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ON THE BEST CONSTANT MATRIX APPROXIMATING AN OSCILLATORY

MATRIX-VALUED COEFFICIENT IN DIVERGENCE-FORM OPERATORS

Claude Le Bris1,2, Frédéric Legoll2,3,∗ and Simon Lemaire1,2

Abstract. We approximate an elliptic problem with oscillatory coefficients using a problem of the
same type, but with constant coefficients. We deliberately take an engineering perspective, where the
information on the oscillatory coefficients in the equation can be incomplete. A theoretical foundation
of the approach in the limit of infinitely small oscillations of the coefficients is provided, using the
classical theory of homogenization. We present a comprehensive study of the implementation aspects
of our method, and a set of numerical tests and comparisons that show the potential practical interest
of the approach. The approach detailed in this article improves on an earlier version briefly presented
in [C. Le Bris, F. Legoll and K. Li, C.R. Acad. Sci. Paris, Série I 351 (2013) 265–270].
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1. Introduction

1.1. Context

Consider the simple, linear, elliptic equation

−div(Aε∇uε) = f in D, uε = 0 on ∂D, (1.1)

in divergence-form, where D ⊂ Rd, d ≥ 1, is an open, bounded domain which delimits what we hereafter call
’the physical medium’, and where Aε is a possibly random oscillatory matrix-valued coefficient. We suppose
that all the requirements are satisfied so that problem (1.1) is well-posed. In particular, we assume that Aε is
bounded and bounded away from zero uniformly in ε. Our assumptions will be detailed in Section 2.1 below. The
subscript ε encodes the characteristic scale of variation of the matrix field Aε. For instance, one may think of
the case Aε(x) = Aper(x/ε) for a fixed Zd-periodic matrix field Aper, although all what follows is not restricted
to that particular case.

It is well-known that, for ε small (comparatively to the size of D), and not necessarily infinitesimally small,
the direct computation of the solution to (1.1) is expensive since, in order to capture the oscillatory behavior of
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Aε and uε, one has to discretize the domain D with a meshsize h� ε. The computation becomes prohibitively
expensive in a multi-query context where the solution uε(f) is needed for a large number of right-hand sides f
(think, e.g., of a time-dependent model where (1.1), or a similar equation, should be solved at each time step tn

with a right-hand side f(tn), or of an optimization loop with f as an unknown variable, where (1.1) would
encode a distributed constraint). Alternatives to the direct computation of uε exist. Depending on the value
of ε, the situation is schematically as follows.

• For ε < ε, where ε is a given, medium-dependent threshold (typically ε ≈ size(D)/10), one can consider that
homogenization theory [3,13,19] provides a suitable framework to address problem (1.1). That theory ensures
the existence of a limit problem for infinitely small oscillations of the coefficient Aε. The limit problem reads

−div(A?∇u?) = f in D, u? = 0 on ∂D. (1.2)

The matrix-valued coefficient A? is (i) non-oscillatory, (ii) independent of f , and (iii) given by an abstract
definition that can become more or less explicit, depending on the assumptions concerning the structure of
Aε (and the probabilistic setting in the random case). The solution to the homogenized problem (1.2) can
be considered an accurate L2-approximation of the oscillatory solution to (1.1) as soon as the size ε of the
oscillations of Aε is sufficiently small.
There are several cases for which the abstract definition giving A? can be made explicit. The simplest
examples are (i) periodic coefficients of the form Aε(x) = Aper(x/ε), with Aper a Zd-periodic matrix field, and
(ii) stationary ergodic coefficients of the form Aε(x, ω) = Asto(x/ε, ω), with Asto a (continuous or discrete)
stationary matrix field. In both cases, one can prove that A? is a deterministic constant (i.e. independent
of x) matrix, for which a simple explicit expression is available. Whenever a corrector (in the terminology of
homogenization theory, see [3, 13, 19] and (2.7)–(2.8) below) exists, it is in addition possible to reconstruct
an H1-approximation of the solution to (1.1), using the solutions to the corrector problem and to the
homogenized problem (1.2).
Practically, whenever an explicit definition is available for A?, one can compute an approximation of the
oscillatory solution to (1.1) by solving the non-oscillatory problem (1.2). The advantage is obviously that
the latter can be solved on a coarse mesh. The cost of the method then lies in the offline computation of A?.

• For ε ≥ ε, the size of the oscillations is too large to consider that homogenization theory provides a suitable
framework to approximate problem (1.1), and one may use, in order to efficiently compute an approximation
of uε, dedicated numerical approaches.
Classical examples include the Variational Multiscale Method (VMM) introduced by Hughes et al. [12], and
the Multiscale Finite Element Method (MsFEM) introduced by Hou and Wu [11] (see also the textbook [9]).
We also refer to the more recent works by Målqvist and Peterseim [17] (on the Local Orthogonal Decom-
position (LOD) method), or Kornhuber and Yserentant [14], on localization and subspace decomposition.
Many more examples of approaches are available in the literature.
The MsFEM approach (as well as the LOD approach) is essentially based on an offline/online decomposition
of the computations. In the first step, local problems are solved at the microscale, in order to compute
oscillatory basis functions. Each basis function is obtained by solving an oscillatory problem posed on a
macro-element or on a patch of macro-elements. These oscillatory problems do not depend on the right-hand
side f , and are independent one from another. In the second step, the global problem, which depends on the
right-hand side f , is solved. The second step is performed, e.g., by considering a Galerkin approximation
on the multiscale discrete space built in the offline step. The original online cost of solving an oscillatory
problem on a fine mesh (using a discrete space at one single fine scale) is reduced to solving an oscillatory
problem on a coarse mesh consisting of macro-elements (using a multiscale discrete space).
These methods provide an H1-approximation of the oscillatory solution uε. Note that they are (a priori)
applicable without any restriction on the structure of Aε, and are also applicable, and indeed applied, in
the regime ε < ε. Note also that, in the stochastic setting, the computations must be performed ω by ω, for
“each” realization ω of the random environment.
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The finite element Heterogeneous Multiscale Method (HMM) introduced by E and Engquist [8] is another
popular multiscale technique. It is however based on a different perspective. Its aim is to compute an
approximation of the coarse solution u? by means of local averages of the oscillatory coefficient Aε.

One way or another, all these approaches rely on the knowledge of the coefficient Aε. It turns out that there are
several contexts where such a knowledge is incomplete, or sometimes merely unavailable. From an engineering
perspective (think, e.g., of experiments in Mechanics), there are numerous prototypical situations where the
response uε(f) can be measured for some loadings f , but where Aε is not completely known. In these situations,
it is thus not possible to use homogenization theory, nor to proceed with any MsFEM-type approach or with
the similar approaches mentioned above.

We have discussed above two possibilities to address multiscale problems such as (1.1), using either the
homogenization theory or dedicated numerical approaches. Restricting our discussion to homogenization theory,
we can identify three limitations, quite different in nature, to the practical application of the theory:

• First, homogenization theory has been developed in order to address the case of infinitely small oscillations
of the coefficients, and is hence not appropriate for media such that ε ≥ ε. In practice, one may for instance
want to evaluate the effective coefficients (such as the Poisson ratio and the Young modulus for problems
in Mechanics) of a medium for which ε ≥ ε. It is always possible (if an explicit definition is available) to
compute A?, considering on purpose the (fictitious) limit of infinitely small oscillations, but there is no
reason for that A? to be an accurate approximation of the medium it is supposed to describe.

• Assume that an explicit expression is available for A?. A practical limitation is that, in most cases except for
the somewhat ideal case of periodic coefficients (with a known period), the computation of A? by classical
methods is expensive. For instance, in the stochastic setting, the computation of A? requires to solve, many
times, a corrector problem set on a truncated approximation of an asymptotically infinitely large domain.
This is especially challenging in the stationary ergodic case with long-range correlations. Note that equivalent
limitations appear for MsFEM-type or similar approaches in the stochastic setting.

• Another evident limitation shows up when one examines the homogenized limit of (1.1) for a coefficient Aε
such that no explicit expression is available for A? (although Aε is well-known, and although the homogenized
limit of (1.1) is known to read as (1.2)). This case might occur as soon as Aε is not the rescaling A(·/ε) of
a simple (periodic, quasi-periodic, random stationary, . . . ) function A.

Finding a pathway alternate to standard approaches is thus a practically relevant question. Given our discussion
above, we are interested in approaches valid for the different regimes of ε, which make no use of the knowledge
on the coefficient Aε, but only use some (measurable) responses of the medium (obtained for certain given
solicitations). Questions similar in spirit, but different in practice, have been addressed two decades ago by
Durlofsky in [7]. They are similar in spirit because the point is to define an effective coefficient only using outputs
of the system. They are however different in practice because the effective matrix is defined by upscaling, and
hence the approach of [7] is local. This approach is indeed based on considering, in a representative elementary
volume, some particular problems (with zero loading and suitable boundary conditions), for which the solutions
in the case of homogeneous coefficients are affine and write as independent of these homogeneous coefficients.
Considering d choices of such problems (that is, d choices of boundary conditions), and postulating the equality
of the fluxes respectively resulting from the original oscillatory and homogeneous equivalent problems, one
determines the coefficients of an “effective” matrix. Several variants exist in the literature, as well as many
other approaches.

The original approach we introduce in this article improves on an earlier version briefly presented in [16].
Our approach is global, in the sense that it uses the responses of the system in the whole domain D. Note of
course that it can be used locally as an upscaling technique, for instance in problems featuring a prohibitively
large number of degrees of freedom.

In passing, we note that our approach provides, at least in some settings, a characterization of the homogenized
matrix which is an alternative to the standard characterization of homogenization theory (see Prop. 3.2 below).
To the best of our knowledge, this characterization has never been made explicit in the literature.
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Throughout this article, we restrict ourselves to cases when problem (1.1) admits (possibly up to some
extraction) a homogenized limit that reads as problem (1.2), where the homogenized matrix coefficient

A? is deterministic and constant.

This restrictive assumption on the class of A? (and thus on the structure of the coefficient Aε in (1.1), and on
the probabilistic setting in the random case) is useful for our theoretical justifications, but not mandatory for
the approach to be applicable (see Sect. 1.3 below).

1.2. Presentation of our approach

We now sketch, for a coefficient Aε that we take for simplicity deterministic, the idea underlying our approach.
Let S denote the set of real-valued d× d positive-definite symmetric matrices.

For any constant matrix A ∈ S, consider generically the problem with constant coefficients

−div(A∇u) = f in D, u = 0 on ∂D. (1.3)

We investigate, for any value of the parameter ε, how we may define a constant matrix Aε ∈ S such that
the solution uε to problem (1.3) with matrix A = Aε best approximates the solution uε to (1.1). Note that,
since Aε is constant, its skew-symmetric part plays no role in (1.3). We hence cannot hope for characterizing
the skew-symmetric part of Aε. Without loss of generality, we henceforth make the additional assumption that
the homogenized matrix A? is symmetric and that we seek a best (constant) symmetric matrix. Should A? not
be symmetric, it is replaced in the sequel by its symmetric part. In [16], the constant matrix Aε is defined as a
minimizer of

inf
A∈S

sup
f∈L2(D), ‖f‖L2(D)=1

‖uε(f)− u(f)‖2L2(D), (1.4)

where we have emphasized the dependency upon the right-hand side f of the solutions to (1.1) and (1.3). The
use of a L2 norm in (1.4) (and not of e.g. a H1 norm) is reminiscent of the fact that, for sufficiently small ε, we
wish the best constant matrix to be close to A?, and that uε converges to u? in the L2 norm but not in the H1

norm.

Note that problem (1.4) is only based on the knowledge of the outputs uε(f) (that could be, e.g., experimen-
tally measured), and not on that of Aε itself. Note also that, in practice, we cannot maximize upon all right-hand
sides f in L2(D) (with unit norm). We therefore have to replace the supremum in (1.4) by a maximization upon
a finite-dimensional set of right-hand sides, which we will have to select thoughtfully (see Sect. 3.1.1).

In this article, we keep the same type of characterization for Aε as in [16] (that is, through an inf-sup
problem), but we use a slightly different cost function than in (1.4). The constant matrix Aε is here defined as
a minimizer of

inf
A∈S

sup
f∈L2(D), ‖f‖L2(D)=1

∥∥(−∆)−1
(
div(A∇uε(f)) + f

)∥∥2
L2(D)

, (1.5)

where (−∆)−1 is the inverse laplacian operator supplied with homogeneous Dirichlet boundary conditions: for
any g ∈ H−1(D), z = (−∆)−1g is the unique solution in H1

0 (D) to

−∆z = g in D, z = 0 on ∂D.

The cost function of (1.5) is related to the one of (1.4) through the application, inside the L2 norm of the
latter, of the zero-order differential operator (−∆)−1

(
div(A∇·)

)
. Note that, in sharp contrast with (1.4), the

function
∥∥(−∆)−1

(
div(A∇uε(f)) + f

)∥∥2
L2(D)

used in (1.5) is a polynomial function of degree 2 in terms of A,

a property which brings stability and significantly speeds up the computations. The specific choice (1.5) has
been suggested to us by Albert Cohen (Université Pierre et Marie Curie).
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Remark 1.1. The reason to choose f ∈ L2(D) in (1.5), rather than f ∈ H−1(D), is discussed in Remark 3.1
below.

Several criteria can be considered to assess the quality and the usefulness of our approach:

(i) asymptotic consistency: does the sequence
{
Aε
}
ε>0

of best matrices, defined as minimizers of (1.5), con-
verge, when ε goes to 0, to the homogenized matrix A?? If this is indeed the case, the approach provides
an approximation for the homogenized matrix alternate to standard homogenization (note, in particular,
that our approach does not require solving a corrector problem).

