to prove the injectivity of the operator ® is equivalent to show the uniqueness of I and D
from knowledge of all possible pairs of input-output data

(9, u(To)|A0n,)

of the solution u of (1.3), that is from all possible measurements of temperature u(7p)4,,, at a given time Tp
on Aoyt We observe moreover that the temperature is measured at a given time T only, instead of measuring it
over a whole interval of time such as [0, Tp]. We study also the problem in which a mean value of the temperature
is measured over a small interval of time. We note finally that the initial temperature wug, and the boundary
data ¢, 1 in (1.3) are given arbitrarily. This assumption corresponds to a real situation in which the data ug,
v, ¥ are a priori unknown.

A similar problem has been investigated by Vessella [8]. He proves the unique localization of a thermic
insulating region D in Q (in (1.3) he supposes kVu-n =0 on (0,7) x 9D, I known, and A = 9Q) from a single
measurement of temperature w(,,¢,)x A, ON [t0,t1] X Aous, Where (to,%1) is a subinterval of [0, 7], and Agus
is a relatively open piece of 92, provided that 2 is a contractible domain, the initial temperature ug in (1.3)
is constant, and the input g is monotone with respect to the time variable ¢t. Vessella’s proof is based on the
unique continuation principle and the maximum principle for parabolic equations. Moreover Vessella shows,
when N = 3, and k = I3 (I3 is the 3 x 3 identity matrix), a continuous dependence of logarithmic type of the
domain D from the temperature u|(s, ¢,)x A

out *

In order to prove the injectivity of the operator ® in (1.5), we will inspire with the so-called boundary
spectral data method, introduced in [2] by the author and Kavian to show the identifiability of coeflicients in
a class of heat equations via boundary measurements. This method consists in studying the identifiability of
the boundary spectral data for the underlying elliptic operator in (1.3) from the input-output map A. More
precisely let (A\p)72;, (¢r)p2, be respectively the nondecreasing sequence of eigenvalues and the corresponding
eigenfunctions of the problem (with Neumann boundary conditions):

—div(kVepr) = Mppr in Q\D,
kVpr-n = 0 on 0D,
kVpr-n = 0 on 0, (1.6)
/ loe?dz = 1.
Q\D

Let us denote by DBSD(I, D) the so-called Dirichlet Boundary Spectral Data, i.e.
DBSD(I,D) = ()\k,@km)zo:l. (17)
The question we ask is the following:

Does the input-output map A determine the Dirichlet Boundary Spectral Data DBSD(I, D) uniquely?

The first result of the present paper is the following;:

Theorem 1.1. For an integer N > 2, let Q;, for j € {0,1}, be two bounded domains in RN of class C%1, having
common boundary A = (0Q;)\I;, I; being a relatively open piece of 9, and let D; be a C%' domains such
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to observations

FIGURE 2. The domains g, 21, and the cavities Dy, D1.

that the closure D; C Q;. Let us denote by k a symmetric N x N matriz-valued function in Qo U Qy satisfying
conditions (1.1, 1.2) in Qo U Q. Let ujo € HY(Q;\D;), ¢; € C([0,T); L*(0Dy)), v; € C([0,T]; L*(1})),
g € C([0,T); L*(A)) be such that u; € C((0,T]); H*(2;\D;)) NC*([0,T]; L*(2;\D;)) solve (1.3), when = Q;,
and D := D;. Suppose that

Ao(g) = Ai(g) in LQ(Aout)7 (1.8)
where Aj(g) == uj(To)|a,,.» for all g € C([0,T]; L*(A)) such that the supp(g(t,-)) C A for t € [0,T]. Then the
Dirichlet Boundary Spectral Data DBSD(I;, D;) (1.7) (when Q =, and D := Dj in (1.6)) coincide, that is,
up to an appropriate choice of the eigenfunctions ok, for all k > 1, one has

Aok = Mk,  and Qo = @1 a.e on A.

We point out that the conclusion of Theorem 1.1 remains valid if we replace hypothesis (1.8) by equality of the
mean values of the temperatures in the interval [rg — Tp, Tp], that is the following result holds:

Theorem 1.2. Let 0 < 19 < Ty be given. Under the assumptions of Theorem 1.1 assume that

To TO
/ UO(t)\Aoutdt = / “1(t)|Aoutdt m LQ(Aout), (19)
To—To To—70

for all g € C([0,T]; L?(A)) such that the supp(g(t,-)) C A for t € [0,T]. Then the Dirichlet Boundary Spectral
Data DBSD(I;, Dj) (1.7) coincide, that is, up to an appropriate choice of the eigenfunctions @or, for all k > 1,
one has that

Aok = Mk,  and  @or = P15 a.e. on A.
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We now consider the Dirichlet case. More precisely let (ux)52,, (¥r)32, be respectively the nondecreasing
sequence of eigenvalues and the corresponding eigenfunctions of the following problem (with Dirichlet boundary
conditions):

—div(kVep) = e in Q\D,

v, = 0 on 0D,

Yp = 0 on 0%, (1.10)
/ lpel>dz = 1.
Q\D

Let us denote by NBSD(I, D) the so-called Neumann Boundary Spectral Data, i.e.
NBSD(I, D) := (pr, kViby, - nya)5 ;. (1.11)
Then the conclusion of Theorem 1.1 remains valid if in (1.3) we substitute the Neumann boundary conditions

with the corresponding Dirichlet boundary conditions. More precisely the following result holds:

