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CLOSED A-p QUASICONVEXITY AND VARIATIONAL PROBLEMS

WITH EXTENDED REAL-VALUED INTEGRANDS

Adam Prosinski1,∗

Abstract. This paper relates the lower semi-continuity of an integral functional in the compensated
compactness setting of vector fields satisfying a constant-rank first-order differential constraint, to closed
A-p quasiconvexity of the integrand. The lower semi-continuous envelope of relaxation is identified for
continuous, but potentially extended real-valued integrands. We discuss the continuity assumption and
show that when it is dropped our notion of quasiconvexity is still equivalent to lower semi-continuity
of the integrand under an additional assumption on the characteristic cone of A.
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1. Introduction

A classical problem in the Calculus of Variations is determining sequential lower semi-continuity criteria for
functionals of the form V 7→

∫
Ω
F (V (x)) dx and investigating the different notions of convexity that arise. The

full statement of such a problem involves specifying the assumptions, that are essentially of two kinds. One needs
information on the integrand F – its regularity and growth rate. Secondly, the class of admissible vector fields V
needs to be defined, together with the relevant notion of convergence Vj → V under which the sequential lower
semi-continuity is to be investigated. A typical setting is when one imposes p-growth conditions (from above
and/or below) on a lower semi-continuous integrand F and considers weak Lp convergence of vector fields Vj .
However, applications often impose a natural restriction on the type of test vector fields considered, which
means that one passes to the so-called compensated compactness setting and this usually relaxes the conditions
needed for lower semi-continuity.

Extensive research has been done in the setting of gradients of Sobolev functions, that is when V = ∇u for
some u ∈ W1,p and the sequential lower semi-continuity is tested on ∇uj ⇀ ∇u weakly in Lp. Then the key
condition is quasiconvexity and its variants – there is an abundance of results in this framework available in
the literature. We do not attempt to give a comprehensive list of such, and instead we refer the reader to [12]
and the bibliography therein for a good overview of the theory. However we feel obliged to give at least an
example of one of the classical results, in this generality, due to Acerbi and Fusco. In [1] they have shown that
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if f : Rn × Rm × Rn×m → R is a Carathéodory integrand satisfying, for some p ≥ 1,

0 ≤ f(x, s, ξ) ≤ a(x) + C(|s|p + |ξ|p) for every x ∈ Rn, s ∈ Rm, ξ ∈ Rn×m,

with some non-negative constant C and a non-negative, locally integrable function a, then for any open set
Ω ⊂ Rn the functional u 7→

∫
Ω
f(x, u,∇u) dx is sequentially weakly (weakly* if p =∞) lower semi-continuous

on W1,p(Ω;Rm) if and only if for almost every x for all s the function ξ 7→ f(x, s, ξ) is quasiconvex. It is worth
pointing out that this result has been improved upon shortly after by Marcellini in [28]. There the author allows
for slightly more general growth conditions and presents an alternative approach – for details we refer the reader
to the original paper. In the subsequent years there has been a number of other improvements, and one that is
particularly relevant for the present work is [26], where the upper growth bounds are dropped and the integrand
is allowed to take the value +∞. Other example of relaxation results with extended real-valued integrands (in
the case of gradients) may also be found in [6], or [21,22] where this is done in connection to elasticity. Finally,
let us remark that quasiconvexity is normally considered in the multi-dimensional case n,m > 1, i.e. when the
gradient is a matrix. If either the source’s or the target’s dimension is equal to 1, quasiconvexity reduces to
standard convexity (see for example Thm. 1.7 in [12]), thus making this a very special case.

To show the similarity between the gradient case and the one studied here observe that requiring that all
the vector fields V , Vj be gradients is equivalent to requiring that they be zeros of the differential operator
curl (for a matrix this means that every row is curl-free). Here instead of curl we consider a general first-order
constant-rank differential operatorA (see the next section for precise definitions) and we require thatAVj → AV
strongly in W−1,p(Ω), which is a natural relaxation of AVj = AV = 0. The setting with a general differential
operator A has been previously studied in the literature, foundations for it were developed by a number of
authors, including the works of Dacorogna [11], Murat [31] and Tartar [41] to name a few. A paper that is
particularly relevant to the present work is [20] by Fonseca and Müller. In fact many of the preliminary results
on the structure of A-free vector fields that we use here come from that paper. The main point of the present
work is to remove the upper growth bounds on the integrand considered, in particular, to allow F to take the
value +∞.

Besides [20] there are two other papers that must be quoted here. First is [18] which relaxes the growth
conditions to non-standard (p, q) ones with p < q in the spirit of [19] (p > 1) and [25] (p = 1) in the gradient
case. It is interesting to note at this point that due to the presence of a gap between the upper growth bound put
on the integrand (q-growth) and the class of admissible test functions (Lp) there is a certain choice to be made
when defining the functional V 7→

∫
Ω
f(V (x)) dx. One may simply consider the pointwise composition f(V (x))

and then deal with the fact that the integral in question need not be finite for a general V ∈ Lp. Second possible
route is to adopt a Lebesgue−Serrin type definition, that is approximate (in the Lp sense) the vector field
V by smooth vector fields Vn of appropriate growth (that is in Lq) and consider inf

{
lim inf

∫
Ω
f(Vn(x)) dx

}
.

Naturally, the limits may still turn out to be infinite, but now each integral
∫
Ω
f(Vn(x)) dx is well defined and

finite. This is the approach used in [18] and we refer as well to [29], where its validity is discussed in the gradient
case. Finally, when discussing non-standard growth conditions it is also worth noting that there are also results
available for integrands with | · |p(x) growth where the exponent p varies with x as well as for integrands growing
faster than any power. Examples of such results may be found in [38,40] respectively.

Another important improvement of [20] particularly relevant to the present work was made in [8]. While [20]
forms the foundation of the study and identifies A-quasiconvexity as an equivalent condition for sequential lower
semi-continuity of integral functionals given by a continuous integrand f satisfying upper p-growth bounds, [8]
studies a relaxation of this problem in the appropriate sense. It is shown that under the same continuity and
growth assumptions on the integrand as in [20] it is possible to identify the sequential lower semi-continuous
envelope (where the notion of convergence is Vj ⇀ V in Lp and AVj → AV in W−1,p) of the functional
V 7→

∫
Ω
f(V (x)) dx. The authors prove that this relaxed problem has an integral representation, with the

integrand being the A-quasiconvex envelope of f . The main result of the present work is in the same spirit, but
we wish to drop the upper growth-bound and allow the integrand to take the value +∞. Let us note that the
results we cite are in fact more general than what we discuss here in the sense that the integrand f is allowed
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to depend on more variables, but in the brief outline above we decided to opt for simplicity, to emphasize the
main features of the respective contributions.

Passing from the gradient case to a general operator A is of interest because of the scope of applications.
A number of examples of operators satisfying the constant rank condition may be found in Section 3 of [20].
Those include the curl operator which, as mentioned before, corresponds to the case of vector fields which are
gradients. This has been extensively studied on its own and large part of research on constant rank operators
aims to reproduce, in this more general setting, the results already available for gradients. It is interesting
to note that one may also study the case of symmetrised gradients (of interest in the theory of elasticity) or
gradients (derivatives) of order higher than one in the A-free framework, as pointed out in Example 3.10 of the
aforementioned paper. Finally, the requirement of being divergence-free may also be phrased in the language
of constant rank operators. Moreover, a mixture of div-free and curl-free conditions relating the magnetisation
and the induced magnetic field may be expressed through a suitable constant rank differential operator. Thus,
the theory of A-quasiconvexity may also be related to micromagnetics, as pointed out in [17, 20] (see also the
references therein, for example [13]).