(ii) efficiency: practically, is this best matrix Aε efficiently computable? In particular, how many right-hand
sides does its computation really require?

(iii) L2-approximation: for any fixed ε, not necessarily small, how well does the solution uε to (1.3) with matrix
Aε approximate the reference solution uε to (1.1) in the L2 norm?

(iv) H1-approximation: using Aε, is it possible to reconstruct (if possible for a marginal additional cost) an
accurate approximation of uε in the H1 norm? Recall that in homogenization theory, a corrector problem
must be solved to compute the homogenized matrix, but once this is performed, one can reconstruct an
H1-approximation of uε using the solution of the latter problem at no additional cost.

1.3. Outline and perspectives

The article is organized as follows. To begin with, we introduce in Section 2 the assumptions we will make
throughout the article, and we recall the basics of homogenization. We formalize our approach in Section 3. We
establish an asymptotic consistency result (thereby positively answering to Question (i) above, see Prop. 3.2),
and we explain how the best matrix we compute can be used to construct an approximation in the H1 norm
of the oscillatory solution (hence addressing Question (iv) above). We also detail how to approximate the
infinite-dimensional space {f ∈ L2(D), ‖f‖L2(D) = 1} present in (1.5) by a finite-dimensional space of the

form Span {fp, 1 ≤ p ≤ P} for some appropriate functions fp (see (3.5) below). In Section 4, we explain how
the problem of finding the best constant matrix can be efficiently solved in practice (thereby answering to
Question (ii)).

Finally, in Section 5, we present, as a practical answer to Questions (i), (ii), (iii) and (iv), a number of
representative numerical experiments, both in the periodic and stationary ergodic settings, and we provide
some comparison with the classical homogenization approach. We show in particular that choosing a small
number P of right-hand sides (in practice, we often set P = d(d+ 1)/2) is sufficient for our approach to provide
accurate results.

We emphasize that the aim of the numerical experiments described in Section 5 is different in the periodic
setting and in the stochastic setting. In the former case, computing the homogenized matrix is inexpensive, and
thus we cannot hope for our approach (which requires solving highly oscillatory equations) to outperform the
classical homogenization approach in terms of efficiency. The periodic setting is hence to be considered as a
validation setting.

The situation is entirely different in the stochastic setting, which is much more challenging. In that setting, our
approach can compete as far as Questions (i), (ii), (iii) and (iv), are concerned. We show that, for an essentially
identical computational cost compared to the standard homogenization approach, our approach allows us to
compute a more accurate approximation of the solution uε to the highly oscillatory equation, both in L2 and
in H1 norms.

More importantly, the reader should bear in mind that our approach targets practical situations where the
information on the oscillatory coefficients in the equation may be incomplete. The comparison with standard
homogenization approaches which is performed in Section 5 is hence somewhat unfair for our approach, as the
former approaches need a complete knowledge of the coefficient Aε, whereas ours does not.
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There are several possible follow-ups for this work:

• First, one can perform a detailed study of the robustness of the approach with respect to imprecise data,
assuming for instance that we only have access locally to coarse averages of the outputs uε(f) or ∇uε(f).

• Second, the extension to nonlinear equations may be studied, where the oscillatory problem is formulated as
the optimization problem

inf

{∫
D
K
(x
ε
,∇u(x)

)
dx−

∫
D
f(x)u(x) dx, u ∈W 1,p

0 (D)

}
,

where the function ξ ∈ Rd 7→ K(·, ξ) is strictly convex. In a multi-query context, our approach (and this is
also true for other approaches) is even more interesting for nonlinear equations than for linear ones. Indeed,
however large the parameter ε is, solving a nonlinear oscillatory equation for a large number of right-hand
sides is prohibitively expensive. In contrast, in the linear case, as soon as the LU decomposition of the stiffness
matrix can be computed and stored, i.e. as soon as ε is not too small, the cost for computing several solutions
becomes almost equal to the cost for computing one. The computational workload thus remains affordable.
This is not the case in a nonlinear context.

• Third, the approach may be extended to homogenized matrices that are not constant. Indeed, as soon as
some additional information is available on A?, one could adequately modify the search space for A in (1.4)
or (1.5). For instance, the case of a slowly varying matrix A?(x), depending upon x ∈ D in a sense to be
made precise, can be considered. Following a suggestion by Albert Cohen, it may also be possible to balance
the dimension of the space in which A is searched with the amount of noise present in the problem (which is
related to the value of ε) and the number of fine-scale solutions that are available (here the dimension P of
the space (3.5) introduced below).

2. Preliminaries

We describe the stationary ergodic setting we adopt. This setting includes, as a particular case, the periodic
case. For a more detailed presentation of the particular stochastic setting we here consider, we refer to the
theoretically-oriented articles [4, 5], to the numerically-oriented articles [6, 15], and to the review article [2]
(as well as to the extensive bibliography contained therein). For more insight on stochastic homogenization in
general, we refer the reader to the seminal contribution [18], to [10] for a numerically-oriented presentation, as
well as to the classical textbooks [3, 13]. The reader familiar with that theory may easily skip this section and
directly proceed to Section 3.

2.1. Assumptions

Recall that D denotes an open, bounded subset of Rd, d ≥ 1. Let (Ω,Z,P) be a probability space, on which

we assume an ergodic structure, and let E(X) =

∫
Ω

X(ω) dP(ω) be the expectation of any random variable

X ∈ L1(Ω, dP). We consider problem (1.1), which reads, in the stochastic setting, as

−div(Aε(·, ω)∇uε(·, ω)) = f a.s. in D, uε(·, ω) = 0 a.s. on ∂D, (2.1)

where the function f ∈ L2(D) is independent of ε and deterministic (see Rem. 3.1 below for a discussion on the
choice of taking f in L2(D)).

We assume that

Aε(x, ω) = Asto(x/ε, ω), (2.2)

where Asto is such that there exist deterministic real numbers α, β > 0 such that

Asto(·, ω) ∈ L∞(Rd;Sα,β) almost surely, (2.3)
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with
Sα,β =

{
M ∈ Rd×d, M is symmetric, α |ξ|2 ≤ ξTMξ ≤ β |ξ|2 for any ξ ∈ Rd

}
.

In addition, we assume that Asto is a discrete stationary matrix field. A complete description of the discrete
stationary ergodic setting we here consider can be found, e.g., in the review article [2], (Sect. 2.2). For brevity,
we only mention here that the purpose of this setting is to formalize the fact that, even though realizations may
vary, the matrix Asto at point y ∈ Rd and the matrix Asto at point y + k, k ∈ Zd, share the same probability
law. The local, microscopic environment (encoded in the oscillatory matrix field Aε(x, ω) = Asto(x/ε, ω)) has a
εZd-periodic structure on average.

Assumption (2.3) ensures the existence and uniqueness of the solution to (2.1) in H1
0 (D), almost surely.

Furthermore, almost surely, the solution uε(·, ω) to (2.1) converges (strongly in L2(D) and weakly in H1(D))
to some u? ∈ H1

0 (D) solution to (1.2), where the homogenized matrix A? is deterministic, constant and belongs
to Sα,β . As is well-known, A? is independent of the right-hand side f in (2.1).

Remark 2.1. The above discussion is not restricted to the discrete stationary setting. We could as well have
considered the continuous stationary setting, where the probability law of Asto(y, ω) does not depend on y.

Remark 2.2. The form of the homogenized equation (1.2) is in this context identical to that of the original
equation (1.1). This is not a general fact. Although definite conclusions are yet to be obtained, there are all
reasons to believe that the practical approach we introduce in this article carries over to cases where the
homogenized equation is of a different form.

The periodic setting is a particular case of the above discrete stationary setting, when A is independent of ω.
This amounts to assuming that

Aε(x) = Aper(x/ε), (2.4)

with Aper a Zd-periodic matrix field such that

Aper ∈ L∞(Rd;Sα,β). (2.5)

2.2. Classical homogenization approach

We briefly recall here the basics of homogenization. We focus the presentation on the stationary ergodic
setting. The easy adaptation to the periodic setting is briefly commented upon.

Let Q = (0, 1)d. In the discrete stationary ergodic setting, the (deterministic, constant and symmetric)
homogenized matrix A? reads, for all 1 ≤ i, j ≤ d, as

[A?]i,j = E
(∫

Q

(ei +∇wei(y, ·))
T
Asto(y, ·)

(
ej +∇wej (y, ·)

)
dy

)
, (2.6)

where (e1, . . . , ed) denotes the canonical basis of Rd, and where, for any p ∈ Rd, wp is the solution (unique up
to the addition of a random constant) to the so-called corrector equation

−div (Asto(·, ω)(p+∇wp(·, ω))) = 0 a.s. in Rd,

∇wp is stationary, E
(∫

Q

∇wp(y, ·) dy

)
= 0.

(2.7)

In the periodic case Aε(x) = Aper(x/ε), the corrector equation reads as{
−div (Aper(p+∇wp)) = 0 in Rd,

wp is Zd-periodic,
(2.8)
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and the homogenized matrix A? is given by

[A?]i,j =

∫
Q

(ei +∇wei(y))
T
Aper(y)

(
ej +∇wej (y)

)
dy.

In sharp contrast with the periodic case where, precisely by periodicity, it is sufficient to solve the corrector
equation (2.8) on the unit cell Q, the corrector equation (2.7) must be solved in the discrete stationary ergodic
setting on the entire space Rd. As pointed out in the introduction, this is computationally challenging. In
practice, one often considers a truncated corrector equation posed, for an integer N 6= 0, on a large domain
QN = (−N,N)d:

−div
(
Asto(·, ω)(p+∇wNp (·, ω))

)
= 0 a.s. in QN , wNp (·, ω) is a.s. QN − periodic. (2.9)

The random matrix AN? (ω), approximation of the deterministic homogenized matrix A? given by (2.6), is defined,
for all 1 ≤ i, j ≤ d, by[

AN? (ω)
]
i,j

=
1

|QN |

∫
QN

(
ei +∇wNei(y, ω)

)T
Asto(y, ω)

(
ej +∇wNej (y, ω)

)
dy. (2.10)

Almost surely, it converges, in the limit of infinitely large domains QN , i.e. whenN → +∞, to the (deterministic)
matrix A? (see [6]). Since AN? (ω) is random, it is natural to consider M independent and identically distributed
(i.i.d.) realizations of the field Asto, say {Asto(·, ωm)}1≤m≤M , solve (2.9) and compute (2.10) for each of them,
and define

AN,M? =
1

M

M∑
m=1

AN? (ωm) (2.11)

as a practical approximation to A?. Owing to the strong law of large numbers, we have that lim
N→∞

lim
M→∞

AN,M? =

A? almost surely.

3. Formalization of our approach

The approach we introduce below applies, up to minor changes, to both the periodic and the stationary
ergodic settings. We however recall from Section 1.3 that only the stochastic setting (and more difficult cases) is
practically relevant for our approach. For simplicity and clarity, we first present the full study of the approach in
the periodic setting (see Sects. 3.1, 3.2 and 3.3). We next discuss its extension to the stationary ergodic setting
in Section 3.4.

3.1. Infsup formulation

As exposed in the introduction and expressed in formula (1.5), we are going to seek a constant, symmetric,
positive-definite matrix Aε, so that problem (1.3) with matrix Aε best approximates problem (1.1). To do so,
we consider the problem introduced in (1.5), that is

Iε = inf
A∈S

sup
f∈L2

n(D)

Φε(A, f), (3.1)

where L2
n(D) = {f ∈ L2(D), ‖f‖L2(D) = 1} and where, for any A ∈ Rd×dsym (the space of d × d real symmetric

matrices) and any f ∈ L2(D),

Φε(A, f) =
∥∥(−∆)−1

(
div(A∇uε(f)) + f

)∥∥2
L2(D)

. (3.2)

Note that formula (3.2) is well-defined since div(A∇uε(f)) clearly belongs to H−1(D) for all A ∈ Rd×dsym and
f ∈ L2(D). We observe, as briefly mentioned in Section 1.2, that the cost function Φε(·, f) depends quadratically
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upon A. From a computational viewpoint, in an iterative algorithm solving (1.5) or (3.1) that successively
optimizes on f and A, minimizing Φε with respect to A for a fixed f ∈ L2

n(D) thus reduces to the simple
inversion of a small linear system with d(d+ 1)/2 unknowns (see Sect. 4.3.3). This is in sharp contrast with our
former formulation (1.4). Of course, in both formulations (1.4) or (1.5), for ε fixed, it is not guaranteed that
our numerical algorithm captures the value Iε defined by (3.1). It only captures an approximation of it.

For both approaches (1.4) and (1.5), one can prove an asymptotic consistency result for the sequence
{
Aε
}
ε>0

:
see Proposition 3.2 below in the case of (1.5) and [16] in the case of (1.4). As the proof is essentially identical
for both approaches, we only detail it for the present choice (1.5) (see Appendix A below) and briefly point out
to the case (1.4) considered in [16] in Remark 3.3 below.

In order to gain further insight, and before stating the asymptotic consistency result, we first study, separately
and for a fixed value of ε, the maximization and minimization problems involved in (3.1).

3.1.1. The sup problem

We show here that, for any fixed A ∈ S, the maximization problem over f that is involved in (3.1), namely
sup

f∈L2
n(D)

Φε(A, f), is attained, and discuss how it can be solved in practice.