Theorem 1.3. Under the hypothesis of Theorem 1.1, assume that A = (0Q)\I; is of class C*'. Let
wjo € HY(Q\D;), ¢; € C(0,T}; H2(0D;)), v; € C([0,T|; H*(I;)), f € C([0,T]; H*(A)) be such that
uy € C((0,T): HY(,\D,)) 0 CH[0,T); L(@\Dy)) solue

Oyuj — div(k(x)Vu,;) = 0 in (0,T) x Q\D;,
ui(0) = wujo in ;\Dj,
u;j = ;(t,0) on (0,T)x 0D;, (1.12)
u;j = i(t,o) on(0,T)xI
uj = f(t,o) on(0,T)x A.
We denote by
Aj(f) = KV (Th) - mya,, (1.13)

the thermal fluzes measured at a given time Ty € (0,T) on Aout. Suppose that

Ko(f) =Ai(f) in L*(Aou) (1.14)
Jor all f € C([0,T); H2(A)) such that the supp(f(t,-) C A fort € [0,T]. Then the Neumann Boundary Spectral
Data NBSD(I;,D;) (1.11) (when Q2 := ;, and D := Dj in (1.10)) coincide, that is, up to an appropriate
choice of the eigenfunctions oy, for all k > 1, one has:

Lok = ik, and KV -n=krVi-n a.e on A.

Remark 1.4. Theorem 1.3 holds true if we replace hypothesis (1.14) by equality of the mean values of the
fluxes in the interval [y — Tp, To], i-e. we suppose that, for a fixed 19, 0 < 79 < T,

TO TO
/ kVug(t) -nju,, dt = / kVu(t) -mja,,dt in L?(Aout),
To—7o To—7o

for all f € C([0,T); H3(A)) such that the support supp(f(t,-)) C A for t € [0, T). O
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Once the result of Theorem 1.1 is at hand, we can prove the injectivity of the operator ® defined in (1.5).
This is proved in the following:

Theorem 1.5. Under the assumptions of Theorem 1.1, for N = 2, 3, suppose that the Dirichlet Boundary
Spectral Data DBSD(I;, D;) (1.7) (when Q :=Q;, and D := D; in (1.6)) coincide, that is, for all k > 1,

Aok = Mg, and Yo = Q1 a.e. on A.

Then Io = I; and Dy = D.

The conclusion of Theorem 1.5 remains valid if we assume that the Neumann Boundary Spectral Data
NBSD(I;, D;) coincide:

Theorem 1.6. Under the assumptions of Theorem 1.3, for N = 2, 3, suppose that the Neumann Boundary
Spectral Data NBSD (I;,D;) (1.11) (when Q :=Q;, and D := D; in (1.10)) coincide, that is, for all k > 1,

ok = ik, KVYor -n=kViip-n a.e on A.

Then Io = I; and Dy = D;.

The remainder of the paper is organized as follows: in Section 2 we gather some preliminary results and the
notations used throughout; in Section 3 we prove Theorems 1.1-1.3; in Section 4 we prove Theorems 1.5 and
1.6.

2. PRELIMINARY RESULTS
We denote by Q a bounded domain in RV , N > 2, with boundary~of class COL. N
By k (z) we mean a symmetric N x N matrix-valued function in €2 satisfying conditions (1.1, 1.2) in .
We denote by (L, D(L)) the elliptic operator
Lv := —div(k (z) Vv), (2.1)

with domain

D(L) = {v € L2(S); Lv € LA(Q), Vv -ny5 = o} : (2.2)
Actually when & € 00’1(6) and 9Q € C%!, then
D(L) = {v € HE() N H'Q); £Vv-ny5 = o} :

The operator L possesses a sequence of eigenvalues (A;)72, (which we suppose in a nondecreasing order) and
corresponding eigenfunctions (¢y)7 ; satisfying:

—div(kVer) = Appr in SNZ,
kVpr-n = 0 on 02,
. (2.3)
L/|¢H dz = 1,
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which form a Hilbert basis of L?(£2). We recall that the first eigenvalue A; = 0, and the corresponding

_1
eigenfunction ¢4 () = ‘Q) *, where |-| denotes the Lebesgue measure of . It is also known that the domain
D(L) can be characterized by

D(L) = {v e L*(Q); Z/\i (v | or)|* < +oo} , (2.4)
k=1

where (- | -) is the inner product in L?().
We denote by my the geometric multiplicity of A\;x. We recall that the eigenvalues \; behave like

A ~ Cok% as k — +o0,

where the constant Cy depends on k, ’Q’, N (see Courant and Hilbert [5], pp. 442-443). Moreover there exist
two positive constants Cq, Cy such that, for all £ > 1, one has:

The following three lemmas, which are identical to Lemmas 2.1-2.3 respectively in Canuto and Kavian [2], are a
tools to prove Theorem 1.1 later on. First we shall need the following result concerning the linear independence,
or linear dependence, of the family (cpkl 53 )k>1- In general these functions are not linearly independent. However

one can show that the traces on the boundary of Q of eigenfunctions corresponding to a given eigenvalue A,
are actually independent. More precisely if A\ is an eigenvalue of L having multiplicity my > 1, let us denote
by ¢, for 1 <i < my, the eigenfunctions corresponding to the eigenvalue )\, which form a Hilbert basis of the
kernel N(L — A\, I). We may state the following:

Lemma 2.1. For an integer N > 2, let Q be a bounded domain in RN of class C’Oi. If, for a fized k > 1, A\g is
an eigenvalue of multiplicity my > 1 of L, and if T is a relatively open piece of 0X), then the dimension of the
subspace spanned in L*(T) by (Spk,iwﬁ)lﬁiﬁm;c is exactly my.

