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ON THE MINIMIZING MOVEMENT WITH THE 1-WASSERSTEIN DISTANCE

Martial Agueh1,2, Guillaume Carlier3,∗ and Noureddine Igbida4

Abstract. We consider a class of doubly nonlinear constrained evolution equations which may be
viewed as a nonlinear extension of the growing sandpile model of [L. Prigozhin, Eur. J. Appl. Math.
7 (1996) 225–235.]. We prove existence of weak solutions for quite irregular sources by a semi-implicit
scheme in the spirit of the seminal works of [R. Jordan et al., SIAM J. Math. Anal. 29 (1998) 1–17,
D. Kinderlehrer and N.J. Walkington, Math. Model. Numer. Anal. 33 (1999) 837–852.] but with the
1-Wasserstein distance instead of the quadratic one. We also prove an L1-contraction result when the
source is L1 and deduce uniqueness and stability in this case.
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1. Introduction

Given a convex nonlinearity F , and Ω, an open bounded subset of Rd, we are interested in (a suitable weak
notion of solution for) the following evolution system:

∂tu− div(a∇F ′(u)) = f, (t, x) ∈ (0, T )×Ω, u|t=0 = u0, (1.1)

supplemented with the zero flux condition i.e. the requirement that a∇F ′(u) is tangential to ∂Ω and con-
strained by

a ≥ 0, |∇F ′(u)| ≤ 1, a(1− |∇F ′(u)|) = 0. (1.2)

At least formally, (1.1)–(1.2) can be viewed as the limit as q →∞ of the doubly nonlinear evolution equation:

∂tu−∆q(F
′(u)) = f, u|t=0 = u0 (1.3)

where ∆q is the q-Laplace operator, ∆qv = div(|∇v|q−2∇v). In the linear case where F ′(u) = u, this equation
arises as a model for growing sandpiles introduced by Prigozhin [15] and very much studied since, see in
particular [2, 5, 6, 9–12] and the references therein.
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We shall address existence of weak solutions to (1.1)–(1.2) by a simple constructive Euler scheme reminiscent
of the seminal works of Jordan-Kinderlehrer and Otto [13] and Kinderlehrer and Walkington [14] but with
the 1-Wasserstein distance and not the more traditional quadratic one. Thanks to this point of view, we will
obtain weak solutions for irregular sources f , namely f ∈ L1((0, T ), (C0,α0(Ω))′). If the source is in fact L1 in t
and x, then the flow of (1.1)–(1.2) defines a contraction in L1 which implies uniqueness, stability as well as full
convergence of the Euler scheme.

The paper is organized as follows. Section 2 is devoted to some preliminaries, the definition of weak solutions
and a summary of our main results. Existence is established via a variational scheme à la Jordan–Kinderlehrer
and Otto [13] and Kinderlehrer and Walkington [14] in Section 3. In Section 4, an L1-contraction result that
implies uniqueness and stability for an L1 source f is proved. Finally, Section 5 is devoted to some variants and
concluding remarks.

2. The PDE and its weak formulation

2.1. Preliminaries

It is well-known that the constraints (1.2) are related to the 1-Wasserstein distance and the notion of Kan-
torovich potential. In the following, we assume that Ω is an open bounded convex subset of Rd and T > 0. We
denote by Lip1 the set of 1-Lipschitz functions on Ω, and by Lip := W 1,∞(Ω) the set of Lipschitz functions on
Ω. Given g ∈ Lip′ such that g is balanced i.e.

〈g〉 := 〈g, 1〉 = 0,

we denote by W1 the dual semi norm of g:

W1(g) := sup
θ∈Lip1

〈g, θ〉.

When g is signed measure of the form g = g+−g−, with g± probability measures onΩ,W1(g) is the 1-Wasserstein
distance between g+ and g− (see [17]). Define

Lip′0 := {g ∈ Lip′ : 〈g〉 = 0},

a function θ ∈ Lip1 for which W1(g) = 〈g, θ〉 is called a Kantorovich potential of g and we denote by K(g) the
set of Kantorovich potentials of g i.e.:

K(g) := {θ ∈ Lip1 : 〈g, θ〉 ≥ 〈g, ψ〉, ∀ψ ∈ Lip1} .

For an arbitrary g ∈ Lip′0, it may be the case that K(g) is empty. However, K(g) 6= ∅ as soon as g ∈ Lip′0 ∩X ′
where X is a space of functions such that the embedding from Lip to X is compact (for instance X = C0, C0,α

with α ∈ [0, 1), . . .).
Using the Fenchel-Rockafellar duality theorem gives the following dual formula for W1(g):

W1(g) = inf
σ∈(L∞(Ω,Rd))′

{
‖σ‖(L∞)′ : −div(σ) = g

}
, (2.1)

where the equilibrium condition −div(σ) = g has to be understood in the weak sense i.e.