Let A ∈ S be given. We introduce the notation

∆A = div(A∇·),

and let (−∆A)−1 be the operator defined by: for any g ∈ H−1(D), z = (−∆A)−1g is the unique solution in
H1

0 (D) to
−div(A∇z) = g in D, z = 0 on ∂D.

We denote by L−1ε the linear, compact and positive-definite operator from L2(D) to L2(D) such that, for any
f ∈ L2(D), L−1ε f = uε(f), where uε(f) is the unique solution in H1

0 (D) to (1.1). Starting from (3.2), it can be
easily shown that

Φε(A, f) =

∫
D
HAε (f) f, (3.3)

where
HAε (f) =

( (
L−1ε

)?
∆A (−∆)−1 + (−∆)−1

) (
(−∆)−1∆A L−1ε + (−∆)−1

)
f (3.4)

is a compact, self-adjoint and positive semi-definite linear operator from L2(D) to L2(D). The eigenvalues of

HAε are thus nonnegative real numbers forming a sequence that converges to zero. We denote by λAε,m and fAε,m
the largest eigenvalue of HAε and an associated normalized eigenvector, respectively. In view of (3.3), we have

sup
f∈L2

n(D)

Φε(A, f) = λAε,m

and the supremum is attained at fAε,m, which is hence a solution to the sup problem involved in (3.1).

In practice, instead of looking for the largest eigenvalue (and the associated eigenvector) of HAε in the infinite-
dimensional space L2

n(D), our approach consists in approximating this space L2
n(D) by a finite-dimensional

subspace of the form

V Pn (D) =

{
f ∈ L2

n(D) s.t. there exists c = {cp}1≤p≤P ∈ RP , |c|2 = 1, f =

P∑
p=1

cpfp

}
, (3.5)

where (f1, . . . , fP ) is an orthonormal family of functions in L2(D).
We discuss the choice of the dimension P and of the family of functions {fp}1≤p≤P . First of all, in the

light of Lemma A.2 below (see also Sect. 3.2), it seems in order to choose the dimension of V Pn (D) such that
P ≥ d(d+ 1)/2.
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We now proceed, considering the regime ε small. Let A 6= A? be fixed. Homogenization theory states that, for
ε sufficiently small, the operator L−1ε (considered as an operator from L2(D) to L2(D)) is close to the operator

(−∆A?)−1. Thus the operator HAε defined by (3.4) is expected to be well-approximated by

HA? =
(
(−∆A?)−1∆A (−∆)−1 + (−∆)−1

) (
(−∆)−1∆A (−∆A?)−1 + (−∆)−1

)
. (3.6)

Up to the extraction of a subsequence, the eigenvector fAε,m we are seeking thus satisfies, by homogenization
theory on eigenvalue problems,

lim
ε→0

∥∥∥fAε,m − fA?,m∥∥∥
L2(D)

= 0,

where fA?,m is a normalized eigenvector associated with the largest eigenvalue of HA? . In view of the expres-
sion (3.6) of the limit operator, it seems natural to choose for the family of functions {fp}1≤p≤P the first P
(normalized) eigenvectors of the laplacian operator in the domain D. For small values of ε, say ε < ε, we show
that considering P = d(d+ 1)/2 functions fp is sufficient. This threshold d(d+ 1)/2 is at least intuitive thinking

at the case of a constant symmetric matrix A and the set of equations
∑

1≤i,j≤d

−Ai,j ∂ijup = fp. In order to

determine the d(d + 1)/2 coefficients Ai,j , the correct number of right-hand sides fp to consider is d(d + 1)/2.
The fact that it is indeed sufficient is made precise in the proof of Proposition 3.2 below (see in particular
Lem. A.2) and in Remark 3.5 below.

When the parameter ε takes larger values, say ε ≥ ε, the operator HAε cannot be anymore approximated by
the operator (3.6) (with constant coefficients), and it may thus be necessary in that case to consider a larger
number P > d(d+ 1)/2 of functions. We refer to Section 5 for concrete examples.

Remark 3.1. We discuss here why we have chosen to work with right-hand sides f of the equation (e.g. (2.1))

in L2(D) rather than in H−1(D). We have here considered sup
f∈L2(D)

Φε(A, f)

‖f‖2L2(D)

, and we could have considered

sup
f∈H−1(D)

Φε(A, f)

‖f‖2H−1(D)

.

Since L2(D) ⊂ H−1(D), we of course have sup
f∈H−1(D)

Φε(A, f)

‖f‖2H−1(D)

≥ sup
f∈L2(D)

Φε(A, f)

‖f‖2H−1(D)

. Using the density of

L2(D) in H−1(D) and the continuity of Φε(A, ·) in H−1(D), we actually get

sup
f∈H−1(D)

Φε(A, f)

‖f‖2H−1(D)

= sup
f∈L2(D)

Φε(A, f)

‖f‖2H−1(D)

· (3.7)

The right-hand side of (3.7) is of course different from the quantity sup
f∈L2(D)

Φε(A, f)

‖f‖2L2(D)

, which we have considered

in this article. Our choice is motivated by the fact that it is easier in practice to manipulate functions of
unit L2-norm. From the theoretical viewpoint, similar results would have been obtained with the left-hand side
of (3.7).

3.1.2. The inf problem

We discuss here how to efficiently solve the minimization problem over A that is involved in (3.1), namely

inf
A∈S

Φε(A, f). (3.8)

Let f ∈ L2
n(D) be fixed. It can be easily shown, starting from (3.2) and using the linearity of both the divergence

and inverse laplacian operators, that

Φε(A, f) =
1

2

∑
1≤i,j,k,l≤d

[Bε(f)]i,j,k,l Ai,j Ak,l −
∑

1≤i,j≤d

[Bε(f)]i,j Ai,j + b(f), (3.9)
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where the fourth-order tensor Bε(f), the matrix Bε(f) and the scalar b(f), which all depend on f , are given,
for integers 1 ≤ i, j, k, l ≤ d, by

[Bε(f)]i,j,k,l = 2

∫
D

[
(−∆)−1(∂ijuε(f))

] [
(−∆)−1(∂kluε(f))

]
,

[Bε(f)]i,j = −2

∫
D

[
(−∆)−1(∂ijuε(f))

] [
(−∆)−1f

]
,

b(f) =
∥∥(−∆)−1f

∥∥2
L2(D)

.

Practically, the inf problem (3.8) (with fixed f) is solved on the whole set Rd×dsym of symmetric matrices, instead
of considering the subset S of positive-definite symmetric matrices. Under this simplification, solving the inf
problem (3.8) amounts to considering the linear system

∀ 1 ≤ i, j ≤ d,
∑

1≤k,l≤d

[Bε(f)]i,j,k,l Ak,l = [Bε(f)]i,j . (3.10)

This system is low-dimensional and inexpensive to solve. In our numerical experiments, we have observed that
the problem (3.10) always has a unique solution in Rd×dsym , for all the functions f that our algorithm explores. In
addition, this solution is in S.

3.2. Asymptotic consistency

We study here problem (3.1) in the limit of a vanishing parameter ε. We introduce the notation

Φε(A) = sup
f∈L2

n(D)

Φε(A, f). (3.11)

Note that Φε is nonnegative. Consequently, for any ε, problem (3.1) admits a quasi-minimizer, namely a matrix

A
[

ε ∈ S such that

Iε ≤ Φε(A
[

ε) ≤ Iε + ε ≤ Φε(A) + ε for any A ∈ S. (3.12)

The following proposition holds.

Proposition 3.2 (Asymptotic consistency, periodic case). Consider problem (3.1), that is

Iε = inf
A∈S

sup
f∈L2

n(D)

Φε(A, f).

In the periodic setting, namely under the assumptions (2.4) and (2.5), the following convergence holds:

lim
ε→0

Iε = 0. (3.13)

Furthermore, for any sequence {A[ε ∈ S}ε>0 of quasi-minimizers of (3.1), we have

lim
ε→0

A
[

ε = A?. (3.14)

The proof of these results, which is postponed until Appendix A, relies on two facts:

(1) The homogenized matrix A? ∈ Sα,β ⊂ S can be used as a test-matrix in (3.12). In view of Lemma A.1
below, it satisfies lim

ε→0
Φε(A?) = 0, which directly implies (3.13);
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(2) We show in Lemma A.2 below that there exist d(d + 1)/2 right-hand sides f?,k ∈ L2
n(D) such that the

knowledge of f?,k and of u?,k solution to (1.2) with right-hand side f?,k, 1 ≤ k ≤ d (d + 1)/2, is sufficient
to uniquely reconstruct the constant symmetric matrix A?. The proof of (3.14) relies on this argument and
on (3.13). We denote

F = {f?,k, 1 ≤ k ≤ d(d+ 1)/2} (3.15)

this set.

We do not know whether, for ε fixed, the infimum in (3.1) is attained, unless ε is sufficiently small (see Rem. A.4
in Appendix A.2 below). We will proceed throughout the article manipulating quasi-minimizers in the sense
of (3.12).

Remark 3.3. The analysis of the approach (1.4) introduced in [16] relies on the same arguments as the approach
introduced here: Lemma A.2, and the equivalent of Lemma A.1 for the functional considered in [16], that is
lim
ε→0

Ψε(A?) = 0, where, for any A ∈ S,

Ψε(A) = sup
f∈L2

n(D)

‖uε(f)− u(f)‖2L2(D).

Remark 3.4. Note that the assumptions (2.4) and (2.5) are not necessary to prove the results (3.13) and (3.14).
All that needs to be assumed is that the sequence of matrices {Aε}ε>0 converges, in the sense of homogenization,
to a constant and symmetric homogenized matrix A?. In that vein, we will see in Section 3.4 below that the
conclusions of Proposition 3.2 carry over to the specific stochastic case we consider there.

Remark 3.5. Consider the set F defined by (3.15), and let

Imax
ε = inf

A∈S
max
f∈F

Φε(A, f). (3.16)

This problem is, in principle, easier to solve than (3.1), as we replaced the supremum over f ∈ L2
n(D) by a

maximization over the finite set F . Let Φmax
ε (A) = max

f∈F
Φε(A, f). For any quasi-minimizer A

max,[

ε ∈ S of (3.16),

we have

Imax
ε ≤ Φmax

ε (A
max,[

ε ) ≤ Imax
ε + ε ≤ Φmax

ε (A?) + ε ≤ Φε(A?) + ε.

Since lim
ε→0

Φε(A?) = 0, we get that lim
ε→0

Imax
ε = 0. In addition, one can show that A

max,[

ε → A? as ε→ 0 (we refer

to Rem. A.3 below for details). Similarly to (3.1), the approach (3.16) is therefore asymptotically consistent.
Note however that, in practice, the functions of the set F defined by (3.15) are unknown.

We note that Proposition 3.2 provides, in the setting described in Section 2.1, a characterization of the
homogenized matrix which is an alternative to the standard characterization of homogenization theory. To the
best of our knowledge, this characterization has never been made explicit in the literature.

3.3. Approximation of uε in the H1 norm

As a consequence of Proposition 3.2, we note that uε, solution to (1.3) with matrix Aε, is an accurate
approximation of uε in the L2 norm, but not in the H1 norm. Indeed, when ε goes to zero, Aε converges to A?.
Hence, for ε sufficiently small, uε is an accurate H1-approximation of u? solution to (1.2). In addition, from
homogenization theory, we know that u? is an accurate L2-approximation of uε. This implies that lim

ε→0
‖uε −

uε‖L2(D) = 0.
Note also that u? and uε are not close to each other in the H1 norm, and hence uε is not an accurate

approximation of uε in the H1 norm. We present here an approach to reconstruct such an approximation.
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In many settings of homogenization theory (and in particular in the periodic setting we consider here), once
the corrector problems are solved to compute the homogenized matrix, one can consider the two-scale expansion
(truncated at the first-order)

u1,θε (x) = u?(x) + ε

d∑
i=1

wθiei(x/ε) ∂iu?(x), (3.17)

where wθiei is the unique solution with mean value θi ∈ R to the periodic corrector equation (2.8) for p = ei.
It is well-known that this two-scale expansion approximates uε in the H1 norm, in the sense that, under some
regularity assumptions (see e.g. [1]), we have∥∥uε − u1,θε ∥∥

H1(D)
≤ C

√
ε (3.18)

for a constant C independent of ε.

Remark 3.6. From the theoretical perspective, the mean value θ of the correctors is irrelevant, and the esti-
mate (3.18) holds for any fixed θ. From the numerical perspective, the error

∥∥uε − u1,θε ∥∥
H1(D)

slightly depends

on θ, in particular when ε is not asymptotically small. In view of the numerical tests described in Section 5
below (see e.g. (5.10)), we keep track of this parameter.

Computing the gradient of (3.17), we deduce from (3.18) that

∇uε = Cε∇u? + h.o.t., (3.19)

where the d× d matrix Cε is given by

[Cε]i,i = 1 + ∂iwei(·/ε), [Cε]i,j = ∂iwej (·/ε) if j 6= i. (3.20)

Our idea for constructing an approximation of ∇uε is to mimick formula (3.19) and seek an approximation
under the form Cε∇uε. Once the best matrix Aε has been computed, we compute a surrogate Cε of Cε by
solving the least-squares problem

inf
C∈(L2(D))d×d

R∑
r=1

∥∥∇uε(fr)− C ∇uε(fr)∥∥2L2(D)d
(3.21)

for a given number R of right-hand sides.
In practice, the right-hand sides fr selected for (3.21) are the first R basis functions of the space V Pn (D)

defined by (3.5), with R such that

R ≤ P.

This choice makes the H1-reconstruction an inexpensive post-processing procedure once the best matrix is
computed, as we already have at our disposal uε(fr) for 1 ≤ r ≤ R.