To finish the discussion of different operators A considered in the literature we remark that, while all previous
examples correspond to an operator with constant coefficients (i.e. independent of x ∈ Ω), there has also been
some work on the case of A(x) varying with x. An example of such a result is given in [35], where the author
generalises the lower semi-continuity results of [20] to the case A(x). Note that the constant rank hypothesis is
still in place, and the rank must not depend on x.

Let us also mention that while this work focuses on studying oscillation phenomena in A-free sequences of
functions, it is also possible to include concentration effects. In this case one switches from the classical Young
measures we use here to the so-called generalised Young measures (see [14]). Some recent results in this matter
may be found, for example in [2, 3], or [17].

1.1. Organization of the paper

Throughout the paper the standard assumption is that the first order differential operator A satisfies the
constant-rank condition. As a mixture of notions present in [20,26] (see also [34]) we say that a function is closed
A-p quasiconvex if it satisfies Jensen’s inequality with respect to all homogeneous Young measures generated
by Lp-weakly convergent A-free vector fields.

Our first result, Theorem 3.3, shows that this notion of quasiconvexity is, for a non-negative integrand,
sufficient for lower semi-continuity of the functional IF [V ] :=

∫
Ω
F (V (x)) dx in the sense outlined before.

Under additional lower-growth bound of the type F (ξ) ≥ |ξ|p and a continuity assumption we obtain, in
Theorem 3.9, a full characterisation of the lower semi-continuous envelope of the functional IF . In this case we
show that the relaxed problem is given by integration of the closed A-p quasiconvex envelope of F .

Finally we remove the continuity assumption and replace it with the requirement that F be real valued in
Theorem 3.13. There we show that if the characteristic cone of the operator A spans the entire space then closed
A-p quasiconvexity is still equivalent to lower semi-continuity of the functional IF .

The technical preliminaries for these results are set out in Section 2, where we introduce the principal notions
and fundamental results. Notably we define the class of A-p Young measures and give regularisation results
for sequences generating such measures. The last part of that Section characterises the measures in question in
terms of A-p quasiconvex functions. The contents of Section 2 are mostly technical results borrowed from [20],
to which we refer for proofs.

The main part of the paper is contained in Section 3, where we introduce the notion of closed A-p quasicon-
vexity. The first thing we prove is its sufficiency for lower semi-continuity of the functional. The main ingredient
for the proof of necessity results is the representation formula for the closed A-p quasiconvex envelope given
in Proposition 3.5. The proof of it is quite complicated, relies on the Kuratowski Ryll-Nardzewski Measurable
Selection Theorem (see Thm. 3.4), and encompasses many of the difficulties encountered throughout the proofs
of the other main results. In this context this particular strategy is, to the author’s knowledge, different from
that used in other proofs of similar results, although it is worth pointing out that Sychev (see [37], also [39])
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also uses a measurable selection argument to obtain a representation of a quasiconvex envelope. Once this rep-
resentation formula is established we largely follow the spirit of Kristensen’s [26] proof for corresponding results
in the case of gradients.

The Appendix contains a proof of an auxiliary result necessary for dealing with sequences of A-free vector
fields and Young measures generated by them. This has been used in previous papers on A-quasiconvexity, but
the approach we show here is, to the author’s knowledge, new and more elementary than previous arguments.

2. Notation and preliminary results

We begin by introducing the language of Young measures and the Fundamental Theorem of Young Measures
(Thm. 2.1) in particular. These results are classical and a typical reference is [34], where the relevant proofs
may be found. Here and in all that follows Ω ⊂ RN is an open and bounded domain with |∂Ω| = 0, where ∂Ω
is the boundary and | · | denotes the N -dimensional Lebesgue measure. We write M(Rn) for the space of finite
Radon measures on Rn.

Theorem 2.1 (see [34]). Let Ω ⊂ RN be a measurable set of finite measure and zj : Ω → Rn be a bounded
sequence of Lp functions for some p ∈ [1,∞]. Then there exists a subsequence zjk and a weak∗-measurable map
ν : Ω →M(Rn) such that the following hold:

(i) every νx is a probability measure,
(ii) if f : Ω × Rn → R ∪ {∞} is a normal integrand bounded from below, then

lim inf
j→∞

∫
Ω

f(x, zjk(x)) dx ≥
∫
Ω

f(x) dx,

where

f(x) := 〈νx, f(x, ·)〉 =

∫
Rn
f(x, y) dνx(y);

(iii) if f : Ω × Rn → R ∪ {∞} is Carathéodory and bounded from below, then

lim
j→∞

∫
Ω

f(x, zjk(x)) dx =

∫
Ω

f(x) dx <∞

if and only if {f(·, zjk(·))} is equiintegrable (in the usual, L1 sense). In this case

f(·, zjk(·)) ⇀ f in L1(Ω)·

The family {νx}x∈Ω is called the Young measure generated by zjk . If there exists some x0 ∈ Ω such that
νx = νx0

for almost every x ∈ Ω then we say that ν is a homogeneous Young measure and often identify
the family {νx} with the single measure νx0

if there is no risk of confusion.

Recall that we say that a function f : Ω × Rn → (−∞,∞] is a normal integrand if f is Borel measurable
and for every x ∈ Ω the function z 7→ f(x, z) is lower semi-continuous. Similarly we say that a function
f : Ω×Rn → R is Carathéodory if both f and −f are normal integrands. Finally, a map ν : E →M(Rn) is said
to be weak*-measurable if x 7→ 〈νx, ϕ〉 is (Lebesgue) measurable for any continuous and compactly supported
function ϕ : Rn → R.

Proposition 2.2 (see [34]). If {vj} generates a Young measure ν and if wj → w in measure, then {vj + wj}
generates the translated Young measure

ν̃x := δw(x) ∗ νx,
where

〈δa ∗ µ, ϕ〉 = 〈µ, ϕ(·+ a)〉
for a ∈ Rn and ϕ ∈ C0(Rn). In particular, if wj → 0 in measure, then {vj + wj} still generates ν. Similarly, if
‖vj − wj‖p → 0 for some p ∈ [1,∞] then both vj and wj generate the same Young measure.
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The following is a classical result and its proof may be found, for example, in the Appendix of [5]. Here and
in what follows TN stands for the N -dimensional torus.

Lemma 2.3 (see [5]). Let w ∈ Lp(TN ;Rn) with 1 ≤ p ≤ ∞, and set wj(x) := w(jx), j ∈ N. Then for any
bounded open set Ω ⊂ RN we have

wj ⇀

∫
TN

w(y) dx in Lp(Ω;Rn) (
∗
⇀ if p =∞).

In particular the sequence {wj} generates the homogeneous Young measure ν := δw, where

〈δw, ϕ〉 :=

∫
TN

ϕ(w(y)) dx for all ϕ ∈ C0(Rn).

Note that wj may be treated as a function defined on Ω by first extending it to RN by periodicity and then
considering its restriction to Ω.

Before we move on to Young measures associated with a differential operator let us precise the conditions we
put on the operator. Let {Ai}i∈{1,...N} ⊂ L(Rn;Rd) be a collection of linear operators. Define

A :=

N∑
1

Ai
∂v

∂xi
for v : RN → Rn,

and

A(w) :=

N∑
1

wiA
i for w ∈ RN .

Definition 2.4. We say that A satisfies the constant rank property if there exists an r ∈ N such that

rank(A(w)) = r for all w ∈ RN \ {0}.