Proof of Lemma 2.1. Indeed if there exists (¢;);"% € R™* such that

1=

my
E cipr,i =0 on T,
i=1

my
then, setting ¢ := " ¢;pk.i, one checks that
i=1

Lo =M\yp in Q, KVo-n=0 ond, =0 onT.

Now, following a standard argument, we extend ¢ = 0 in an exterior neighborhood of IV € I'. The unique
continuation principle (see Garofalo and Lin [4]) implies then that ¢ = 0 in Q. Due to the fact that the
functions ¢y, ; are linearly independent, we conclude that ¢; = 0 for 1 < i < my. The proof of Lemma 2.1 is
complete. O

From this we conclude the following:

Lemma 2.2. Under the assumptions of Lemma 2.1, let T'y and I's be two relatively open pieces of Q. For a
fized k > 1 consider the function Zi defined by

my,
Ek(0’,0) = Z¢k7i(0’)<pk7i(a) on Ty x Is.
i=1
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Then Zi (o', 0) is not identically zero on any relatively open subset of I'y x I's.

Proof of Lemma 2.2. By contradiction, let I} be a relatively open piece of T'1, and let I} be a relatively open
piece of I's such that

Ek(0’,0) =0 on T xT%. (2.6)

By Lemma 2.1, we have that (2.6) implies that ¢, = 0 on I'} for ¢ = 1,--- ,my, and so by the unique
continuation principle it follows that ¢ ; = 0 on €, which leads to a contradiction. g

We shall also need the following algebraic lemma:

Lemma 2.3. For two arbitrary integers m, n > 1, let Z be a non empty set, and let X, Y be two subsets of Z.
Assume that f; : X UY =R (for 1 <i<m) and go: X UY — R (for 1 <{ < n) are functions such that

(i)

m n

S L@ i) =D ge@)gely)  for (z,y) € X x V; (2.7)

i=1 (=1

(il) X NY contains infinitely many points;
(iil) fi, for 1 <i<m, (resp. ge, for 1 <€ <n,) are not identically zero in X NY;
(iv) {f1,.--, fm} (resp. {q1,...,gn}) are linearly independent in X NY .

Then m = n, and denoting

fi(z) 91(x)
F(x):= : and G(x):= : ,

Jm(z) 9n ()

there exists an m x m orthogonal matriz M such that for all z € X UY one has F(z) = MG(z).

(Recall that by an orthogonal matrix M we mean MM* = M*M = I,,, where I,,, is the m x m identity
matrix.) For the reader’s convenience we give the proof of Lemma 2.3, although is identical to which of
Lemma 2.3 in [2].

Proof of Lemma 2.53. Let us denote by Vy (resp. Vi) the space spanned by {f1, -, fm} (resp. {g1, - ,gn}).
Since fi is not identically zero in X NY, there exists 1 € X NY such that fi(z1) # 0; then, f2 being linearly
independent of f1, and X NY containing infinitely many points, there exists o € X N'Y such that:

fi(z1)  fa(ar)
det( fi(z2)  fa(z2) ) #0.

By induction one sees that we may find points x1,x2,... , %, in X NY such that the m x m matrix
filw)  fa(@n) oo fl@n)
o | ) Rl )

fl (-.rm) f2 (-.rm) . '- . fm (:r7rL)
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is invertible. So, setting « = z; in (2.7), it follows that PF(y) = ]SG(y) in Y, where P is the following m x n
matrix

gi(w1)  ga(z1) - gnlx1)
B._ 91(.362) 92(-552) gn(-l'Q)
g1 (Im) 92(-1'm) gn(xm)

From this it follows that F(y) = P~'PG(y) for all y € Y, where P~ is the inverse matrix of P.
Similarly, changing the role of the variables z and y, we obtain that F(x) = P~1PG(z) in X, that is

F(z)=MG(z) in XUY
where M := P~1P. Therefore, recalling that the functions {f1,..., fm} and {g1,...,9n} are linearly indepen-
dent in X NY, it follows that Vi C Vi, that is m < n. In the same way one may prove that n < m, and so we
conclude that m = n. B
Finally we prove that the matrix M = P~!P is orthogonal. Indeed, recalling that F(z) = MG(z) for all
z € X UY and using (2.7), we obtain
(M*M - I,,)G(z) -G(y) =0 in X xY,

where a - b denotes the euclidean scalar product in R™, M* is the transpose matrix of M, and I,, is

the m x m identity matrix. Since the functions {g1,---,gm} are linearly independent in X NY it follows
that M*M = MM* = I,,, that is M is orthogonal.
The proof of Lemma 2.3 is complete. g

3. PROOF OF THEOREMS 1.1, 1.2 AND 1.3

The first task in this section is to prove Theorem 1.1. Before doing so we need to establish some preliminary
lemmas.

