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GLOBALLY LIPSCHITZ MINIMIZERS FOR VARIATIONAL PROBLEMS

WITH LINEAR GROWTH ∗

Lisa Beck1,∗, Miroslav Buĺıček2 and Erika Maringová2

Abstract. We study the minimization of convex, variational integrals of linear growth among all
functions in the Sobolev space W 1,1 with prescribed boundary values (or its equivalent formulation
as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient
compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard
way by the direct method in the calculus of variations and in fact might fail, as it is well-known already
for the non-parametric minimal surface problem. Assuming radial structure, we establish a necessary
and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the
sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values,
via the construction of appropriate barrier functions in the tradition of Serrin’s paper [J. Serrin, Philos.
Trans. R. Soc. Lond., Ser. A 264 (1969) 413–496].
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1. Introduction

In this paper we are concerned with the existence of (unique) scalar-valued Lipschitz solutions to the Dirichlet
problem

−div (a(|∇u|)∇u) = 0 in Ω,

u = u0 on ∂Ω,
(1.1)

where Ω ⊂ Rd is a bounded, regular domain and with regular prescribed boundary values u0. The focus is on
coefficient functions a ∈ C1(R+), which on the one hand represent a radial structure condition and which on the
other belong to a convex linear growth problem which is naturally formulated in the Sobolev space W 1,1(Ω),
meaning that we work under the permanent assumption that the function s 7→ a(s)s is increasing and remains
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bounded. In this setting, the existence of a weak solution to the Dirichlet problem (1.1) is equivalent to the
existence of a minimizer of a related (convex) variational integral in the Dirichlet class u0 + W 1,1

0 (Ω), and we
may equivalently look for a function u ∈ u0 + W 1,1

0 (Ω) such that for all smooth, compactly supported test
functions ϕ ∈ D(Ω) we have ∫

Ω

F (|∇u|) dx ≤
∫
Ω

F (|∇u0 +∇ϕ|) dx, (1.2)

where F and a are linked via the identity

F ′(s) = a(s)s for all s ∈ R+. (1.3)

The minimal surface equation is clearly the most prominent example for such a Dirichlet problem, and other
prototypic examples are given via the coefficient functions

ap(s) := (1 + sp)−
1
p (1.4)

for s ∈ R+ and p > 0 (which for the specific case p = 2 just gives the minimal surface equation).
One peculiarity of linear growth problems is that, even if the equation (1.1) is monotone and the integrand

z 7→ F (|z|) of the variational functional is convex, standard monotonicity methods and the direct method of the
calculus of variations fail in general, since the Sobolev space W 1,1(Ω) is non-reflexive and hence has insufficient
compactness properties. For the study of such linear growth problem of variational type, one common strategy
is to extend in a first step the functional by lower semicontinuity (in the sense of Lebesgue and Serrin [15, 21])
to the larger space BV (Ω) of functions of bounded variation, i.e., to consider, for fixed boundary values u0, the
functional

w 7→ inf

{
lim inf
n→∞

∫
Ω

F (|∇wn|) dx : (wn)n∈N in u0 +W 1,1
0 (Ω) with wn → w in L1(Ω)

}
with w ∈ BV (Ω). This extension also allows for an integral representation, see e.g. [13], which consists in the
original functional evaluated for the absolutely continuous part of the measure derivative and penalization terms
for non-vanishing singular measure derivative or non-attainment of the prescribed boundary values (note that
the trace operator is in general not continuous with respect to weak-∗ convergence in BV (Ω)). In a second step,
one can then study minimizers of the extended functional in BV (Ω) (which can be interpreted as generalized
minimizers of the original functional), which exist as a consequence of the direct method, applied in the space
BV (Ω) equipped with the weak-∗ topology (observe that the lower semicontinuity of the extended functional
in this topology was established by Reshetnyak [20]).

Returning to the original question, one can then investigate whether or not these generalized minimizers be-
long to u0+W 1,1

0 (Ω) which amounts to excluding the singular measure derivative and to show attainment of the
boundary values. However, this is in general not the case, meaning that in fact no minimizer in the space u0 +
W 1,1

0 (Ω) might exist. This situation has been studied in full detail for the minimal surface equation, i.e. the non-
parametric minimal surface problem. A by now classical result by Miranda [19] states that for any locally pseu-
doconvex domain Ω and any continuous prescribed boundary values u0 a unique minimizer u ∈ C(Ω) ∩ C2(Ω)
exists. Moreover, this result is sharp, and neither the convexity assumption nor the regularity assumption on
u0 can be considerably weakened in order to guarantee the existence of minimizers in u0 + W 1,1

0 (Ω). For a
broad overview on results concerning the existence, uniqueness and regularity of these non-parametric minimal
surfaces, the connection to parametric minimal surfaces, and detailed proofs we refer to Giusti’s monograph [14].

Concerning higher regularity of such generalized minimizers, let us mention briefly that the essential difficulty
is the degeneration of the second order derivatives of the integrand f(z) = F (|z|), namely that the ratio between
its largest and smallest eigenvalue blows up in the limit |z| → ∞. This phenomenon does not only happen for
functionals exhibiting linear growth, but also nearly linear growth (with the model case F (s) = s log(1 + s),
cp. [18]). In these cases the role of the so-called µ-ellipticity condition was investigated, which quantifies the
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ellipticity degeneration (and which in our case would basically mean F ′′(s) ≥ cs−µ for s ≥ 1). As the main
outcome it was observed, first by Fuchs and Mingione [11] for nearly linear growth problem and by Bildhauer
and Fuchs in a series of works [4–7] for linear growth problems, that C1loc(Ω) regularity of generalized minimizers
can still be established, also for the vectorial case with radial structure, provided that µ is sufficiently small.
Specifically in our situation, this applies for µ ∈ (1, 3) (see [4], Thm. 2.7, but also [17], Thm. B and [2],
Thm. 1.3), while in the limit case µ = 3 (as for the area functional) only W 1,1(Ω) regularity is known, with
improved L logL integrability of the gradients (see [4], Thm. 2.5 and [1], Cor. 1.13). However, these paper focus
primarily on regularity of generalized minimizers, and attainment of the prescribed boundary values u0 is in
fact not expected in this general setting, as highlighted above.