〈σ,∇θ〉L∞′,L∞ = 〈g, θ〉Lip′,Lip, ∀θ ∈W 1,∞(Ω). (2.2)

For g ∈ Lip′0, it also follows from the Fenchel-Rockafellar duality theorem that (2.1) admits solutions (in (L∞)′

and not in L1 in general), such solutions are called optimal flows. A Kantorovich potential θ ∈ K(g) is related
to an optimal flow σ in (2.1) by the extremality relation

〈σ,∇θ〉(L∞)′,L∞ = ‖σ‖(L∞)′ with ‖∇θ‖L∞ ≤ 1
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which, very informally, means that σ is concentrated on the set where |∇θ| equals 1 and is collinear to ∇θ. If, by
chance, σ is L1, the previous relation expresses the fact that σ = a∇θ with a ≥ 0 as well as the complementary
slackness condition a(1 − |∇θ|) = 0, note also that σ is in some weak sense tangential to ∂Ω because of (2.2).
For an arbitrary g ∈ Lip′ (not necessarily balanced) we define

W̃1(g) := W1(g − 〈g〉) + |〈g〉|

and observe that W̃1 is equivalent to the usual norm of Lip′.
With the previous considerations in mind, it is natural to interpret the PDE (1.1) coupled with (1.2) as the

inclusion
−F ′(u) ∈ K(∂tu− f), (2.3)

whose implicit in time discretization, given a time-step τ > 0, reads as

−F ′(uk+1) ∈ K

(
uk+1 − uk −

∫ (k+1)τ

kτ

f

)
. (2.4)

As we shall see later, these conditions appear as the Euler-Lagrange equations for the following Euler implicit
scheme à la Jordan-Kinderlehrer-Otto5 (henceforth JKO) [13] but using W1 instead of the more familiar 2-
Wasserstein distance. Given a time step τ > 0, let us construct inductively a sequence uτk by setting uτ0 = u0
and

uτk+1 ∈ argminu

{
W1(u− (uτk + τfτk )) +

∫
Ω

F (u)dx : 〈u− uτk − τfτk 〉 = 0

}
(2.5)

where (extending f by 0 outside [0, T ] if necessary)

fτk :=
1

τ

∫ (k+1)τ

kτ

f(s, .)ds. (2.6)

From now on, in addition to the assumption that Ω is convex and bounded, we suppose that there exists
α0 ∈ [0, 1) such that6

f ∈ L1((0, T ),
(
C0,α0(Ω)

)′
) (2.7)

which in particular implies that∫ T

0

|〈f(t, .)〉|dt+

∫ T

0

W1(f(t, .)− 〈f(t, .)〉)dt < +∞. (2.8)

and to make things as elementary as possible we take a power nonlinearity for F :

F (u) =
1

m
|u|m, with m > 1 (2.9)

and
u0 ∈ Lm(Ω). (2.10)

It then follows directly from the fact that W1 is lsc for the weak Lm topology as well as the strict convexity
of F (and the convexity of W1) that the sequence uτk of the W1-JKO scheme (2.5) is uniquely well-defined. We
define then two curves corresponding to linear and piecewise constant interpolation:

uτ (t) := uτk +
t− kτ
τ

(uτk+1 − uτk), ũτ (t) := uτk+1, t ∈ (kτ, (k + 1)τ ], (2.11)

5the idea to incorporate the source in an explicit way in the scheme was actually introduced by Kinderlehrer and Walkington [14].
6note that this allows a rough dependence in x, not even a measure for instance f(t, .) :=

∑
n(δxn(t)−δyn(t)) with

∫ T
0

∑
n |xn(t)−

yn(t)|α0dt < +∞.
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for k = 0, . . . , [τ−1T ]. We also define the piecewise constant approximation of the source f :

fτ (t) := fτk , t ∈ [kτ, (k + 1)τ), k = 0, . . . , [τ−1T ]. (2.12)

Note that by construction

〈uτk+1〉 = 〈uτk+1〉+

∫ (k+1)τ

kτ

〈f(t, .)〉dt

so that with (2.8) and (2.10), we have

〈ũτ (t, .)〉, 〈uτ (t, .)〉 ∈ L∞((0, T )). (2.13)

2.2. Weak solutions

The notion of weak solution of (1.1)–(1.2) we consider heavily relies on (2.3) and the following (slightly
formal) observations. Recall that (2.3) means that F ′(u) ∈ Lip1 and for every ξ ∈ Lip1, one has

〈∂tu(t), F ′(u(t))− ξ〉 ≤ 〈f(t), F ′(u(t))− ξ〉.