Remark 3.7. In our numerical experiments, we have observed that the surrogate Cε that we construct is
indeed oscillatory, and essentially periodic when Aε is periodic. This is expected since Cε is meant to be an
approximation of Cε.

In practice, we independently identify each row of Cε, by considering (for any 1 ≤ i ≤ d) the least-squares
problem

inf
ci∈(L2(D))d

R∑
r=1

∥∥∂iuε(fr)− ci ·∇uε(fr)∥∥2L2(D)
.
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We next define the matrix Cε by
[
Cε
]
i,j

=
[
ciε
]
j
. In our numerical experiments, the functions uε and uε are

approximated by uε,h and uε,h using a P1 Finite Element Method, and ciε is searched as a piecewise constant
function. The value of ciε on an element T is defined by the problem

inf
ciT∈Rd

R∑
r=1

∣∣∣[∂iuε,h(fr)]|T − c
i
T · [∇uε,h(fr)]|T

∣∣∣2 , (3.22)

where the restrictions of ∂iuε,h and ∇uε,h to any element T are constant. This problem is ill-posed if R < d,
since, in this case, there exist vectors in Rd orthogonal to all [∇uε,h(fr)]|T , 1 ≤ r ≤ R. We thus always take

R ≥ d. To avoid technicalities related to the P1 discretization of uε, only mesh elements not contiguous to the
boundary of D are considered in the minimization (3.22).

3.4. The stationary ergodic setting

We have focused in Sections 3.1, 3.2 and 3.3 on the periodic setting. We now briefly turn to the stochastic
ergodic setting. We introduce the modified cost function Φsto

ε defined, for any A ∈ Rd×dsym and f ∈ L2(D), by

Φsto
ε (A, f) =

∥∥(−∆)−1
[
div
(
A∇E(uε(f))

)
+ f

]∥∥2
L2(D)

. (3.23)

Note that Φsto
ε is a deterministic quantity. The difference with the cost function Φε defined by (3.2) in a

deterministic context is that Φsto
ε involves E(uε(f)) rather than uε(f).

We next amend the inf sup problem (3.1) in the following way. For a given value of ε, we look for a best
deterministic matrix Aε ∈ S that solves the problem

Istoε = inf
A∈S

sup
f∈L2

n(D)

Φsto
ε (A, f). (3.24)

All the considerations of Sections 3.1, 3.2 and 3.3 carry over, up to minor adjustments, to the present stochastic

setting. Under assumptions (2.2) and (2.3), asymptotic consistency can be proved for any sequence {A[ε ∈
S}ε>0 of quasi-minimizers of (3.24). The adaptation of the proof of Proposition 3.2 to the stochastic setting is
straightforward. It relies on the fact that, for any f ∈ L2(D), E(uε(f)) is bounded in H1(D). Indeed, using that

α ≤ Aε(·, ω) ≤ β almost surely, we have ‖uε(·, ω)‖H1(D) ≤
C

α
‖f‖L2(D) almost surely (where C is a deterministic

constant only depending on D), hence E
[
‖uε‖2H1(D)

]
is bounded. Using the Cauchy-Schwarz inequality, we infer

that E(uε(f)) is indeed bounded in H1(D). We eventually get that ∇E(uε(f)) weakly converges, and E(uε(f))
strongly converges, in L2(D) and when ε goes to zero, to ∇u?(f) and u?(f), respectively, where u?(f) is the
solution to (1.2).

The H1-reconstruction procedure presented in Section 3.3 is adapted to the stationary ergodic setting as
follows. It is known that, almost surely, uε(·, ω) weakly converges in H1(D) towards u? when ε goes to zero. As
in the periodic setting, the correctors allow to obtain a strong convergence in H1(D), in the sense that (see [18],
(Thm. 3))

lim
ε→0

E
[∥∥uε(·, ω)− u1ε(·, ω)

∥∥2
H1(D)

]
= 0, (3.25)

with

u1ε(x, ω) = u?(x) + ε

d∑
i=1

wei(x/ε, ω) ∂iu?(x), (3.26)

where wei is the unique solution with vanishing mean value to the stochastic corrector equation (2.7) for p = ei
(in contrast to the periodic case, see Rem. 3.6, we only consider here correctors with vanishing mean, for the
sake of simplicity).
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The equations (3.25)–(3.26) imply that

E [∇uε(·, ω)] = Cε∇u? + h.o.t.,

where the d× d matrix Cε is given by

[Cε]i,i = 1 + E [∂iwei(·/ε, ω)] , [Cε]i,j = E
[
∂iwej (·/ε, ω)

]
if j 6= i. (3.27)

We have chosen to look for an approximation of E(∇uε) as follows. Once the best matrix Aε has been computed,
we compute a surrogate Cε of Cε by solving the least-squares problem

inf
C∈(L2(D))d×d

R∑
r=1

∥∥∇E [uε(fr)]− C ∇uε(fr)
∥∥2
L2(D)d

(3.28)

for a given number R of right-hand sides, which are selected as in the periodic setting (see Sect. 3.3). Eventually,
E [∇uε(·, ω)] is approximated by Cε∇uε.

Remark 3.8. Criteria (3.23) and (3.28) are arbitrary and selected upon practical considerations. Among the
possible alternatives, we could have considered

Φsto
ε (A, f) = E

[∥∥(−∆)−1
[
div
(
A∇uε(f)

)
+ f

]∥∥2
L2(D)

]
instead of (3.23), and a similar alternative for the reconstruction (3.28).

We have not proceeded in any of these directions. Note also that, in [16], we defined the minimization problems
ω by ω and next took the expectation of the results. Of course, considering expectations in the cost functions
results in significant computational savings, besides actually improving accuracy and robustness.

4. Implementation details to solve (3.24)

We detail here how problem (3.24), in the stationary ergodic setting, can be efficiently solved in practice.
Problem (3.1), in the periodic setting, is actually simpler to solve, and we skip the easy adaptation to that case.

The minimizer of (3.24) is denoted by A
P,M

ε,h , where h� ε denotes the size of a mesh Th = {T} of the domain

D, P denotes the dimension of the subspace V Pn (D) of L2
n(D) used to approximate the sup problem (see (3.5)),

and M ∈ N? denotes the number of Monte Carlo realizations used to approximate E(uε) in (3.23).
The algorithm consists of three steps:

(1) Compute an approximation of {E[uε(fp)]}1≤p≤P (see Sect. 4.1). This is the most expensive step, as M ×P
oscillatory problems of the type (2.1) are to be solved.

(2) Compute an approximation of (−∆)−1fp and of
{

(−∆)−1 (∂ijE[uε(fp)])
}
1≤i,j≤d, for any 1 ≤ p ≤ P (see

Sect. 4.2). This amounts to solving P (1 + d(d+ 1)/2) problems with constant coefficients.
(3) Solve problem (3.24) iteratively (see Sect. 4.3). Each iteration involves diagonalizing a P × P matrix and

solving a linear system with d(d+ 1)/2 unknowns. The cost of this third step is negligible.

We now successively detail these three steps.

4.1. Approximation of {E[uε(fp)]}1≤p≤P

For any basis function fp of V Pn (D), 1 ≤ p ≤ P , we approximate E[uε(fp)] by the empirical mean

uMε,h(fp) =
1

M

M∑
m=1

uε,h(fp;ωm), (4.1)
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where, for 1 ≤ m ≤M , uε,h(fp;ωm) is the P1 approximation on Th of uε(fp;ωm), unique solution to (2.1) with
the oscillatory matrix-valued coefficient Aε(·, ωm) and the right-hand side fp.

To compute (4.1) for all 1 ≤ p ≤ P , one has to (i) assemble M random stiffness matrices, (ii) assemble P
deterministic right-hand sides, and (iii) solve M × P linear systems. This step is the only one involving Monte
Carlo computations, and is therefore the most expensive part of the whole procedure.

4.2. Precomputation of tensorial quantities

Once the computations of Section 4.1 have been performed, we assemble some tensors that are needed to
efficiently solve the sup and inf problems involved in (3.24).

We first compute, for any 1 ≤ p ≤ P , the approximations zh(fp) and {zM,ij
ε,h (fp)}1≤i,j≤d on Th of (−∆)−1fp

and
{

(−∆)−1 (∂ijE[uε(fp)])
}
1≤i,j≤d. In particular, zM,ij

ε,h (fp) is such that, for any P1 function wh on Th that

vanishes on ∂D, ∫
D
∇zM,ij

ε,h (fp) ·∇wh = −
∫
D
∂j
[
uMε,h(fp)

]
∂iwh.

Note that the following symmetry identity holds: zM,ij
ε,h (fp) = zM,ji

ε,h (fp).
We next assemble, for all integers 1 ≤ i, j, k, l ≤ d and 1 ≤ p, q ≤ P , the quantities[

KMε,h
]
i,j,k,l,p,q

= 2

∫
D
zM,ij
ε,h (fp) z

M,kl
ε,h (fq), (4.2)[

KMε,h
]
i,j,p,q

= −
∫
D
zM,ij
ε,h (fp) zh(fq), (4.3)

[Kh]p,q =

∫
D
zh(fp) zh(fq). (4.4)

We emphasize that the cost of this step depends on P but is independent of the number M of Monte Carlo
realizations, and thus small in comparison to the cost of the operations described in Section 4.1 for typical
values of M and P (in the numerical results reported on in Sect. 5, we have worked with M = 100 and P ≤ 9).

4.3. Solution of the fully discrete problem

4.3.1. Formulation

At this stage, the original problem (3.24) has been approximated by its fully discrete version

IP,Mε,h = inf
A∈S

sup
c∈RP , |c|2=1

ΦP,Mε,h (A, c), (4.5)

where, for any A ∈ Rd×dsym and c = {cp}1≤p≤P ∈ RP ,

ΦP,Mε,h (A, c) =

∥∥∥∥∥∥
P∑
p=1

cp

 ∑
1≤i,j≤d

Ai,j z
M,ij
ε,h (fp) + zh(fp)

∥∥∥∥∥∥
2

L2(D)

. (4.6)

Problem (4.5) is solved by iteratively considering the problem

sup
c∈RP , |c|2=1

ΦP,Mε,h (A, c) (4.7)

with A ∈ S fixed, and the problem
inf
A∈S

ΦP,Mε,h (A, c) (4.8)

with c ∈ RP fixed. We successively explain how we solve the sup problem (4.7) (for A ∈ S fixed), the inf
problem (4.8) (for c ∈ RP fixed), and next describe the iterative algorithm that we have implemented to
solve (4.5).
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4.3.2. The sup problem (4.7)

Let A ∈ S be fixed. One can easily observe that

ΦP,Mε,h (A, c) = cT GMε,h(A) c,

where GMε,h(A) is a symmetric, positive semi-definite, P×P matrix which can be assembled at no additional cost
using the precomputed quantities defined in (4.2)–(4.4) (see Appendix B for its exact expression). Solving the
sup problem (4.7) (with fixed matrix A) hence amounts to finding a normalized eigenvector in RP associated
with the largest eigenvalue of the matrix GMε,h(A). This is reminiscent of the eigenvalue problem discussed in
Section 3.1.1. Practically, this eigenvector is computed using the power method. The cost of such a computation
is negligible, owing to the small size of the matrix GMε,h(A) (recall that P is typically small in comparison to

M). We denote by c(A) its solution and hence have

sup
c∈RP , |c|2=1

ΦP,Mε,h (A, c) = c(A)T GMε,h(A) c(A). (4.9)

4.3.3. The inf problem (4.8)

Let c ∈ RP , |c|2 = 1, be fixed. We observe that

ΦP,Mε,h (A, c) =
1

2

∑
1≤i,j,k,l≤d

[
BP,Mε,h (c)

]
i,j,k,l

Ai,j Ak,l −
∑

1≤i,j≤d

[
BP,Mε,h (c)

]
i,j

Ai,j + bPh (c),

where BP,Mε,h (c) is a d×d×d×d fourth-order tensor, BP,Mε,h (c) is a d×d matrix and bPh (c) is a scalar that can all
be assembled at no additional cost using the precomputed quantities defined in (4.2)–(4.4) (see Appendix B for
their exact expressions). We recognize in ΦP,Mε,h the discrete equivalent of (3.9). The inf problem (4.8) (with fixed
eigenvector c) is in practice solved as explained in Section 3.1.2, by considering the linear system (see (3.10))

∀ 1 ≤ i, j ≤ d,
∑

1≤k,l≤d

[
BP,Mε,h (c)

]
i,j,k,l

Ak,l =
[
BP,Mε,h (c)

]
i,j
. (4.10)

4.3.4. Iterative algorithm

In the above description, we have considered either the sup problem (on c, with fixed A) or the inf problem
(on A, for fixed c) involved in (4.5). We now assemble these two building blocks to build an algorithm to
solve (4.5). Introducing

ΦP,Mε,h (A) = sup
c∈RP , |c|2=1

ΦP,Mε,h (A, c), (4.11)

we recast (4.5) as
IP,Mε,h = inf

A∈S
ΦP,Mε,h (A). (4.12)

We have seen (see (4.9)) that ΦP,Mε,h (A) = c(A)T GMε,h(A) c(A), where c(A) is an eigenvector of the matrix

GMε,h(A). One can easily prove that, for any 1 ≤ i, j ≤ d,[
∇AΦ

P,M
ε,h (A)

]
i,j

= c(A)T ∂Ai,j
GMε,h(A) c(A),

which reads, using the expressions (B.1), (B.2) and (B.3) of GMε,h, BP,Mε,h and BP,Mε,h given in Appendix B, as[
∇AΦ

P,M
ε,h (A)

]
i,j

=
∑

1≤k,l≤d

[
BP,Mε,h (c(A))

]
i,j,k,l

Ak,l −
[
BP,Mε,h (c(A))

]
i,j
. (4.13)

Let 0 < µ < 1. In practice, we iterate as follows to solve problem (4.12). Let n ∈ N and A
n ∈ S.
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(1) We compute cn = c(A
n
) solution to the sup problem (4.11) with fixed matrix A

n
.

