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A CLASS OF INFINITE-HORIZON STOCHASTIC DELAY OPTIMAL CONTROL

PROBLEMS AND A VISCOSITY SOLUTION TO THE ASSOCIATED HJB

EQUATION ∗

Jianjun Zhou1

Abstract. In this paper, we investigate a class of infinite-horizon optimal control problems for stochas-
tic differential equations with delays for which the associated second order Hamilton−Jacobi−Bellman
(HJB) equation is a nonlinear partial differential equation with delays. We propose a new concept for
the viscosity solution including time t and identify the value function of the optimal control problems
as a unique viscosity solution to the associated second order HJB equation.
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1. Introduction

In this article, we consider the following controlled differential equations with delays:
dXu(t) = F (Xu(t), (a,Xu

t )H , u(t))dt+ F1(Xu(t− τ))dt

+G(Xu(t), (c,Xu
t )H , u(t))dW (t), t ∈ [0,+∞),

Xu
0 = x ∈ H,Xu(0) = x0 ∈ Rd,

(1.1)

where
Xu
t (θ) = Xu(t+ θ), θ ∈ [−τ, 0], u(·) ∈ U [0,+∞).

In the above equations, H denotes the Hilbert space L2([−τ, 0];Rd), and {W (t), t ≥ 0} is an n-dimensional
standard Wiener process; the unknown Xu(s), representing the state of the system, is an Rd-valued process;
the control process u is left-continuous predictable process with respect to the Wiener filtration and takes its
values in a compact subset U of Rd1 . The terms a(·) and c(·) are two given functions that satisfy the appropriate
smoothness properties. The coefficients F , F1 and G are assumed to satisfy Lipschitz conditions with respect
to appropriate norms. Thus, there exists a unique adapted process Xu(s, x, x0), s ≥ 0, solution to (1.1).
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We wish to minimize a cost functional of the form

J(x, x0, u) = E

∫ +∞

0

e−λσq(Xu(σ, x, x0), u(σ))dσ (1.2)

over all admissible controls belong to U [0,+∞). Here, the term q is a given real function on Rd × U , and the
constant λ is sufficiently large. The definition of U [0,+∞) will be given in Section 2. We can then introduce the
value function

V (x, x0) := inf
u∈U [0,+∞)

J(x, x0, u). (1.3)

The goal of this article is to characterize this value function V when x ∈ D and x(0) = x0. Here D denotes the
set of the right-continuous, Rd-valued functions on [−τ, 0] such that it belongs to H. We consider the following
second order Hamilton−Jacobi−Bellman (HJB) equation:

−λV (x) + S(V )(x) + H(x,∇x0V (x, x(0)),∇2
x0
V (x, x(0))) = 0, x ∈ D(S(V )), (1.4)

where

H(x, p, l) = inf
u∈U

[(p, F (x(0), (a, x)H , u) + F1(x(−τ)))Rd +
1

2
tr[lG(x(0), (c, x)H , u)

G>(x(0), (c, x)H , u)] + q(x(0), u)], (x, p, l) ∈ D ×Rd × Γ (Rd).

Here, G> denotes the transpose of the matrix G, Γ (Rd) denotes the set of all (d× d) symmetric matrices and
(·, ·)Rd denotes the scalar product of Rd. ∇x0V and ∇2

x0
V are first and second Fréchet derivatives of V with

respect to the second variable. The definition of a weak infinitesimal generator S will be given in Section 3.
We will develop a viscosity solution to the second order HJB equation given in (1.4) (see Def. 4.2 for details)

and then show that the value function V defined in (1.3) is a unique viscosity solution to the HJB equation
given in (1.4).

The type of problem above occurs in many different fields, including finance and economics (see [19] for an
overview on their applications). We refer to [9, 25] for mathematical finance and to [6, 24, 27–30] for portfolio
optimizations. We also refer to [15–17] for advertising models with delayed effects and to [11, 14] for Pension
funds.

These optimal control problems for stochastic systems with delays have been thoroughly investigated in
recent years (see [1,7,13,25,26,34,35]). However, to the best of our knowledge, none of these results include our
case. References [1, 7, 25, 26] established the stochastic maximum principles. Reference [1] showed a maximum
principle of infinite horizon optimal control for stochastic delay equations. References [13, 34, 35] derived the
existence and uniqueness of the mild solution for the second order HJB equations associated with stochastic
systems with delays. Reference [12] studied the mild solution of the elliptic equations in Hilbert spaces associated
with infinite horizon optimal control problems without delays. However, the continuous differentiability of the
diffusion term and the drift term in the state equation is required to obtain the results in these references.

It is well known that the approach to the treatment of the optimal control problems given by (1.1) and (1.2)
is to reformulate them as optimal control problems of the evolution equation in a Hilbert space (see, e.g., [5,10]
for deterministic cases, and [15] for stochastic cases). However, in such cases, the initial condition of the state
equations have the form Xu

t = x ∈ H and Xu(t) = x0 ∈ Rd, and the state equations do not contain the term
Xu(· − τ). In [2, 3], the term Xu(· − τ) in state equations is considered; in these problems, however, Xu(· − τ)
is a linear term. In our case, because the coefficient F1 is a genuinely nonlinear function about Xu(· − τ), this
form of the initial condition Xu

t = x ∈ H and Xu(t) = x0 ∈ Rd does not guarantee that the value function can
be considered as a viscosity solution to the associated HJB equation. To overcome this difficulty, we consider
state equations with the initial condition Xu

0 = x ∈ D and study the viscosity solution to the associated HJB
equation in the set D.
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The theory of viscosity solutions for second order HJB equations has been well developed. We refer to [8]
for the basic theories of viscosity solutions. References [18,20–22,32] extended the notion of viscosity solutions
to Hilbert spaces by using a limiting argument based on the existence of a countable basis. To the best of our
knowledge, the viscosity solution to the second order HJB equation (1.4) has not been previously considered.
The primary difficulty stems from the lack of a local compactness of the set D. Thus, the standard techniques for
the proof of the comparison theorem in references [18,20–22,32], which rely heavily on compactness arguments,
are not applicable in our case.

We continue our previous work [36], in which a parabolic equation was studied. However, the approach of [36]
is not directly applicable in our case, because equation (1.4) is time independent. We know that the classical
definition for the viscosity solution to the elliptic HJB equation is time independent (see [32]); however, to use
the left maximization principle (see Lem. 4.1), we need to introduce a new viscosity solution (see Def. 4.2)
that includes the time t. This definition is entirely different from the definition of the viscosity solution in [36].
Hence, one difficulty in defining the viscosity solution in our case is that we must ensure that the value function
is a viscosity solution to (1.4). Secondly, to do this, we also need to relax the conditions of viscosity solution.
Specifically, we replace the “local maximum point” condition by “global maximum point” condition in the
definition of viscosity solution. This relaxation brings a lot of difficulties in the proof of uniqueness for viscosity
solution. In fact, the superior properties of the functions in the set D are needed in the proof of uniqueness for
viscosity solution. Thanks to Lemma 4.1, which provides the “global maximum point” condition, the uniqueness
of the viscosity solution can be proved under our definition. Thirdly, a dynamic programming principle (DPP)
for infinite-horizon stochastic delay optimal control problems (see Thm. 3.3 for details) is also needed, which
is difficult because the value function is independent of the times t. Finally, the Lemma 5.3 (see also Thm. 8.3
in [8]) and a limiting process are used to obtain the uniqueness result. Because the “global maximum point” in
the set D is not the classic global maximum point, this makes it very difficult to find the limiting process. To
the aforementioned challenges, we use another approximating process to converge to the limiting process.

The plan of this article is as follows. In the next section, some notations are fixed, and stochastic differential
equations with delays are examined. The dynamic programming principle (DPP), which will be used in the
following sections is proved in Section 3. In Section 4, we define the viscosity solution of the HJB equation (1.4)
and show that the value function V defined by (1.3) is a viscosity solution. Section 5 is devoted to proving the
uniqueness of the viscosity solution to (1.4), and in Section 6, we study the deterministic cases.

2. Preliminaries

Here, we define the notations used in this paper. We use the symbol | · | to denote the norm in a Banach space
G. The norm symbol is subscripted when necessary. For the vectors x, y ∈ Rd, the scalar product is denoted by

(x, y)Rd , and the Euclidean norm (x, x)
1
2

Rd
is denoted by |x|. For every T > 0, let C([0, T ], Rd) denote the space

of the continuous functions from [0, T ] to Rd, which is associated with the usual norm |f |C = supθ∈[0,T ] |f(θ)|.
Let τ > 0 be fixed. H denotes the real, separable Hilbert space L2([−τ, 0];Rd) for the scalar product (·, ·)H . Let
D denote a subset of H:

D := {x ∈ H : x is a right-continuous, Rd-valued function on [−τ, 0]}.