Note that giving a pointwise in time sense to this condition would require that ∂tu ∈ L1((0, T ),Lip′), which will
not be guaranteed by the rather weak Assumption (2.7).

Defining for every k > 0, the truncation map Tk: R→ R by

Tk(u) :=


k if u ≥ k

u if u ∈ [−k, k]

−k if u ≤ −k

.

and observing that for any θ ∈ Lip1, ξ := F ′(u)− Tk(F ′(u)− θ) belongs to Lip1 too, we get

〈∂tu, Tk(F ′(u)− θ)〉 =
d

dt

∫
Ω

∫ u(t)

0

Tk(F ′(s)− θ)ds dx

≤ 〈f, Tk(F ′(u)− θ)〉.

These considerations lead to the following definition of weak solutions:

Definition 2.1. A weak solution of (1.1)–(1.2) is an u ∈ L∞((0, T ), C0(Ω)) such that F ′(u) ∈ Lip1 for a.e.
t ∈ [0, T ], and for every θ ∈ Lip1 and every k > 0,

d

dt

∫
Ω

∫ u(t)

0

Tk(F ′(s)− θ)dsdx ≤ 〈f, Tk(F ′(u)− θ)〉 (2.14)

in the sense of distributions.

In other words, u ∈ L∞((0, T ), C0(Ω)) such that F ′(u) ∈ Lip1 for a.e. t ∈ [0, T ] is a weak solution of (1.1)–
(1.2) if for every θ ∈ Lip1 and every φ ∈ C1

c ([0, T ),R+) one has

−
∫ T

0

∫
Ω

φ̇(t)

∫ u(t)

0

Tk(F ′(s)− θ)dsdxdt ≤ φ(0)

∫
Ω

∫ u0

0

Tk(F ′(s)− θ)dsdx

+

∫ T

0

φ(t)〈f(t, .), Tk(F ′(u(t, .))− θ)〉dt.
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Note that if u is a weak solution (letting k →∞), we have for every θ ∈ Lip1

d

dt

∫
Ω

F (u(t, x))dx ≤ d

dt
〈θ, u〉+ 〈f, F ′(u)− θ〉

in the sense of distributions, which implies in particular that t 7→
∫
Ω
F (u(t, x)) dx as well as t 7→ 〈u(t, .), θ〉

(with θ ∈ Lip) are BV functions (but not necessarily absolutely continuous).

Remark 2.2. One can see here that the notion of solution we are using in Definition 2.1 is weaker than the
standard one which consists in requiring that u ∈ L∞((0, T ), C0(Ω)), with ∂tu ∈ L1(0, T ; Lip′) and F ′(u(t)) ∈
Lip1 for a.e. t ∈ [0, T ], u(0) = u0 and

−F ′(u(t)) ∈ K(∂tu(t)− f(t)), for a.e. t ∈ (0, T ). (2.15)

Indeed, by using the same arguments of Lemma 4 of [7], one can prove that if u is such a solution it is also a
solution in the sense of Definition 2.1. Indeed, if ∂tu ∈ L1(0, T ; Lip′) one can prove rigorously that (2.15) yields∫ T

0

〈∂tu(t), Tk(F ′(u(t))− θ)〉φ(t) dt = −
∫ T

0

∫
Ω

φ̇(t)

∫ u(t)

0

Tk(F ′(s)− θ)dsdxdt

− φ(0)

∫
Ω

∫ u0

0

Tk(F ′(s)− θ)dsdx,

for any θ ∈ Lip1 and φ ∈ C1
c ([0, T ),R).

2.3. Main results

Our main results concerning the existence and uniqueness of weak solutions can be summarized as follows.
First, existence will be obtained (proof will be detailed in section 3) by convergence of the JKO-scheme:

Theorem 2.3. Assume (2.7)–(2.9)–(2.10) and define uτ by (2.5)–(2.11), then there exists u ∈
L∞((0, T ), C0(Ω)) such that F ′(u) ∈ Lip1 for a.e. t ∈ [0, T ], and a vanishing family of stepsizes τn → 0 such
that uτn converges strongly to u in Lp((0, T ), C0(Ω)) for every p ∈ [1,∞) and u is weak solution of (1.1)–(1.2).