The constant rank property of A is a standing assumption throughout the paper. It is both classical and
essential for our study and without it not much is known. Its principal purpose is to allow for an analogue of
Helmholtz decomposition in the case of gradients – more on that may be found in the Appendix. Note that this
decomposition is crucial for the regularisation results to come next. They are taken from the paper by Fonseca
and Müller [20] and correspond to Lemma 2.15 and Proposition 3.8 therein.

Before we proceed to state those results let us remark that the constant rank assumption originated in the
work of Murat [32] and the majority of results are only available when it is satisfied. Nevertheless, there has
been some work on non-constant rank operators A – we refer the interested reader to [30] for an example of a
result in this framework, but in the present work we content ourselves with the usual assumptions regarding A
and focus on relaxing the conditions imposed on the integrand.

In what follows we say that a family of functions {vj} is p-equiintegrable if the family {|vj |p} is equiintegrable
in the usual sense.

Lemma 2.5 (see [20]). Fix 1 < p <∞ and let {uj} be a bounded sequence in Lp(Ω;Rn) such that Auj → 0 in
W−1,p(Ω;Rd) and uj ⇀ u in Lp(Ω;Rn). Assume that {uj} generates the Young measure ν. Then there exists
a p-equiintegrable sequence {vj} ⊂ Lp(Ω;Rn) ∩ kerA such that∫

Ω

vj dx =

∫
Ω

uj dx and ||vj − uj ||Lq(Ω) → 0 for all 1 ≤ q < p.

In particular, vj still generates ν.
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Proposition 2.6 (see [20]). Let 1 < p < ∞ and let the family {vj} ⊂ Lp(Ω;Rn) be p-equiintegrable. Assume
that

Avj → 0 in W−1,p,

that {vj} generates the Young measure ν = {νa}a∈Ω and that vj ⇀ v in Lp. Then for almost every a ∈ Ω there
exists a p-equiintegrable family {uj} ⊂ Lp(TN ;Rn) ∩ kerA generating the homogeneous Young measure νa and
satisfying ∫

TN

uj dx = 〈νa, Id〉 = v(a).

The final technical ingredient of this work is the characterisation of the structure of the space of Young
measures generated by A-free sequences. Similarly to the previous results this has been developed in [20]
and we refer to this paper for the proofs, notably for our Propositions 2.13 and 2.14, which correspond to
Propositions 4.3 and 4.4 in the cited paper.

Let

E :=

{
g ∈ C(Rn) : lim

|z|→∞

g(z)

1 + |z|p
exists in R

}
,

be equipped with the norm

||g||E := sup
z∈Rn

|g(z)|
1 + |z|p

·

This space is canonically isomorphic to the space of continuous functions on C(Sn) (Sn is seen as the one-point
compactification of Rn) equipped with the sup-norm. In particular it is a separable Banach space and its dual
E∗ may be identified with the space of Radon measures on Rn ∪ {∞}. Therefore if ν is a probability measure
on Rn with finite pth moment then ν ∈ E∗ as for all g ∈ E we may estimate∣∣∣∣∫

Rn
g dν

∣∣∣∣ ≤ ||g||E ∫
Rn

(1 + |z|p) dν(z).

Furthermore we immediately see by taking g(z) := 1 + |z|p that

||ν||E∗ =

∫
Rn

1 + |z|p dν(z).

In the following we aim to use the structure of the dual space E∗ to investigate the properties of Young
measures generated by A-free sequences. In particular we are interested in establishing duality between such
Young measures and A-quasiconvex functions, to be introduced shortly.

Definition 2.7. We say that a family of probability measures µ = {µx}x∈Ω is an A-p Young measure if µ
is a Young measure generated by an A-free sequence of vector fields Vj weakly convergent in Lp. If µ is a
homogeneous Young measure, that is µx = µx0 for almost every x ∈ Ω for some measure µx0 then we write
µ ∈ Hpξ , where ξ is the center of mass of our measure, i.e. ξ = 〈µx0

, Id〉. Here Id: Rn → Rn denotes the identity
function.

Lemma 2.8 (see [20]). The set Hp0 is weak* closed in E∗.

Proof. This is part of the proof of Proposition 4.3 in [20]. There it is stated that Hp0 is rela-
tively closed in Prob(Rn) with respect to the weak* topology on E∗. However it is easy to see that{
µ ∈ Prob(Rn),

∫
Rn |z|

p dµ <∞
}

is a weak* closed subset of E∗, thus proving our claim. �

Definition 2.9. For a measurable function g : Rn → R satisfying |g(v)| ≤ C(1 + |v|p) we define

QAg(v) := inf

{∫
TN

g(v + w(x)) dx : w ∈ C∞(TN ;Rn) ∩ kerA,
∫
TN

w dx = 0

}
.
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If g is continuous then C∞(TN ) ∩ kerA in the above definition may be replaced by Lp(TN ) ∩ kerA without
changing QAg. The above is intimately related to the notion of A-quasiconvexity. Following [20] we give the
corresponding definition below.

Definition 2.10. A function g : Rn → R is said to be A-quasiconvex if

g(v) ≤
∫
TN

g(v + w(x)) dx

for all v ∈ Rn and all w ∈ C∞(TN ;Rn)∩kerA with
∫
TN

w(x) dx = 0. Similarly, g is said to be A-p quasiconvex
if the same inequality holds for all w ∈ Lp(TN ;Rn) ∩ kerA such that

∫
TN

w(x) dx = 0.

This notion naturally corresponds to that of W1,p-quasiconvexity, as introduced in [5]. The fact that, for
continuous g satisfying p-growth bound, the notions of A-quasiconvexity and A-p quasiconvexity are equivalent
corresponds to a result by Ball and Murat [5], which says that if g is a continuous function satisfying an upper
p-growth bound of the type 0 ≤ g(ξ) ≤ C(|ξ|p + 1) then g is W1,p-quasiconvex if and only if it is W1,∞-
quasiconvex. The proof may easily be carried over to the general A-free framework using the decomposition
results we gave earlier. What is perhaps more interesting is a negative result from the same paper that shows
the importance of the p-growth bound. In Theorem 4.1 of [5] the authors exhibit an example of a function that
is W1,p-quasiconvex if and only if the exponent p is larger than the dimension of the space, thus showing that, in
general, A-p and A-q quasiconvexity are different notions for p 6= q. This shows that caution must be exercised
when dealing with such notions for potentially extended real-valued functions, which is what we aim to do in
the later part of this paper.

Before we do that, let us first use QAg to get a theoretical characterisation of A-p Young measures, analogue
of the one obtained by Kinderlehrer and Pedregal [24] in the gradient case.

Lemma 2.11 (see [20]). For a continuous function g : Rn → R satisfying |g(v)| ≤ C(1 + |v|p) we have

QA(QAg) = QAg.

Lemma 2.12. If a sequence {νj} ⊂ Prob(Rn) ∩ E∗ converges to some ν ∈ Prob(Rn) ∩ E∗ in the space E∗

then it also converges in the sense of weak convergence of probability measures (or weak*). In particular, by the
portmanteau theorem, we have

lim
j→∞

∫
Rn
g dνj =

∫
Rn
g dν

for all bounded and continuous functions g, and

lim inf
j→∞

∫
Rn
g dνj ≥

∫
Rn
g dν

for all lower semi-continuous functions g bounded from below.

Proof. Immediately follows from bounded continuous functions being a subset of E. �

The two following results are essential for studying A-p Young measures and are the last technical prelimi-
naries we need. For proofs we refer to Theorem 4.1 in [20].