In the present paper, we proceed with an alternative (and also very classical) strategy, which directly ad-
dresses the minimization problem (or equivalently the Dirichlet problem), without passing through the relaxed
formulation. Indeed, the goal is to characterize integrands F (or equivalently coefficient functions a), in terms
of properties of F only, such that the minimization or Dirichlet problem admits a solution in u0 +W 1,1

0 (Ω), for
any (regular) domain Ω and boundary values u0. In fact, necessary and sufficient conditions for the solvability
of the Dirichlet problem in the planar case d = 2 for the second order elliptic equation

A(Du) · ∇2u = 0 (1.5)

(with the convention A(z) · z̃ :=
∑d
i,j=1Aij(z)z̃ij) were already investigated by Bernstein [3], in terms of the

Bernstein genre g defined via the validity of

c|z|2−g ≤ A(z) · (z ⊗ z)
trA(z)

≤ C|z|2−g for all z ∈ Rd \B1(0)

for some constants c ≤ C (if well-defined), and then generalized by Leray [16]. One can easily calculate that the
Bernstein genre of the equation for the prototypic coefficients ap from (1.4) is given by p (hence, the minimal
surface equation is of Bernstein genre 2). Bernstein’s discovery in [3] was that the question of the solvability
of the Dirichlet problem splits into the two classes of genre g ≤ 1 and g > 1. While for the first class the
Dirichlet problem is in general solvable, one needs to impose curvature restriction on the second class (as the
pseudoconvexity condition mentioned before in Miranda’s result). An extension to the higher-dimensional case
d ≥ 2 and a systematic treatment of more general non-uniformly elliptic equations of the form (1.5) was given
later by Serrin [22]. He defined the equation to be regularly elliptic if

A(z) · (z ⊗ z)
trA(z)

≥ Φ(|z|) for all z ∈ Rd \B1(0) (1.6)

holds for some increasing function Φ ∈ C(R+) satisfying∫ ∞
1

Φ(t)t−2 dt =∞. (1.7)

Obviously, equations with a well-defined Bernstein genre g are regularly elliptic if and only if g ≤ 1. Furthermore,
our specific equation (1.1) is regularly elliptic in particular if the left-hand side in (1.6) is increasing and if we
have in addition ∫ ∞

1

a′(t)t+ a(t)

a′(t)t+ da(t)
dt =

∫ ∞
1

F ′′(t)

a′(t)t+ da(t)
dt =∞.

The relevance of the structure condition (1.7) consists in the fact that it implies a priori estimates for the
gradient of solutions on the boundary, via the construction of so-called global barriers functions, and interior
a priori bounds follow in turn. Since the existence of solutions to the Dirichlet problem can be reduced to the
proof of a priori estimates, Serrin obtained as a consequence that regularly elliptic Dirichlet problems allow
for a solution, for arbitrary (regular) domains and prescribed boundary values (while for non-regularly elliptic
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equations it is in general again necessary to impose restrictions on the domain, e.g. on the curvature of the
boundary ∂Ω).

The main result of the present article concerns the solvability of the Dirichlet problem in u0 +W 1,1
0 (Ω) and

higher regularity of the solution in the sense of Lipschitz continuity, which we prove simultaneously, following
the strategy of Serrin’s work [22]. We here work under a radial structure condition, which allows for an easier
construction of barriers, and we work under a bounded oscillation assumption, which in some sense acts as a
substitute for the monotonicity assumption of the function Φ introduced above. We then obtain a necessary and
sufficient condition for the solvability of the Dirichlet problem, in terms of an integral condition as in (1.7), and
the precise statement is the following:

Theorem 1.1. Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0 which satisfies, for some

constants C1, C2 > 0,

C1s− C2 ≤ F (s) ≤ C2(1 + s) for all s ∈ R+,

F ′′(s)

F ′′(t)
≤ C2 for all s ≥ 1 and t ∈ [s/2, 2s].

(1.8)

Then the following statements are equivalent:

(i) For arbitrary domains Ω of class C1 satisfying an exterior ball condition and arbitrary prescribed boundary
values u0 ∈ C1,1(Ω) there exists a unique function u ∈ C0,1(Ω) solving (1.1).

(ii) The function F satisfies ∫ ∞
1

tF ′′(t) dt =∞. (1.9)

The proof of Theorem 1.1 will be divided into two parts. In Section 2 we first deal with the failure of the existence
of Lipschitz solutions to some regular boundary value problem of the type (1.1) if the assumption (1.9) is not
satisfied, by an adaptation of an example constructed by Finn [10] for the minimal surface equation. We here
emphasize that this non-existence result concerns the general solvability of the Dirichlet problem, and in fact,
some restricted solvability results, for specific (non-convex) domains and boundary values, might still be true
even if (1.9) is violated, see for instance ([8], Thm. 2.1). The rest of the paper is then devoted to the proof of
existence of Lipschitz solutions if assumption (1.9) holds. To this end, we provide in Section 3 some auxiliary
lemmata, before proceeding in Section 4 to the main proof, which consists of a number of steps. First, since
the existence of solutions cannot be addressed directly, we perform an approximation of the original Dirichlet
problem by a family of Dirichlet problems exhibiting a quadratic growth condition (thus, admitting solutions in
u0 +W 1,2

0 (Ω) by the direct method). Then, the passage to the limit yields a Lipschitz solution with boundary
values u0 (and not only a generalized solution) if we can show uniform W 1,∞(Ω) estimates for the solutions of
the approximate problems. This is achieved by the construction of appropriate barrier functions, in the tradition
of Serrin’s paper [22], and concludes the proof of Theorem 1.1. Finally, it is worth mentioning that the integral
condition (1.9) is trivially satisfied if F satisfies the aforementioned µ-ellipticity condition studied by Bildhauer
and Fuchs for some µ ∈ (1, 2]. Hence, in the scalar setting (to which the barrier techniques are limited), every
Dirichlet problem is solvable according to Theorem 1.1, which provides a connection to the first approach to
the minimization problem via relaxation described at the beginning of the introdcution. Moreover, we have
recovered that the Dirichlet problem in the prototypic example with coefficients (1.4) is in general solvable for
arbitrary regular domains and boundary values if and only if p ≤ 1 holds.

Remark 1.2. Concerning the assumptions on the domain and the function F , let us note:

(i) A domain Ω satisfies the exterior ball condition if there exists a number r0 > 0 such that for every
point x0 ∈ ∂Ω there is a ball Br0(x̃0) with Br0(x̃0) ∩ Ω = {x0}. Convexity or C1,1-regularity of the
domain are sufficient for the exterior ball condition (see e.g. [9], Thm. 1.9), thus, Theorem 1.1 holds in
particular for all convex domains of class C1 and for arbitrary domains of class C1,1.
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(ii) The assumption lims→0 F
′(s) = 0 ensures the ellipticity of equation (1.1) and the strict convexity of the

associated minimization problem. For convenience, we can further assume that lims→0 F
′′(s) = 0 holds,

which implies that s 7→ F (|s|) is of class C2(R). In fact, if this was not the case, we could regularize
it by a standard ε-mollifying kernel, which, for small ε > 0, preserves the structure assumptions (1.8)
and (1.9). The result of Theorem 1.1 is then recovered in the limit ε↘ 0, since all constants appearing in
the derivation of a Lipschitz bound on the solution do only depend on those, and most crucially not on F ′′

for small values.
(iii) For simplicity, but without loss of generality, we can restrict ourselves in the whole paper to functions F

which satisfy

F (0) = 0 and lim
s→∞

F (s)

s
= lim
s→∞

F ′(s) = 1, (1.10)

since the Dirichlet problem is invariant under addition and multiplication by a constant to F . Notice for the
second relation that the function s 7→ F ′(s) is monotonically increasing by convexity of F and therefore has
a limit as s→∞. Moreover, strict positivity and finiteness of this limit follow from (1.8) and L’Hôpital’s
rule, which also shows that the two limits in (1.10) coincide.

(iv) With a change of variables (and the normalization from the previous remark), we have∫ ∞
1

tF ′′(t) dt =

∫ 1

F ′(1)

(F ′)−1(s) ds.