Uniqueness will be guaranteed by the following L1-contraction result (see Sect. 4) which requires an L1 assump-
tion on the source:

Theorem 2.4. Assume f ∈ L1((0, T ), L1(Ω)), (2.9), u0 ∈ Lm(Ω), v0 ∈ Lm(Ω) and let u and v be weak
solutions of of (1.1)–(1.2) associated respectively to the initial conditions u0 and v0 respectively, then

‖u(t, .)− v(t, .)‖L1(Ω) ≤ ‖u0 − v0‖L1(Ω), a.e. t ∈ [0, T ].

In particular (1.1)–(1.2) has a unique weak solution.

Combining Theorems 2.3 and 2.4 and the a priori estimates for the JKO scheme of Section 3, we deduce:

Corollary 2.5. Assume that f ∈ L1((0, T ), L1(Ω)), (2.9) and (2.10) then the whole family uτ defined by (2.5)–
(2.11) converges in Lp((0, T ), C0(Ω)) for every p ∈ [1,∞) to the unique solution of (1.1)–(1.2).
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3. Convergence of the JKO-like W1-scheme

3.1. Euler-Lagrange equation for the discrete scheme

The fact that the Euler-Lagrange equation of the variational problem in (2.5) is very much linked to an
implicit time discretization of (2.3) follows from:

Lemma 3.1. Let α0 ∈ [0, 1) and v ∈ (C0,α0(Ω))′, if u ∈ Lm solves

inf

{
W1(u− v) +

∫
Ω

F (u) : u ∈ Lm, 〈u− v〉 = 0

}
(3.1)

then
−F ′(u) ∈ K(u− v). (3.2)

Proof. We proceed by duality. Consider the convex minimization problem

inf
z∈Lip1

{∫
Ω

F ∗(−z) + 〈v, z〉
}

(3.3)

It is easy to see that it admits a (unique by strict convexity of F ∗) solution, indeed if zn is a minimizing
sequence, it possesses a subsequence that converges strongly in C0,α0(Ω) (and thus also in Lm

′
with m′ = m

m−1
the conjugate exponent of m) to some z which obviously solves (3.3) since v ∈ (C0,α0(Ω))′. By Fenchel–
Rockafellar Theorem, we also deduce that (3.3) (written as a convex minimization problem on Lm

′
observing

that Lip1 is closed in Lm
′
) is dual to (3.1). Moreover, the solution z ∈ Lip1 of (3.3) is related to the solution u

of (3.1) by the extremality relation

0 =

∫
Ω

F (u) +W1(u− v) +

∫
Ω

F ∗(−z) + 〈v, z〉

=

∫
Ω

F (u) +

∫
Ω

F ∗(−z) + 〈u, z〉+W1(u− v)− 〈u− v, z〉

since both terms are nonnegative this gives z = −F ′(u) and z ∈ K(u− v). �

Proposition 3.2. If for i = 1, 2, vi ∈ (C0,α0(Ω))′ and v1 − v2 ∈ L1(Ω), then the corresponding solutions ui
to (3.1) satisfy ∫

Ω

|u1 − u2| ≤
∫
Ω

|v1 − v2|. (3.4)

Proof. It follows from Lemma 3.1, that for i = 1, 2, we have

〈vi − ui, F ′(ui)− ξ〉 ≥ 0, for any ξ ∈ Lip1,

and since F ′(u1)− Tk(F ′(u1)− F ′(u2)) ∈ Lip1, we have

〈v1 − u1, Tk(F ′(u1)− F ′(u2))〉 ≥ 0.

Similarly,
〈v2 − u2, Tk(F ′(u2)− F ′(u1))〉 ≥ 0.

hence
〈u1 − u2, Tk(F ′(u2)− F ′(u1))〉 ≤ 〈v1 − v2, Tk(F ′(u2)− F ′(u1))〉.

Dividing both terms by k, using the fact that v1 − v2 ∈ L1 and that 1
k |Tk(F ′(u1)− F ′(u2))| ≤ 1, we get

1

k

∫
Ω

(u1 − u2)Tk(F ′(u1)− F ′(u2)) ≤
∫
Ω

|v1 − v2|.

At last, letting k → 0 and using Lebesgue’s dominated convergence theorem and the fact that F ′ is increasing,
we obtain (3.4). �
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As a consequence, we deduce that the discrete JKO scheme contracts the L1 distance. Let us indeed consider
the same JKO construction (2.5) as before but for two different initial conditions u0 and v0, we denote by uτk
and vτk the corresponding discrete in time sequences. We then have:

Corollary 3.3. The discrete JKO scheme given by (2.5) satisfies the discrete flow equation (2.4) and contracts
the L1 distance (whatever the time step τ > 0 is). In other words, the sequences uτk and vτk constructed by the
scheme (2.5) corresponding to the initial conditions u0 and v0 satisfy

‖uτk+1 − vτk+1‖L1 ≤ ‖uτk − vτk‖L1 , (3.5)

for any k = 0, 1, . . . [τ−1T ]− 1.