Proposition 2.13 (see [20]). A probability measure µ ∈ Prob(Rn) is a homogeneous A-free Lp Young measure
with mean ξ0 if and only if µ satisfies

∫
Rn ξ dµ = ξ0,

∫
Rn |ξ|

p
dµ(ξ) <∞ and∫

Rn
g(ξ) dµ(ξ) ≥ QAg(ξ0)

for all continuous functions g : Rn → R satisfying |g(v)| ≤ C(1 + |v|p) for some positive constant C.
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A similar result holds for non-homogeneous Young measures. We state it in the following:

Proposition 2.14 (see [20]). Fix 1 < p <∞ and let ν = {νx}x∈Ω be a weak* measurable family of probability
measures on Rn. Then there exists a p-equiintegrable sequence {vj} ⊂ Lp(Ω;Rn) generating the Young measure
ν and satisfying Avj = 0 if and only if the following conditions hold:

(i) there exists v ∈ Lp(Ω;Rn) ∩ kerA such that

v(x) = 〈νx, Id〉 for a.e. x ∈ Ω;

(ii) ∫
Ω

∫
Rn
|z|p dνx(z) dx <∞;

(iii) for a.e. x ∈ Ω and all continuous functions g : Rn → R satisfying |g(v)| ≤ C(1 + |v|p) for some positive
constant C one has

〈νx, g〉 ≥ QAg(〈νx, Id〉).

3. Closed A-p quasiconvexity and lower semi-continuity

Having at our disposal the relevant theory of A-free Young measures we are ready to state and prove our
main result, which identifies the lower semi-continuous envelope of relaxation in a variational problem, where
the lower semi-continuity is sequential, with respect to vector fields converging weakly in Lp and strongly in
W−1,p when the differential operator A is applied. Such a result has already been proven in the special case
of gradient (curl-free) vector fields in [26], and we make extensive use of techniques present therein, adapting
them as necessary to the case of a general operator A, similarly to [20]. Here and in all that follows p ∈ (1,∞)
is a fixed exponent, and we keep the standing constant rank assumption on A. We begin with the necessary
definitions.

Definition 3.1. We say that a function F : Rn → (−∞,∞] is closed A-p quasiconvex if F is lower semi-
continuous and Jensen’s inequality holds for F and every homogeneous A-p Young measure, i.e.

F (ξ) ≤
∫
Rn
F (z) dν(z)

for every homogeneous A-p Young measure ν with center of mass ξ.

Definition 3.2. For a measurable function F we define its closed A-p quasiconvex envelope by

F (ξ) := sup{G(ξ) : G ≤ F, G is closed A-p quasiconvex}.

Let us remark here that for continuous integrands satisfying p-growth bounds the notions of closed A-p
quasiconvexity and the standard A-p quasiconvexity recalled in Definition 2.10 are equivalent – this is not
difficult to prove using the decomposition results from the previous Section and Theorem 2.1. However, when
these assumptions on the integrand are dropped it need not be the case anymore, and the notion of closed A-p
quasiconvexity is, potentially, more restrictive. An explicit example of this phenomenon, in the case of gradients,
may be found in [26] (Example 1.3 therein). We also refer the reader to [33], where closed W1,p quasiconvexity
was first introduced.
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3.1. Sufficiency

In all that follows we are interested in sequential lower semi-continuity of the functional

V 7→ IF [V ] :=

∫
Ω

F (V (x)) dx,

with respect to vector fields Vj ⇀ V weakly in Lp(Ω;Rn) and AVj → AV strongly in W−1,p(Ω;Rd). Our first
result proves sufficiency of the closed A-p quasiconvexity for the lower semi-continuity.

Theorem 3.3. Assume that F : Rn → [0,∞] is closed A-p quasiconvex. Then the functional IF is lower semi-
continuous in the sense precised above.

Proof. Fix an arbitrary sequence {Vj} ⊂ Lp(Ω;Rn) satisfying Vj ⇀ V in Lp and AVj → AV in W−1,p.
We wish to show that lim infj

∫
Ω
F (Vj) dx ≥

∫
Ω
F (V ) dx. Without loss of generality we may assume

that limj

∫
Ω
F (Vj) dx = lim infj

∫
Ω
F (Vj) dx and that {Vj} generates some Young measure ν = {νx}x. If

limj

∫
Ω
F (Vj) dx =∞ then there is nothing to prove, so assume 0 ≤ limj

∫
Ω
F (Vj) dx <∞. Since F is a normal

integrand we may use Theorem 2.1 to get

lim
j

∫
Ω

F (Vj) dx ≥
∫
Ω

∫
Rn
F (ξ) dνx(ξ) dx,

hence it is enough to show ∫
Rn
F (ξ) dνx(ξ) ≥ F (V (x)) (3.1)

for almost all x ∈ Ω. First observe that since {Vj} is bounded in Lp it is L1-equiintegrable. Therefore we have

Vj ⇀

∫
Rn
ξ dνx(ξ) in L1.

This is obtained using the continuous functions fi(x, z) := max(0, zi) and gi(x, z) := max(0,−zi) for i ∈
{1, . . . , n} in Theorem 2.1. One has to treat each coordinate separately to obtain a scalar-valued function and
also decompose into the negative and positive part to get boundedness from below, but putting it all together
we get exactly the desired weak convergence. By assumption we also have Vj(x) ⇀ V (x) in Lp, so we must have,
for almost every x ∈ Ω, that V (x) =

∫
Rn ξ dνx(ξ). Now the inequality (3.1) becomes∫

Rn
F (ξ) dνx(ξ) dx ≥ F

(∫
Rn
ξ dνx(ξ)

)
, (3.2)

and so is just Jensen’s inequality for F and νx. Therefore it is enough to show that νx is an A-p homogeneous
Young measure for almost every x ∈ Ω. First observe that the measure ν̃ := {νx ∗ δ−V (x)}x is generated by the
sequence Vj −V , which is weakly convergent in Lp and satisfies A(Vj −V )→ 0 in W−1,p, so it is an A-p Young
measure. Now it is enough to apply Proposition 2.6 to deduce that for almost every x the measure νx ∗ δ−V (x) is
an A-p homogeneous Young measure, hence so is νx (as it is enough to add a constant to the sequence generating
νx ∗ δ−V (x) to generate νx) and the proof is complete. �

3.2. Quasiconvex envelope

Before we move on to the (more difficult) results regarding necessity of closed A-p quasiconvexity we need the
following representation of a quasiconvex envelope of a function, similar to QAg introduced before, but without
the upper growth bounds. An essential tool of this subsection is the classical measurable selection theorem due
to Kuratowski and Ryll-Nardzewski [27], which follows. The standing assumption here and in all that follows
is that F : Rn → [0,∞] satisfies F (ξ) ≥ C|ξ|p − C−1 for some constant C > 0 for all ξ ∈ Rn. In fact, since
we only care about lower semi-continuity of the functional IF we may without loss of generality assume that
F (ξ) ≥ C|ξ|p, as adding the constant C−1 to F does not change the continuity properties of the functional.
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Theorem 3.4 (see [27]). Let X be a metric space and Y be a separable and complete metric space. Fix a multi-
valued function G : X → 2Y . If for any closed set K ⊂ Y the set {x ∈ X : G(x) ∩K 6= ∅} is Borel measurable
then G admits a measurable selector, i.e. there exists a Borel measurable function g : X → Y such that for all
x ∈ X we have g(x) ∈ G(x).