Let DB denote a subset of D:

DB := {x ∈ D : x is bounded}.

We define a norm on DB as follows:

|x|DB = sup
θ∈[−τ,0]

|x(θ)|, x ∈ DB .
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Then, (DB , | · |DB ) is a Banach space. For every N > 0, we define DN by

DN :=
{
x ∈ D : |x|H ≤ τ

1
2N, |x(0)| ≤ N

}
.

We define the | · |B-norm on H by

|x|4B :=

∫ 0

−τ
(Bx)4(s)ds,

where

(Bx)(s) =

∫ 0

s

x(θ)dθ, s ∈ [−τ, 0].

The notations DN and | · |B will be used to prove the uniqueness of the viscosity solution in Section 5.
Let 0 ≤ t < +∞, ω, ω̄ ∈ D be given. We can then define ω ⊗t ω̄ ∈ D by

ω ⊗t ω̄ := ω̃,

where

ω̃(θ) =

{
ω̄(θ), (−t) ∨ (−τ) ≤ θ ≤ 0,

ω(t+ θ), −τ ≤ θ < (−t) ∨ (−τ).

For every 0 ≤ T < +∞, we define ω ⊗[0,T ] ω̄ by

ω ⊗[0,T ] ω̄ := {ω ⊗t ω̄|t ∈ [0, T ]}.

Let Ω := {ω ∈ C([0,+∞), Rn) : ω(0) = 0}, the set of continuous paths with initial value 0, W the canonical
process, P the Wiener measure, F∞ the complete σ-field generated by {W (t), t ≥ 0}, {F̂t}t≥0 the filtration
generated by {W (t), t ≥ 0}, {Ft}t≥0 the filtration generated by {W (t), t ≥ 0}, augmented with the family N of
P -null of F∞. The filtration {Ft}t≥0 satisfies the usual conditions. For every [a, b] ⊂ [0,+∞), we also use the
notations:

F̂ba = σ(W (s)−W (a) : s ∈ [a, b]) and Fba = F̂ba ∨N .

Let us consider the following controlled state equations:
dXu(t) = F (Xu(t), (a,Xu

t )H , u(t))dt+ F1(Xu(t− τ))dt

+G(Xu(t), (c,Xu
t )H , u(t))dW (t), t ∈ [0,+∞),

Xu
0 = x ∈ H,Xu(0) = x0 ∈ Rd,

(2.1)

where
Xu
t (θ) = Xu(t+ θ), θ ∈ [−τ, 0], u(·) ∈ U [0,+∞).

Here, for every t ≥ 0, we let U [t,+∞) denote

U [t,+∞) := {u(·) : [t,+∞)→ U |u(·) is an {F̂st }s≥t-left-continuous predictable process with

values in a compact subset U of Rd1};

and

U [0, t] := {u(·) : [0, t]→ U |u(·) is an {F̂s}s≥0-left-continuous predictable process with values in

values in a compact subset U of Rd1}.
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We make the following assumptions:

Hypothesis 2.1.

(i) The mappings F : Rd ×R × U → Rd and F1: Rd → Rd are measurable, and there exists a constant L > 0
such that for every (x1, y1), (x2, y2) ∈ Rd ×R, u, u′ ∈ U ,

|F (x1, y1, u)| ∨ |F1(x1)| ≤ L(1 + |x1|+ |y1|),
|F (x1, y1, u)− F (x2, y2, u

′)| ∨ |F1(x1)− F1(x2)| ≤ L(|x1 − x2|+ |y1 − y2|+ |u− u′|).

(ii) The mapping G: Rd ×R×U → Rd×n is measurable, and there exists a constant L > 0 such that for every
(x1, y1), (x2, y2) ∈ Rd ×R, u, u′ ∈ U ,

|G(x1, y1, u)| ≤ L(1 + |x1|+ |y1|),
|G(x1, y1, u)−G(x2, y2, u

′)| ≤ L(|x1 − x2|+ |y1 − y2|+ |u− u′|).

(iii) a(·), c(·) ∈W 1,2([−τ, 0];Rd) and a(−τ) = c(−τ) = 0.

Remark 2.2. Here W 1,2([−τ, 0];Rd) := {x = (x1, x2, . . . , xd)|xi ∈ W 1,2([−τ, 0];R), i = 1, 2, . . . , d}. To obtain
the properties in Theorem 2.4, we need to assume a(·), c(·) ∈W 1,2([−τ, 0];Rd). Under the assumption a(−τ) =
c(−τ) = 0, through a simple calculation, we obtain (a, x)H ≤ τ

1
4 |a|W 1,2 |x|B and (c, x)H ≤ τ

1
4 |c|W 1,2 |x|B for

every x ∈ H, which will be used in the proof of Theorem 2.4. However, we can choose the function a(·) and c(·)
from a wide class, which allows us to consider various economic phenomena.

We say that Xu is a solution to equation (2.1) if it is a continuous, {Ft}t≥0-predictable process with values

in Rd, and it satisfies: P -a.s.,

Xu(t) = x0 +

∫ t

0

F (Xu(σ), (a,Xu
σ )H , u(σ))dσ +

∫ t

0

F1(Xu(σ − τ))dσ,

+

∫ t

0

G(Xu(σ), (c,Xu
σ )H , u(σ))dW (σ), t ∈ [0,+∞), (2.2)

where Xu
0 = x ∈ H. To emphasize dependence on initial data, we denote the solution by Xu(·, x, x0) or

Xu(·, 0, x, x0).
For every T > 0 and p ≥ 1, let LpP(Ω;C([0, T ];Rd)) denote the space of predictable processes {Y (s), s ∈ [0, T ]}

with continuous paths in Rd, such that the norm

|Y |p = E sup
s∈[0,T ]

|Y (s)|p

is finite. Elements of LpP(Ω;C([0, T ];Rd)) are identified up to indistinguishability.
We first recall a result on the solvability of (2.1) on a bounded interval that is shown in [13,23].

Theorem 2.3. Assume that Hypothesis 2.1 holds. Then, for all T > 0 and p ≥ 1, a unique process X ∈
LpP(Ω,C([0, T ];Rd)) exists that is a solution to (2.1) on [0, T ].

Let g ∈ C(R), x ∈ D be given. We can then define g(x) ∈ D by

g(x)(θ) := g(x(θ)), θ ∈ [−τ, 0].

Let us now study equation (2.1) and consider certain continuities for the solution Xu(·) of equation (2.1). These
properties will be used in the proof of Theorem 3.2.
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Theorem 2.4. Assume that Hypothesis 2.1 holds. If we let Λ = 48[35+2632+1+2832τ2|a|4W 1,2 +4τ2|c|4W 1,2 ]L4+
1
4 , then a unique continuous process X exists that is a solution to (2.1). Moreover,

E|Xu(t, x, x0)|

≤ C1

(
1 + |x0|+ |x|B + |F1(x)|B +

∣∣∣∣ ∫ 0

−τ
F1(x(σ))dσ

∣∣∣∣+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣)eΛt

≤ C2(1 + |x0|+ |x|)eΛt, t ≥ 0, (2.3)

E|Xu(t, x, x0)−Xu(t, y, y0)|

≤ C3

(
|x0 − y0|+ |x− y|B + |F1(x)− F1(y)|B +

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣
+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣)eΛt

≤ C4(|x0 − y0|+ |x− y|H)eΛt, t ≥ 0, (2.4)

and

E|Xu(t, x, x0)−Xu′(t, x, x0)|2 ≤ C4E

∫ t

0

|u(σ)− u′(σ)|2dσ, t ≥ 0, (2.5)

for some constants C1, C2, C3, C4 > 0 depending only on L, τ , a(·) and c(·).