Lemma 3.1. For an integer N > 2, let Q be a bounded domain in RN of class CO'. For g € C(]0,T); L%(09)),

let w € C((0,T); HY(Q)) N CH([0,T]; L*(Q2)) solve

dyu — div(s(z)Vu) = 0 in (0,T) x €,
uw(0) = 0 nQ, B (3.1)
kVu-n = g on(0,T)x 09,

where Kk satisfies assumptions (1.1, 1.2) in Q. Then u can be written in the following Fourier expansion:

oo

u(t) =Y ax(t)pr in L*(S), (3.2)

k=1

where @y, is defined in (2.3), and

t
ag(t) = —//gok(a')e_)"“(t_ﬂg(r, o')do’dr. (3.3)
0 90
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Proof of Lemma 3.1. Since (¢))$2, is a Hilbert basis in L?(f2), we can write u in the following Fourier
expansion:

u(t) =Y onD)pr in L2(9),
k=1

where a(t) := (u(t) | ¢x). Multiplying the equation in (3.1) by ¢k, and integrating by parts over S~2, we obtain,
for all £ > 1,

al () + Mpan(t) = —/gpk(a')g(t,a')do' in (0,T),
/ (3.4)
o0
Ozk(O) = 0,
where o (t) denotes the derivative of ay(t). The thesis of the lemma follows then trivially. O
Lemma 3.2. Under the assumptions of Lemma 3.1, let g satisfy the following condition:
g=0 on [Ty —ep,Tp] X 09, (3.5)

where Ty € (0,T], and 0 < g < Ty. Then U(To)wﬁ can be written in the following way

To—eo0

w(To) o5 = = / / > pr (o) e T g(r,0")do"dT | 005 in H? (09).
0 gg k=t

Proof of Lemma 3.2. We divide the proof into two steps:
Step 1. If g satisfies (3.5), then u(Ty) € D(L), where D(L) is defined in (2.2). So it follows that (see (2.4))

oo

> A fan(To)” < 4o,
k=1

3

where ay(Tp) := (u(To) | @r). Setting um(To) := > ar(To)pk, then

k=1

um(Ty) — w(Tp) in L*(Q) as m — +oo,
and
Lty (To) — Lu (Tp) — 0 in L*(Q) as m — +oo.

By the fact that Hum(TO)HHl(ﬁ) <C ||Lum(T0)||L2(§), we have

w(T) =3 on (T) e in H' (@) (36)
k=1
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Now, since the trace operator «y : u(Tp) — U(TO)\aﬁ is continuous from H' () to H2 (99), one has, in the sense

of H2(09):

) T[)*EO
u(To) o5 == / / pr(o")e 0 g(7,6")do"dr | @) 05- (3.7)
A N el

Step 2. In this step we prove that we can commute the series sign with the integral signs in the right hand
side of (3.7). By Fubini’s theorem it is sufficient, for example, to show that

To—eo0 4

ZH%HHQ(@Q /)% Ye MTo=T) (1, ") | do’dT < +00.

In fact, denoting by (-,-) the duality H~2(9Q), Hz(99), we have

To—eo

oo
7 < ZI o 9O enll 3 on e MEodr
To—¢o oo
2 —
< l9( -3 o) 4 D Ikl 4 o €
i k=1
<

o0
C Z )\kei)\keo,
k=1
where the last inequality is obtained upon using the fact that, by the trace inequality, and (2.5), we have:
%
okl 14 o) = Cllerllin @) < CAL-

Note that Y2, Age ™0 < 400 since Ay ~ k¥, as k — 4o0o. Therefore we may write equation (3.7) as

To—eo
u(To) 5 = — / / Z@k Je T g(r o )do'dr | g0 in HE(09). (3.8)
0 s k=1
The proof of Lemma 3.2 is complete. 0

Lemma 3.3. Under the assumptions of Theorem 1.1, for j € {0,1}, let w; be solutions of (1.3) when Q := Q;,
and D := D;, with initial data W0 = 0 in Q;\D;, and boundary data 7 =0 on (0,T) x dD;, and 1; =0 on
(0,T) x I;. Then

A_o(g) = A_l(g) n LQ(Aout)7
where A (g) := U5 (To)| 4, » Jor all g € ([0,T); L*(A)) such that the supp(g(t,-)) C A for t € [0,T].

Proof of Lemma 3.3. Following Rakesh and Symes [6], we put @;(t, x) := u;(t, z) —v; (¢, x), where v; solve (1.3)
when Q := Q;, D := D;, with data v;(0) = ujo in Q;\Dj, v; = ¢; on (0,T) x dD;, v; = ¥; on (0,T) x I;,
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and v; =0 on (0,7T) x A. Then w0 = 0 in Q;\D;, 37 = 0 on (0,7) x dD;, and ¥; = 0 on (0,T) x I;. So, if we
denote by A (g) := w;(T0)| 4., it follows that

out?

Aj (g) = AJ (g) - Aj (0)
Hence Ag(g) = A1(g) for all g € C([0,T]; L?(A)) such that the support supp(g(t,-)) C A for t € [0,T.
The proof of Lemma 3.3 is complete. g

Lemma 3.4. Under the assumptions of Theorem 1.1, for all k > 1, we have
Aok = Ak,

and

Mok migk

Z%k i (0") por,i(o Z@lke ) Pike(0)

a.e. on A X Agus-

(As we have mentioned in Sect. 2, mjj is the multiplicity of the eigenvalue Ajy.)