Our goal is the following:

Proposition 3.5. The closed A-p quasiconvex envelope of a lower semi-continuous function F : Rn → [0,∞]
satisfying the growth condition F (ξ) ≥ c|ξ|p is given by

F (ξ) = inf
ν∈Hp0
〈F (·+ ξ), ν〉 = inf

ν∈Hpξ
〈F, ν〉.

Moreover, the function F is indeed closed A-p quasiconvex.

Proof. Denote
R(ξ) := inf

ν∈Hp0
〈F (·+ ξ), ν〉.

Clearly for any ν ∈ Hp0 and ξ ∈ Rn we have F (ξ) ≤ 〈F (· + ξ), ν〉, therefore taking the infimum over ν ∈ Hp0
yields

F (ξ) ≤ R(ξ),

hence showing that R is closed A-p quasiconvex will give the opposite inequality and end the proof, as one
immediately gets R ≤ F by testing with ν := δ0 ∈ Hp0.

To show that R is lower semi-continuous fix ξ0 ∈ Rn and a sequence ξj → ξ0 and an ε > 0. We will show that

ε+ lim inf R(ξj) ≥ R(ξ0).

Without loss of generality assume that limR(ξj) = lim inf R(ξj) < ∞, and let M be such that R(ξj) + ε ≤ M
for all j. By definition of R, for each ξj there exists νj ∈ Hp0 with

M ≥ R(ξj) + ε ≥ 〈F (·+ ξj), νj〉.

Our growth assumption on F and boundedness of |ξj | (as a convergent sequence) then imply

M ≥
∫
Rn
c |ξ + ξj |p dνj ≥ C

(∫
Rn
|ξ|p dνj − 1

)
,

which yields supj
∫
Rn |ξ|

p
dνj <∞. We see that the family {νj} is bounded in E∗, therefore we may extract a

weakly*-convergent subsequence from it – without loss of generality assume that the whole sequence converges,
i.e. νj

∗
⇀ ν0. By Lemma 2.8 we have ν0 ∈ Hp0. Moreover δξj ∗ νj

∗
⇀ δξ0 ∗ ν0. Since F is lower semi-continuous

and bounded from below we have

ε+ lim inf R(ξj) ≥ lim inf〈F, δξj ∗ νj〉 ≥ 〈F, δξ0 ∗ ν0〉
∫
Rn
F (·+ ξ0) dν0 ≥ R(ξ0),

where the last inequality comes from the definition of R and the fact that ν ∈ Hp0. Since ε > 0 was arbitrary we
conclude that R is in fact lower semi-continuous.

It now remains to show that R satisfies the Jensen’s inequality with respect to A-free measures. To that end
fix ξ0 ∈ Rn and ν ∈ Hpξ0 . We wish to show that R(ξ0) ≤

∫
Rn R dν. Observe that we may assume without loss

of generality that
∫
Rn R dν < ∞, as the case where this integral is infinite is trivial. Let us fix an ε > 0 and

observe that, by definition of R, for all ξ ∈ Rn there exists νξ ∈ Hp0 satisfying

〈F (·+ ξ), νξ〉 ≤ ε+R(ξ),
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so that, for now only formally, ∫
Rn

(∫
Rn
F (·+ ξ) dνξ

)
dν(ξ) ≤ ε+

∫
Rn
R dν.

Now – if we manage to show that νξ may be chosen in such a way that ξ 7→ νξ is weak* measurable and that
the measure µ defined by duality as

〈g, µ〉 :=

∫
Rn

(∫
Rn
g(·+ ξ) dνξ

)
dν(ξ) (3.3)

is an A-p homogeneous Young measure with mean ξ0 then the claim will follow, as by definition 〈F, µ〉 ≥ R(ξ0).

Remark 3.6. There is a delicate point to be emphasized here. A careful reader may notice that weak* mea-
surability of ξ 7→ νξ only means Lebesgue measurability of ξ 7→

∫
Rn g(·+ ξ) dνξ, which is not necessarily enough

to integrate this function with respect to ν. However, if we manage to get Borel measurability of the function
in question then the construction is justified, as ν is a Radon (hence Borel) measure – we will call such a map
Borel weak* measurable. It is clear that if one makes sense of the integration on the right-hand side of (3.3)
then it defines a linear functional on C0(Rn). Its boundedness follows from the fact that all νξ, ν are probability
measures, thus showing that the functional is given by some finite Radon measure µ.

For the measurable selection part we define a multifunction G given by

G(ξ) :=

{
µ ∈ Hp0 :

∫
Rn
F (·+ ξ) dµ ≤ ε+R(ξ)

}
.

For the measurable selection result we intend to use (see Thm. 3.4) we need G to take values in 2Y for some
complete metric space Y . For that we define, for a given M > 0,

ΩM := {ξ ∈ Rn : |ξ| < M,R(ξ) ≤M}.

Observe that since we assumed R to be integrable with respect to ν, we have ξ ∈
⋃∞
M=1ΩM for ν-a.e. ξ ∈ Rn.

Let us fix M ∈ N. Then, for any ξ ∈ ΩM and any µ ∈ G(ξ), we have∫
Rn
F (z + ξ) dµ(z) ≤ ε+R(ξ) ≤ 2ε+R(ξ) ≤M + 2ε.

The factor 2 in front of ε is not important here, we only put it there to allow for some room in the later part
of the argument. Due to the growth assumption on F there holds∫

Rn
F (z + ξ) dµ(z) ≥ C

∫
Rn
|z + ξ|p dµ(z) ≥ C

∫
Rn
|z|p dµ(z)− C−1 |ξ|p .

Finally
∫
Rn |z|

p
dµ(z) ≤ CM , holds for all µ ∈ G(ξ), with the constant CM depending only on M (and ε).

Therefore we may consider our operator G as a map ΩM → 2YM , where

YM :=

{
µ ∈ Hp0 :

∫
Rn
|z|p dµ ≤ CM

}
.

The set YM may be equipped with the weak* topology inherited from E∗. Since we put a uniform bound on the
pth moments (so also on the norm in E∗), this topology is metrisable in a complete and separable manner. To
prove that first recall that due to Lemma 2.8 Hp0 is weak* closed in E∗. Since | · |p ∈ E we know that the map
µ 7→

∫
Rn |z|

p dµ is weak* continuous, thus YM is weak* closed and bounded. The Banach−Alaoglu Theorem (see
for example Thm. 3.16 in [9]) then implies that YM is weak* compact. Since E is clearly separable we deduce
that the weak* topology on YM is metrisable (see [9], Thm. 3.28). Finally, compact metric spaces are complete
and separable, thus proving our claim.
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Lemma 3.7. For any ξ ∈ ΩM the set G(ξ) is non-empty and closed.

Proof. The fact that G(ξ) 6= ∅ comes straight from the definition of R. To show that it is closed it is enough
to show that it is sequentially closed. Let us then fix a sequence {µj} ⊂ G(ξ) and assume that it converges
weak* in E∗ to some µ ∈ YM . Since the function F is lower semi-continuous and bounded from below we get
by Lemma 2.12 that

R(ξ) + ε ≥ lim inf

∫
Rn
F (·+ ξ) dµj ≥

∫
Rn
F (·+ ξ) dµ,

so µ ∈ G(ξ), which ends the proof. �

Lemma 3.8. For any non-empty closed set O ⊂ YM the set {ξ ∈ ΩM : G(ξ) ∩O 6= ∅} is Borel measurable.