Since the latter integral can be rewritten via the conjugate function

F ∗(s∗) := sup
s∈R+

{
ss∗ − F (s)

}
for s∗ ∈ R+

(which appears in the dual formulation of the Dirichlet problem in the sense of convex analysis) as F ∗(1)−
F ∗(F ′(1)), we observe that condition (1.9) is satisfied if and only if the conjugate function F ∗ explodes
when approaching the upper boundary of its domain {s∗ ∈ R+ : F ∗(s∗) <∞}, which in the setting (1.10)
is given by 1.

Let us note that the result of Theorem 1.1 could in fact be extended to less regular settings. One possibility is
to consider convex functions F which are of class C2 only for large values. Since precisely only large gradients
need to be avoided (uniformly) for the solutions to the approximative problems, such an asymptotic condition
is in general sufficient (see e.g. [2], Thm. 1.2 for a related result). Moreover, if one is interested only in the
existence of solutions in the space u0 + W 1,1

0 (Ω) (and not necessarily Lipschitz), one might work on domains
which are only piece-wise of class C1,1 and for more general (not Lipschitz) boundary values u0.

We conclude the introduction with some comments on the notation used throughout the paper. For a set S
in Rd we write ∂S for its topological boundary and S for its closure. Furthermore, for points in Rd we use bold
letters (like x and x0), and the open ball in Rd with center x0 and radius r is denoted by Br(x0). Concerning
function spaces, we denote by Ck the space of continuous functions with continuous derivatives up to order
k ∈ N0 and by Ck,α the related Hölder spaces, with Hölder exponent α ∈ (0, 1]. We further work with the
standard Lebesgue spaces Lp and Sobolev spaces W 1,p, for p ∈ [1,∞], and we abbreviate the respective norms
by ‖ · ‖p and ‖ · ‖1,p, when the domain of reference is clear from the context.

2. Non-existence of Lipschitz minimizers

We first show the necessity of assumption (1.9) for the existence of Lipschitz minimizers to any regular
boundary value problem to (1.1). In what follows, we provide a simple example of a regular domain Ω and of
regular boundary values u0 for which no Lipschitz solution (and in fact also no W 1,1 solution) to (1.1) exists.
The construction is motivated by a well-known counterexample due to Finn [10] for the minimal surface equation
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with a2(s) = (1 + s2)−
1
2 , and we shall also here work on the annulus Ω := B2(0) \ B1(0) and with boundary

values u0 which are constant on every connected component of ∂Ω, that is, we consider

− div
(
F ′(|∇u|) ∇u

|∇u|

)
= 0 in B2(0) \B1(0),

u = 0 on ∂B1(0),

u = M on ∂B2(0),

(2.1)

for some positive number M ∈ R+ (to be specified later). Moreover, we take F ∈ C2(R+) as in Theorem 1.1
satisfying ∫ ∞

1

tF ′′(t) dt = C0 (2.2)

for some positive constant C0 and, without loss of generality, also the normalization assumption (1.10). Thanks
to the strict convexity of F , the monotonicity of F ′ and the radial symmetry of both the domain and the
prescribed boundary values, the Lipschitz (or even W 1,1) solution to (2.1), if it exists, is radially symmetric
and can consequently be written as u(x) = U(|x|) for all x ∈ Ω and some (Lipschitz) function U : [1, 2] → R
with U(1) = 0 and U(2) = M . Thus, we also have ∇u(x) = U ′(|x|) x

|x| for almost all x ∈ Ω. In order to

find a representation formula of U , we take an arbitrary function Φ ∈ D([1, 2]) and extend it radially to a
function ϕ ∈ D(Ω) by setting ϕ(x) := Φ(|x|). Then we test the weak formulation of (2.1) with ϕ and find,
by ∇ϕ(x) = Φ′(|x|) x

|x| , the transformation to polar coordinates and the radial symmetry of both functions U
and Φ, the identity

0 =

∫
Ω

F ′(|∇u(x)|) ∇u(x)

|∇u(x)|
· ∇ϕ(x) dx

=

∫
Ω

F ′(|U ′(|x|)|) U
′(|x|)

|U ′(|x|)|
Φ′(|x|) dx

= dωd

∫ 2

1

rd−1F ′(|U ′(r)|) U
′(r)

|U ′(r)|
Φ′(r) dr,

where ωd denotes the Lebesgue measure of the unit ball in Rd (and hence, dωd is the (d − 1)-dimensional
Hausdorff measure of the unit sphere in Rd). Since Φ ∈ D([1, 2]) was arbitrary, we deduce in a first step

F ′(|U ′(r)|) U
′(r)

|U ′(r)|
=

c

rd−1

for some constant c and all r ∈ [1, 2]. By assumptions on F , we next observe that no sign change of U ′ may
occur, hence, U ′ is positive everywhere in [1, 2] and we have indeed

1 > F ′(U ′(r)) =
c

rd−1
,

hence also c ∈ (0, 1). After inverting the last identity we can integrate (keeping in mind the boundary condition
U(1) = 0) and find the desired representation formula

U(r) =

∫ r

1

(F ′)−1
( c

sd−1

)
ds

for all r ∈ [1, 2]. In turn, with the substitution c/sd−1 = z, that is, s = c
1
d−1 z

1
1−d , we obtain the following upper

bound on U :

U(r) =

∫ c/rd−1

c

c
1
d−1

1− d
z

d
1−d (F ′)−1(z) dz

=
c

1
d−1

d− 1

∫ c

c/rd−1

z
d

1−d (F ′)−1(z) dz ≤ 2d

c(d− 1)

∫ c

c/rd−1

(F ′)−1(z) dz.



MINIMIZERS FOR FUNCTIONALS WITH LINEAR GROWTH 1401

This provides indeed a nontrivial upper bound, as can be seen by a case distinction between small and large values
of c, in order to estimate the integral appearing on the right-hand side. In fact, in the case 0 < c ≤ F ′(1) < 1,
we find by monotonicity of (F ′)−1 ∫ c

c/rd−1

(F ′)−1(z) dz ≤ c(1− r1−d) < c,

while in the opposite case 0 < F ′(1) < c < 1 the change of variables with z = F ′(t) combined with (2.2) yields∫ c

c/rd−1

(F ′)−1(z) dz =

∫ (F ′)−1(c)

(F ′)−1(c/rd−1)

tF ′′(t) dt ≤
∫ ∞
0

tF ′′(t) dt ≤ F ′(1) + C0.

In conclusion, for all r ∈ [1, 2], we have derived the explicit upper bound

U(r) ≤ 2d

d− 1

(
1 +

C0

F ′(1)

)
,

which is a contradiction to U(2) = M for M ∈ R+ sufficiently large. Thus, we have just proven that if (1.9)
does not hold, then we can find a smooth domain Ω and smooth boundary values u0 such that all assumptions
of Theorem (1.1) are satisfied, and such that no Lipschitz solution to problem (1.1) exists.

Remark 2.1. More subtle non-existence results can be obtained, similarly as in the case of the minimal surface
equation. In particular, the class of regular domains which allow for non-existence results can be investigated.
Based on the previous construction and a comparison principle, one can in fact show that for every non-
pseudoconvex regular domain Ω there exist smooth prescribed boundary values u0 such that no Lipschitz
solution to the Dirichlet problem (1.1) exists, cp. [10].