(2) We compute A
n+1

[ ∈ Rd×dsym solution to the linear system (4.10) with fixed eigenvector cn. As pointed out

above, we assume that A
n+1

[ belongs to the convex subset S of Rd×dsym . It has always been the case in our
numerical experiments.

(3) We define the next iterate as

A
n+1

= (1− µ)A
n

+ µA
n+1

[ . (4.14)

For the numerical results reported on in Section 5, we have worked with µ ≤ 0.1.

Since A
n+1

is a convex combination of A
n ∈ S and A

n+1

[ ∈ S, we have A
n+1 ∈ S. The iterations are initialized

using, say,

A
0

= E
(

1

|D|

∫
D
Aε(x, ·) dx

)
.

Let us briefly explain, at least formally, why the algorithm defined above enables to find a minimizer of (4.12).

We assume the linear system (4.10) to be invertible, and we denote by
[
BP,Mε,h (c)

]−1
its formal inverse. Since

A
n+1

[ is defined as the solution to (4.10) with eigenvector cn, we infer from (4.10) and (4.13) that

BP,Mε,h (cn)A
n+1

[ = BP,Mε,h (cn) = BP,Mε,h (cn)A
n −∇AΦ

P,M
ε,h (A

n
),

and thus

A
n+1

[ = A
n −

[
BP,Mε,h (cn)

]−1
∇AΦ

P,M
ε,h (A

n
).

The iteration (4.14) can be recast under the form

A
n+1

= A
n − µ

[
BP,Mε,h (cn)

]−1
∇AΦ

P,M
ε,h (A

n
).

This is a quasi-Newton algorithm for the minimization of the function A 7→ ΦP,Mε,h (A), with a fixed step size µ

and where the Hessian of ΦP,Mε,h with respect to A is approximated by BP,Mε,h .
Note that each iteration of the algorithm is inexpensive in comparison with the cost of the operations described

in Sections 4.1 and 4.2. Consequently, there is no real advantage in improving the optimization algorithm (4.14)
(e.g. by optimizing the value of µ by a line search).

5. Numerical results

As pointed out in Section 1, our approach targets practical situations where the information on the oscillatory
coefficients in the equation may be incomplete, and thus the other available approaches cannot be applied. It
is nevertheless a legitimate question to investigate how our approach performs on standard test-cases in the
periodic and stationary ergodic settings, and how it compares with the classical homogenization approach for
small values of ε. As already pointed out in Section 1.3, and as detailed below (see Sect. 5.2.1), the aim of
the numerical tests is different in the periodic setting and in the stochastic setting. It is also different if ε is
asymptotically small or if ε takes larger values.

This section is organized as follows. In Section 5.1, we introduce the periodic and the stationary ergodic test
cases considered. In Section 5.2, we present the numerical results obtained in the case of small values of ε. In
Section 5.3, we address the case of larger values of ε.

5.1. Test-cases

We let d = 2 and the domain D be the unit square (0, 1)2. We fix the value of the parameter ε to size(D)/10 =
10−1.
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5.1.1. Periodic setting

We consider the test-case introduced in [16], namely

Aε(x, y) = Aper(x/ε, y/ε), (5.1)

with Aper a Z2-periodic symmetric matrix field given by

[Aper(x, y)]1,1 = 2 +
1

2π
(sin(2πx) + sin(2πy)) ,

[Aper(x, y)]1,2 =
1

2π
(sin(2πx) + sin(2πy)) ,

[Aper(x, y)]2,2 = 1 +
1

2π
(sin(2πx) + sin(2πy)) . (5.2)

The coefficients of the corresponding homogenized matrix (obtained by solving the periodic corrector prob-
lem (2.8) on a very fine mesh) are

[A?]1,1 ≈ 1.9806, [A?]1,2 = [A?]2,1 ≈ −0.019345, [A?]2,2 ≈ 0.98065. (5.3)

5.1.2. Stationary ergodic setting

We consider the random checkerboard test-case (studied e.g. in [16]), namely

Aε(x, y, ω) = asto(x/ε, y/ε, ω) Id2, (5.4)

with asto a discrete stationary field given by (recall that Q = (0, 1)2)

asto(x, y, ω) =
∑
k∈Z2

1Q+k(x, y)Xk(ω), (5.5)

where the random variables Xk are i.i.d. and such that P(Xk = 4) = P(Xk = 16) = 1/2. An explicit expression
for the homogenized matrix is known in that case:

A? = 8 Id2. (5.6)

5.2. Results in the case ε < ε

5.2.1. Objectives in the periodic case and in the stochastic case

In the regime ε < ε, we know from Proposition 3.2 that our method can be seen as a practical variational
approach for computing the homogenized matrix A?. The remaining question is whether this approach is efficient
or not, and particularly, compared with the classical approach in homogenization.

Our approach (based on (3.1)–(3.2)) requires solving the highly oscillatory equations (1.1) set on the domain
D, for P = d(d+ 1)/2 right-hand sides. In the periodic setting, the classical homogenization approach requires
solving d non-oscillatory equations set on the unit cell Q. There is thus no hope to outperform the latter approach
in terms of computational time. This setting is nonetheless considered as a validation and we investigate how
our approach performs in terms of accuracy, for the approximation of the homogenized matrix, and for the
approximation of uε in the L2 and H1 norms.

The real, discriminating, test-case for our approach is the stationary ergodic setting. Indeed, classical ho-
mogenization then requires solving equations that are set on a truncated approximation QN = (−N,N)d of an
asymptotically infinitely large domain (see (2.9) in Sect. 2.2). The coefficients of these equations vary at scale 1.
In that case, to hope for an accurate approximation of the homogenized matrix, one has to consider a meshsize
H � 1. On the other hand, we consider a meshsize h� ε to solve the highly oscillatory equations (set on the
domain D) involved in our approach. We see that, up to an appropriate choice of the parameter H such that

2N

H
=

size(D)

h
, (5.7)
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where size(D) is typically the diameter of D, the classical homogenization approach and ours involve solving
linear systems of the same size. The computational workload for the two approaches is thus of the same order of
magnitude, although not identical. We have decided to enforce (5.7) and to relate N in (2.9) and ε in (2.1) by

N = size(D)/2ε. (5.8)

Note that imposing (5.8) is equivalent to enforcing ε/h = 1/H. We then compare the two methods in terms of
solution time and accuracy. Obviously, for the two methods, the same number M of Monte Carlo realizations
is used, and the same M realizations are considered.

Remark 5.1. Another possibility would have been to impose ε/h = 1/H and to adjust the size N of QN

in (2.9) so that both approaches exactly share the same workload. We did not pursue in that direction.

The numerical experiments reported in Section 5.2.4 show that, in the stochastic case, and for all the values
of ε < ε that have been considered, the approximation of A? obtained by the classical homogenization approach
is slightly more accurate than that obtained with our approach. In contrast, our approach provides a better L2-
approximation and a better H1-approximation of E(uε). This is somewhat intuitive, as our approach is targeted
toward the approximation of uε rather than A?. In terms of computational cost, our approach is slightly less
expensive for moderately small values of ε, and slightly more expensive for asymptotically small values of ε (in
any cases, the ratio of costs remains close to 1, see Fig. 2 below).

5.2.2. Choice of the numerical parameters

We recall that the integer M denotes the number of i.i.d. realizations used to approximate the expectation
in the cost function (3.23) (see (4.1)). We also recall that the integer P denotes the dimension of the set V Pn (D)
(defined in (3.5)) that is used to approximate the space L2

n(D) in the sup problem. As explained in Section 3.1.1,
we consider as basis functions of the set V Pn (D) the first P normalized eigenvectors of the laplacian operator in the
domain D. Because of the simple geometry of D, they are here analytically known. We take here P = d (d+1)/2,
that is P = 3, which is the minimum dimension of the search space V Pn (D).

5.2.3. Results in the periodic setting

We consider the parameters {εk}0≤k≤6 such that ε0 = 0.4 and εk = εk−1/2 for 1 ≤ k ≤ 6. The associated
meshsizes are {hk}0≤k≤6 such that hk = εk/r for r ≈ 43, unless otherwise mentioned. We focus on the values
{εk}3≤k≤6, for which we have εk < ε.

The error in the approximation of the homogenized matrix is defined by

err_per_mat =


∑

1≤i,j≤d

∣∣∣∣[APε,h]
i,j
− [A?]i,j

∣∣∣∣2∑
1≤i,j≤d |[A?]i,j |

2


1/2

, (5.9)

where A? is taken equal to its reference value (5.3) and A
P

ε,h is the best matrix computed by our approach. The
numerical results are collected in Table 1. We observe that our approach provides an accurate approximation
of the homogenized matrix. The accuracy of the approximation improves (in the limit of spatial resolution) as
ε decreases.

We now examine the approximation of uε in the L2 norm. We denote by:

• uε,h(f) the discrete solution to (1.1) with the periodic oscillatory coefficient given by (5.1)–(5.2) and the
right-hand side f ;

• u?,h(f) the discrete solution to (1.2) with the homogenized matrix (5.3) and the right-hand side f ;
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Table 1. Approximation of A? (err per mat) in function of ε (each line corresponds to a dif-
ferent value of the ratio ε/h). The test cases with ε too small and ε/h too large are prohibitively
expensive to perform. They are marked with an X.

ε 0.05 0.025 0.0125 0.00625

err_per_mat (ε/h ≈ 43) 1.0145 × 10−3 7.6477 × 10−4 6.6613 × 10−4 6.2881 × 10−4

err_per_mat (ε/h ≈ 86) 6.5399 × 10−4 3.5074 × 10−4 2.3749 × 10−4 X

• u1,θε,h(f) the two-scale expansion (truncated at first-order) built from u?,h(f) (see (3.17)), where we use the
periodic correctors solution to (2.8);

• uPε,h(f) the discrete solution to (1.3) with the matrix A
P

ε,h and the right-hand side f (we recall that the matrix

A
P

ε,h has been computed using a small number P of right-hand sides).

To assess the quality of the approximation of uε,h by ûθh ∈
{
u?,h, u

1,θ
ε,h, u

P
ε,h

}
in the L2 norm, we define the

criterion

err_per_L2 =


inf
θ∈R2

[
sup

f∈V Qn (D)

∥∥uε,h(f)− ûθh(f)
∥∥2
L2(D)

]
∥∥∥uε,h (f̂ε)∥∥∥2

L2(D)


1/2

· (5.10)

Note that the supremum is taken over f ∈ V Qn (D), where Q � P . We take Q = 16, and we have checked, in
all the cases considered below, that our results do not significantly change for a larger value of Q. The function
f̂ε ∈ V Qn (D) denotes the argument of the inf sup problem in the numerator of (5.10). We hence compare uε
with its homogenized limit u?, its first-order two-scale expansion u1,θε (recall in this case that the correctors are
defined up to an additive constant θ, over which we minimize the error in (5.10)), and the approximation uPε
provided by our approach. The numerical results are collected in Figure 1.

We observe that the solution associated with the best matrix we compute indeed converges towards the exact
solution, in the L2 norm. We however recall that, in the present periodic setting, computing uPε,h is much more

expensive than computing u?,h or u1,θε,h.

We next examine the H1 error. For f ∈ L2(D), we denote by Cε,h∇u?,h(f) the discrete equivalent of
Cε∇u?(f), the homogenization-based approximation of ∇uε(f), see (3.19)–(3.20) in Section 3.3. We recall
that, in our approach, we seek an approximation of ∇uε(f) under the form Cε∇uε(f) (see (3.21)), the discrete

equivalent of which is computed as C
R

ε,h∇uPε,h(f). Recall that the integer R is the number of right-hand sides

used to define the least-squares minimization problem (3.22) giving C
R

ε,h. Here, we take R = P = 3. To assess

the quality of the approximation of ∇uε,h, we define, for Ĉε,h∇ûh ∈ {Cε,h∇u?,h, C
R

ε,h∇uPε,h}, the criterion

err_per_H1 =


sup

f∈V Qn (D)

∥∥∥∇uε,h(f)− Ĉε,h∇ûh(f)
∥∥∥2
L2(D\B)∥∥∥∇uε,h (f̂ε)∥∥∥2

L2(D\B)


1/2

, (5.11)

where, here again, the supremum is taken over a space V Qn (D) much larger than V Pn (D) (we take Q = 16), and

where f̂ε ∈ V Qn (D) denotes the argument of the sup problem. In (5.11), B represents the subset of D formed by
the boundary elements of the discretization Th. We remove them in view of the discussion below (3.22). We thus
compare ∇uε with its approximation Cε∇u? provided by the two-scale expansion and with the approximation

C
R

ε ∇uPε provided by our approach. The numerical results are collected in Table 2.
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0.050.0250.01250.00625

10− 3

10− 2.5

Figure 1. Approximation of uε in the L2 norm (err per L2) by u?,h (red), u1,θε,h (brown) and

uPε,h (black) in function of ε, for h such that ε/h ≈ 43.