Proof. First we write

{ξ ∈ ΩM : G(ξ) ∩O 6= ∅} =

∞⋂
k=1

{
ξ ∈ ΩM : inf

µ∈O

∫
Rn
F (·+ ξ) dµ ≤ R(ξ) + ε(1 + 2−k)

}
.

Hence it is enough to show that the sets{
ξ ∈ ΩM : inf

µ∈O

∫
Rn
F (·+ ξ) dµ ≤ R(ξ) + ε(1 + 2−k)

}
are all Borel measurable. Define

U(ξ) := inf
µ∈O

∫
Rn
F (·+ ξ) dµ.

We claim that U is lower semi-continuous. Let ξj → ξ. We need to show that lim infj U(ξj) ≥ U(ξ). Without
loss of generality limj U(ξj) = lim infj U(ξj) <∞. By definition of U for each k there exists a measure µj ∈ O
with ∫

Rn
F (·+ ξj) dµj ≤ U(ξj) + 1/k.

Therefore

lim
j

∫
Rn
F (·+ ξj) dµj = lim

j
U(ξj).

Since the set O is a closed subset of a compact space YM we may extract an E∗ weak* convergent subsequence
from µj . Without loss of generality assume that the entire sequence µj converges weak* to some µ ∈ O. This,
combined with ξj → ξ, implies that we have

δξj ∗ µj
∗
⇀ δξ ∗ µ

in the sense of probability measures. Therefore, since F is lower semi-continuous, the portmanteau theorem
yields

lim inf
j

∫
Rn
F (·+ ξj) dµj = lim inf

j

∫
Rn
F d

(
δξj ∗ µj

)
≥
∫
Rn
F d (δξ ∗ µ) =

∫
Rn
F (·+ ξ) dµ ≥ U(ξ),

which shows that U is indeed lower semi-continuous. Since{
ξ ∈ ΩM : inf

µ∈O

∫
Rn
F (·+ ξ) dµ ≤ R(ξ) + ε(1 + 2−k)

}
= {ξ ∈ ΩM : U(ξ) ≤ R(ξ) + ε(1 + 2−k)}

and both U and R are lower semi-continuous (hence Borel measurable) the set in question is Borel measurable
as well, which ends the proof. �
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Now, thanks to Lemmas 3.7 and 3.8 we may use Theorem 3.4 to deduce the existence of a weak* measurable
map νM : ΩM → Hp0 such that for any ξ ∈ ΩM the measure νMξ satisfies∫

Rn
F (·+ ξ)dνMξ ≤ ε+R(ξ).

Finally let us define the map ν̃ : Rn → Hp0 by

ν̃ξ :=

{
νMξ for ξ ∈ ΩM \ΩM−1

µ̃ for ξ 6∈
⋃∞
M=1ΩM ,

where µ̃ is some arbitrary element of the (non-empty) set Hp0. Observe that the choice of µ̃ does not matter, as
we have already observed that the set Rn \

⋃∞
M=1ΩM is of ν measure 0. This set is also Borel since we already

know that R is Borel measurable, hence each ΩM is Borel. Clearly the map ν̃ is Borel weak* measurable in the
sense of Remark 3.6, i.e. it is a measurable map from Rn equipped with the Borel σ-algebra into Hp0 equipped
with the weak* topology inherited from E∗. Thus we may define µ ∈ (C0(Rn))∗ as in (3.3). It only remains to
show that µ ∈ Hp0.

Positivity of µ results immediately from positivity of all νξ and ν. In the same way we show that µ is a
probability measure, as

〈1, µ〉 =

∫
Rn

(∫
Rn

1 dνξ

)
dν(ξ) =

∫
Rn

1 dν(ξ) = 1,

since all measures considered are probability measures. To prove that µ has a finite pth moment we write

〈|·|p , µ〉 =

∫
Rn

(∫
Rn
|·+ ξ|p dνξ

)
dν(ξ).

Using the growth assumption on F we get∫
Rn
|·+ ξ|p dνξ ≤ C

∫
Rn
F (·+ ξ) dνξ ≤ C(R(ξ) + ε),

where the last inequality is satisfied for ν-a.e. ξ. Integrating with respect to ν gives

〈|·|p , µ〉 ≤ C
(
ε+

∫
Rn
R(ξ) dν(ξ)

)
<∞,

since, by assumption, R is integrable with respect to ν. Lastly, it remains to show that µ satisfies the inequality
in 2.13. Fix any continuous functions g : Rn → R with |g(v)| ≤ C(1 + |v|p) for some constant C. We have

〈µ, g〉 =

∫
Rn

(∫
Rn
g(·+ ξ) dνξ

)
dν(ξ)

≥
∫
Rn
QAg(ξ) dν(ξ) ≥ QA(QAg)(ξ0) = QAg(ξ0),

where the first inequality comes from the fact that all νξ’s are Young measures with mean 0, the second one
from the respective property of ν, and the last equality from Lemma 2.11. This shows that we indeed have
µ ∈ Hpξ0 and ends the proof, as discussed in (3.3). �

3.3. Necessity

We are now ready to state and prove the main result of the paper:
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Theorem 3.9. If F : Rn → (−∞,∞] is a continuous integrand satisfying F (ξ) ≥ C|ξ|p −C−1 for some C > 0
then the lower semi-continuous envelope of the functional IF is given by

IF [V ] := inf
Vj

{
lim inf

j
IF [Vj ]

}
=

∫
Ω

F (V (x)) dx,

where the infimum is taken over all admissible test sequences, i.e. satisfying Vj ⇀ V weakly in Lp(Ω;Rn) and
AVj → AV strongly in W−1,p(Ω;Rd). As before, F denotes the closed A-p quasiconvex envelope of F .

Proof. Theorem 3.3 guarantees that IF [V ] ≥
∫
Ω
F (V (x)) dx, thus we only need to prove the opposite inequality.

If F is identically equal +∞ then there is nothing to show, so we may restrict to proper integrands. As before
we may assume F (ξ) ≥ C|ξ|p and, in any case, the fact that F is bounded from below immediately implies the
same for F . Fix any V ∈ Lp. Without loss of generality we may assume

∫
Ω
F (V (x)) dx <∞, as otherwise there

is nothing to prove. Fix an ε > 0 and observe that clearly we must have F (V (x)) < ∞ a.e. in Ω. Therefore,
using Proposition 3.5, we may find a family of homogeneous A-p Young measures {νx}x∈Ω with mean 0 and
such that, for almost every x ∈ Ω, we have

F (V (x)) + ε ≥
∫
Rn
F (·+ V (x))dνx. (3.4)

Using exactly the same argument as in the proof of Proposition 3.5 we may ensure weak* measurability of x→ νx.
We intend to show that ν is a suitable Young measure using Proposition 2.14. Recall that we need to prove the
following:

(i) there exists v ∈ Lp(Ω;Rn) ∩ kerA such that

v(x) = 〈νx, Id〉 for a.e. x ∈ Ω;

(ii) ∫
Ω

∫
Rn
|z|p dνx(z) dx <∞;

(iii) for a.e. x ∈ Ω and all continuous functions g : Rn → R satisfying |g(v)| ≤ C(1 + |v|p) for some positive
constant C one has

〈νx, g〉 ≥ QAg(〈νx, Id〉).

The first point is clearly satisfied, as all our measures are of mean 0. The second one may be checked in the
same way as in the already mentioned proof of Proposition 3.5, using the growth assumption on F . Finally, the
third point results immediately from the fact that all νx’s are, by definition, elements of Hp0, so we may use
Proposition 2.13.