Now, in order to pass to the limit in (2.4) for the discrete JKO scheme, as τ → 0, we give in this paragraph
the main a priori estimates on uτ and ũτ . Lemma 3.1 first gives the estimate

‖∇[F ′(ũτ )]‖L∞((0,T )×Ω) ≤ 1. (3.6)

Since [F ′]−1 is C0,β for the exponent β := min(1, 1
m−1 ), thanks to (2.13), we also have the Hölder bound:

‖ũτ‖L∞((0,T ),C0,β(Ω)) + ‖uτ‖L∞((0,T ),C0,β(Ω)) ≤ C. (3.7)

Using uτk + τ〈fτk 〉 as a competitor to uτk+1 in (2.5), we first have:

W1(uτk+1 − (uτk + τfτk )) +

∫
Ω

F (uτk+1) ≤
∫ (k+1)τ

kτ

W1(f(t, .)− 〈f(t, .)〉)dt

+

∫
Ω

F (uτk + τ〈fτk 〉). (3.8)

Thanks to (3.7) uτk is bounded and thanks to (2.8)

τ |〈fτk 〉| ≤ ‖〈f〉‖L1(kτ,(k+1)τ) ≤ ω(τ) with ω(τ)→ 0 as τ → 0. (3.9)

The mean-value theorem therefore enables us to write

F (uτk + τ〈fτk 〉) ≤ F (uτk) + Cτ |〈fτk 〉|,

which, together with (3.8), yields

W1(uτk+1 − (uτk + τfτk )) ≤
∫ (k+1)τ

kτ

W1(f(t, .)− 〈f(t, .)〉)dt

+

∫
Ω

F (uτk)−
∫
Ω

F (uτk+1) + Cτ |〈fτk 〉|. (3.10)

Now, the right-hand side of (3.10) contains a telescopic sum and terms on which we have L1 bounds thanks
to (2.8). Hence, since F ≥ 0 and u0 ∈ Lm we get

[τ−1T ]∑
k=0

W1(uτk+1 − uτk − τfτk ) ≤ C. (3.11)



1422 M. AGUEH ET AL.

Next we observe that

‖∂tuτ‖L1((0,T ),(Lip′,W̃1))
=

[τ−1T ]∑
k=0

W̃1(uτk+1 − uτk)

≤
∫ T

0

|〈f(t, .)〉|dt+

[τ−1T ]∑
k=0

W1(uτk+1 − uτk − τ〈fτk 〉)

≤ C +

[τ−1T ]∑
k=0

(W1(uτk+1 − uτk − τfτk ) + τW1(fτk − 〈fτk 〉)

together with (3.11) and (2.8) we deduce

‖∂tuτ‖L1((0,T ),(Lip′,W̃1))
≤ C. (3.12)

The Euler-Lagrange equation of (2.5) from Lemma 3.1 reads

−F ′(uτk+1) ∈ K(uτk+1 − uτk − τfτk ) = K

(
uτk+1 − uτk

τ
− fτk

)
(3.13)

Note that by the very construction of the interpolations uτ and ũτ , (3.13) can be rewritten as for a.e. t ∈ [0, T ]

−F ′(ũτ (t)) ∈ K(∂tu
τ (t)− fτ (t)). (3.14)

i.e. F ′(ũτ ) ∈ Lip1 and for every ξ ∈ Lip1 and for a.e. time one has

〈∂tuτ , F ′(ũτ )− ξ〉 ≤ 〈fτ , F ′(ũτ )− ξ〉. (3.15)

As already observed, given k > 0 and θ ∈ Lip1, ξ := F ′(ũτ )− Tk(F ′(ũτ )− θ) belongs to Lip1, hence we have

〈∂tuτ , Tk(F ′(ũτ )− θ)〉 ≤ 〈fτ , Tk(F ′(ũτ )− θ)〉. (3.16)

Now we observe that if t ∈ (kτ, (k + 1)τ) by the strict convexity of F and the fact that Tk is nondecreasing,
Tk(F ′(ũτ (t))− θ)− Tk(F ′(uτ (t))− θ) has the sign of (ũτ (t)− uτ (t)) i.e. that of ∂tu

τ (t), hence

d

dt

∫
Ω

∫ uτ

0

Tk(F ′(s)− θ) ds = 〈∂tuτ , Tk(F ′(uτ )− θ)〉

≤ 〈∂tuτ , Tk(F ′(ũτ )− θ)〉.