Proof. Existence and uniqueness are satisfied by Theorem 2.3. We only need to prove that (2.3), (2.4) and (2.5)
hold true. For every t ≥ 0, we have that

Ee−t|Xu(t, x, x0)|4

≤ 26e−t|x0|4 + 26L4E

(∫ t

0

e
−t
4 (1 + |Xu(σ, x, x0)|+ τ

1
4 |a|W 1,2 |Xu

σ (x, x0)|B)dσ

)4

+29L4E

(∫ t

0

e
−t
4 (1 + |Xu(σ, x, x0)|)dσ

)4

+ 29e−t
∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣4
+26L4e−tE

(∫ t

0

(1 + |Xu(σ, x, x0)|2 + τ
1
2 |c|2W 1,2 |Xu

σ (x, x0)|2B)dσ

)2

≤ 26|x0|4 + 29

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣4 + 3128(2632|a|4W 1,2 + |c|4W 1,2)τ2L4|x|4B + 26L4(210 + 3 + 2433)

+2631[35L4 + 2632L4 + L4 + 2832τ2L4|a|4W 1,2 + 22τ2L4|c|4W 1,2 ]

(∫ t

0

Ee−σ|Xu(σ, x, x0)|4dσ

)
.

The Gronwall Lemma implies that

Ee−t|Xu(t, x, x0)|4 ≤ 29

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣4 +M0eK0t

+(29 + 212)

(∫ 0

−τ
F1(x(σ))dσ

)4

eK0t + 212K0|F1(x)|4BeK0t,

where

M0 = 26|x0|4 + 3128(2632|a|4W 1,2 + |c|4W 1,2)τ2L4|x|4B + 26L4(210 + 3 + 2433),
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and

K0 = 2631[35 + 2632 + 1 + 2832τ2|a|4W 1,2 + 4τ2|c|4W 1,2 ]L4.

Therefore, there exist some constants C1, C2 > 0 depending only on L, τ , a(·) and c(·) such that (2.3) holds
true.

Moreover, for every t > 0 we have that

Ee−t|Xu(t, x, x0)−Xu(t, y, y0)|4

≤ 26L4E

(∫ t

0

e
−t
4 (|Xu(σ, x, x0)−Xu(σ, y, y0)|+ τ

1
4 |a|W 1,2 |Xu

σ (x, , x0)−Xu
σ (y, y0)|B)dσ

)4

+29L4E

(∫ t

0

e
−t
4 |Xu(σ, x, x0)−Xu(σ, y, y0)|dσ

)4

+ 29e−t
∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣4
+26L4e−tE

(∫ t

0

(|Xu(σ, x, x0)−Xu(σ, y, y0)|2 + τ
1
2 |c|2W 1,2 |Xu

σ (x, x0)−Xu
σ (y, y0)|2B)dσ

)2

+26e−t|x0 − y0|4

≤ 26|x0 − y0|4 + 29

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣4 + 29(28|a|4W 1,2 + |c|4W 1,2)τ2L4|x− y|4B

+27[2233 + 2233 + 1 + 210τ2|a|4W 1,2 + 22τ2|c|4W 1,2 ]L4

×
(∫ t

0

Ee−σ|Xu(σ, x, x0)−Xu(σ, y, y0)|4dσ

)
.

The Gronwall Lemma implies that

Ee−t|Xu(t, x, x0)−Xu(t, y, y0)|4

≤ 29

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣4 +M1eK1t

+(29 + 212)

(∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

)4

eK1t + 212K1|F1(x)− F1(y)|4BeK1t,

where

M1 = 26|x0 − y0|4 + 29(28|a|4W 1,2 + |c|4W 1,2)τ2L4|x− y|4B ,

and

K1 = 27[2233 + 2233 + 1 + 210τ2|a|4W 1,2 + 22τ2|c|4W 1,2 ]L4.

Therefore, there exist some constants C3, C4 > 0 depending only on L, τ , a(·) and c(·) such that (2.4) holds
true. By the similar (even simpler) process, we can show that (2.5) holds true.

The proof is now complete. �

Remark 2.5. We note that the solution Xu(·) to equation (2.1) is continuous with respect to t ∈ [0,+∞)
even if the initial value (x, x0) belongs to the space H ×Rd.

3. A DPP for optimal control problems

In this section, we consider the controlled state equation

Xu(t) = x0 +

∫ t

0

F (Xu(σ), (a,Xu
σ )H , u(σ))dσ +

∫ t

0

F1(Xu(σ − τ))dσ,

+

∫ t

0

G(Xu(σ), (c,Xu
σ )H , u(σ))dW (σ), t ∈ [0,+∞), (3.1)
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where Xu
0 = x ∈ H, Xu(0) = x0 ∈ Rd, and we consider a cost function of the form

J(x, x0, u) = E

∫ +∞

0

e−λσq(Xu(σ, x, x0), u(σ))dσ. (3.2)

Our aim is to minimize the function J over all controls u ∈ U [0,+∞). We define the function V : H ×Rd → R
by

V (x, x0) := inf
u∈U [0,+∞)

J(x, x0, u). (3.3)

The function V is called the value function of the optimal control problems (3.1) and (3.2). The goal of this
paper is to characterize this value function V when x ∈ D and x(0) = x0.

We make the following assumptions:

Hypothesis 3.1. The mapping of q : Rd × U → R is measurable, and there exists a constant L > 0, such that
for every x, y ∈ Rd, u, u′ ∈ U ,

|q(x, u)| ≤ L(1 + |x|), |q(x, u)− q(y, u′)| ≤ L(|x− y|+ |u− u′|).

Our first result includes the local boundedness and the continuity of the value function.

Theorem 3.2. Suppose that Hypotheses 2.1 and 3.1 hold. Then, there exists a constant C5 > 0 such that for
every x, y ∈ H, x0, y0 ∈ Rd and λ > Λ,

|V (x, x0)| ≤ C5(1 + |x0|+ |x|H), (3.4)

and

|V (x, x0)− V (y, y0)| ≤ C5

(
|x0 − y0|+ |x− y|B + |F1(x)− F1(y)|B +

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣). (3.5)

Proof. From the definition of J and from Hypothesis 3.1, we know that

|J(x, x0, u)− J(y, y0, u)| ≤
∫ +∞

0

e−λσE|q(Xu(σ, x, x0), u(σ))− q(Xu(σ, y, y0), u(σ))|dσ

≤ L

∫ +∞

0

e−λσE|Xu(σ, x, x0)−Xu(σ, y, y0)|dσ.

According to Theorem 2.4, we obtain that for a constant C5 > 0,

|V (x, x0)− V (y, y0)| ≤ sup
u∈U [0,+∞)

|J(x, x0, u)− J(y, y0, u)|

≤ C5

(
|x0 − y0|+ |x− y|B + |F1(x)− F1(y)|B +

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣).
By a similar procedure, we can show that (3.4) holds true, which completes the proof. �

Second, we present the following result, which is called the dynamic programming principle (DPP) for the
optimal control problems (3.1) and (3.2).

Theorem 3.3. Assume that Hypotheses 2.1 and 3.1 hold true. Then, for every (x, x0) ∈ H × Rd, t ∈ [0,+∞)
and λ > Λ, we know that

V (x, x0) = inf
u∈U [0,+∞)

[ ∫ t

0

e−λσEq(Xu(σ, x, x0), u(σ))dσ + e−λtEV (Xu
t (x, x0), Xu(t, x, x0))

]
. (3.6)
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To prove the above theorem, we need the following Lemmas 3.5, 3.6 and 3.7. To this end, we need to consider
a controlled state equation on an arbitrary interval [t,+∞) ⊂ [0,∞):

Xu(s) = x0 +

∫ s

t

F (Xu(σ), (a,Xu
σ )H , u(σ))dσ +

∫ s

t

F1(Xu(σ − τ))dσ,

+

∫ s

t

G(Xu(σ), (c,Xu
σ )H , u(σ))dW (σ), s ∈ [t,+∞), (3.7)

where Xu
t = x ∈ H, Xu(t) = x0 ∈ Rd, and we denote by Xu(·, t, x, x0, u), the solution. Moreover, we consider

a cost function of the form

J(t, x, x0, u) = E

[ ∫ +∞

t

e−λσq(Xu(σ, t, x, x0), u(σ))dσ

∣∣∣∣Ft], u ∈ U [0,+∞). (3.8)

We define the value function V : [0,+∞)×H ×Rd → R by

V (t, x, x0) := inf
u∈U [t,+∞)

J(t, x, x0, u). (3.9)

We start from the definition of the cylindrical σ-field BI .

Definition 3.4. For an interval I ⊆ R, let RI denote the set of all functions x : I → R. A finite dimensional
rectangle in RI is any set of the form {x : x(ti) ∈ Ji, i = 1, 2, . . . , n} for a non-negative n, intervals Ji ⊆ R
and times ti ∈ I, i = 1, 2, . . . , n. The cylindrical σ-field BI is the σ-field generated by the collection of finite
dimensional rectangles.