This shows that ν is indeed generated by some p-equiintegrable family {Wj} ⊂ Lp(Ω;Rn) ∩ kerA with
Wj ⇀ 0 in Lp. For a given M ∈ N consider FM (z) := min(F (z),M(|z|p + 1)). Clearly, for each M , the function
FM is continuous and the family {FM (V +Wj)}j is p-equiintegrable, due to the same property of {V +Wj}.
Theorem 2.1 then yields ∫

Ω

FM (V +Wj) dx→
∫
Ω

(∫
Rn
FM (V (x) + ·) dνx

)
dx.

On the other hand, since FM ≤ F and νx are non-negative and satisfy (3.4), we have∫
Ω

(∫
Rn
FM (V (x) + ·) dνx

)
dx ≤

∫
Ω

(∫
Rn
F (V (x) + ·) dνx

)
dx

≤
∫
Ω

F (V (x)) dx+ ε.
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From this we deduce, through a diagonal extraction, that there exists a sequence j(M) ∈ N with
limM→∞ j(M) =∞ such that for all M one has∫

Ω

FM (V +Wj(M)) dx ≤
∫
Ω

F (V (x)) dx+ 2ε. (3.5)

Define the set
GM :=

{
x ∈ Ω : F (V (x) +Wj(M)(x)) ≤M(|V (x) +Wj(M)(x)|p + 1)

}
,

and fix some ξ0 ∈ Rn for which F (ξ0) <∞ – such a point exists, as F is proper. Next define a vector field W̃M

in such a way that
V (x) + W̃M (x) = (V (x) +Wj(M)(x))1GM + ξ01GcM . (3.6)

We claim that {V + W̃M}M is an admissible vector field in the IF [V ] problem. For that it is enough to show

that ‖V + W̃M − (V +Wj(M))‖Lp(Ω) → 0. By definition we have

‖V + W̃M − (V +Wj(M))‖Lp(Ω) = ‖V + W̃M − (V +Wj(M))‖Lp(GcM ) ≤

≤ ‖ξ0‖Lp(GcM ) +M−1
(∫

Ω

FM (V +Wj(M)) dx

)1/p

,

where the last inequality comes from the definition of the set GcM (and extending the integral to all of Ω).

Now, the last term here is bounded by M−1
(∫
Ω
F (V (x)) dx+ 2ε

)1/p
due to (3.5), thus showing the desired

convergence to 0 in Lp, as ‖ξ0‖Lp(GcM ) → 0 results simply from the fact that clearly the Lebesgue measure of
GcM tends to 0, as F (V (x) +Wj(M)(x)) > M on GcM and we have a uniform (with respect to M) bound on the

integral of the function in question. This implies in particular that AW̃M → 0 in W−1,p and W̃M ⇀ 0 in Lp.
Therefore if we define

VM (x) := V (x) + W̃M (x)

we see that {
VM ⇀ V in Lp,

AVM → AV in W−1,p.

Thus

IF [V ] ≤ lim inf
M→∞

∫
Ω

F (V + W̃M ) dx

= lim inf
M→∞

∫
GM

FM (V +Wj(M)) dx+

∫
GcM

F (ξ0) dx

≤ lim inf
M→∞

∫
Ω

F (V (x)) dx+ 2ε =

∫
Ω

F (V (x)) dx+ 2ε,

where the last inequality results from (3.5) and the measure of GcM tending to 0. Since ε > 0 was arbitrary the
proof is complete. �

Observe that the above result is stronger than just necessity of quasiconvexity for lower semi-continuity. The
downside is the continuity requirement for the integrand. However, it seems that this assumption cannot be
easily removed if one hopes for a full relaxation result in the spirit of the one above. That is because continuity
is essential when using the Fundamental Theorem of Young Measures (Thm. 2.1) – lower semi-continuity to get
a lower bound on the relaxation and upper semi-continuity for the upper bound.

This being said, it is still possible to obtain some results for less regular integrands, and this is what we
will do in the last part of the paper. We show that under additional conditions on the characteristic cone of
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the operator A the continuity of the integrand may be deduced from lower semi-continuity of the functional,
and thus need not be assumed, hence leading to the equivalence of sequential weak lower semi-continuity of the
functional and closed A-p quasiconvexity of the integrand. This will be the content of our final result.

Definition 3.10. We define the characteristic cone of A to be the set

Λ :=
⋃

w∈RN
‖w‖=1

kerA(w).

Lemma 3.11. Suppose that the integrand F is real-valued and such that the functional V 7→ IF [V ] is A-∞
sequentially weakly* lower semi-continuous, i.e. for every sequence Vj with Vj

∗
⇀ V in L∞(Ω;Rn) and A(Vj −

V ) = 0 for all j one has ∫
Ω

F (V (x)) dx ≤ lim inf
j→∞

∫
Ω

F (Vj(x)) dx.

Then F is (separately) convex along any direction given by a vector in Λ.

Similar results have been given in the literature, for example in Section 6 of [41], but for the sake of completeness
we present a proof for this particular case below.

Proof. Fix θ ∈ (0, 1) and y, z ∈ Rn such that y−z ∈ kerA(w) ⊂ Λ with w ∈ RN , ‖w‖ = 1. We need to show that
F (θy+ (1− θ)z) ≤ θF (y) + (1− θ)F (z). To this end let Qw ⊂ RN be a rotated unit cube with two neighbouring
(connected by an edge) vertices 0 and w. Such a cube is not unique, but that is not important, simply pick an
arbitrary one. Define a function u by

u(x) :=

{
(1− θ)(y − z) : 〈x,w〉 ∈ [0, θ),

θ(z − y) : 〈x,w〉 ∈ [θ, 1]

for x ∈ Qw. Thus |{x : u(x) = (1− θ)(y − z)}| = θ and |{x : u(x) = θ(z − y)}| = 1 − θ. Extend u to RN by
Qw-periodicity. Since y − z ∈ kerA(w) it is easy to see that Au = 0. Finally let uj(x) := u(nx) for x ∈ Ω. By
Lemma 2.3 we have

uj
∗
⇀

∫
Qw

u(y) dy = 0,

where the convergence is weak* in L∞(Ω). Clearly we also have Auj = 0 for all n. Thus we may use the lower
semi-continuity assumption on our functional with V (x) := θy + (1− θ)z and Vj(x) := V + uj . This yields

|Ω|F (θy + (1− θ)z) =

∫
Ω

F (V (x)) dx ≤ lim inf
j

∫
Ω

F (V (x) + uj(x)) dx

= |Ω| (θF (y) + (1− θ)F (z)) ,

thus ending the proof. �

Corollary 3.12. Suppose that the characteristic cone of A spans the entire space, i.e. spanΛ = Rn and that
F is real-valued and such that IF is lower semi-continuous in the sense of the previous Lemma. Then F is
continuous.

Proof. Using the previous Lemma and the assumption spanΛ = Rn one may show that F is locally Lipschitz in
the exact same manner as for rank-one convex (or, more generally, separately convex) functions. We refer the
reader to [4] for details.

Let us note that the assumption spanΛ = Rn is essential here. When it fails, the A-quasiconvexity does not
improve regularity along directions that are not in spanΛ, in fact there are examples for loss of regularity, when
taking the A-quasiconvex envelope of a smooth function yields a discontinuous one – see Remark 3.5 in [20]. �
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This leads to the final result of the paper:

Theorem 3.13. Suppose that F is real valued, satisfies the growth condition F (ξ) ≥ C|ξ|p and that spanΛ =
Rn. Then the functional IF is sequentially lower semi-continuous in the usual sense if and only if F is closed
A-p quasiconvex.