Proof of Lemma 5.4. First of all, using Lemma 3.3, we can always reduce to the case where the initial data
ujo = 01in Q;\D;, and the boundary data ¢; =0 on (0,T) x 0D;, and t»; = 0 on (0,T") x I;. We recall that by
hypothesis we have

(TO)\Aout - I(TO)\AOM in L2(Aout)7 (39)

for all g € C([0,T]; L?(A)) such that the support supp(g(t,-)) C A for t € [0,T]. By Lemma 3.2 we know that
if g =0 on [Ty — €9,T0] x A, then u;(Tp)|a,,, on Aous can be written in the following way (in the sense of

Hz (Aout)):

out

To—eo

5 (T0)| Ay, = / A/

Mg

D1 (o’, Ty — 1)g(1,0")do’dr,

k=1
where
]k J T = Z@jk) ]kTSOjkleut' (3'10)
Then, from (3.9), it follows that
TO €0 00
Z (Poi(o”, Ty — 7) — ®11(0”, To — 7)) g(7,0")do’dT = 0 in L(Aour). (3.11)
b k=1

In particular we may assume that g(7,0’) =0 for 7 # [T" — &/, T" +¢'], and o/ € A, where T" is a fixed time,
"€ (0,Tp — €p), and 0 < &’ <T’. Then (3.11) becomes

/ Z Do (o', Ty — 7) — P1x(0’, To — 7)) g(7,0")do’dT = 0
A k=1
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for all such functions g. Hence we have
[oe] oo
> @or(o’,7) =) Puk(o’, ) in L (Aou)
k=1 k=1

forallo’ € A, 7 € [T — &', T" 4+ ¢']. By the unique continuation principle for analytic functions of the variable 7,
we obtain

> Zor(0)e T = "Eig(0)e T in L (Aous) (3.12)
k=1 k=1

mjk
for all o' € A, 7 € (0,00), where Zjx(0") := > ©jn,i (0") @ik Ao > J € {0,1}. By Lemma 2.2 we know that, for
i=1

all fixed k > 1, Zj(0’) is not identically zero on any relatively open subset of A. Therefore, using the classical
results on Dirichlet’s series, equation (3.12) yields that, for all £ > 1,

Aok = Ak,
and
ok = Z1r  in L3(A) x L*(Aout),

that is

mok mik

Z @ok,i (0) por,i(0) = Z P1k,i (0') P11, (0) (3.13)

i=1 i=1
a.e. on A X Aout. The proof of Lemma 3.4 is complete. O

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We prove that (3.13) implies that, for all k& > 1, mgr = mk, and, up to an appropriate
choice of the eigenfunctions poi, por = V1% a.e. on A.

For a fixed k > 1, let us note that, by Lemma 2.1, @, for i = 1,--- ,mj, and j € {0,1}, are linearly
independent on L2(A). Now, applying the algebraic Lemma 2.3 with m := mo, n = mix, Z = X = A,
Y = Aouta

Ji = @orija  for 1 <i < moy,

ge = orea for 1 <i <mag,
and F' and G respectively the vectors

fi g1
: and G := : ,

mek Imyp

F =

we derive that mor = mix, and that there exists an m x m orthogonal matrix M, where m := mgr = mqx, such
that

F(z)=MG(z) for ze A. (3.14)
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We prove now that ¢or; = @11, a.e. on A, for i =1,---,m, up to an appropriate choice of the eigenfunctions
@ok,i- Lo prove this, let us define the vector

o = M"pp,

where M* is the transpose matrix of M, that is M} = M,;, and ¢{ is the transpose vector of ¢y =
(Pok,15"** »Pok,m). First let us note that

(Poki | Poke) = die for 1 < i, 0 <m,

where (- | -) denotes the scalar product in L2(Qp\ Do), and d;, is the Kronecker’s symbol. In fact por; =

m

m
> M} @ok,r, and ok = Z M pok,s = Y- Pok,s Mse, 50
r=1

s=1 s=1

(SDOk: 7 | Pok, Z Z Z 5257’5 == Z rZ = 5127

r=1s=1

where the last equality follows since the matrix M is orthogonal.
m m

Now ok = Z Fook,e, and, by (3.14), we know that @ore = > Myjpir,; on A, so, substituting in DOk.is
Jj=1
we obtain

m m m m
Poke = 3 M3Y Mypir; =Y @ir; MMy = @1p
=1 j=1 j=1 =1

on A, for 1 < i < m, where the last equality follows since the matrix M is orthogonal.
The proof of Theorem 1.1 is complete. a

Now we prove Theorem 1.2.