3. Auxiliary lemmata

In order to proceed to the proof of the second implication of Theorem 1.1, we first derive some auxiliary
algebraic inequalities.

Lemma 3.1. Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0 which satisfies (1.8), (1.9)

and (1.10), and let a ∈ C1(R+) be given by (1.3). Then, there hold

C1s− C2 ≤ sF ′(s) ≤ s for every s > 0, (3.1)

lim
s→∞

sF ′′(s) = 0, (3.2)

lim
s→∞

s2a′(s) = −1. (3.3)

Proof. We start by observing some simple consequences of the strict convexity of F . As F ′ is monotonically
increasing, assumptions (1.8) and (1.10) give

C1s− C2 ≤ F (s) =

∫ s

0

F ′(r) dr ≤
∫ s

0

F ′(s) dr = sF ′(s),

which is the first inequality in (3.1). We further observe that the assumptions lims→0 F
′(s) = 0 and

lims→∞ F ′(s) = 1 yield immediately 0 < F ′(s) < 1 for all s ∈ (0,∞), which implies the second inequality
in (3.1), and moreover, F ′′ ∈ L1(0,∞) holds. Due to the integrability of F ′′, we next deduce the identity

a(s)s = F ′(s) = 1−
∫ ∞
s

F ′′(t) dt, (3.4)
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and since by the bounded oscillation assumption in (1.8) we have in particular

F ′′(s)s ≤ C2

∫ 2s

s

F ′′(t) dt

for all s > 0, also the claim (3.2) follows. Finally, differentiating (3.4) we find

a′(s)s+ a(s) = F ′′(s), (3.5)

and therefore, thanks to (3.2) and (1.10), we obtain

lim
s→∞

s2a′(s) = lim
s→∞

(sF ′′(s)− F ′(s)) = −1,

which is the last claim (3.3). �

Secondly, we define the integrand for a comparison functional, which will be used later for the construction
of appropriate barrier functions. To this end, we will essentially decrease the convexity for large values of the
original integrand F (note that the properties of the integrand for large values are the most crucial ones),
which from a heuristic point of view will make it harder to construct solutions (cp. the calculations for annular
domains in Sect. 2). However, it turns out that as long as the fundamental condition (1.9) for the new integrand
is satisfied, this construction is still possible, and it is precisely the weaker convexity for large values which will
allow for the verification of the barrier condition.

Lemma 3.2. Let F ∈ C2(R+) be a strictly convex function with lims→0 F
′(s) = 0 which satisfies (1.8), (1.9)

and (1.10). Then there exists a strictly positive, decreasing function g ∈ C(R+
0 ) with lims→∞ g(s) = 0 such that∫ ∞

0

tF ′′(t)g(t) dt =∞. (3.6)

Moreover, the function Fg defined via

Fg(s) :=

∫ s

0

(
1−

∫ ∞
r

F ′′(t)g(t) dt

)
dr (3.7)

belongs to C2(R+), is strictly convex and satisfies lims→0 F
′
g(s) = 0 and (1.8)–(1.10), with possibly different

constants C1 and C2.

Proof. We start by defining

g̃(s) :=
1

1 +
∫ s
0
tF ′′(t) dt

, (3.8)

and we note that g̃ is a continuous, strictly positive, strictly decreasing function on R+
0 , which is bounded from

above by 1 and which fulfills g̃(s)→ 0 as s→∞. Next, we define a constant

A :=

∫ ∞
0

F ′′(t)g̃(t) dt,

and due to the properties of F (more precisely, lims→0 F
′(s) = 0 and lims→∞ F ′(s) = 1) combined with

0 < g̃(s) ≤ 1 for s ∈ R+, we observe A ∈ (0, 1]. Finally, we define

g(s) :=
g̃(s)

A
, (3.9)
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which again is strictly positive, decreasing and with lims→∞ g(s) = 0. We now show that all statements of the
lemma are indeed fulfilled with such a choice of g. Let us start with (3.6). By the definition of g it directly
follows that for any s ≥ 0 we have∫ s

0

tF ′′(t)g(t) dt =
1

A

∫ s

0

tF ′′(t)

1 +
∫ t
0
rF ′′(r) dr

dt

=
1

A

∫ s

0

d

dt
ln

(
1 +

∫ t

0

rF ′′(r) dr

)
dt

=
1

A
ln

(
1 +

∫ s

0

rF ′′(r) dr

)
.

Since F ′′ and g are positive and due to the assumption (1.9), we find∫ ∞
0

tF ′′(t)g(t) dt = lim
s→∞

∫ s

0

tF ′′(t)g(t) dt

=
1

A
lim
s→∞

ln

(
1 +

∫ s

0

rF ′′(r) dr

)
=∞.

Hence, (3.6) holds. Next, we show the properties of the function Fg. By its definition (3.7) we immediately
obtain Fg(0) = 0. Moreover, we calculate its derivatives

F ′g(s) = 1−
∫ ∞
s

F ′′(t)g(t) dt, F ′′g (s) = F ′′(s)g(s) > 0, (3.10)

which shows the strict convexity and, via (3.6), the validity of (1.9) for Fg. Since by the definition of g we have∫ ∞
0

F ′′(t)g(t) dt = 1,

we find lims→0 F
′
g(s) = 0 and lims→∞ F ′g(s) = 1, thus also (1.10) is satisfied for Fg. Finally, concerning (1.8),

we note that the linear growth assumption follows immediately from the properties of F ′g, while the oscillation
assumption of F carries directly over to Fg (with constant C2 + 4C2

2 instead of C2). This concludes the proof
of the lemma. �

4. Proof of Theorem 1.1

We now prove the second (and main) implication of Theorem 1.1, namely that assumption (1.9) implies
the general solvability of the Dirichlet problem (1.1). To this end, we perform an approximation procedure
and introduce suitable approximation problems to (1.1), and we will then prove uniform estimates for their
minimizers. This is indeed sufficient to recover the claim with the passage to the limit since the strict convexity
of our functional implies uniqueness of minimizers (if a minimizer exists in the desired Dirichlet class at all). In
order to follow this strategy, we define, for arbitrary ε > 0, the approximate functionals

w 7→ ε

2

∫
Ω

|∇w|2 dx+

∫
Ω

F (|∇w|) dx

and look for minimizers uε in the Dirichlet class u0 +W 1,2
0 (Ω), which is equivalent to looking for weak solutions

to the following approximate Dirichlet problem to (1.1)

−ε∆uε − div
(
a(|∇uε|)∇uε

)
= 0 in Ω,

uε = u0 on ∂Ω.
(4.1)

Note that for the rest of the paper, we suppose, without explicit mentioning, that the function F satis-
fies (1.8), (1.9) and (1.10), and that a is related to F via (1.3).
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Due to the application of the direct method of the calculus of variations to the approximate functionals (or
the theory of monotone operators to the approximate Dirichlet problems), we obtain the existence of a unique
solution uε ∈ u0 +W 1,2

0 (Ω). In addition, in view of the regularity of the prescribed boundary values, we observe
that we have uε ∈ C1,α(Ω) for some α > 0, see e.g. [12], and by difference quotient techniques we also have
uε ∈W 2,2

loc (Ω). Our main goal is to show that the following uniform estimate holds

‖∇uε‖∞ ≤ C(Ω,F, u0) (4.2)

with some constant C(Ω,F, u0) being independent of ε. Indeed, having (4.2) in hands, we first find a subsequence
converging weakly-∗ to a function u in u0+W 1,∞

0 (Ω). Then, when passing to the limit ε→ 0 in the approximate
functionals (via lower semicontinuity) or in the approximate Dirichlet problems (4.1) (via the theory of monotone
operators), the limit u ∈ u0 +W 1,∞

0 (Ω) turns out to be the desired solution. As it is actually Lipschitz regular,
Theorem 1.1 is therefore proven, provided that we can show that the crucial uniform estimate (4.2) holds.