Table 2. Approximation of ∇uε in the L2 norm (err per H1) by Cε,h∇u?,h and C
R

ε,h∇uPε,h
in function of ε, for h such that ε/h ≈ 86. The test cases with ε too small are prohibitively
expensive to perform. They are marked with an X.

ε 0.05 0.025 0.0125 0.00625

err_per_H1 for Cε,h∇u?,h 2.0906 × 10−2 1.6461 × 10−2 1.2513 × 10−2 X

err_per_H1 for C
R
ε,h∇uP

ε,h 1.5550 × 10−2 7.6055 × 10−3 3.7549 × 10−3 X

We observe that our approach provides an accurate H1-approximation of uε. As ε goes to zero, the sur-
rogate we compute is (roughly) a first-order convergent approximation of ∇uε in the L2 norm. As far as
the homogenization-based approximation is concerned, we expect it to converge with order at least one half
(see (3.18)). This is what we observe in practice, as long as ε is not too small. Otherwise, the error due to the
meshsize dominates, and the error (5.11) does not decrease anymore when ε decreases.

5.2.4. Results in the stationary ergodic setting

We consider the parameters {εk}0≤k≤5 such that εk = 2−(k+1) for 0 ≤ k ≤ 5. In agreement with formula (5.8),
we couple these parameters to the parameters {Nk}0≤k≤5 (defining the domain on which we solve the corrector
problems (2.9)) such that Nk = 2k. The associated meshsizes {hk}0≤k≤5 and {Hk}0≤k≤5 are computed respec-
tively letting hk = εk/r for r ≈ 27 (unless otherwise stated) and using (5.7). We focus on the values {εk}3≤k≤5
and {Nk}3≤k≤5, for which we have εk < ε. We consider M = 100 Monte Carlo realizations.

Before discussing the accuracy of our approach, we first compare its cost with that of the classical approach.

We show in Figure 2 the ratio of the time needed to compute A
P,M

ε,h using our approach divided by the time

needed to compute AN,M?,H by the classical homogenization approach. To compare the computational times, we
make use of an implementation that does not exploit parallelism, and we solve the linear systems by means of an
iterative solver. In view of Figure 2, for the choice of parameters discussed in Section 5.2.1, our method is slightly
faster than the standard homogenization approach for values of N up to approximately 14. This observation
can be explained as follows. For the number M = 100 of Monte Carlo realizations that we consider, we can
neglect, in our procedure, the cost of the precomputation and final optimization stages, in comparison to the
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8 16 32
0.75

1.25

1

Figure 2. Ratio of the computational times between our approach and the classical homoge-
nization approach, in function of N (here M = 100 and ε/h ≈ 27).

Monte Carlo step (see Sect. 4). Hence, to compute A
P,M

ε,h , we have to (i) assemble M = 100 stiffness matrices,

(ii) assemble P = 3 right-hand sides, and (iii) solve P ×M = 300 linear systems. In contrast, to compute AN,M?,H ,
one has to solve d×M = 200 approximate corrector equations (2.9), that is to say (i) assemble M = 100 stiffness
matrices, (ii) assemble d×M = 200 right-hand sides, and (iii) solve d×M = 200 linear systems. Consequently,
our approach necessitates solving 100 more linear systems, but assembling 200 less right-hand sides, than the
classical homogenization approach. This explains what we observe. When the value of N is not too large, the
assembly cost is higher than the inversion cost, and our approach is faster.

We adapt to the stationary ergodic setting the accuracy criteria (5.9), (5.10) and (5.11) introduced in the peri-

odic setting. The error in the approximation of the homogenized matrix is defined, for ÂM ∈
{
AN,M?,H , A

P,M

ε,h

}
, by

err_sto_mat =


∑

1≤i,j≤d

∣∣∣∣[ÂM]
i,j
− [A?]i,j

∣∣∣∣2∑
1≤i,j≤d |[A?]i,j |

2


1/2

,

where A? is taken equal to the exact value (5.6). We recall that AN,M?,H is the practical approximation of AN,M?

defined in (2.11), and that our approach consists in computing the best matrix A
P,M

ε,h following the procedure
described in Section 3.4.

The numerical results are collected in Figure 3, for several choices of the meshsizes. We observe that the matrix
we compute converges to the homogenized matrix as N increases. However, for any value of N in the range we
consider, the approximation of A? obtained by the classical homogenization approach is slightly more accurate
than the one obtained with our approach. As shown in Figure 2, the former approach is as expensive as our
approach for N ≈ 14, and slightly less expensive for larger values of N .

Turning to the approximation of E(uε) in the L2 norm, we denote by

• uMε,h(f) the expectation, as defined in (4.1), of the discrete solutions to (2.1) with the oscillatory coefficients
given by (5.4)–(5.5) and the right-hand side f ;

• u?,h(f) the discrete solution to (1.2) with the exact homogenized matrix (5.6) and the right-hand side f (note
that the exact matrix is usually unknown);



1368 C. LE BRIS ET AL.

8 16 32

10− 2

10− 1.5

Figure 3. Approximation of A? by the classical homogenization approach (blue) and by our
approach (black) in function of N , for M = 100 realizations. Since M is finite, the error
err sto mat is actually random. We compute it 100 times. The thick line corresponds to the
mean value over the 100 computations of the error. The dashed lines show the 95% confidence
interval. Results obtained with h such that ε/h ≈ 27 (resp. ε/h ≈ 108) are denoted with x
(resp. o).

• uN,M?,h (f) the discrete solution to (1.2) with the matrix AN,M?,H and the right-hand side f ;

• uP,Mε,h (f) the discrete solution to (1.3) with the matrix A
P,M

ε,h and the right-hand side f .

The M realizations of the field A(·, ω) we consider to compute uMε,h(f), uN,M?,h (f) and uP,Mε,h (f) are identical.

To assess the quality of the approximation of uMε,h by ûh ∈ {u?,h, uN,M?,h , uP,Mε,h } in the L2 norm, we define
the criterion

err_sto_L2 =


sup

f∈V Qn (D)

∥∥uMε,h(f)− ûh(f)
∥∥2
L2(D)∥∥∥uMε,h (f̂ε)∥∥∥2

L2(D)


1/2

· (5.12)

As in the periodic case, the supremum is taken over f ∈ V Qn (D) with Q = 16 � P , and f̂ε ∈ V Qn (D) denotes
the argument of the sup problem. The numerical results are collected in Figure 4, for several choices of the
meshsizes and of the total number M of realizations.

We observe that the solution associated with the best matrix we compute is a better L2-approximation (for
the range of parameters considered here) of E(uε) than the solutions associated with the exact or approximate

homogenized matrices. Again, due to the small number P of right-hand sides we consider to compute A
P,M

ε,h ,
this good accuracy is not an immediate consequence of our practical procedure (it would have been if we had
taken P extremely large). We also observe that the accuracy of the three approximations u?,h, uN,M?,h and uP,Mε,h
improves when h decreases or when M increases, in somewhat a complex manner. In terms of cost, our approach
is again less expensive than the classical approach for N ≤ 14.

We next turn to the H1-error. We denote by CN,Mε,h the approximation of the deterministic matrix Cε defined
by (3.27) by an empirical mean over M realizations of the corrector functions, solution to (2.9):[

CN,Mε,h

]
i,j

= δij +
1

M

M∑
m=1

∂iw
N
ej (·/ε, ωm).
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10− 2.2
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10− 1.8

10− 1.6
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Figure 4. Approximation of E(uε) in the L2 norm (err sto L2) by u?,h (red), uN,M?,h (blue) and

uP,Mε,h (black) in function of N (curves with x: ε/h ≈ 27 and M = 100; curves with o: ε/h ≈ 108

and M = 100; curves with +: ε/h ≈ 27 and M = 400; curves with �: ε/h ≈ 54 and M = 400).

For f ∈ L2(D), we denote by CN,Mε,h ∇u?,h(f) and CN,Mε,h ∇u
N,M
?,h (f) the two discrete equivalents of Cε∇u?(f),

the homogenization-based approximation of E (∇uε(f)), obtained by using the exact homogenized matrix (5.6)
and the matrix AN,M?,H , respectively, to compute an approximation of u?(f). In our approach, we seek a discrete

approximation of E (∇uε) under the form C
R,M

ε,h ∇u
P,M
ε,h , with R = P = 3. For

ĈMε,h∇ûh ∈
{
CN,Mε,h ∇u?,h, C

N,M
ε,h ∇u

N,M
?,h , C

R,M

ε,h ∇u
P,M
ε,h

}
,

we define the criterion

err_sto_H1 =


sup

f∈V Qn (D)

∥∥∥∇uMε,h(f)− ĈMε,h ∇ûh(f)
∥∥∥2
L2(D\B)∥∥∥∇uMε,h (f̂ε)∥∥∥2

L2(D\B)


1/2

, (5.13)

where, here again, the supremum is taken over the space V Qn (D) for Q = 16 � P , f̂ε ∈ V Qn (D) denotes
the argument of the sup problem, and boundary elements B are removed from the evaluation criterion, as in
the periodic case (5.11). We recall that, in (5.13), uMε,h(f) is the empirical mean (4.1) over M realizations of
uε,h(f ;ω). It is thus an approximation to E [uε(f)].

The numerical results are collected in Table 3. We see that our surrogate defines an approximation of E(∇uε)
which is systematically better than that provided by the classical homogenization approach, for any choice of h
and M .

5.3. Results in the case ε ≥ ε
In the regime ε ≥ ε, we quantitatively investigate whether the best constant matrix provided by our approach

allows for an accurate approximation of the exact solution, in the L2 norm in the sense of the criteria (5.10)
or (5.12), and in the H1 norm in the sense of the criteria (5.11) or (5.13).
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Table 3. Approximation of E(∇uε) in the L2 norm (err sto H1) by CN,Mε,h ∇u?,h,

CN,Mε,h ∇u
N,M
?,h and C

R,M

ε,h ∇u
P,M
ε,h in function of N (the various lines correspond to various values

of h and M).

N 8 16 32

err_sto_H1 for CN,M
ε,h ∇u?,h (ε/h ≈ 27, M = 100) 1.043 × 10−1 9.635 × 10−2 9.394 × 10−2

(ε/h ≈ 108, M = 100) 8.648 × 10−2 8.120 × 10−2 8.010 × 10−2

(ε/h ≈ 27, M = 400) 8.542 × 10−2 7.828 × 10−2 7.298 × 10−2

(ε/h ≈ 54, M = 400) 6.599 × 10−2 6.222 × 10−2 6.067 × 10−2

err_sto_H1 for CN,M
ε,h ∇uN,M

?,h (ε/h ≈ 27, M = 100) 9.799 × 10−2 9.095 × 10−2 8.961 × 10−2

(ε/h ≈ 108, M = 100) 8.620 × 10−2 8.022 × 10−2 7.952 × 10−2

(ε/h ≈ 27, M = 400) 7.605 × 10−2 7.173 × 10−2 6.780 × 10−2

(ε/h ≈ 54, M = 400) 6.142 × 10−2 5.957 × 10−2 5.872 × 10−2

err_sto_H1 for C
R,M
ε,h ∇uP,M

ε,h (ε/h ≈ 27, M = 100) 6.000 × 10−2 4.542 × 10−2 3.018 × 10−2

(ε/h ≈ 108, M = 100) 5.912 × 10−2 4.657 × 10−2 3.596 × 10−2

(ε/h ≈ 27, M = 400) 3.030 × 10−2 3.814 × 10−2 2.625 × 10−2

(ε/h ≈ 54, M = 400) 5.157 × 10−2 3.613 × 10−2 2.849 × 10−2

Table 4. Approximation of A? (err per mat) in function of ε (here ε/h ≈ 43).

ε 0.4 0.2 0.1

err_per_mat 3.8420 × 10−2 3.7056 × 10−3 1.8623 × 10−3

We also consider below the criterion (5.9), only in the periodic setting. It is indeed interesting to quantify
the threshold value of ε above which Aε is significantly different from A? (let alone to understand the practical
limitation of homogenization theory).

When considering large values of the parameter ε, it is necessary to consider P right-hand sides with P larger
than d(d+ 1)/2 = 3, as pointed out in Section 3.1.1. This value depends on ε and is denoted P (ε).

5.3.1. Results in the periodic setting

We consider the set {εk}0≤k≤2 of parameters introduced in Section 5.2.3. For 0 ≤ k ≤ 2, we have εk ≥ ε.
We choose the number of right-hand sides as P (ε0) = 9 and P (ε1) = P (ε2) = 5 (we recall that P (εk) = 3 for
3 ≤ k ≤ 6). Considering less right-hand sides significantly alters the approximation results, while considering
more right-hand sides does not significantly improve these results.

We consider the evaluation criteria (5.9)–(5.11). We keep Q = 16 functions in the test-space V Qn (D). For the
H1-reconstruction, we choose the number of right-hand sides R(ε) such that R(ε0) = R(ε1) = 5 and R(ε2) = 3
(which satisfies R(ε) ≤ P (ε)). The numerical results for the approximation of the homogenized matrix, the
L2-approximation and the H1-approximation, are respectively collected in Table 4, Figure 5 and Table 5.

We observe in Table 4 that the approximation of the homogenized matrix provided by our approach highly
improves when decreasing ε from ε = 0.4 to ε = 0.2. For ε ≥ 0.4, the homogenized matrix does not correctly
describe the medium.

Figure 5 confirms this observation when it comes to the solution itself. We have seen that, for ε = 0.4, A?
and Aε are significantly different. The solutions u? and uε = u(Aε) are also significantly different, the latter
being a much better L2-approximation of uε than the former or the first-order two-scale expansion. For smaller
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Figure 5. Approximation of uε in the L2 norm (err per L2) by u?,h (red), u1,θε,h (brown) and

uPε,h (black) in function of ε (here ε/h ≈ 43). These quantities are defined in Section 5.2.3.