Proof of Theorem 1.2. First of all, by Lemma 3.3, we can suppose that the initial data u;o = 0 in Qj\ﬁj,
and the boundary data ¢; = 0 on (0,7) x 0Dj;, and ¢; = 0 on (0,T) x I;. Choosing g such that g = 0
on [Ty — €9,Tp) x A, where ¢¢ is such that 7y < g9 < Ty, we can write u; in the following Fourier expansion
(see (3.2)):

00 To—eo
Z / / (o) 2= g (7 o")do'drpr  in L2(Q,\D;),
k=19 2

for t € [To — 70, Tp). By Lemma 3.2 we obtain

To—eo
Ui ()| Ay = / /Zq)ﬂf t—7)g(r,0")do’dr  in H? (Agy) (3.15)
0 A k=L

for t € [Ty — 70, To], where @, are defined in (3.10). Now (1.9), and the change of variable t — 7 = s in the
right hand side of (3.15), imply

To
/ / /Z (Por (o', s) — P1(0”,5)) g(t — s,0")do’ds dt = 0. (3.16)
To— A k=1

t To+eo
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We may assume that the input g(s,0’) = 0 for s ¢ [T' — &', T" + €], and ¢’ € A, where T' € (@, %) is a
fixed time, and 0 < ¢’ < T”. Then (3.16) becomes

T t—T'+¢’ oo
/ / / S (@ox(0,5) — Bux(o”, 5)g(t — 5, 0')do’ds dt = 0 (3.17)
To—7o0 A
t—T"—¢

’ k=1

for all such functions g. Hence it follows that
oo oo
> Dpi(o’,5) =D Puk(o’,s) in L¥(Aowr), (3.18)
k=1 k=1

forallo’ € A, s € [T' — &', T" 4+ ¢']. By the unique continuation principle for analytic functions of the variable s
we obtain

> Bor(e')e ok =N "Ei(0”)e M in L2 (Agur), (3.19)
k=1 k=1

mjp
for all o' € A, s € (0,00), where Zjx(0") := > Vjk,i (0') Pjk.i|Ao. - Repeating the same argument in order to
i=1

prove Lemma 3.4 and Theorem 1.1, we obtain the thesis of Theorem 1.2. |

Proof of Theorem 1.3. The proof is obtained similarly to the proof of Theorem 1.1, up to obvious changes (see
also Canuto and Kavian [2]). O

4. PROOF OF THEOREMS 1.5 AND 1.6

In this section we prove Theorems 1.5 and 1.6.

Proof of Theorem 1.5. We divide the proof into two steps. In the first step we prove that Iy = I, in the second
that Do = Dl.

Step 1. By contradiction suppose that Iy # I1. By hypothesis we know that the Dirichlet Boundary Spectral
Data DBSD(I; D;), j € {0, 1}, coincide, i.e.

Aok = A1k =: Ag, and  @op = @1 =: @i a.e. on A.
(We recall that A := (0€;)\I; is the common part of the boundaries of 2;.) We denote by
wo := (Q0\Do) N (Q21\D1),

and vg 1= @k — @1k in wo. Then, for all & > 1, vy solves

—div(kVvg) = M\vp  in wo,
kVvp-n = 0 on A,
v = 0 on A.

The unique continuation principle (see Garofalo and Lin [4]) implies that vy, = 0 in Wy (Wo denotes the closure
of wp), that is

Yok = p1x 1n o,
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A: the part accessible
to observations

FIGURE 3. The arrows show the domain wy.

which yields that

kVor -n = kVpE-n  on dwy. (4.1)
Let us denote by
Q:=QyUy,
and
wy = O\Qy.

Then Green’s formula gives

1
/%kdx:—)\—/fﬁv%k'nda,
k

w1 Ow1

for all k > 2. Since KV, -n = 0 on 08, for all k > 1, and using (4.1), it follows that / kVor -ndo = 0,

&ul
i.e., for all k > 2,

/‘Pok dz =0. (4.2)

w1

Let x be the characteristic function of the set wy in Qg\ Do, i.e.

(z) = 1 for x € wyq,
XT=9 0 for x ¢ wy.
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D,

FIGURE 4. The picture shows the domains Dy, D;.
By the fact that (¢or)%2; is a Hilbert basis in L?(€2y\Dy), we have

X = (x| ¢or)por in L*(20\Do),
k=1

where (x | por) := / Xpor dx = /go()k dz. Since ¢p1(z) = |QO\D0|_%, and since by (4.2) /cp()k dz =0
QO\DO w1 w1

for all £ > 2, it follows that y = 1 in QO\D_O This implies that w; = QO\D_O, which leads to a contradiction.

Then Iy coincide with 1.

Step 2. In this step we prove that Dy = D;. First we prove that D1 C Dy. By contradiction suppose that D
is not contained in Dy. By the previous step Ip = I, so {2 = 4 := Q. Let D := Do U Dy, and let w be the
connected component of Q\D such that 92 C dw. Putting vy := @or — Y1k in w, then vy solves:

—div(kVog) = Mvp  in wo,
kVu,-n = 0 on 0f),
vp = 0 on A.

By the unique continuation principle, it follows that vy =0 in @ (@ denotes the closure of w), i.e.
ok = p1kx  Inw,
which yields
kVoor -n=kVpip-n  on dw. (4.3)
Let us denote by

wy := (Q\w)\Do.
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Green’s formula gives
1
porde = —— kVpor - ndo,
Ak
wa Owa

for all k& > 2. By the fact that KV, -n = 0 on 9(Q\D;), for all & > 1, and using (4.3), it follows
that / kVor -ndo =0, i.e., for all k > 2,

6(4)2

/<P01c dz = 0. (4.4)

w2

Let x be the characteristic function of the set wy in Q\ Do, i.e.

(z) = 1 for x € ws,
XT=9 0 for x ¢ wo.