4.1. Reduction to the boundary estimates

We first show that, in order to establish (4.2), it is actually sufficient to control the normal derivatives of the
solutions uε to the approximate problems (4.1) uniformly on the boundary ∂Ω. To this end, we start by deriving
some standard uniform estimates and denote by C an universal constant depending only on F , u0 and Ω, but
not on ε. For simplicity of notation, we shall drop from now on the index ε and write u instead of uε. Testing
the weak formulation to (4.1) with the function u− u0 ∈W 1,2

0 (Ω), keeping in mind relation (1.3) and applying
Hölder’s inequality, we obtain

ε‖∇u‖22 +

∫
Ω

F ′(|∇u|)|∇u|dx ≤ ε‖∇u‖2‖∇u0‖2 +

∫
Ω

F ′(|∇u|)|∇u0|dx.

Hence, using Young’s inequality and (3.1), we deduce

ε‖∇u‖22 + ‖∇u‖1 ≤ C. (4.3)

Similarly, testing the weak formulation to (4.1) with the functions (u∓‖u0‖∞)± (note that these functions are
admissible since (u∓ ‖u0‖∞)± = 0 holds on ∂Ω), we get

ε

∫
Ω

|∇(u∓ ‖u0‖∞)±|2 dx+

∫
Ω

a(|∇u|)|∇(u∓ ‖u0‖∞)±|2 dx = 0.

Thus, it follows that
‖u‖∞ ≤ ‖u0‖∞ ≤ C. (4.4)

To proceed further, we identify the equation for |∇u|, which is possible due to the a priori (non-uniform)
regularity of u. Applying ∂

∂xk
=: Dk to (4.1), multiplying the result by Dku and summing over k = 1, . . . , d, we

obtain

0 = −ε
d∑
k=1

Dku∆Dku−
d∑

k,i=1

DkuDiDk

(
F ′(|∇u|) Diu

|∇u|

)

= −ε
2

∆|∇u|2 + ε|∇2u|2 −
d∑

k,i=1

Di

(
Dk

(
F ′(|∇u|) Diu

|∇u|

)
Dku

)

+

d∑
k,i=1

DikuDk

(
F ′(|∇u|) Diu

|∇u|

)

= −ε
2

∆|∇u|2 −
d∑

k,i=1

Di

(
Aik(∇u)Dk|∇u|

)
+ ε|∇2u|2 + F ′′(|∇u|)|∇|∇u||2 + F ′(|∇u|) |∇

2u|2 − |∇|∇u||2

|∇u|
,
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where

Aik(∇u) :=

(
|∇u|F ′′(|∇u|)DiuDku

|∇u|2
+ F ′(|∇u|)δik − F ′(|∇u|)

DiuDku

|∇u|2

)
·

Consequently,

−ε
2

∆|∇u|2 −
d∑

k,i=1

Di (Aik(∇u)Dk|∇u|) ≤ 0.

Since A is positively definite, we see that |∇u|2 is a sub-solution to a linear elliptic equation and therefore
satisfies the minimum principle, i.e.,

‖∇u‖L∞(Ω) ≤ ‖∇u‖L∞(∂Ω).

In addition, since u = u0 on ∂Ω, this implies

‖∇u‖L∞(Ω) ≤ ‖∇u0‖L∞(Ω) +

∥∥∥∥ ∂u∂n
∥∥∥∥
L∞(∂Ω)

,

where ∂u
∂n denotes the normal derivative of u on ∂Ω. Thus, in order to check (4.2) it remains to show that∥∥∥∥ ∂u∂n

∥∥∥∥
L∞(∂Ω)

≤ C(Ω,F, u0). (4.5)

The rest of the paper is devoted to the proof of (4.5), which will be shown via the barrier function technique.

4.2. Prototype barrier function

From now on, we fix the functions g and Fg according to Lemma 3.2 and define

ag(s) :=
F ′g(s)

s
for s ∈ R+. (4.6)

Clearly, all statements of Lemma 3.1 hold also for Fg and ag with possibly different constants C1, C2 > 0.
Moreover, F ′g is a strictly monotonically increasing mapping from [0,∞) to [0, 1) with continuous inverse. With
the help of Fg we now define our prototype barrier function.

Let r0 > 0 and δ ∈ (0, 1) be arbitrary. We set for all r ≥ r0

bδr0(r) := (F ′g)
−1
(

(1− δ)d−1rd−10

rd−1

)
· (4.7)

It can be easily seen that bδr0 ∈ C
1[r0,∞) is a non-negative decreasing function. Finally, for all x ∈ Rd \Br0(0),

we define

ωδr0(x) :=

∫ |x|
r0

bδr0(r) dr. (4.8)

By construction, ωδr0 is a minimizer of the functional with integrand Fg and equivalently a solution to the

associated Dirichlet problem on the set Rd \Br0(0), but moreover, it also turns out to be super-harmonic on a
subset of it.

Lemma 4.1. For every r0 > 0 and δ ∈ (0, 1) the function ωδr0 defined in (4.8) satisfies

−div
(
ag(|∇ωδr0 |)∇ω

δ
r0

)
= 0 in Rd \Br0(0),

ωδr0 = 0 on ∂Br0(0).
(4.9)

Furthermore, there holds

−∆ωδr0(x) ≥ 0 for all x ∈ Rd \Br0(0) such that a′g(b
δ
r0(|x|)) ≤ 0. (4.10)
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Proof. Using the definition of ωδr0 , we immediately see that ωδr0 vanishes on ∂Br0(0), and we further observe

∇ωδr0(x) = bδr0(|x|) x

|x|
and |∇ωδr0(x)| = bδr0(|x|). (4.11)

Via the definition of bδr0 , we thus have

F ′g(|∇ωδr0(x)|) = F ′g(b
δ
r0(|x|)) =

(1− δ)d−1rd−10

|x|d−1
.

Consequently, for all |x| > r0 there holds

div
(
ag(|∇ωδr0(x)|)∇ωδr0(x)

)
= div

(
F ′g(|∇ωδr0(x)|)

∇ωδr0(x)

|∇ωδr0(x)|

)

= (1− δ)d−1rd−10 div

(
x

|x|d

)
= 0

(4.12)

and the solution property (4.9) follows. Finally, we check the super-harmonicity property of ωδr0 . In view of (4.9)
and (4.11) we get

0 = −div
(
ag(|∇ωδr0(x)|)∇ωδr0(x)

)
= −ag(|∇ωδr0(x)|)∆ωδr0(x)−∇ag(|∇ωδr0(x)|) · ∇ωδr0(x)

= −ag(bδr0(|x|))∆ωδr0(x)− a′g(bδr0(|x|))bδr0(|x|)(bδr0)′(|x|).