Table 5. Approximation of ∇uε in the L2 norm (err per H1) by Cε,h∇u?,h and C
R

ε,h∇uPε,h
in function of ε (here ε/h ≈ 43). See Section 5.2.3 for a definition of these quantities.

ε 0.4 0.2 0.1

err_per_H1 for Cε,h∇u?,h 9.5890 × 10−2 4.8421 × 10−2 3.3923 × 10−2

err_per_H1 for C
R
ε,h∇uP

ε,h 8.7591 × 10−2 5.8225 × 10−2 3.2373 × 10−2

values of ε, we already observe the behavior we have described in Section 5.2.3. Similar comments apply to the
approximation of ∇uε (see Tab. 5).

5.3.2. Results in the stationary ergodic setting

We consider the sets {εk}0≤k≤2 and {Nk}0≤k≤2 of parameters introduced in Section 5.2.4, for which we have
εk > ε. We choose the number of right-hand sides as P (ε0) = 9 and P (ε1) = P (ε2) = 5, and fix the number of
Monte Carlo realizations to M = 100.

We consider the evaluation criteria (5.12) and (5.13), with Q = 16 functions in the test-space V Qn (D). For
the H1-reconstruction, the number of right-hand sides is chosen to be R(ε0) = R(ε1) = 5 and R(ε2) = 3. Note
that again R(ε) ≤ P (ε). The numerical results for the L2- and H1-approximation are respectively collected in
Figure 6 and Table 6.

Remark 5.2. We note that, when working with ε = ε0 = 1/2, we have, in view of (5.8), N = N0 = 1. In view
of (5.4)–(5.5), it turns out that, in this case, there are only 16 different realizations of the field asto. For this value
of ε, the expectation is computed by a simple enumeration of all the possible realizations. For ε = ε1 = 1/4,
there are already 65 536 realizations, and expectations are computed by empirical means over M realizations.

In Figure 6, we observe that the solution associated with the best matrix we compute is an approximation of
E(uε) (in the L2 norm) generally more accurate than the solution associated with the exact homogenized matrix
(since here N is small, the approximate matrix AN,M? is not expected to be an accurate approximation of A?).
Table 6 shows that our surrogate defines an approximation of E(∇uε), the accuracy of which is comparable,
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1 2 4
10− 1.6

10− 1.4

10− 1.2

10− 1

10− 0.8

Figure 6. Approximation of E(uε) in the L2 norm (err sto L2) by u?,h (red) and uP,Mε,h
(black) in function of N . For N ≥ 2, all expectations are approximated by an empirical mean
over M = 100 realizations. Since M is finite, results are random. We have performed the overall
computation 10 times and show the corresponding 95% confidence interval (here ε/h ≈ 27).

Table 6. Approximation of E(∇uε) in the L2 norm (err sto H1) by CN,Mε,h ∇u?,h and

C
R,M

ε,h ∇u
P,M
ε,h in function of N , for M = 100 and ε/h ≈ 27 (see Sect. 5.2.4 for a definition

of these quantities).

N 1 2 4

err_sto_H1 for CN,M
ε,h ∇u?,h 1.4947 × 10−1 1.3091 × 10−1 1.0720 × 10−1

err_sto_H1 for C
R,M
ε,h ∇uP,M

ε,h 1.0955 × 10−1 1.4595 × 10−1 6.9334 × 10−2

and often much better, to that provided by the homogenization approach. For the small values of N considered
here, our approach is less expensive than the classical homogenization approach.

Appendix A. Proof of Proposition 3.2

A.1. Preliminary results

Before we are in position to show Proposition 3.2, we first need to prove the following two preliminary lemmas,
namely Lemma A.1 and Lemma A.2.

Lemma A.1. Under the assumptions (2.4) and (2.5), the following convergence holds:

lim
ε→0

Φε(A?) = 0. (A.1)

We recall that Φε is defined by (3.11): for any A,

Φε(A) = sup
f∈L2

n(D)

Φε(A, f) = sup
f∈L2

n(D)

∥∥(−∆)−1
(
div(A∇uε(f)) + f

)∥∥2
L2(D)

.
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Proof of Lemma A.1. We use the notations and results of Section 3.1. Let fε? ∈ L2
n(D) such that

Φε(A?) =
∥∥(−∆)−1 (div(A?∇uε(fε? )) + fε? )

∥∥2
L2(D)

, (A.2)

and let CP > 0 be a Poincaré constant for D, namely a constant such that, for any v ∈ H1
0 (D), we have

‖v‖L2(D) ≤ CP‖∇v‖L2(D).

Using standard a priori estimates, we have, for any f ∈ L2(D), that∥∥(−∆)−1f
∥∥
L2(D)

≤ C2
P ‖f‖L2(D). (A.3)

Using that α ≤ Aε ≤ β (see (2.5)), we likewise get that, for any f ∈ L2(D),

‖∇uε(f)‖L2(D) ≤
CP

α
‖f‖L2(D). (A.4)

We now estimate zε = (−∆)−1 (div(A?∇uε(f))). We recall that (2.5) implies that

α ≤ A? ≤ β. (A.5)

From the variational formulation satisfied by zε, we obtain ‖∇zε‖L2(D) ≤ |A?| ‖∇uε(f)‖L2(D), which implies,

using (A.4) and (A.5), that ‖∇zε‖L2(D) ≤ CP β/α ‖f‖L2(D), hence

∥∥(−∆)−1 (div(A?∇uε(f)))
∥∥
L2(D)

≤ C2
P

β

α
‖f‖L2(D). (A.6)

Using (A.2), (A.6), (A.3) and the fact that ‖fε?‖L2(D) = 1 for all ε > 0, we deduce that the sequence {Φε(A?)}ε>0

is uniformly bounded. There thus exists a subsequence, that we still denote by {Φε(A?)}ε>0, that converges in

R. Let us denote by Φ its limit. We prove in the sequel that Φ = 0, which implies (A.1).
Since {fε?}ε>0 is uniformly bounded in L2(D), there exists a subsequence, again denoted {fε?}ε>0, that weakly

converges in L2(D) when ε → 0 to some function f0? ∈ L2(D) which satisfies
∥∥f0?∥∥L2(D)

≤ 1. From (A.2), we

infer, by the triangle inequality,

(Φε(A?))
1/2 ≤ Iε1 + Iε2 + Iε3 , (A.7)

with

Iε1 =
∥∥(−∆)−1

(
div(A?∇uε(fε? − f0? ))

)∥∥
L2(D)

,

Iε2 =
∥∥(−∆)−1

(
div(A?∇uε(f0? )) + f0?

)∥∥
L2(D)

,

Iε3 =
∥∥(−∆)−1(fε? − f0? )

∥∥
L2(D)

.

We successively show that Iε1 , Iε2 and Iε3 vanish with ε.

Step 1. Estimation of Iε1 . Let zε = (−∆)−1
(
div
[
A?∇(uε(f

ε
? − f0? ))

])
∈ H1

0 (D). We have

‖∇zε‖2L2(D) = −
∫
D
A?∇(uε(f

ε
? − f0? )) ·∇zε ≤ β

∥∥∇(uε(f
ε
? − f0? ))

∥∥
L2(D)

‖∇zε‖L2(D),

where we have used (A.5). Using the Poincaré inequality, we deduce

Iε1 = ‖zε‖L2(D) ≤ CP β
∥∥∇(uε(f

ε
? − f0? ))

∥∥
L2(D)

,

thus, using (1.1), we get that

(Iε1)
2 ≤ C2

P

β2

α

∫
D
Aε∇(uε(f

ε
? − f0? )) ·∇(uε(f

ε
? − f0? )) = C2

P

β2

α

∫
D

(fε? − f0? ) uε(f
ε
? − f0? ). (A.8)



1374 C. LE BRIS ET AL.

From (A.4), we also deduce

∥∥∇(uε(f
ε
? − f0? ))

∥∥
L2(D)

≤ CP

α

∥∥fε? − f0?∥∥L2(D)
≤ 2

CP

α
·

Using the Poincaré inequality, we obtain that the sequence
{
uε(f

ε
? − f0? )

}
ε>0

is uniformly bounded in H1(D).

There thus exists a subsequence, that we again denote
{
uε(f

ε
? − f0? )

}
ε>0

, which is strongly convergent in L2(D).

The right-hand side of (A.8) is therefore the L2 product of a sequence that weakly converges to 0 times a sequence
that strongly converges. We hence deduce from (A.8) that

lim
ε→0

Iε1 = 0. (A.9)

Step 2. Estimation of Iε2 . Let wε = div(A?∇uε(f0? )) + f0? , rε = (−∆)−1wε ∈ H1
0 (D) and pε = (−∆)−1rε ∈

H1
0 (D). Using the definition of pε, we have

(Iε2)
2

=

∫
D
r2ε =

∫
D
∇rε ·∇pε. (A.10)

Using the definition of rε, we have, for any φ ∈ H1
0 (D),∫

D
∇rε ·∇φ = −

∫
D
A?∇uε(f0? ) ·∇φ+

∫
D
f0? φ. (A.11)

Using (A.11) for φ ≡ pε, (A.10) reads as

(Iε2)
2

= −
∫
D
A?∇uε(f0? ) ·∇pε +

∫
D
f0? pε. (A.12)

In order to pass to the limit ε → 0 in (A.12), we establish some bounds. Using (A.11) with φ ≡ rε and the
bounds (A.5), we deduce

‖∇rε‖L2(D) ≤ β
∥∥∇uε(f0? )

∥∥
L2(D)

+ CP

∥∥f0?∥∥L2(D)
,

which (together with the Poincaré inequality and (A.4)) implies that rε is uniformly bounded in H1(D). There
thus exists r0 ∈ H1

0 (D) such that, up to some extraction, rε converges to r0, weakly in H1(D) and strongly in
L2(D).

Passing to the limit ε → 0 in (A.11), and using that ∇uε(f) weakly converges to ∇u?(f), we deduce that,
for any φ ∈ H1

0 (D), ∫
D
∇r0 ·∇φ = −

∫
D
A?∇u?(f0? ) ·∇φ+

∫
D
f0? φ = 0,

in view of the variational formulation of (1.2). We hence get that r0 ≡ 0.
We now turn to pε. We have pε = (−∆)−1rε ∈ H1

0 (D) and rε converges to r0 = 0, weakly in H1(D) and
strongly in L2(D). Hence pε converges to 0 strongly in H1

0 (D).
We now pass to the limit ε→ 0 in (A.12), and obtain

lim
ε→0

Iε2 = 0. (A.13)

Step 3. Estimation of Iε3 . Let kε = (−∆)−1(fε? − f0? ). We have

‖∇kε‖2L2(D) =

∫
D

(fε? − f0? )kε, (A.14)
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hence, using the Poincaré inequality,

‖∇kε‖L2(D) ≤ CP

∥∥fε? − f0?∥∥L2(D)
≤ 2CP.

The sequence {kε}ε>0 is thus uniformly bounded in H1(D) and there exists a subsequence, that we again denote
{kε}ε>0, which is strongly convergent in L2(D). Using that fε? − f0? weakly converges to 0 in L2(D), we deduce
from (A.14) that lim

ε→0
‖∇kε‖2L2(D) = 0, thus, again using the Poincaré inequality,

lim
ε→0

Iε3 = lim
ε→0
‖kε‖L2(D) = 0. (A.15)

Conclusion. Collecting (A.7), (A.9), (A.13) and (A.15), we obtain that Φε(A?) converges to zero as ε → 0.
We thus have shown that Φ = 0. The limit being independent of the subsequence that we have considered,
we eventually deduce that the whole sequence {Φε(A?)}ε>0 converges to zero. This completes the proof of
Lemma A.1. �

In what follows, we identify the set of indices {(i, j), 1 ≤ i ≤ j ≤ d} with the set of indices {m, 1 ≤ m ≤
d(d+ 1)

2
}.

Lemma A.2. There exist
d (d+ 1)

2
functions f?,k ∈ L2

n(D) and
d (d+ 1)

2
functions ϕ?,k ∈ C∞0 (D) such that

the matrix Z? ∈ R
d(d+1)

2 × d(d+1)
2 defined by

∀ 1 ≤ k ≤ d (d+ 1)

2
, ∀ 1 ≤ i < j ≤ d,


[Z?]k,(i,i) =

∫
D
u?,k ∂iiϕ?,k,

[Z?]k,(i,j) = 2

∫
D
u?,k ∂ijϕ?,k,

(A.16)

where u?,k = u?(f?,k) is the solution to (1.2) with right-hand side f?,k, is invertible.

Proof of Lemma A.2. In the Steps 1 and 2 below, we construct f?,k ∈ L2
n(D) and ϕ?,k ∈ C∞0 (D) inductively for

1 ≤ k ≤ d(d+ 1)/2, such that the vector Ek
? ∈ R

d(d+1)
2 defined by

∀ 1 ≤ i < j ≤ d,


[
Ek
?

]
(i,i)

=

∫
D
u?,k ∂iiϕ?,k,[

Ek
?

]
(i,j)

= 2

∫
D
u?,k ∂ijϕ?,k,

(A.17)

does not belong to Span(E1
?, . . . ,E

k−1
? ). The vectors E1

?, . . . , Ed(d+1)/2
? being the rows of the matrix Z?, we

deduce that Z? is invertible.