With (3.16), this yields

d

dt

∫
Ω

∫ uτ

0

Tk(F ′(s)− θ) ds ≤ 〈fτ , Tk(F ′(ũτ )− θ)〉. (3.17)

Our aim now is of course to pass to the limit τ → 0 in (3.17). We first have:

Proposition 3.4. There exist a vanishing sequence of time steps τn → 0 as n→∞ and u ∈ L∞((0, T ), C0(Ω)),
such that setting un := uτn and ũn := ũτn one has:

un → u in Lp((0, T ), C0(Ω)),∀p ∈ [1,+∞) (3.18)

ũn → u in L1((0, T ), C0(Ω)) (3.19)

F ′(ũn)→ F ′(u) in Lp((0, T ), C0,α(Ω)),∀p ∈ [1,+∞), ∀α ∈ [0, 1) (3.20)

F ′(u(t, .)) ∈ Lip1 for a.e. t (3.21)
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Proof. Thanks to (3.7), uτ is bounded in L1((0, T ), C0,β) and ∂tu
τ is bounded in L1((0, T ),Lip′), since the

embedding C0,β(Ω) ↪→ C0(Ω) is compact and the embedding C0(Ω) ↪→ Lip(Ω)′ is continuous (it is actually
compact as well . . . ), it follows from the Aubin-Lions-Simon Theorem (see [3,16]) that {uτ}τ has a cluster point
u in L1((0, T ), C0(Ω)). For a suitable vanishing sequence of stepsizes we may thus assume that the corresponding
sequence un converges to u in L1((0, T ), C0(Ω)) but also (up to a further extraction) that un(t, .) converges to
u(t, .) in C0(Ω) for a.e. t. Thanks to the uniform bound (3.7) with Lebesgue’s dominated convergence theorem,
we deduce (3.18).

As for ũτ , in addition to (3.7) and (3.12), we observe that

‖ũτ − uτ‖
L1((0,T ),(Lip′,W̃1))

=

[τ−1T ]∑
k=0

∫ (k+1)τ

kτ

W̃1(ũτ (t)− uτ (t))dt (3.22)

=
τ

2

[τ−1T ]∑
k=0

W̃1(uτk+1 − uτk) ≤ Cτ (3.23)

where the last rightmost inequality follows from (3.12). Since un obviously converges to u in L1((0, T ),Lip′),
we deduce from the latter inequality that ũn is relatively compact in L1((0, T ),Lip′), together with (3.7), the
fact that the embedding C0,β ↪→ C0 is compact, that the embedding C0 ↪→ Lip′ is continuous and Lemma 9 in
Simon [16], we can conclude that up to further extractions, ũn converges to u in L1((0, T ), C0(Ω)). Again, we may
also assume as well that ũn(t, .) converges to u(t, .) in C0(Ω) for a.e. t. This implies that F ′(ũn(t, .)) converges to
F ′(u(t, .)) in C0(Ω) for a.e. t which in particular implies (3.21). Thanks to (3.7), for every α ∈ [0, 1), F ′(ũn(t, .))
is relatively compact in C0,α and thus converges to F ′(u(t, .)) in C0,α for a.e. t, the Lp((0, T ), C0,α(Ω)). Conver-
gence in (3.20) thus simply follows again from the uniform bound (3.7) and Lebesgue’s dominated convergence
theorem. �

3.2. Proof of theorem 2.3

We are now ready to prove our main result which in particular implies existence of weak solution of (1.1)–(1.2)
via convergence of the JKO scheme (2.5), namely

Proposition 3.5. The limit function u from Proposition 3.4 is a weak solution of (1.1)–(1.2).

Proof. Let θ ∈ Lip1 and φ ∈ C1
c ([0, T ),R+), multiplying (3.17) by φ and integrating by parts in time (observing

that
∫
Ω

∫ uτ
0

Tk(F ′(s)− θ) ds is absolutely continuous) we first have:

−
∫ T

0

∫
Ω

φ̇(t)

∫ uτ

0

Tk(F ′(s)− θ) ds ≤ φ(0)

∫ u0

0

Tk(F ′(s)− θ) ds+

∫ T

0

φ(t)〈fτ (t, .), Tk(F ′(ũτ (t, .))− θ)〉dt.

For the last term in this inequality, we remark that it can be rewritten as∫ T

0

φ(t)〈fτ (t, .), Tk(F ′(ũτ (t, .))− θ)〉dt =

∫ T

0

〈f, φτTk(F ′(ũτ )− θ)〉

=

∫ T

0

φτ (t)〈f(t, .), Tk(F ′(ũτ (t, .))− θ)〉dt

with

φτ (t) :=
1

τ

∫ (l+1)τ

lτ

φ(s)ds, for t ∈ [lτ, (l + 1)τ).