With the help of the above definition, we can state the following lemma, which is the key to prove Theorem 3.3.

Lemma 3.5. Assume that Hypotheses 2.1 and 3.1 hold true. Then, for every (x, x0) ∈ H × Rd, t ∈ [0,+∞)
and λ > Λ, we know that

V (x, x0) = eλtV (t, x, x0), t ∈ [0,+∞). (3.10)

Proof. We note that F̂s = σ(W[0,s]). In fact, by Corollary 12.9 in [4], we obtain that σ(W[0,s]) ⊆ F̂s. On the
other hand, for every l ∈ [0, s] and Q ∈ B, we have that {ω : W (l) ∈ Q} = {ω : W[0,s] ∈ D} ∈ σ(W[0,s]), where

D = {x(·) ∈ R[0,s] : x(l) ∈ Q}. Then we obtain that F̂s ⊆ σ(W[0,s]). Therefore, we can consider W[0,s] as a

measurable mapping from (Ω, F̂s) to (R[0,s],B[0,s]).
For every u ∈ U [0,+∞) and s ≥ 0, by the Theorem 2.1.11 in [33], there exists a measurable function φs from

(R[0,s],B[0,s]) to (U,B(U)) such that
u(s) = φs(W[0,s]).

We define u′ by

u′(t+ s, ω) = φs(V[0,s](ω)), s ≥ 0, (3.11)

where V (l) = W (t+ l)−W (t), l ∈ [0, s]. Then, u′(t+ ·) and u(·) have the same distribution.
Now let us show that u′(·) ∈ U [t,+∞). By the definition of u′, it is clear that u′(s) is F̂st -measurable for

every s ≥ t. So we only need to prove that u′(t+ ·) is left-continuous. In fact, for every ω ∈ Ω, there exists an
ω1 ∈ Ω such that V (s, ω) = W (s, ω1) for all s ≥ 0. Then,

u′(t+ s, ω) = φs(V[0,s](ω)) = φs(W[0,s](ω1)) = u(s, ω1).

Because u is left-continuous, we obtain that u′(t+ ·) is also left-continuous.
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Since the coefficients of (3.7) do not depend on time, by (3.11) we have

Xu(·, 0, x, x0)
.
= Xu′(t+ ·, t, x, x0), t ≥ 0,

where
.
= denotes equality in distribution. Therefore,

J(t, x, x0, u
′) = E

∫ +∞

t

e−λσq(Xu′(σ, t, x, x0), u′(σ))dσ

= e−λtE

∫ +∞

0

e−λσq(Xu′(t+ σ, t, x, x0), u′(t+ σ))dσ = e−λtJ(x, x0, u).

As a consequence, we obtain that
V (x, x0) ≥ eλtV (t, x, x0).

By the similar procedure, we can show that

V (x, x0) ≤ eλtV (t, x, x0).

This concludes the proof of the Lemma. �

Lemma 3.6. Assume that Hypotheses 2.1 and 3.1 hold true. Then, for every u ∈ U [0,+∞) and λ > Λ, we
know that

J(t, x, x0, u) ≥ e−λtV (x, x0), (t, x, x0) ∈ [0,+∞)×H ×Rd. (3.12)

Proof. For every u, u′ ∈ U [0,+∞), we know that

E|J(t, x, x0, u)− J(t, x, x0, u
′)| ≤

∫ +∞

t

e−λσE|q(Xu(σ, t, x, x0), u(σ))− q(Xu′(σ, t, x, x0), u′(σ))|dσ

≤ L

∫ +∞

t

e−λσE|Xu(σ, t, x, x0)−Xu′(σ, t, x, x0)|dσ.

According to Theorem 2.4, we know that for a constant C > 0,

E|J(t, x, x0, u)− J(t, x, x0, u
′)| ≤ C

(∫ +∞

t

Ee−2λσ|u(σ)− u′(σ)|2dσ

) 1
2

. (3.13)

On the other hand, for every u ∈ U [0,+∞), there exists

un(s) =

n∑
i=1

1Ani u
n,j(s), s > t,

where {Ani }1≤i≤n is a partition of (Ω, F̂t), un,j is an {F̂st }s≥t-left-continuous predictable process, such that, for
all s > t,

un(s)→ u(s) as n→ +∞.
Then by the uniqueness of solution for state equation (3.1), we obtain that

J(t, x, x0, u
n) =

n∑
i=1

1Ani J(t, x, x0, u
n,i).

By the definitions of J and V we know J(t, x, x0, u
n,i) ∈ R and J(t, x, x0, u

n,i) ≥ V (t, x, x0). Then

J(t, x, x0, u
n) ≥ V (t, x, x0).

Letting n→ +∞, by (3.10) and (3.13), we obtain (3.12). �

In order to prove the Theorem 3.3, the following lemma is also needed.



STOCHASTIC DELAY OPTIMAL CONTROL AND A VISCOSITY SOLUTION TO HJB EQUATION 649

Lemma 3.7. Assume that Hypotheses 2.1 and 3.1 hold true. Then, for every (x, x0) ∈ H × Rd, t ∈ [0,+∞)
and λ > Λ, we know that

J(t,Xu
t (0, x, x0), Xu(t, 0, x, x0), u) = E

[ ∫ +∞

t

e−λσq(Xu(σ, 0, x, x0), u(σ))dσ

∣∣∣∣Ft], u ∈ U [0,+∞).

Proof. By the definition of J , we obtain that

J(t, x, x0, u(·)) = E

[ ∫ +∞

t

e−λσq(Xu(σ, t, x, x0), u)dσ

∣∣∣∣Ft] := E[η(t, x, x0, u)|Ft].

By Lemma 1.1 in [31] there exists a sequence of H ×Rd-valued Ft-measurable simple functions

fm : Ω → H ×Rd, fm =

Nm∑
k=1

h
(m)
k I{fm=h

(m)
k }, Nm ∈ N,

where h
(m)
1 , . . . , h

(m)
m are pairwise distinct and Ω =

⋃Nm
k=1{fm = h

(m)
k }, such that

|fm(ω)− (Xu
t (0, x, x0), Xu(t, 0, x, x0))(ω)| ↓ 0 for all ω ∈ Ω as n→∞.

Then we obtain that, for any B ∈ Ft,

E[IBJ(t,Xu
t (0, x, x0), Xu(t, 0, x, x0), u)]

= lim
m→∞

Nm∑
k=1

E

(
IBI{fm=h

(m)
k }J(t, h

(m)
k , u)

)
= lim
m→∞

Nm∑
k=1

E

(
IBI{fm=h

(m)
k }E[η(t, h

(m)
k , u)|Ft]

)

= lim
m→∞

E

( Nm∑
k=1

[
IBI{fm=h

(m)
k }η(t, h

(m)
k , u)

])
= lim
m→∞

E(IBη(t, y, u)|y=fm)

= E(IBη(t, y, u)|y=(Xut (0,x,x0),Xu(t,0,x,x0))) = E[IBη(t,Xu
t (0, x, x0), Xu(t, 0, x, x0), u)].

Using the identities Xu(σ, t,Xu
t (0, x, x0), Xu(t, 0, x, x0), u) = Xu(σ, 0, x, x0, u) and

Xu
σ (t,Xu

t (0, x, x0), Xu(t, 0, x, x0), u) = Xu
σ (0, x, x0, u), we obtain

J(t,Xu
t (0, x, x0), Xu(t, 0, x, x0), u) = E[η(t,Xu

t (0, x, x0), Xu(t, 0, x, x0), u)|Ft]

= E

[ ∫ +∞

t

e−λσq(Xu(σ, 0, x, x0), u(σ))dσ

∣∣∣∣Ft].
The proof is now complete. �

Proof of Theorem 3.3. For any u ∈ U [0,+∞), t ≥ 0 and ε > 0, by Theorem 3.2 and its proof, there is a constant
δ > 0 such that whenever |x− y|H + |x0 − y0| ≤ δ,

|J(t, x, x0, u
′)− J(t, y, y0, u

′)|+ |V (t, x, x0)− V (t, y, y0)| ≤ ε, ∀ u′ ∈ U [t,+∞).

Let {Di}i≥1 be a Borel partition of H × Rd, with diameter diam(Di) < δ. Choose (xi, xi0) ∈ Di, then for each
i, there is ui ∈ U [t,+∞) such that

J(t, xi, xi0, ui(·)) ≤ V (t, xi, xi0) + ε.