Therefore, since the functions ag and bδr0 are positive and bδr0 is monotonically decreasing, also the second
claim (4.10) follows. �

Thus, ωδr0 is a good prototype super-solution to (4.1) on a certain set. However, due to the possibly non-
constant prescribed boundary values u0, it must be corrected, which will be done in the next step.

4.3. True barrier function

Here, we correct ωδr0 via an affine function such that it will finally give us the desired super-solution property
to (4.1). For this purpose, let k ∈ Rd, c ∈ R, r0 > 0 and δ ∈ (0, 1) be arbitrary. For all x ∈ Rd \ Br0(0), we
define

vδ,r0k,c (x) := ωδr0(x) + k · x + c. (4.13)

The key properties of the function vδ,r0k,c are formulated in the following lemma.

Lemma 4.2. For every K > 0 there exists a number M > 0 depending only on F and K such that for all
k ∈ BK(0), all c ∈ R, all δ ∈ (0, 1) and all r0 > 0 the function vδ,r0k,c defined in (4.13) satisfies the inequalities

−div
(
a(|∇vδ,r0k,c (x)|)∇vδ,r0k,c (x)

)
≥ 0,

−∆vδ,r0k,c (x) ≥ 0 (4.14)

for all x ∈ Rd \Br0(0) fulfilling bδr0(|x|) ≥M with bδr0 given by (4.7).

Proof. First, it is evident that for all x ∈ Rd \Br0(0)

∇vδ,r0k,c (x) = ∇ωδr0(x) + k = bδr0(|x|) x

|x|
+ k. (4.15)
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Consequently, a direct computation leads to

|∇vδ,r0k,c (x)|2 = (bδr0)2(|x|) + |k|2 + 2bδr0(|x|)k · x
|x|

,

∇|∇vδ,r0k,c (x)| =
bδr0(|x|)(bδr0)′(|x|) x

|x| + (bδr0)′(|x|) x
|x|

k·x
|x| + bδr0(|x|)

(
k
|x| −

(k·x)x
|x|3

)
|∇vδ,r0k,c (x)|

·

Hence, using these identities, we obtain the following auxiliary results that will be used later

∇|∇vδ,r0k,c (x)| · x

|x|
= (bδr0)′(|x|)

bδr0(|x|) + k·x
|x|

|∇vδ,r0k,c (x)|
(4.16)

and

∇|∇vδ,r0k,c (x)| · k =
bδr0(|x|)(bδr0)′(|x|)x·k

|x| + (bδr0)′(|x|) (k·x)2
|x|2 + bδr0(|x|)

( |k|2
|x| −

(k·x)2
|x|3

)
|∇vδ,r0k,c (x)|

· (4.17)

Let us now evaluate the super-solution and super-harmonicity properties. To this end, we introduce the
abbreviation

L(x) := −div
(
a(|∇vδ,r0k,c (x)|)∇vδ,r0k,c (x)

)
= −∇a(|∇vδ,r0k,c (x)|) · ∇vδ,r0k,c (x)− a(|∇vδ,r0k,c (x)|) div

(
∇vδ,r0k,c (x)

)
=: L1(x) + L2(x).

Employing (4.15), (4.16) and (4.17), we first calculate

L1(x) = −a′(|∇vδ,r0k,c (x)|)∇|∇vδ,r0k,c (x)| · ∇vδ,r0k,c (x)

= −a′(|∇vδ,r0k,c (x)|)∇|∇vδ,r0k,c (x)| ·
[
bδr0(|x|) x

|x|
+ k

]
= −

a′(|∇vδ,r0k,c (x)|)
|∇vδ,r0k,c (x)|

[
bδr0(|x|)(bδr0)′(|x|)

(
bδr0(|x|) +

k · x
|x|

)
+ bδr0(|x|)(bδr0)′(|x|)x · k

|x|
+ (bδr0)′(|x|) (k · x)2

|x|2
+ bδr0(|x|)

(
|k|2

|x|
− (k · x)2

|x|3

)]
=
a′(|∇vδ,r0k,c (x)|)
|∇vδ,r0k,c (x)|

(bδr0)′(|x|)

(
|x| −

bδr0(|x|)
(bδr0)′(|x|)

)(
|k|2

|x|
− (k · x)2

|x|3

)
− a′(|∇vδ,r0k,c (x)|)(bδr0)′(|x|)|∇vδ,r0k,c (x)|.

Next, taking into account once again (4.15), the relation (4.11) and the fact that ωδr0 solves equation (4.9), we
find

L2(x) = −a(|∇vδ,r0k,c (x)|) div

(
ag(|∇ωδr0(x)|)∇ωδr0(x)

ag(|∇ωδr0(x)|)

)
=
a(|∇vδ,r0k,c (x)|)a′g(|∇ωδr0(x)|)

ag(|∇ωδr0(x)|)
∇|∇ωδr0(x)| · ∇ωδr0(x)

=
a(|∇vδ,r0k,c (x)|)a′g(bδr0(|x|))

ag(bδr0(|x|))
(bδr0)′(|x|)bδr0(|x|).
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In conclusion, after a simple algebraic manipulation, we have

L(x) =
a′(|∇vδ,r0k,c (x)|)
|∇vδ,r0k,c (x)|

(bδr0)′(|x|)
(
|x| −

bδr0(|x|)
(bδr0)′(|x|)

)( |k|2
|x|
− (k · x)2

|x|3
)

− a(|∇vδ,r0k,c (x)|)(bδr0)′(|x|)
(
a′(|∇vδ,r0k,c (x)|)|∇vδ,r0k,c (x)|

a(|∇vδ,r0k,c (x)|)
−
a′g(b

δ
r0(|x|))

ag(bδr0(|x|))
bδr0(|x|)

)
=: L̃1(x) + L̃2(x).

We now focus on estimating the resulting terms and we will show that both are non-negative in a suitably
chosen set. To this end, we first relate bδr0(|x|) and |∇vδ,r0k,c (x)| and provide some basic estimates, for sufficiently

large values of bδr0(|x|). Since |k| ≤ K, we deduce from (4.15) that for M1 := 2K > 0 there holds

bδr0(|x|) ≥M1 =⇒ bδr0(|x|) ≤ 2|∇vδ,r0k,c (x)| ≤ 4bδr0(|x|). (4.18)

In turn, relying on (3.3) (for both functions a and ag), we find a constant M2 ≥ M1 depending only on F , g
and K such that

bδr0(|x|) ≥M2 =⇒


(bδr0)2(|x|)a′g(bδr0(|x|)) ≤ −1

2

|∇vδ,r0k,c (x)|2a′(|∇vδ,r0k,c (x)|) ≤ −1

2

=⇒ a′g(b
δ
r0(|x|)) < 0 and a′(|∇vδ,r0k,c (x)|) < 0. (4.19)