Then

X = (x| or)por in L*(Q\Do),

WE

x>
Il

1

where (x | pox) = / Xpor dr = /ngk dx. Since w1 = |Q\D0|_%, and since by (4.4) /@Ok dx = 0, for
Q\ Do w2 w2
all k£ > 2, it follows that x = 1 in Q\D_o This implies that wy = QO\D_O, which leads to a contradiction. Then
Dy must be contained in Dy. By the same argument one can prove that Dy must be contained in D;, that
is DQ = Dl.
The proof of Theorem 1.5 is complete. 0

Now we prove Theorem 1.6, that is the identifiability of I and D from the Neumann Boundary Spectral Data
NBSD(I, D).

Proof of Theorem 1.6. Without loss of generality we can suppose that the boundaries I;, j € {0, 1}, coincide,
so Qy = Q1 =: Q. We prove that Dy = D;. Suppose, by contradiction, that D; is not contained in Dy.
Let D := Dy U Dy, and w be the connected component of Q\D such that 9Q C dw. By hypothesis we know
that the Neumann Boundary Spectral Data NBSD(I; D;), j € {0,1}, coincide, i.e.

Mok = M1k =: pg, and  kVeor -n =KV -n on A.

Putting v := Yor — 1, then vy solves:

—div(kVuy) LV In w,
v, = 0 on 01,
kVop,-n=0 = 0 on A.

By the unique continuation principle, it follows that vy = 0 in @, for all k£ > 1, i.e.

Yor = Y1 Inw,
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which implies
Yo = Y1 on Jdw. (4.5)

Now, since 91 = 0 on dD;1 N dw, equation (4.5) yields that the first eigenfunction 191 = 0 on 9D; N Ow,
which leads to a contradiction since 19; must be positive in 2\ Dy (see Courant and Hilbert [3], pp. 452-453).
Then D; must be contained in Dy. By the same argument one can prove that Dy must be contained in D1,
that is DQ = Dl.

The proof of Theorem 1.6 is complete. 0

5. CONCLUDING REMARK

Until now we have supposed that the known thermal diffusion coefficient x in (1.3) is independent of the
time variable ¢t. The aim of this section is to prove the identifiability of I and D in (1.3), in the case where the
anisotropic diffusion coefficient (¢, x) depends also on the time variable t. Clearly the above boundary spectral
data method does not apply anymore, because of the ¢ dependence of k. In spite of that, under the hypothesis
that k(t, ) is analytic in t, we can prove the following

Theorem 5.1. Under the hypothesis of Theorem 1.1, let k(t,x) be a symmetric N x N matriz-valued function
in [0,T] x (Qo UQ), satisfying assumption (1.1) in [0,T] x (Q UQy), such that k(-,x) is analytic in [0,T], for
all z € QoUQy, and k(t,) € C' (QoUQ) for all t € [0,T). Let ujo € H'(\D;), ¢; € C((0,T]; L*(8D;)),
b € C([0,T];L*(I3)), g € C([0,T]; L*(A)) be such that u; € C((0,T]; H'(2,;\D;)) N C*([0,T]; L*(2;\D;))
solve (1.3), when Q :=Q;, D := D;, and k(z) is replaced by k(t,z). Suppose that, for a given time Ty € (0,T1,
and a fized 19, 0 < 19 < Tp,

w0 (1) Aue = Ut (t)jag,,  in L?(Aout) (5.6)
for t € [Ty — 10, To), and for all g € C([0,T); L?>(A)) such that the supp(g(t,-)) C A fort € [0,T]. Then Iy = I
and Do = D1.

We obseve that in Theorem 5.1 the thermic diffusion coefficient x(t,-) € C* (Q_o U Q_l), and that the temper-
atures u;(t),,, coincide in the whole interval of time [Ty — 79, Tp).

We premise the proof of Theorem 5.1 with the following:
Lemma 5.2. Under the hypothesis of Theorem 5.1, we have

Uy = U1 N [O, To — TO] X ((Qo\D_()) n (Ql\D_l))

for all g as in Theorem 5.1.

Once this result is at hand we can prove Theorem 5.1.

Proof of Theorem 5.1. We divide the proof into two steps. In the first step we prove that Iy = I, in the second
that DQ = Dl.

Step 1. As usual (see Lem. 3.3) we reduce to the case where the data ujo, ¢j, 1¥; are identically zero. By
contradiction suppose that Iy # ;. By Lemma 5.2 we know that

ug =u1 in [O,TQ — TO] X wo, (57)
where wq := (Q0\ Do) N (21\D1). In particular (5.7) yields

kVug-n=kVus-n on [0,T) — 70] X dwy. (5.8)
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Let us denote by

and
w1 = Q\Q_l

Multiplying ug by ug, and integrating over (0,tg) X wy, where 0 < tg < Ty — 79, we obtain

to to
//atuouo dtdx — //div(/ﬁ(t, x)Vug)Vug dt dz = 0. (5.9)
0 0

w1 w1

Hence integrating by parts the second term over ws, using (5.8), and since KVu; -n =0 on (0,7) x I;, we have

to to
0= //@uouodtdx—i—//m(t,I)VUO - Vug dt dz
0 wi 0

w1

to to
1
> 5//8,5 |uo|? dtdav—l—oz//|Vu0|2 dtdz
0 0

w1 w1

to
1
= §/|uo(to)|2 dx+a//|Vu0|2 dt du,
w1 0

w1

where the first step is obtained recalling that (¢, 2)¢ - £ > «, for a constant o > 0. This implies