Therefore, for any (x, x0) ∈ Di, we have that

J(t, x, x0, ui) ≤ J(t, xi, xi0, ui) + ε ≤ V (t, xi, xi0) + 2ε ≤ V (t, x, x0) + 3ε. (3.14)
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Now let us define a new control

ũ(σ) =

{
u(σ), σ ∈ [0, t],

ui(σ), σ ∈ (t,+∞), (Xu
t (x, x0), Xu(t, x, x0)) ∈ Di.

By Lemma 3.7, we obtain

J(t,Xu
t (0, x, x0), Xu(t, 0, x, x0), ũ) = E

[ ∫ +∞

t

e−λσq(X ũ(σ, 0, x, x0), ũ(σ))dσ

∣∣∣∣Ft].
From the definition of V and (3.14), it follows that

V (x, x0) ≤ J(x, x0, ũ) = E

∫ t

0

e−λσq(X ũ(σ, 0, x, x0), ũ(σ))dσ + E

∫ +∞

t

e−λσq(X ũ(σ, 0, x, x0), ũ(σ))dσ

= E

∫ t

0

e−λσq(X ũ(σ, 0, x, x0), ũ(σ))dσ + EJ(t,Xu
t (0, x, x0), Xu(t, 0, x, x0), ũ)

≤ E

∫ t

0

e−λσq(X ũ(σ, 0, x, x0), ũ(σ))dσ + EV (t,Xu
t (0, x, x0), Xu(t, 0, x, x0)) + 3ε

= E

∫ t

0

e−λσq(Xu(σ, 0, x, x0), u(σ))dσ + e−λtEV (Xu
t (0, x, x0), Xu(t, 0, x, x0)) + 3ε.

Thus,

V (x, x0) ≤ inf
u∈U [0,+∞)

[ ∫ t

0

e−λσEq(Xu(σ, 0, x, x0), u(σ))dσ + e−λtEV (Xu
t (0, x, x0), Xu(t, 0, x, x0))

]
.

On the other hand, for any ε > 0, there exists a uε ∈ U [0,+∞) such that

V (x, x0) + ε ≥
∫ t

0

e−λσEq(Xuε(σ, 0, x, x0), uε(σ))dσ +

∫ +∞

t

e−λσEq(Xuε(σ, 0, x, x0), uε(σ))dσ

=

∫ t

0

e−λσEq(Xuε(σ, 0, x, x0), uε(σ))dσ + EJ(t,Xuε

t (0, x, x0), Xuε(t, 0, x, x0), uε).

Then by Lemma 3.6, we have that

V (x, x0) + ε ≥
∫ t

0

e−λσEq(Xuε(σ, 0, x, x0), uε(σ))dσ + e−λtEV (Xuε

t (0, x, x0), Xuε(t, 0, x, x0))

≥ inf
u∈U [0,+∞)

[ ∫ t

0

e−λσEq(Xu(σ, 0, x, x0), u(σ))dσ + e−λtEV (Xu
t (0, x, x0), Xu(t, 0, x, x0))

]
.

Hence, (3.6) follows. �

Our next goal is to derive the Hamilton−Jacobi−Bellman equation for the value function V . To begin, let us
introduce the weak infinitesimal generator S. For a Borel measurable function f : H ×Rd → R, we define

S(f)(x) = lim
h→0+

1

h
[f(x̂h, x̂h(0))− f(x, x(0))], x ∈ D,

where x̂ : [−τ, T ]→ Rd is an extension of x defined by

x̂(s) =

{
x(s), s ∈ [−τ, 0),

x(0), s ≥ 0,
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in addition, for every t ≥ 0, x̂t ∈ D is defined as

x̂t(θ) = x̂(t+ θ), θ ∈ [−τ, 0].

For every measurable function f : H ×Rd → R, we denote D(S(f)) as the domain of the function S(f) for the
set x ∈ D such that the above limit exists for this set.

We denote by C2
lip(H ×Rd) the space of functions Φ : H ×Rd → R such that ∇2

xΦ : (H ×Rd)→ (H ×Rd)×
(H ×Rd) are continuous and satisfy, for a suitable constant K > 0,

|∇2
xΦ(t, x)−∇2

xΦ(t, y)|(H×Rd)×(H×Rd) ≤ K|x− y|H×Rd , t ∈ [0, T ], x, y ∈ H ×Rd.

We also denote by C1,2
lip ([0,+∞) × (H × Rd)) the space of functions Φ : [0,+∞) × (H × Rd) → R such that

Φt : [0,+∞)× (H×Rd)→ R and ∇2
xΦ : [0,+∞)× (H×Rd)→ (H×Rd)× (H×Rd) are continuous and satisfy,

for a suitable constant K > 0,

|∇2
xΦ(t, x)−∇2

xΦ(t, y)|(H×Rd)×(H×Rd) ≤ K|x− y|H×Rd , t ∈ [0,+∞), x, y ∈ H ×Rd.

Here, and throughout this article, ∇xΦ and ∇2
xΦ are first and second Fréchet derivatives of Φ.

Theorem 3.8. Let V denote the value function defined by (3.3). If V ∈ C2
lip(H×Rd), then V satisfies the HJB

equation

−λV (x) + S(V )(x) + H(x,∇x0
V (x),∇2

x0
V (x)) = 0, x ∈ D(S(V )), (3.15)

where

H(x, p, l) = inf
u∈U

[(p, F (x, u) + F1(x(−τ)))Rd +
1

2
tr[lG(x, u)G>(x, u)]

+q(x(0), u)], (x, p, l) ∈ D ×Rd × Γ (Rd),

Γ (Rd) denotes the set of all (d × d) symmetric matrices, and ∇x0V and ∇2
x0
V are first and second Fréchet

derivatives of V with respect to the second variable. Here, and throughout this article, for simplicity, we let
V (x), F (x, u) and G(x, u) denote V (x, x(0)), F (x(0), (a, x)H , u) and G(x(0), (c, x)H , u), respectively, if x ∈ D.

To prove the above theorem, we need the following lemma.

Lemma 3.9. Suppose that Hypothesis 2.1 holds. If g ∈ C1,2
lip ([0,+∞) × (H × Rd)), then for each (t, x) ∈

[0,+∞)×D(S(g(t, ·))), the following convergence holds uniformly on u(·) ∈ U [0,+∞):

lim
ε→0+

[
Eg(t+ ε,Xu

ε )− g(t, x)

ε
− 1

ε

∫ t+ε

t

E(∇x0g(t, x), F (x, u(σ)) + F1(x(−τ)))Rddσ

− 1

2ε

∫ ε

0

Etr[∇2
x0
g(t, x)G(x, u(σ))G>(x, u(σ))]dσ − gt(t, x)− S(g(t, ·))(x)

]
= 0. (3.16)

Here, and throughout this article, for simplicity, if function g : [0,+∞)× (H × Rd)→ R is measurable, we let
g(t, x) denote g(t, x, x(0)) when t ∈ [0,+∞) and x ∈ D.

Proof. The proof is very similar to Theorem 5.1.3 in [35]. Here, we omit it. �

The following three lemmas hold are about the properties of the weak infinitesimal generator S, which will
be used in the proof of uniqueness for the viscosity solution.
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Lemma 3.10 (See Lem. 3.6 in [36]).

If g(x) = g0(|x|2H), x ∈ D, where g0 ∈ C1(R), then

S(g)(x) = g′0(|x|2H)(x2(0)− x2(−τ)). (3.17)

Lemma 3.11 (See Lem. 3.7 in [36]). If ψ(x) = ψ0(|g(x) − â|4B), â, x ∈ D, where ψ0 ∈ C1(R) and g ∈ C(R),
then

S(ψ)(x) = 4ψ′0(|(g(x)− â)|4B)(|B(g(x)− â)|2HB(g(x)− â), g(x(0))1[−τ,0] − g(x))H . (3.18)

Here, the function 1[−τ,0] is the characteristic function of [−τ, 0].