This implication now allows us to deduce the positivity of L̃1(x) and the super-harmonicity of vδ,r0k,c (x) (thus, the

second claim of the lemma), provided that bδr0(|x|) ≥ M2 holds. In fact, since bδr0 is a non-negative decreasing
function and by using the Cauchy-Schwarz inequality, we see that the first and second expression in large brackets
in the definition of L̃1(x) are non-negative. Thus, in view of (4.19) and once again the monotonicity of bδr0 ,

the sign of L̃1(x) is non-negative. Secondly, (4.15) yields ∆vδ,r0k,c (x) = ∆ωδr0(x), thus the super-harmonicity

of vδ,r0k,c (x) follows from (4.10) and (4.19). In conclusion, we have the implication

bδr0(|x|) ≥M2 =⇒ −∆vδ,r0k,c (x) ≥ 0 and L̃1(x) ≥ 0. (4.20)

Finally, we discuss the sign of L̃2(x). Using (3.5), (3.4), (3.10) and (4.6), we evaluate

a′(s)s

a(s)
=
F ′′(s)

a(s)
− 1 =

sF ′′(s)

1−
∫∞
s
F ′′(t) dt

− 1,

a′g(s)s

ag(s)
=
sF ′′g (s)

F ′g(s)
− 1 =

s g(s)F ′′(s)

1−
∫∞
s
g(t)F ′′(t) dt

− 1.

In this way the expression for L̃2(x) reduces to

L̃2(x) = −a(|∇vδ,r0k,c (x)|)(bδr0)′(|x|)×

 |∇vδ,r0k,c (x)|F ′′(|∇vδ,r0k,c (x)|)
1−

∫∞
|∇vδ,r0k,c (x)| F

′′(t) dt
−
bδr0(|x|)g(bδr0(|x|))F ′′(bδr0(|x|))

1−
∫∞
bδr0

(|x|) g(t)F ′′(t) dt

 · (4.21)

For bδr0(|x|) ≥M2, we then find, employing (4.18), the oscillation assumption (1.8) on F and the fact that g is
a positive and monotonically decreasing function, the inequalities

|∇vδ,r0k,c (x)|F ′′(|∇vδ,r0k,c (x)|) ≥ 1

2C2
bδr0(|x|)F ′′(bδr0(|x|))
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and ∫ ∞
|∇vδ,r0k,c (x)|

F ′′(t) dt ≥ 1

2C2g(bδr0(|x|))

∫ ∞
bδr0 (|x|)

g(t)F ′′(t) dt.

At this stage, we select a number M ≥M2 depending only on F , g and K such that 2C2g(M) ≤ 1 holds which
is possible because of g(t) → 0 as t → ∞, according to Lemma 3.2. With this choice and the integrability
of F ′′ over R+ (with integral equal to 1), we see easily that the expression in large brackets on the right-hand
side of (4.21) is non-negative, whenever bδr0(|x|) ≥ M holds. Consequently, using also the facts that bδr0 is
monotonically decreasing and that a is non-negative (thanks to (1.3) and the non-negativity of F ′), we arrive
at the implication

bδr0(|x|) ≥M =⇒ L̃2(x) ≥ 0.

Combined with (4.20), we finally conclude that L(x) ≥ 0 holds for all x ∈ Rd \Br0(0) with bδr0(|x|) ≥M , and
the proof of the lemma is complete. �

4.4. Estimates of the normal derivatives

Once the true barrier function from Lemma 4.2 is at our disposal, we can return to study the normal derivative,
with the aim to prove an estimate of the form (4.5).

The strategy of proof is as follows: by adjusting the true barrier function from Lemma 4.2 to our needs, we
construct in a first step a (local upper) barrier function relative to the Dirichlet problem (1.1) for an arbitrary
given boundary point x0. This means that we specify a relative neighborhood U(x0) of x0 in Ω and a local
Lipschitz continuous function v (which will be an affine perturbation of the function from Lemma 4.2) defined
on U(x0) such that

(i) v is a super-solution of the equation in U(x0), i.e., −div(a(|∇v|)∇v) ≥ 0 in U(x0),

(ii) v lies above the solution u on ∂U(x0) and coincides with it in x0, i.e. v ≥ u on ∂U(x0) and v(x0) = u(x0).

Via a comparison principle applied to the solution u and the super-solution v, we can finally estimate the normal
derivative of u at x0 by the sup-norm of the derivative of the barrier function v (which in turn is bounded in
terms of the data) and arrive at the assertion (4.5).

Now we start with the rigorous derivation of the estimates for
the normal derivative. Since Ω is by assumption of class C1 and
satisfies an exterior ball condition, we find positive constants r0,
L, Ld and N depending only on Ω such that we can suppose
that an arbitrary boundary point x0 ∈ ∂Ω is given, after an or-
thogonal transformation, by x0 = (0,−r0) (we use the notation
x = (x′, xd)) and that we have the inclusions

Γ := {x ∈ Rd : |x′| < L, f(x′) = xd}
⊂ ∂Ω,

Ω+ := {x ∈ Rd : |x′| < L, f(x′)− Ld < xd < f(x′)}
⊂ Ω,

Ω− := {x ∈ Rd : |x′| < L, f(x′) < xd < f(x′) + Ld}
⊂ Rd \Ω,

with a function f ∈ C1(−L,L)d−1 fulfilling ‖f‖1,∞ ≤ N , f(0′) =
−r0 and Dif(0) = 0 for all i = 1, . . . , d− 1.

In addition, we may suppose that r0 is so small that Br0(0) ⊂ Ω− holds and that

M∗(|x| − r0) ≥ |x− x0|2 (4.22)
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is satisfied for all x ∈ Γ , for some constant M∗ depending only on Ω and r0 (this can for example be seen easily
if also B2r0(0′, r0) ⊂ Ω− holds).

In this setting, for an arbitrary δ ∈ (0, 1) (to be specified later on) we can work with the functions bδr0 and ωδr0
introduced in (4.7) and (4.8), and with the function vδ,r0k,c from (4.13) for the specific choices k := ∇u0(x0) and
c = u0(x0)−∇u0(x0) · x0, that is, with

vδ,r0k,c (x) = ωδr0(x) +∇u0(x0) · (x− x0) + u0(x0). (4.23)

Note that vδ,r0k,c is well defined outside the ball Br0(0) and so it is well-defined also in Ω+. In addition, it is
clear that |k| ≤ ‖∇u0‖∞ holds, hence, we can choose K := ‖∇u0‖∞ and fix the number M (depending only
on F and this K) according to Lemma 4.2. Furthermore, since (F ′g)

−1 maps [0, 1) to [0,∞) and is monotonically
increasing, we can fix a number δmax ∈ (0, 1/2) such that

(F ′g)
−1(s) ≥ max

{
M,M∗‖u0‖1,∞

}
for all s ∈

[
(1− 2δmax)d−1, 1

)
. (4.24)

From now on, we will consider arbitrary δ ∈ (0, δmax). Then, from (4.7) and (4.24) it follows that

r0 < |x| ≤
(1− δmax)r0

1− 2δmax
=: rmax =⇒ bδr0(|x|) ≥M. (4.25)

Consequently, using Lemma 4.2, we see that vδ,r0k,c is a super-solution to (4.1) in the set (Brmax
\ Br0) ∩ Ω+,

which is the first crucial property of an upper barrier.
Next, we want to identify a part of Γ on which vδ,r0k,c (x) ≥ u(x) = u0(x) holds, that is, where