to
1
0> 5/|u0(t0)|2 da:+a//|Vu0|2 dt dz,

w1 0
which leads to a contradiction.
Step 2. In this step we prove that Dy = D;. First we prove that D; C Dy. By contradiction we suppose

that D; is not contained in Do._By the previous step Iy = I1, so Qg = Q21 := Q. Let D := Dy U Dy, and w be
the connected component of Q\ D such that 9Q C dw. Now let us denote by

wy = (Q\w)\Do.
Multiplying the solution ug of (1.3) by ug, and integrating over (0,tp) X we, where 0 < tg < Ty — 79, we obtain

to to
//&uouo dtdz — //div(n(t,x)Vuo)Vuo dtdz = 0. (5.10)
0

w2 w2 0
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Hence integrating by parts over ws, using (5.8), and since kVu; -n =0 on (0,T) x ((0Q\A) UID;), we have

to to
0= //8tu0u0 dtdx+//n(t,x)Vu0~Vuo dtdx
0 w2 0

w2

to
1
2 §/|uo(to)|2 dx+a//|Vu0|2 dt dz,
[35) 0

w2

which leads to a contradiction. Then D; must be contained in Dy. By the same argument one can prove that Dy
must be contained in Dy, that is Dy = D;.
The proof of Theorem 5.1 is complete. 0

Now we prove Lemma 5.2.
Proof of Lemma 5.2. We divide the proof into three steps.

Step 1. Let us denote by u := ug —u; in (0,7) X wo (we recall that the data ujo, ¢;, ¥; are identically zero).
Then u solves:

Ou — div(k(t,z)Vu) = 0 in (0,T) X wo,
w(0) = 0 in wo,
kVu-n = 0 on (0,T)x A,

where A := (9Q;)\I;. By hypothesis u = 0 on [Ty — 79, Tp] X Aout- So, by the unique continuation principle
(see Saut and Scheurer [7]), it follows that v = 0 in [Ty — 70, To] X wo, that is

Uy = U1 in [T()*To,To] X wo, (511)

for all g € C([0,T]; L?(A)) such that the support supp(g(t,-)) C A for t € [0, T].

Step 2. Let G;(t,7;x,y) be the Green functions related to problem (1.3) when Q := Q,;, D := D;, and x(z)
is replaced by (¢, ), that is

0G;(t,m2,y) — div(k(t, ) VG, (t,T;2,y)) = 0 in (1,T) x Q;\D;,
Gi(r,m;2,y) = 6, in Q\Dj,
kVG;(t,T50,y)-n = 0 on (r,T)x 0D;,
kVG;(t,m50,y)-n = 0  on (1,T) x 08y,

where 0 < 7 < T,y € Qj\ﬁj, and d, is the delta Dirac with pole in y. Let us note that, since the coef-
ficient (t,z) is analytic in ¢, the Green functions k;(t,7;x,y) are analytic in the variables ¢, 7 for ¢ > 7.
Moreover (see for example Ladyzhenskaja et al. [5], p. 408) the solutions u; can be written in the following
form:

¢
uj(t,y) ://Gj(t,T;U',y)g(T,a')do'dT (5.12)
0 A

for (t,y) € [0,T) x Q;\D;. Choosing g such that g = 0 on [Ty — ¢, Tp] X A, where 79 < g9 < Tp, we have

T[)*EO
wy(tyy) = / / G,(t, 750" y)g(r.0')do’dr, (5.13)
0 A
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for (t,y) € [To — 70, To) x ;\D;. So, from (5.11), and using (5.13), it follows that

To—¢eo
/(Go(t, 70 y) — Gi(t, 30", y))g(r,0")do’dT = 0 (5.14)
0 A

for (t,y) € [To — 70, To] X wp. Assuming that g(7,0’) =0 for 7 # [T' — &', T' +¢'], and ¢’ € A, where T' is a
fixed time, T" € (0,To — gp), and 0 < &’ < T, (5.14) becomes

T’+€/
/(GO (ta T; Ula y) - Gl (ta T3 Ula y))g(T7 UI)dUIdT = Oa (515)
T —e’ A

for all such functions g. Hence we have
GO(taT;0/7y> = Gl(taT;Jlay) (516)

in [To — T(),To] X [T/ — E/,T/ —+ {:‘/] x A X wp.

Step 3. In this step we prove the assertion of the lemma. For a fixed t € [Ty — 79, Tp], since the Green
functions G;(t, 7;0',y) are analytic in 7 for 7 < ¢, the unique continuation principle of analytic functions of the
variable 7 implies that (5.16) holds for 7 € [0,¢). So (5.16) holds in

[To — 70,T0] x [0,To — 70) X A X wp.

Conversely, for a fixed 7 € [0,Ty — 79), since the Green functions G,(t,7;0’,y) are analytic in ¢t for ¢ > 7,
by the unique continuation principle of analytic functions of the variable ¢ (5.16) holds for ¢t € (7,Tp]. So,
from (5.12), we conclude that ug(t,y) = ui(t,y) in [0,Ty — 7o) X wo, for all g € C([0,T7]; L?(A)) such that the
support supp(g(¢,-)) C A for ¢ € [0,T].

The proof of Lemma 5.2 is complete. g

The author is grateful to Prof. Otared Kavian and Prof. Sergio Vessella for useful discussions and very helpful suggestions
of the results.
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