Lemma 3.12. If ψ(x) = ψ0(
∫ 0

−τ x(θ)dθ − â), â ∈ R, x ∈ D, where ψ0 ∈ C1(R) and g ∈ C(R), then

S(ψ)(g(x)) = ψ′0

(∫ 0

−τ
g(x(θ))dθ − â

)
(g(x(0))− g(x(−τ))). (3.19)

Proof. By the definition of ψ, we have that, for some l ∈ (0, 1),

1

ε
(ψ(g(x̂ε))− ψ(g(x))) =

1

ε
[ψ′(g(x) + l(g(x̂ε)− g(x)))(g(x̂ε)− g(x))]

=
1

ε
ψ′0

(∫ 0

−τ
g(x(θ)) + l(g(x̂ε(θ))− g(x(θ)))dθ − â

)∫ 0

−τ
g(x̂ε(θ))− g(x(θ))dθ. (3.20)

On the other hand, we have that

1

ε

∫ 0

−τ
g(x̂ε(θ))− g(x(θ))dθ =

1

ε

∫ 0

−τ+ε

g(x(θ))dθ + g(x(0))− 1

ε

∫ 0

−τ
g(x(θ))dθ

→ g(x(0))− g(x(−τ)) as ε→ 0,

Then, letting ε→ 0 in (3.20), we get (3.19). �

We conclude this section with the proof for the Theorem 3.8.

Proof of Theorem 3.8. We fix u ∈ U , and then, for every x ∈ D(S(V )), it follows from (3.6) that

0 ≤
∫ s

0

e−λσEq(Xu(σ, x), u)dσ + e−λsEV (Xu
s (x))− V (x).

According to Lemma 3.9, the above inequality implies that

0 ≤ lim
s→0+

1

s

[ ∫ s

0

e−λσEq(Xu(σ, x), u)dσ + e−λsEV (Xu
s (x))− V (x)

]
= −λV (x) + S(V )(x) + (∇x0

V (x), F (x, u) + F1(x(−τ)))Rd

+
1

2
tr[∇2

x0
V (x)G(x, u)G>(x, u)] + q(x(0), u).

Thus, we know that

0 ≤ −λV (x) + S(V )(x) + H(x,∇x0V (x),∇2
x0
V (x)). (3.21)
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On the other hand, let x ∈ D(S(V )) be fixed. For any ε > 0 and s > 0, according to (3.6), there exists a
ũ ≡ uε,s ∈ U [0,+∞) such that

εs ≥
∫ s

0

e−λσEq(X ũ(σ, x), ũ(σ))dσ + e−λsEV (X ũ
s (x))− V (x)

= −λV (x)s+ S(V )(x)s+

(
∇x0

V (x),

∫ s

0

E[F (x, ũ(σ)) + F1(x(−τ))]dσ

)
Rd

+

∫ s

0

Eq(x(0), ũ(σ))dσ +

∫ s

0

1

2
tr[∇2

x0
V (x)G(x, ũ(σ))G>(x, ũ(σ))]dσ + o(|s|)

≥ −λV (x)s+ S(V )(x)s+ H(x,∇x0
V (x),∇2

x0
V (x))s+ o(|s|).

Then, dividing through by s and letting s→ 0, we obtain

ε ≥ −λV (x) + S(V )(x) + H(x,∇x0V (x),∇2
x0
V (x)).

Combining this equation with (3.21), we obtain the desired result. �

4. Viscosity solution to the HJB equation: existence theorem

In this section, we introduce a new concept for a time-dependent viscosity solution. In our previous work [36],
a new concept for the viscosity solution to the first order HJB equation was introduced. Its uniqueness was
proven by Lemma 4.1 in [36]. However, it is not applicable in our case. We need the superior properties of the
function in the set D. Before giving the definition of the viscosity solution, let us introduce the following key
lemma for the proof of the uniqueness of the viscosity solution.

Lemma 4.1 (Left-maximization principle). Let v : [0,+∞)× (H ×Rd)× (H ×Rd)→ R be continuous and let
there be an integer k > 0 such that for every t ∈ [0,+∞), x, x1, x2, y, y1, y2 ∈ Rd ×H,

|v(t, x, y)| ≤ L(1 + |x|+ |y|)k,

|v(t, x1, y1)− v(t, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|)k. (4.1)

Finally, let limt→+∞v(t, x, y) ≤ A for a constant A uniformly on x, y ∈ DN . For simplicity, we denote
v(t, x, x(0), y, y(0)) by v(t, x, y) when x, y ∈ D. Then, for each (t̃, x̃, ỹ) ∈ [0,+∞) × DN × DN and M > 0, if
v(t̃, x̃, ỹ) > A, there exist (t̄, x̄, ȳ) ∈ [0,+∞)×DN×DN and k̄, l̄ ∈ [0,M(t̄− t̃)], such that (x̄, ȳ) = (x̃⊗k̄ x̄, ỹ⊗l̄ ȳ),
v(t̄, x̄, ȳ) ≥ v(t̃, x̃, ỹ) and

v(t̄, x̄, ȳ) = sup
(t,x,y)∈[t̄,∞)×DN×DN

v(t, x̄⊗[0,M(t−t̄)] x, ȳ ⊗[0,M(t−t̄)] y). (4.2)

Here, and throughout this article, for simplicity, we let sup(t,x,y)∈[t̄,∞)×DN×DN v(t, x̄⊗[0,M(t−t̄)]x, ȳ⊗[0,M(t−t̄)] y)
denote

sup
t∈[t̄,+∞)

sup
(l,r,x,y)∈[0,M(t−t̄)]×[0,M(t−t̄)]×DN×DN

v(t, x̄⊗l x, ȳ ⊗r y).

Proof. Without loss of generality, we can assume that v(t̃, x̃, ỹ) ≥ v(t̃, x̃+e10, ỹ+f10) for all e, f ∈ Rd satisfying
|e + x̃(0)| ∨ |f + ỹ(0)| ≤ N . Because v(t̃, x̃, ỹ) > A and limt→+∞v(t, x, y) ≤ A uniformly on x, y ∈ DN , there
exists a constant T > 0 such that

v(t, x, y) < v(t̃, x̃, ỹ), t ≥ T, x, y ∈ DN . (4.3)
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We set m0 = v(t̃, x̃, ỹ) and

m̄0 := sup
(t,x,y)∈[t̃,T ]×DN×DN

v(t, x̃⊗[0,M(t−t̃)] x, ỹ ⊗[0,M(t−t̃)] y) ≥ m0.

If m̄0 = m0, we let (t̄, x̄, ȳ) = (t̃, x̃, ỹ) and finish the procedure. Otherwise, there exist (t1, x1, y1) ∈ (t̃, T ]×DN ×
DN and s1, l1 ∈ [0,M(t1 − t̃)] such that x1 = x̃⊗s1 x1, y1 = ỹ ⊗l1 y1 and

m1 := v(t1, x1, y1) ≥ m0 + m̄0

2
·

We set
m̄1 := sup

(t,x,y)∈[t1,T ]×DN×DN
v(t, x1 ⊗[0,M(t−t1)] x, y1 ⊗[0,M(t−t1)] y) ≥ m1.

If m̄1 = m1, then we let (t̄, x̄, ȳ) = (t1, x1, y1) and finish the procedure. Otherwise, for i = 2, 3, . . ., we can find,
(ti, xi, yi) ∈ (ti−1, T ]×DN ×DN and si, li ∈ [0,M(ti− ti−1)] such that the following hold: xi = xi−1⊗si xi and
yi = yi−1 ⊗li yi; v(ti, xi, yi) ≥ v(ti, xi + e10, yi + f10) for all e, f satisfying |e+ xi(0)| ∨ |f + yi(0)| ≤ N ;

mi := v(ti, xi, yi) ≥
mi−1 + m̄i−1

2
;

and
m̄i := sup

(t,x,y)∈[ti,T ]×DN×DN
v(t, xi ⊗[0,M(t−ti)] x, yi ⊗[0,M(t−ti)] y) ≥ mi.