Proof. We already know that closed A-p quasiconvexity implies lower semi-continuity of the functional, thanks
to Theorem 3.3. The other implication is a simple consequence of Corollary 3.12 and Theorem 3.9. If we assume
lower semi-continuity of the functional then this implies that the relaxation introduced in Theorem 3.9 is equal
to the functional itself. On the other hand, continuity of the integrand implies that the relaxation is given by
integration of the quasiconvex envelope. From these two facts we infer that F must be equal to its quasiconvex
envelope, thus ending the proof. �

4. Appendix

We have mentioned in the introduction that the regularisation results for sequences generating A-p Young
measures rely heavily on an analogue of Helmholtz decomposition for the operator A. Specifically one wants
to obtain a projection-like operator onto the kernel of A and show that it is a Fourier multiplier. This is done
using the following result:

Proposition 4.1 (see [36]). If Θ : RN \ {0} → R is homogeneous of degree 0 and if it is smooth on SN−1 then
the operator TΘ : Lp(TN )→ Lp(TN ) defined by

TΘf(x) :=
∑

λ∈∆\{0}

Θ(λ)f̂(λ)e2πix·λ for f ∈ Lp(TN ), f =
∑
λ∈∆

f̂(λ)e2πix·λ

is a Fourier multiplier operator for any 1 < p <∞.

Here ∆ := ZN ⊂ RN , and for λ ∈ ∆ we denote by f̂(λ) the corresponding Fourier coefficient of the function
f . The projection and its generalised inverse are denoted P(w) and Q(w) respectively and, for a given w ∈ RN ,
are defined as follows. The projection P(w) is simply the orthogonal projection of Rn onto ker(A(w)), whilst
Q(w) is required to satisfy Q(w) ≡ 0 on Im(A(w))⊥, and for A(w)v ∈ Im(A(w)) with v ∈ Rn

Q(w)(A(w)v) = v − P(w)v. (4.1)

That is, Q(w) is the Moore–Penrose generalised inverse of P(w).
What one aims to show is that P(w) may be used in Proposition 4.1. Since P(w) is a linear map Rn → Rn

we may view it as an n×n matrix with entries Pi,j(w). For any i, j ∈ {1, . . . , n} the map w 7→ Pi,j(w) is clearly
homogeneous of degree 0, assuming it is also smooth one may use Proposition 4.1 to define a corresponding
Fourier multiplier operator TPi,j . Letting

T : Lp(TN ;Rn)→ Lp(TN ;Rn), (u1, . . . , un) 7→ (T1(u), . . . ,Tn(u))

be given by

Ti(u)(x) :=

n∑
j=1

TPi,juj(x),

we obtain a bounded linear operator vanishing on constant functions with the property that, for any u ∈
Lp(TN ;Rn), one has T(Tu) = Tu and A(Tu) = 0, which is crucial for the decomposition given in Lemma 2.5
and localisation in Proposition 2.6.

The difficult part here is showing smoothness of the map w 7→ P(w) in order to be able to use the previous
Proposition. This has been argued previously by means of the Cauchy Representation Formula and the usual
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reference given is [23]. However we were unable to find a full, detailed proof of this result, thus below we offer
a more elementary one, relying on early results on the Moore–Penrose generalised inverse.

The main source for this part is [16] with the exception of the very first lemma we give, which follows another
paper by the same author ([15], see Lem. 5.4).

It is worth pointing out that Lemma 4.4 and Theorem 4.5 are enough to prove the result we are after, that
is Theorem 4.6. However we have decided to include Lemmas 4.2 and 4.3 for the sake of completeness. These
two lemmas may be proven very elementarily, using a standard continuity argument and the Gram–Schmidt
process respectively, and they lead to the key Lemma 4.4 in a straightforward manner, thus arguing for the fact
that the approach we present here is more elementary than the ones suggested previously.

Lemma 4.2 (see [15]). Let D ⊂ RN be open with w0 ∈ D. Let a1, . . . ak be continuous functions defined on D
and valued in Rm. Assume that the vectors a1(w0), . . . , ak(w0) are linearly independent. Then there exists some
open neighbourhood D0 of w0 such that a1(w), . . . , ak(w) are linearly independent for all w ∈ D0.

The following two results correspond, in that order, to Proposition 3.1 and Corollary 3.4 in [16]. In what
follows Idr ∈ Rr×r stands for the r × r identity matrix.

Lemma 4.3 (see [16]). Let D ⊂ RN be open. Suppose that a1, . . . , ak ∈ C∞(D;Rm) are such that
a1(w), . . . , ak(w) are linearly independent for each w ∈ D. Then there exists a unique family of vector functions
u1, . . . uk ∈ C∞(D;Rm) such that for each w ∈ D the family u1(w), . . . , uk(w) is orthonormal, and for each
j ∈ {1, . . . , k} one has

span{a1(w), . . . , aj(w)} = span{u1(w), . . . , uj(w)}.

Lemma 4.4 (see [16]). Let D ⊂ RN be open and let r ∈ N. Suppose that A is a matrix-valued function of class
C∞ and constant rank r, i.e. A ∈ C∞(D;Rm×nr ). Fix any w0 ∈ D. Then there exist an open neighbourhood
D0 ⊂ D of w0 and functions U ∈ C∞(D0;Rm×rr ) and B ∈ C∞(D0;Rr×nr ) such that UT (w)U(w) ≡ Idr and

A(w) = U(w)B(w) for all w ∈ D0.

This full-rank decomposition in Lemma 4.4 may be used to determine the Moore–Penrose generalised inverse
of a matrix, as in Theorem 5, Chapter 1 of [7] (originally due to MacDuffee).

Theorem 4.5 (see [7]). If A ∈ Rm×nr with r > 0 has a full-rank factorisation A = UB satisfying U ∈ Rm×rr ,
B ∈ Rr×nr and UTU = Idr then A+, the Moore–Penrose generalised inverse of A, may be expressed as

A+ = BT
(
BBT

)−1
UT .

Combining all these we may now easily prove the following:

Theorem 4.6. Let D ⊂ RN be open. Assume that A : D → Rm×nr is a constant-rank matrix valued function of
class C∞. Then the function A+ : D → Rn×mr , given by taking the Moore–Penrose generalised inverse of A(w)
at each point w ∈ D, is of class C∞ as well.

Proof. Clearly it is enough to show this result locally. First of all, if the rank r = 0 then A ≡ 0, in which
case the result is trivial. Assuming r > 0 we fix an arbitrary w0 ∈ D. Then Lemma 4.4 yields a local full-rank
decomposition

A(w) = U(w)B(w),

with U ∈ C∞(D0;Rm×rr ) and B ∈ C∞(D0;Rr×nr ) for some open set D0 containing w0. We also have
UT (w)U(w) ≡ Idr, so that Theorem 4.5 shows that A+ on D0 may be expressed as

A+(w) = BT (w)
(
B(w)BT (w)

)−1
U(w)T .

All that is left to observe is that all the factors of the above expression are of class C∞. In particular, since the
(square) matrix B(w)BT (w) is smooth and invertible at each point w ∈ D0, its inverse is necessarily smooth as
well. �
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Finally, it is enough to observe that smoothness of Q immediately yields the same for P.
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[35] P.M. Santos, A-quasiconvexity with variable coefficients. Proc. of the Royal Society of Edinburgh: Section A Math. 134 (2004)
1219–1237.

[36] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press (1971).

[37] M. A. Sychev, A new approach to Young measure theory, relaxation and convergence in energy. Ann. Inst. Henri Poincaré
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