It follows from proposition 3.4 that

Tk(F ′(ũn)− θ)→ Tk(F ′(u)− θ) in C0,α0(Ω)fora.e.t.
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Remarking then that ‖φτ − φ‖L∞ → 0 as τ → 0, thanks to (2.7), and Lebesgue’s dominated convergence
theorem, we get

lim
n

∫ T

0

φ(t)〈fτn(t, .), F ′(ũn(t, .)− θ〉dt = lim
n

∫ T

0

φ(t)〈f(t, .), F ′(u(t, .))− θ〉dt.

Taking τ = τn, letting n → ∞ and using proposition 3.4, we thus easily deduce that u is a weak solution
of (1.1)–(1.2).

�

4. L1-contraction, uniqueness and stability

Theorem 4.1. Assume that f ∈ L1((0, T ), L1(Ω)). Let u1 and u2 be two weak solutions of (1.1)–(1.2), then

d

dt

∫
Ω

|u1(t, x)− u2(t, x)| dx ≤ 0 in D′(0, T ). (4.1)

In particular, for any u0 ∈ L1 and f ∈ L1((0, T ), L1(Ω)), problem (1.1)–(1.2) has at most one weak solution
such that u(0) = u0.

Proof. Let u1 and u2 be two weak solutions. Dividing (2.14) by k and letting k tend to 0+, for i = 1, 2, thanks to
the fact that f ∈ L1((0, T ), L1(Ω)) and Lebesgue’s dominated convergence theorem, we have7, for any θ ∈ Lip1

d

dt

∫
Ω

∫ ui(t,x)

0

sign(F ′(r)− θ(x)) drdx ≤ 〈f, sign(F ′(ui(t))− θ)〉, in D′(0, T ).

In particular, if θ is of the form θ = F ′(η), we get

d

dt

∫
Ω

∫ ui(t,x)

0

sign(r − η(x)) drdx =
d

dt

∫
Ω

∫ ui(t,x)

η(x)

sign(r − η(x)) drdx

≤ 〈f, sign(F ′(ui(t))− F ′(η))〉, in D′(0, T ).

Thus
d

dt

∫
Ω

|ui(t, x)− η(x)|dx ≤ 〈f(t), sign(ui(t)− η)〉, in D′(0, T ). (4.2)

Now, we use doubling and dedoubling variables techniques to prove the L1 contraction principle. Let σ ∈
D((0, T )2), σ ≥ 0, if we take for i = 1, η(x) = F ′(u2(s, x)), (s fixed for the moment) in the inequality above,
we get

−
∫ T

0

∫
Ω

∂tσ(t, s) |u1(t, x)− u2(s, x)| dx dt ≤
∫ T

0

∫
Ω

f(t, x)sign(u1(t, x)− u2(s, x)) σ(t, s) dx dt

In a similar way, using η(x) = F ′(u1(t, x)) (with t fixed) for u2, we have

−
∫ T

0

∫
Ω

∂sσ(t, s) |u1(t, x)− u2(s, x)| dx ds

≤
∫ T

0

∫
Ω

f(s, x)sign(u1(t, x)− u2(s, x)) σ(t, s) dx ds

7Here and in the sequel, sign refers to the selection of the sign function which takes value 0 at 0.
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Integrating the preceding equations with respect to s and t, respectively, and adding the resulting inequalities,
we thus get

−
∫ T

0

∫ T

0

∫
Ω

|u1(t, x)− u2(s, x)| (∂tσ(t, s) + ∂sσ(t, s))dx dt ds

≤
∫ T

0

∫ T

0

∫
Ω

|f(t, x)− f(s, x)| σ(t, s)dx dt ds.

Now, to dedouble variables, given a small ε > 0 we take σ = σε of the form

σε(t, s) =
φ(t)

ε
ρ

(
s− t
ε

)
·

with φ ∈ D(0, T ), φ ≥ 0 and ρ ≥ 0, ρ ∈ D(−1, 1), even, and such that
∫
R ρ = 1. We then have

∂tσε(t, s) + ∂sσε(t, s) =
φ̇(t)

ε
ρ

(
t− s
ε

)
·

Performing the change of variables (t, s) 7→ (t, s−tε ), we thus arrive at

−Iε ≤ Jε (4.3)

where

Iε :=

∫ 1

−1

∫ T

0

∫
Ω

|u1(t, x)− u2(t+ ετ, x)|ρ(τ)φ̇(t)dx dt dτ

and

Jε :=

∫ 1

−1

∫ T

0

∫
Ω

|f(t, x)− f(t+ ετ, x)|ρ(τ)φ(t)dx dt dτ.