Step 1. Construction of E1
?. Choose f?,1 ∈ L2

n(D) and ϕ?,1 ∈ C∞0 (D) such that

∫
D
f?,1 ϕ?,1 6= 0, and consider

E1
? ∈ R

d(d+1)
2 defined by (A.17) (where we recall that u?,1 is the solution to (1.2) with right-hand side f?,1).

Recalling that A? is symmetric and constant, we have∑
1≤i≤j≤d

[A?]i,j
[
E1
?

]
(i,j)

= −
∫
D
A?∇u?,1 ·∇ϕ?,1 = −

∫
D
f?,1 ϕ?,1 6= 0,

hence E1
? 6= 0.
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Step 2. Induction. We assume that we have constructed f?,1, . . . , f?,k−1 and ϕ?,1, . . . , ϕ?,k−1 such that the
family E1

?, . . . , Ek−1
? is free, for k ≤ d(d+ 1)/2. We now construct f?,k ∈ L2

n(D) and ϕ?,k ∈ C∞0 (D) such that

the vector Ek
? ∈ R

d(d+1)
2 defined in (A.17) does not belong to Span(E1

?, . . . ,E
k−1
? ).

We proceed by contradiction and assume that, for any such f?,k and ϕ?,k, there exist λ`(f?,k, ϕ?,k) ∈ R,
1 ≤ ` ≤ k − 1, such that

Ek
? =

k−1∑
`=1

λ`(f?,k, ϕ?,k)E`
?.

For any vector S? ∈ R
d(d+1)

2 , we have

∑
1≤i≤j≤d

∫
D

[
Ŝ?

]
(i,j)

∂iju?,k ϕ?,k =
∑

1≤i≤j≤d

[S?](i,j)

[
Ek
?

]
(i,j)

=

k−1∑
`=1

λ`(f?,k, ϕ?,k)S? ·E`
?,

where, for any S ∈ R
d(d+1)

2 and E ∈ R
d(d+1)

2 , we denote S ·E =

d(d+1)/2∑
m=1

[S]m [E]m, and where Ŝ? ∈ R
d(d+1)

2 is

defined, for any 1 ≤ i < j ≤ d, by[
Ŝ?

]
(i,i)

= [S?](i,i) ,
[
Ŝ?

]
(i,j)

= 2 [S?](i,j) .

Since k − 1 < d(d + 1)/2, there exists S? ∈ R
d(d+1)

2 , S? 6= 0, such that S? ·E`
? = 0 for all 1 ≤ ` ≤ k − 1, and

thus

∀ϕ?,k ∈ C∞0 (D),
∑

1≤i≤j≤d

∫
D

[
Ŝ?

]
(i,j)

∂iju?,k ϕ?,k = 0.

Since S? (and thus Ŝ?) only depends on E1
?, . . . , Ek−1

? and not on ϕ?,k, this implies∑
1≤i≤j≤d

[
Ŝ?

]
(i,j)

∂iju?,k = 0 in the sense of distributions,

thus

0 = −
∑

1≤i≤j≤d

[
Ŝ?

]
(i,j)

∂ijdiv [A?∇u?,k] =
∑

1≤i≤j≤d

[
Ŝ?

]
(i,j)

∂ijf?,k,

for any f?,k ∈ L2
n(D). Since

[
Ŝ?

]
(i,j)

does not depend on f?,k, this shows that Ŝ?, and thus S?, vanishes. We

reach a contradiction. We thus obtain the existence of f?,k ∈ L2
n(D) and ϕ?,k ∈ C∞0 (D) such that the vectors

E1
?, . . . , Ek−1

? , Ek
? form a free family. �

A.2. Proof of Proposition 3.2

We can now perform the proof of Proposition 3.2. The convergence (A.1) proved in Lemma A.1 readily
shows (3.13). We are left with showing (3.14). Using the functions f?,k ∈ L2

n(D) and ϕ?,k ∈ C∞0 (D) defined by

Lemma A.2, we introduce the matrix Zε ∈ R
d(d+1)

2 × d(d+1)
2 defined by

∀ 1 ≤ k ≤ d(d+ 1)

2
, ∀ 1 ≤ i < j ≤ d,


[Zε]k,(i,i) =

∫
D
uε,k ∂iiϕ?,k,

[Zε]k,(i,j) = 2

∫
D
uε,k ∂ijϕ?,k,
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where uε,k = uε(f?,k) is the solution to (1.1) with right-hand side f?,k. Note that, for the second index of Zε,

we have again identified the sets {(i, j), 1 ≤ i ≤ j ≤ d} and {m, 1 ≤ m ≤ d(d+ 1)

2
}.

Since uε,k converges to u?,k in L2(D), the matrix Zε converges to the matrix Z? defined by (A.16) when ε
goes to zero. We have proved in Lemma A.2 that the matrix Z? is invertible. This implies that the matrix Zε
is invertible for ε sufficiently small, and that Z−1ε is bounded independently of ε.

We now introduce the vectors V
[

ε and V ? in R
d(d+1)

2 such that

∀ 1 ≤ i ≤ j ≤ d,
[
V
[

ε

]
(i,j)

=
[
A
[

ε

]
i,j
, [V ?](i,j) = [A?]i,j ,

where we recall that A
[

ε is a quasi-minimizing sequence of the functional (3.11) (see (3.12)). It can easily be

seen that, for any A ∈ S, denoting V ∈ R
d(d+1)

2 the vector such that [V ](i,j) = Ai,j for any 1 ≤ i ≤ j ≤ d, the
following holds: for any 1 ≤ k ≤ d(d+ 1)/2,[

Zε V
]
k

=

∫
D
uε,k div(A∇ϕ?,k) =

∫
D

div(A∇uε,k) ϕ?,k = −
∫
D

(−∆)−1
[
div(A∇uε,k)

]
∆ϕ?,k, (A.18)

where Zε V ∈ R
d(d+1)

2 is the product of the matrix Zε ∈ R
d(d+1)

2 × d(d+1)
2 by the vector V ∈ R

d(d+1)
2 : for any

1 ≤ k ≤ d(d+ 1)/2,
[
Zε V

]
k

=
∑

1≤i≤j≤d

[Zε]k,(i,j) [V ](i,j).

Now, for any f ∈ L2
n(D), we observe that∥∥∥(−∆)−1

[
div
(
A
[

ε∇uε(f)
)
− div

(
A?∇uε(f)

)]∥∥∥2
L2(D)

≤ 2
(
Φε(A

[

ε) + Φε(A?)
)

≤ 2 (Iε + ε+ Φε(A?))

≤ 2 (2Φε(A?) + ε) .

(A.19)

Hence, applying this to f ≡ f?,k, and owing to Lemma A.1,∥∥∥(−∆)−1
[
div
(
A
[

ε∇uε,k
)]
− (−∆)−1

[
div
(
A?∇uε,k

)]∥∥∥
L2(D)

vanishes with ε, for any 1 ≤ k ≤ d(d+ 1)/2.

We next deduce from (A.18) that Zε(V
[

ε−V ?) vanishes as ε→ 0. Since Zε is invertible when ε is sufficiently

small (with Z−1ε bounded independently of ε), we obtain that lim
ε→0

V
[

ε = V ?, which is exactly the claimed

convergence (3.14). This concludes the proof of Proposition 3.2.

Remark A.3. Since the above proof uses (A.19) precisely for the functions f?,k, 1 ≤ k ≤ d(d+ 1)/2 (and not
for all functions f ∈ L2

n(D)), we observe that, in the inf max formulation introduced in Remark 3.5, we have

A
max,[

ε → A? when ε→ 0.

Remark A.4. We recall that our approach consists in considering the problem (3.1), that is

Iε = inf
A∈S

Φε(A),

where Φε is defined by (3.11): for any A,

Φε(A) = sup
f∈L2

n(D)

Φε(A, f) = sup
f∈L2

n(D)

∥∥(−∆)−1
(
div(A∇uε(f)) + f

)∥∥2
L2(D)

.
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We show here that, when ε is sufficiently small, the minimum Iε is attained.

Consider indeed a minimizing sequence A
η

ε , satisfying, for any η > 0,

Iε ≤ Φε(A
η

ε) ≤ Iε + η. (A.20)

Similarly to (A.19), we observe that, for any f ∈ L2
n(D),∥∥∥(−∆)−1

[
div
(
A
η

ε∇uε(f)
)
− div

(
A?∇uε(f)

)]∥∥∥2
L2(D)

≤ 2
(
Φε(A

η

ε) + Φε(A?)
)

≤ 2 (Iε + η + Φε(A?))

≤ 2 (2Φε(A?) + η) .

Using (A.18), we have∣∣∣Zε (V η

ε − V ?

) ∣∣∣ ≤ C sup
f∈L2

n(D)

∥∥∥(−∆)−1
[
div
(
A
η

ε∇uε(f)
)
− div

(
A?∇uε(f)

)]∥∥∥
L2(D)

where C is a constant independent of ε and η and where the vector V
η

ε ∈ R
d(d+1)

2 is defined by
[
V
η

ε

]
(i,j)

=
[
A
η

ε

]
i,j

for any 1 ≤ i ≤ j ≤ d. When ε is sufficiently small, the matrix Zε is invertible with Z−1ε bounded independently
of ε. We thus deduce from the two above estimates that∣∣∣V η

ε − V ?

∣∣∣2 ≤ C (Φε(A?) + η)

for some C independent of ε and η. The vector V
η

ε (resp. V ?) is the representation (as a vector in R
d(d+1)

2 ) of
the symmetric matrix A

η

ε ∈ Rd×d (resp. A?). We hence equivalently write that∣∣∣Aηε −A?∣∣∣2 ≤ C (Φε(A?) + η) .

This shows that the sequence A
η

ε is bounded independently of η. Up to the extraction of a subsequence (that

we still denote η for the sake of simplicity), it thus converges to some symmetric matrix A
0

ε when η → 0. Since

A? is positive definite and since lim
ε→0

Φε(A?) = 0, we get that A
0

ε is also positive-definite.

Passing to the limit η → 0 in (A.20), and temporarily assuming that Φε is continuous, we get that Iε = Φε(A
0

ε).
This concludes the proof that the minimum Iε is indeed attained when ε is sufficiently small.

We are left with showing the continuity of A 7→ Φε(A). For any two matrices A1 and A2 and any f ∈ L2(D),
we compute that

Φε(A1, f)− Φε(A2, f) =
∥∥(−∆)−1

[
div
(
(A1 −A2)∇uε(f)

)]∥∥2
L2(D)

+ 2
〈
(−∆)−1

[
div
(
(A1 −A2)∇uε(f)

)]
, (−∆)−1

[
div
(
A2∇uε(f)

)
+ f

]〉
L2(D)

,

hence ∣∣Φε(A1, f)− Φε(A2, f)
∣∣ ≤ C ∣∣A1 −A2

∣∣2 ‖f‖2L2(D) + C
∣∣A1 −A2

∣∣ ‖f‖2L2(D),

where C is independent of f and A1. Taking the supremum over f ∈ L2
n(D), we thus deduce that∣∣Φε(A1)− Φε(A2)

∣∣ ≤ C ∣∣A1 −A2

∣∣2 + C
∣∣A1 −A2

∣∣ ,
which implies that lim

A1→A2

Φε(A1) = Φε(A2), and thus the continuity of Φε.
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Appendix B. Details on the algorithm to solve the discrete problem (4.5)

Let ΦP,Mε,h (A, c) be given by (4.6). Using the fact that ΦP,Mε,h (A, c) is quadratic with respect to c ∈ RP , one
can easily observe that

ΦP,Mε,h (A, c) = cT GMε,h(A) c,

where GMε,h(A) is the P × P matrix defined, for any 1 ≤ p, q ≤ P , by

[
GMε,h(A)

]
p,q

=
1

2

∑
1≤i,j,k,l≤d

[
KMε,h

]
i,j,k,l,p,q

Ai,j Ak,l−
∑

1≤i,j≤d

([
KMε,h

]
i,j,p,q

+
[
KMε,h

]
i,j,q,p

)
Ai,j + [Kh]p,q , (B.1)

where KMε,h, KMε,h and Kh are defined by (4.2), (4.3) and (4.4), respectively.

Using the fact that ΦP,Mε,h (A, c) is also quadratic with respect to A, we have that

ΦP,Mε,h (A, c) =
1

2

∑
1≤i,j,k,l≤d

[
BP,Mε,h (c)

]
i,j,k,l

Ai,j Ak,l −
∑

1≤i,j≤d

[
BP,Mε,h (c)

]
i,j

Ai,j + bPh (c),

where BP,Mε,h (c) is the d× d× d× d fourth-order tensor defined by[
BP,Mε,h (c)

]
i,j,k,l

=
∑

1≤p,q≤P

[
KMε,h

]
i,j,k,l,p,q

cp cq, (B.2)

BP,Mε,h (c) is the d× d matrix defined by[
BP,Mε,h (c)

]
i,j

=
∑

1≤p,q≤P

([
KMε,h

]
i,j,p,q

+
[
KMε,h

]
i,j,q,p

)
cp cq, (B.3)

and

bPh (c) =
∑

1≤p,q≤P

[Kh]p,q cp cq,

where KMε,h, KMε,h and Kh are defined by (4.2), (4.3) and (4.4), respectively. We remark, in light of the expres-
sions (4.2) and (4.3), that[

BP,Mε,h (c)
]
i,j,k,l

=
[
BP,Mε,h (c)

]
k,l,i,j

,
[
BP,Mε,h (c)

]
i,j,k,l

=
[
BP,Mε,h (c)

]
j,i,k,l

,

and [BP,Mε,h (c)]i,j = [BP,Mε,h (c)]j,i.
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