The procedure continues till the first time m̄i = mi. The proof is completed by setting (t̄, x̄, ȳ) = (ti, xi, yi).
For the last case, in which m̄i > mi for all i = 1, 2, . . ., we know ti ↑ t̄ ∈ [0, T ], we can then find x̄, ȳ ∈ D
such that x̄ = xi ⊗∑∞

j=i+1 sj
x̄, ȳ = yi ⊗∑∞

j=i+1 lj
ȳ. We can choose |x̄(0)| ∨ |ȳ(0)| ≤ N such that v(t̄, x̄, ȳ) ≥

v(t̄, x̄+ e10, ȳ + f10), for all e, f such that |e+ x̄(0)| ∨ |f + ȳ(0)| ≤ N .
Now let us show that x̄, ȳ ∈ DN . Because |x̄(0)| ≤ N , we only need to prove |x̄|H ≤ τ

1
2N . According to the

definition of x̄, if t̄− t̃ ≤ τ , we obtain

|x̄|2H =

∫ 0

−τ
|x̄(θ)|2dθ =

∫ 0

t̄−t̃−τ
|x̃(θ|2dθ +

+∞∑
i=1

∫ 0

−si
|xi(θ)|2dθ

=

∫ 0

t̄−t̃−τ
|x̃(θ|2dθ + lim

m→+∞

m∑
i=1

∫ 0

−si
|xi(θ)|2dθ

≤ limm→+∞|xm|2H ≤ τ
1
2N. (4.4)

If t̄− t̃ > τ , there exists an integer j such that

|x̄|2H =

∫ 0

−τ
|x̄(θ)|2dθ =

∫ 0

t̄−tj−τ
|xj(θ|2dθ +

+∞∑
i=j+1

∫ 0

−si
|xi(θ)|2dθ

=

∫ 0

t̄−tj−τ
|xj(θ|2dθ + lim

m→+∞

m∑
i=j+1

∫ 0

−si
|xi(θ)|2dθ

≤ limm→+∞|xm|2H ≤ τ
1
2N. (4.5)

By (4.4) and (4.5), we obtain x̄ ∈ DN . By the similar way, we can prove ȳ ∈ DN .
On the other hand, according to

m̄i+1 −mi+1 ≤ m̄i −
m̄i +mi

2
=
m̄i −mi

2
,



STOCHASTIC DELAY OPTIMAL CONTROL AND A VISCOSITY SOLUTION TO HJB EQUATION 655

there exists m̄ ∈ (m0, m̄0), such that m̄i ↓ m̄ and mi ↑ m̄. From the definitions of x̄ and ȳ, we obtain xi(s)→ x̄(s)
and yi(s) → ȳ(s) for almost all s ∈ [−τ, 0]. There exist two subsequences of xi(0) and yi(0) still denoted by
themselves such that xi(0)→ ā, yi(0)→ b̄ and |ā| ∨ |b̄| ≤ N , respectively. Thus, according to (4.1), we obtain

m̄ = lim
i→∞

mi = lim
i→∞

v(ti, xi, yi) ≤ v(t̄, x̄, ȳ).

Now let us show that v(ti, xi, yi)→ v(t̄, x̄′, ȳ′), where

x̄′(θ) =


x̄(θ), θ ∈ [−τ, 0),

ā, θ = 0; ȳ′(θ) =

{
ȳ(θ), θ ∈ [−τ, 0),

b̄, θ = 0.

Because if t̄− t̃ ≤ τ ,

|xi|2 =

∫ 0

ti−t̃−τ
|x̃(θ|2dθ +

i∑
k=1

∫ 0

−sk
|xk(θ)|2dθ

→
∫ 0

t̄−t̃−τ
|x̃(θ|2dθ +

+∞∑
k=1

∫ 0

−sk
|xk(θ)|2dθ = |x̄′|2 as i→∞,

and if t̄− t̃ > τ , for sufficiently large i, there exists an integer j such that

|xi|2 =

∫ 0

ti−tj−τ
|x̃(θ|2dθ +

i∑
k=j+1

∫ 0

−sk
|xk(θ)|2dθ

→
∫ 0

t̄−tj−τ
|x̃(θ|2dθ +

+∞∑
k=j+1

∫ 0

−sk
|xk(θ)|2dθ = |x̄′|2 as i→∞.

By the similar way, we can prove |yi|2 → |ȳ′|2 as i→∞. Then by the dominated convergence theorem, according
to (4.1), we obtain

lim
i→∞

|v(ti, xi, yi)− v(t̄, x̄′, ȳ′)| ≤ lim
i→∞

[|v(ti, xi, yi)− v(ti, x̄
′, x̄′)|+ |v(ti, x̄

′, ȳ′)− v(t̄, x̄′, ȳ′)|]

≤ lim
i→∞

L(|xi − x̄′|H + |xi(0)− ā|+ |yi − ȳ′|H + |yi(0)− b̄|) = 0.

Thus

m̄ = lim
i→∞

mi = lim
i→∞

v(ti, xi, yi) = v(t̄, x̄′, ȳ′) ≤ v(t̄, x̄, ȳ).

We claim that (4.2) holds for this (t̄, x̄, ȳ). Otherwise, according to (4.3), there exist (t, x, y) ∈ (t̄, T ]×DN×DN ,
δ > 0 and s, l ∈ [0,M(t− t̄)] with x = x̄⊗s x and y = ȳ ⊗l y, such that

v(t, x̄⊗s x, ȳ ⊗l y) ≥ v(t̄, x̄, ȳ) + δ ≥ m̄+ δ,

and the following contradiction occurs:

v(t, x̄⊗s x, ȳ ⊗l y) = v(t, xi ⊗s+∑∞
j=i+1 si

(x̄⊗s x), yi ⊗l+∑∞
j=i+1 li

(ȳ ⊗l y)) ≤ m̄i → m̄.

The proof is now finished. �

From the above lemma, we can now give the following definition for the viscosity solution.
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Definition 4.2. w ∈ C(H × Rd) is called a viscosity subsolution (supersolution) of (3.15) if for every ϕ ∈
C1,2
lip ([0,+∞) × (H × Rd)), whenever the constants γ, λ̃, λ > 0 and the function wγ − ϕ (resp. wγ + ϕ) satisfy

λ̃ < λ, λ− λ̃ = γ, and
(wγ − ϕ)(s, z) = sup

(t,x)∈[s,+∞)×D
(wγ − ϕ)(t, z ⊗[0,(t−s)] x),

(respectively, (wγ + ϕ)(s, z) = inf
(t,x)∈[s,+∞)×D

(wγ + ϕ)(t, z ⊗[0,(t−s)] x), )

where wγ(s, z) = e−γsw(z), (s, z) ∈ [0,+∞)×D and z ∈ D(S(ϕ(s, ·))), we have

−λ̃w(z) + eγsϕs(s, z) + eγsS(ϕ(s, ·))(z) + H(z, eγs∇x0ϕ(s, z), eγs∇2
x0
ϕ(s, z)) ≥ 0,

(respectively,−λ̃w(z)− eγsϕs(s, z)− eγsS(ϕ(s, ·))(z) + H(z,−eγs∇x0
ϕ(s, z),−eγs∇2

x0
ϕ(s, z)) ≤ 0).

w ∈ C(H × Rd) is said to be a viscosity solution to (3.15) if it is both a viscosity subsolution and a viscosity
supersolution.

Remark 4.3.

(i) A viscosity solution V of the HJB equation (3.15) is a classical solution if it further lies in C2
lip(H × Rd)

and D ⊆ D(S(V )).
(ii) The classical definitions of the viscosity solution to the elliptic HJB equation in infinite dimensions are

time independent and the uniqueness is proven by using the weak compactness of separable Hilbert spaces
(see Exp. [32]). In our case, the elliptic HJB equation is defined on set D, which does not have weak
compactness. For the sake of the uniqueness proof, our new concept of the viscosity solution is enhanced to
include t. At the same time, our modification leads to a slight additional difficulty in the existence proof.

(iii) Assume that the coefficients F (x, y, u) = F (x, u), G(x, y, u) = G(x, u), (x, y, u) ∈ Rd×R×U and F1 = 0.
Let the function V (x) : Rd → R be a viscosity solution to (3.15) as a functional of V (x) : Rd ×H → R.
Then, V is also a classical viscosity solution as a function of the state.

We conclude this section with the existence proof for the viscosity solution.

Theorem 4.4. Suppose that Hypotheses 2.1 and 3.1 hold. Then, for λ > Λ, the value function V (x) defined
by (3.3) is a viscosity solution to (3.15).

Proof. First, for every 0 < λ̃ < λ, we let γ > 0 satisfies λ− λ̃ = γ and let ϕ ∈ C1,2
lip ([0,+∞)× (H × Rd)) such

that
a1 = (V γ − ϕ)(t, x) = sup

(l,y)∈[t,+∞)×D
(V γ − ϕ)(l, x⊗[0,l−t] y),

where (t, x) ∈ [0,+∞)×D and x ∈ D(S(ϕ(t, ·))). Then, for a fixed u ∈ U , according to the dynamic programming
principle (Thm. 3.3), we obtain

ϕ(t, x) = e−γtV (x)− a1 ≤ e−γt
∫ s

0

e−λσEq(Xu(σ, x), u(σ))dσ + e−γt−λsEV (Xu
s (x))− a1

≤ e−γt
∫ s

0

e−λσEq(Xu(σ, x), u(σ))dσ + e−λ̃sEϕ(t+ s,Xu
s (x)) + e−λ̃sa1 − a1.