Now using the fact that if g ∈ L1((0, T ) × Ω), then for a and b such that 0 < a < b < T , ‖g(. + h, .) −
g(., .)‖L1((a,b)×Ω) tends to 0 uniformly as |h| → 0 (see for instance Chap. 4 of [4] for details), we easily obtain

lim
ε→0+

Iε =

∫ T

0

∫
Ω

|u1(t, x)− u2(t, x)|φ̇(t)dx dt

and, since f ∈ L1((0, T )×Ω), we similarly have

lim
ε→0+

Jε = 0.

Letting ε tend to 0+ in (4.3), we deduce the desired contraction result (4.1). �

Remark 4.2. Exactly the same proof as above, gives the following stability result for weak solutions u1 and
u2 associated to different (L1((0, T )×Ω)) sources, respectively f1 and f2:

d

dt
‖u1(t, .)− u2(t, .)‖L1(Ω) ≤ ‖f1(t, .)− f2(t, .)‖L1(Ω) (4.4)

and in particular

‖u1(t, .)− u2(t, .)‖L1(Ω) ≤ ‖u1(0, .)− u2(0, .)‖L1(Ω) +

∫ t

0

‖f1(s, .)− f2(s, .)‖L1(Ω)ds. (4.5)
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5. Variants and concluding remarks

We have proposed an elementary Euler scheme à la JKO with W1 to deal with nonlinear evolution equations
of the form (1.1)–(1.2) and addressed stability and uniqueness issues thanks to an L1-contraction argument.
We presented the L1-contraction directly at the level of the PDE, but another approach, leading to the same
conclusion, would have been to consider contraction at the discretized in time level (in a similar way as the
estimate of Prop. 3.2) and conclude by the classical semi-group theory in Banach spaces of Crandall and
Liggett [8]. Indeed, thanks to Proposition 3.2, it is possible to handle the evolution problem (1.1)–(1.2) by
using the classical semi-group theory in the Banach space L1(Ω), whenever the source term is L1 in space. In
particular, one sees that (4.2) is closely connected to the notion of integral solution in the sense of non linear
semi-group theory in L1(Ω). If the source term is regular enough, we believe that it is possible to prove the
existence of a weak solution in the standard sense (cf. Rem. 2.2). Thanks to remark 2.2, this solution coincides
with ours and the uniqueness holds true if the source term remains in L1.

Let us stress the fact that theW1-JKO scheme is constructive. We indeed believe that since the scheme consists
in a sequence of relatively simple convex minimization problems, it is well suited for numerical purposes but we
leave this aspect for future research.

An easy extension of the W1-JKO approach concerns the case of a reaction term in the right-hand side i.e.

∂tu− div(a∇F ′(u)) = f(u), (t, x) ∈ (0, T )×Ω, u|t=0 = u0, (5.1)

again constrained by (1.2). If the reaction term f(u) is sublinear, i.e. there exists a positive constant C such
that

|f(u)| ≤ C(1 + |u|), ∀u ∈ R, (5.2)

and if we modify (2.5) in a straighforward way by

uτk+1 ∈ argminu

{
W1(u− (uτk + τf(uτk))) +

∫
Ω

F (u)dx : 〈u− uτk − τf(uτk)〉 = 0
}

(5.3)

then, thanks to (5.2), one can obtain similar estimates as in Section 3 to deduce convergence of the scheme (5.3) as
τ → 0+ to a solution of (5.1)–(1.2). If, in addition f is Lipschitz, then it follows directly from (4.5) and Gronwall’s
Lemma that we also have uniqueness and stability in L1. To make things simple we have considered a power
convex nonlinearity for F , but this is not really essential, what is important is that F ′ is an homeorphism. An
interesting limit case, out of the scope of the present analysis, is when F ′ is a general monotone graph, possibly
set-valued or empty-valued such as in the compression molding model of Aronsson and Evans [1].

We have also have left unanswered two questions that seem natural to us. The first one is what happens if the
source term f is only L1((0, T ),Lip′): can one expect convergence of the JKO scheme, and more generally, does
there exist a weak solution to (1.1)–(1.2) in this case? The second one is the uniqueness of weak solutions to
the Cauchy problem when the source is not L1((0, T )×Ω) but only L1((0, T ),Lip′)′) or L1((0, T ), (C0,α0(Ω))′),
we actually suspect that uniqueness is false in such irregular cases but have not found any counterexample.
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