ωδr0(x) +∇u0(x0) · (x− x0) + u0(x0)− u0(x) ≥ 0. (4.26)

From Taylor expansion of u0 and the C1,1-regularity assumption on u0 we know that

|u0(x)− u0(x0)−∇u0(x0) · (x− x0)| ≤ ‖u0‖1,∞|x− x0|2,

so to verify (4.26) it is enough to check where

ωδr0(x)− ‖u0‖1,∞|x− x0|2 ≥ 0 (4.27)

holds. Using the definitions of bδr0 in (4.7) and of ωδr0 in (4.8), combined with the fact that (F ′g)
−1 is monotonically

increasing, we have for all x ∈ Γ

ωδr0(x) ≥ (|x| − r0)(F ′g)
−1
(

(1− δ)d−1rd−10

|x|d−1

)
·

Consequently, in order to guarantee (4.27) and thus (4.26) it is sufficient, in view of (4.22), to have

(F ′g)
−1
(

(1− δ)d−1rd−10

|x|d−1

)
≥M∗‖u0‖1,∞,

which is indeed true for all x with r0 ≤ |x| ≤ rmax, by the choices of the parameter δmax in (4.24) and of the
radius rmax in (4.25). Thus, we have verified

u(x) ≤ vδ,r0k,c (x) for all x ∈ Γ with r0 ≤ |x| ≤ rmax. (4.28)

Finally, in order to complete the second property of the barrier function, namely that it lies above the solution
on all of the boundary of a relative neighborhood of x0, we still need to take care of the values of vδ,r0k,c (x)
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inside of Ω (but close to x0). This shall now be accomplished by suitable choices of a local neighborhood and
of δ ∈ (0, δmax).

First, since r0 and rmax are already fixed (in dependence on Ω, F
and u0), we can zoom in the neighborhood of x0 and find two
constants L∗ and L∗d ≤ Ld sufficiently small (depending again
only on the data) such that

Γ ∗ := {x ∈ Rd : |x′| < L∗, f(x′) = xd}
⊂ ∂Ω,

Ω∗+ := {x ∈ Rd : |x′| < L∗, f(x′)− L∗d < xd < f(x′}
⊂ Ω ∩ (Brmax \Br0),

Ω∗− := {x ∈ Rd : |x′| < L∗, f(x′) < xd < f(x′) + Ld}
⊂ Rd \Ω.

By these choices, due to (4.25) and (4.28), vδ,r0k,c is a super-solution

to (4.1) in the relative neighborhood Ω∗+ of x0 and satisfies vδ,r0k,c ≥
u on Γ ∗, for all δ < δmax. Our goal is to show vδ,r0k,c ≥ u on the
remaining part of ∂Ω∗+, and this is indeed the point, where we
shall use the assumption (1.9).

In view of the choices of r0 and Ω∗+ there exists η > 0 independent of δ such that for all x ∈ ∂Ω∗+ \ Γ ∗ there
holds

|x| ≥ r0 + η.

Hence, from the definition of vδ,r0k,c in (4.23) and of ωδr0 in (4.8) we find

vδ,r0k,c (x) ≥
∫ r0+η

r0

bδr0(r) dr − C∗(Ω)‖u0‖1,∞. (4.29)

On the other hand, we know ‖u‖∞ ≤ ‖u0‖∞ from (4.4). Therefore, in order to show that vδ,r0k,c ≥ u on ∂Ω∗+, it
is enough to verify that we can choose δ ∈ (0, δmax) in such way that∫ r0+η

r0

bδr0(r) dr ≥ C∗(Ω)‖u0‖1,∞ + ‖u0‖∞. (4.30)

Using the definition of bδr0 in (4.7) and the substitution formula, we deduce that∫ r0+η

r0

bδr0(r) dr =

∫ r0+η

r0

(F ′g)
−1
(

(1− δ)d−1rd−10

rd−1

)
dr

=
(1− δ)r0
d− 1

∫ (1−δ)d−1

(1−δ)d−1r
d−1
0

(r0+η)d−1

(F ′g)
−1(s)s−

d
d−1 ds.

If we now introduce

α := min

{
r0

d− 1
, 1− rd−10

(r0 + η)d−1

}
(depending only on Ω, d, F and u0, as r0 and η are already fixed), the above integral can be estimated by∫ r0+η

r0

bδr0(r) dr ≥ α
∫ (1−δ)d−1

1−α
(F ′g)

−1(s) ds = α

∫ (F ′g)
−1((1−δ)d−1)

(F ′g)
−1(1−α)

tF ′′g (t) dt
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(note that the integral on the right-hand side is negative whenever 1−α > (1− δ)d−1 holds, hence, the previous
inequality is trivially satisfied in this case). Thanks to Lemma 3.2 (more precisely, by (1.10) and (1.9) for Fg),
we know first that (F ′g(s))

−1 →∞ as s→ 1 and secondly that∫ ∞
1

tF ′′g (t) dt =∞.

Therefore, we can fix δ ∈ (0, δmax) (depending only on Ω, d, F and u0) such that∫ r0+η

r0

bδr0(r) dr ≥ α
∫ (F ′g)

−1((1−δ)d−1)

(F ′g)
−1(1−α)

tF ′′g (t) dt ≥ C∗(Ω)‖u0‖1,∞ + ‖u0‖∞

holds, which yields the desired inequality (4.30). Therefore, we have proved

vδ,r0k,c ≥ u on ∂Ω∗+ (4.31)

and have finished the construction of the barrier function on the relative neighborhood Ω∗+ of x0.
It now remains to establish the bound (4.5) for the normal derivative of u, locally at x0, using the properties

of the barrier function vδ,r0k,c . For this purpose, we recall that vδ,r0k,c is a super-solution to (4.1) and that u is a
solution to (4.1) in Ω∗+, Thus, in view of (4.31) we obtain from the comparison principle for elliptic equations
in divergence form

vδ,r0k,c ≥ u in Ω∗+.

This now allows to estimate the normal derivative. Indeed, for any 0 < h ≤ L∗d we have x := (0′,−r0−h) ∈ Ω∗+,

and therefore, taking into account also vδ,r0k,c (x0) = u(x0), we find the following estimate

u(x0)− u(x)

h
=
vδ,r0k,c (x0)− vδ,r0k,c (x)

h
+
vδ,r0k,c (x)− u(x)

h

≥
vδ,r0k,c (x0)− vδ,r0k,c (x)

h
≥ −‖vδ,r0k,c ‖1,∞ ≥ −C(Ω,F, u0).

Thus, recalling that the outer unit normal to ∂Ω in x0 is given by en, we obtain in the passage h → 0+ the
lower bound

∂u(x0)

∂n
≥ −C(Ω,F, u0).

Repeating the whole procedure with ωδr0 replaced by −ωδr0 , we get the opposite inequality

∂u(x0)

∂n
≤ C(Ω,F, u0).

The latter two inequalities imply (4.5), which in turn, due to the reasoning in Section 4.1, provides

‖∇u‖∞ ≤ C(Ω,F, u0)

(which, as the index ε was dropped, is precisely the uniform bound (4.2)). This finishes the proof of the
theorem. ut
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