Thus,

0 ≤ 1

s

∫ s

0

e−λσEq(Xu(σ, x), u(σ))dσ +
1

s
eγt[e−λ̃sEϕ(t+ s,Xu

s (x))− ϕ(t, x)] +
1

s
eγt(e−λ̃sa1 − a1).
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Now, applying Lemma 3.9, we show that

0 ≤ q(x(0), u)− λ̃V (x) + eγt[ϕt(t, x) + S(ϕ(t, ·))(x) + (∇x0
ϕ(t, x), F (x, u) + F1(x(−τ)))Rd

+
1

2
tr[∇2

x0
ϕ(t, x)G(x, u)G>(x, u)]].

Taking the minimum in u ∈ U , we know that V is a viscosity subsolution to (3.15).

Next, for every 0 < λ̃ < λ, we let γ > 0 satisfies λ− λ̃ = γ and let ϕ ∈ C1,2
lip ([0,+∞)× (H ×Rd)) such that

a2 = (V γ + ϕ)(t, x) = inf
(l,y)∈[t,+∞)×D

(V γ + ϕ)(l, x⊗[0,(l−t)] y),

where (t, x) ∈ [0,+∞) × D and x ∈ D(S(ϕ(t, ·))). For any ε > 0, according to (3.6), one can find a control
uε(·) ≡ uε,s(·) ∈ U [0,+∞) such that

εs− ϕ(t, x) = e−γtV (x)− a2 + εs

≥ e−γt
∫ s

0

e−λσEq(Xuε(σ), uε(σ))dσ + e−γt−λsEV (Xuε

s )− a2

≥ e−γt
∫ s

0

e−λσEq(Xuε(σ), uε(σ))dσ − e−λ̃sEϕ(t+ s,Xuε

s ) + e−λ̃sa2 − a2.

Then, by Lemma 3.9, we obtain

eγtε ≥ 1

s

∫ s

0

e−λσEq(Xuε(σ), uε(σ))dσ − eγt
e−λsEϕ(t+ s,Xuε

s )− ϕ(t, x)

s
+ eγt

e−λ̃sa2 − a2

s

≥ λ̃eγtϕ(t, x)− eγtϕt(t, x)− eγtS(ϕ(t, ·))(x) +
1

s
E

∫ s

0

q(x(0), uε(σ))− eγt(∇x0
ϕ(t, x),

F (x, uε(σ)) + F1(x(−τ)))Rd −
1

2
eγttr[∇2

x0
ϕ(t, x)G(x, uε(σ))G>(x, uε(σ))]dσ − λ̃eγta2 + o(1)

≥ −λ̃V (x)− eγtϕt(t, x)− eγtS(ϕ(t, ·))(x) + inf
u∈U

[q(x(0), u)− eγt(∇x0
ϕ(t, x), F (x, u)

+F1(x(−τ)))Rd −
1

2
eγttr[∇2

x0
ϕ(t, x)G(x, u)G>(x, u)]] + o(1).

Letting ε→ 0, we show that

0 ≥ −λ̃V (x)− eγtϕt(t, x)− eγtS(ϕ(t, ·))(x) + inf
u∈U

[q(x(0), u)− eγt(∇x0
ϕ(t, x), F (x, u)

+F1(x(−τ)))Rd −
1

2
eγttr[∇2

x0
ϕ(t, x)G(x, u)G>(x, u)]].

Therefore, V is also a viscosity supsolution to (3.15). This step completes the proof of Theorem 4.4. �

5. Viscosity solution to the HJB equation: Uniqueness theorem

This section is devoted to a proof of the uniqueness of the viscosity solution to (3.15). This result, together
with the results in the previous section, will give a characterization of the value function of the optimal control
problems (3.1) and (3.2).

We can now state the main result of this section.
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Theorem 5.1. Suppose that Hypotheses 2.1 and 3.1 hold, and assume λ > (5L+3L2+1)∨(L|a|2H+3L2|c|2H)∨Λ.
Let W (resp. V ) be a viscosity subsolution (resp. supsolution) to (3.15). In addition, let there exist a constant
∆ > 0 such that for (x, x0), (y, y0) ∈ H ×Rd,

|W (x, x0)| ∨ |V (x, x0)| ≤ ∆(1 + |x0|+ |x|H), (5.1)

|W (x, x0)−W (y, y0)| ∨ |V (x, x0)− V (y, y0)|

≤ ∆

(
|x0 − y0|+ |x− y|B + |F1(x)− F1(y)|B +

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣). (5.2)

Then, W ≤ V .

From this theorem, the viscosity solution to the HJB equation (3.15) can characterize the value function V (x)
of our optimal control problems (3.1) and (3.2) as follows:

Theorem 5.2. Let Hypotheses 2.1 and 3.1 hold, and assume λ > (5L + 3L2 + 1) ∨ (L|a|2H + 3L2|c|2H) ∨ Λ.
Then, the value function V defined by (3.3) is a unique viscosity solution to (3.15) in the class of functions
satisfying (3.4) and (3.5).

Proof. According to Theorem 4.4, we know that V is a viscosity solution to (3.15). Thus, our conclusion follows
from Theorems 3.2 and 5.1. �

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. The proof of this theorem is rather long. Thus, we split it into several steps.

Step 1. Definitions of the auxiliary functions and sets.
To prove the theorem, we assume on the contrary that there exists ε > 0 a small number such that m̃ :=

sup(x,x0)∈H×Rd [W (x, x0)−V (x, x0)− 2ε(|x|2H + |x0|2)] > 0. Because simple functions are dense in H, according

to (5.2) there exist a simple function ỹ =
∑m
i=1 ai1[ti,ti+1), ti ∈ [−τ, 0], i = 1, 2, . . . ,m+1 and a constant ã ∈ Rd

such that W (x̃) − V (x̃) − 2ε(|x̃|2H + |x̃(0)|2) > ( 1
2 ∨ e−

τ
8 λ)m̃, where x̃ = ỹ + ã10(·). First, we can let ε > 0 be

small enough such that

εL sup
θ∈[−τ,0]

|x̃(θ)|2 + 2εL+ 3εL2 <
λm̃

16
·

Next, for every α > 0, we define, for any (x, y) ∈ D ×D,

Ψ(x, y) = W (x)− V (y)− dα(x, y)− ε(|x|2H + |x(0)|2 + |y|2H + |y(0)|2),

and

Ψγ(t, x, y) = e−γtΨ(x, y),

where

dα(x, y) =
α

2
|x(0)− y(0)|2 +

α

2
|x(−τ)− y(−τ)|2 +

α2

4
|x− y|4B +

α2

4
|F1(x)− F1(y)|4B

+
α

2

(∫ 0

−τ
F1(x(θ))− F1(y(θ))dθ

)2

, (5.3)

and

γ =
λ

2
·
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Finally, for every M > 0, we define

Mα := sup
t≥0;x,y∈DM

Ψγ(t, x̃⊗[0,t] x, x̃⊗[0,t] y),

where

Mα ≥M∗ := sup
t≥0

sup
x∈DM ;l∈[0,t]

Ψγ(t, x̃⊗l x, x̃⊗l x) ≥ m̃

2
·

Step 2. Properties of Ψγ(t, x, y).
For every M,α > 0, from the definition of Mα, we can fix t̄ ≥ 0, k̄, l̄ ∈ [0, t̄] and x̄, ȳ ∈ DM satisfying

x̄ = x̃⊗k̄ x̄, ȳ = x̃⊗l̄ ȳ, Ψγ(0, x̃, x̃) ≤ Ψγ(t̄, x̄, ȳ) and Ψγ(t̄, x̄, ȳ) +
1

α
> Mα.

By the definition of Ψ , we obtain that

2Ψ(x, y) = Ψ(x, x) + Ψ(y, y) + V (x)− V (y) +W (x)−W (y)− 2dα(x, y).

Therefore,

Ψ(x, y) ≤ 1

2
(|Ψ(x, x)|+ |Ψ(y, y)|+ |V (x)− V (y)|+ |W (x)−W (y)|)− dα(x, y)

≤ m̃+∆

(
|x(0)− y(0)|+

∣∣∣∣ ∫ 0

−τ
F1(x(θ))− F1(y(θ))dθ

∣∣∣∣+ |x− y|B + |F1(x)− F1(y)|B
)

−dα(x, y)

≤ m̃+
∆2

α
+

2

α
+

∆2

2α
1
2

·

Letting α ≥ (1 + 4(2+∆)2

(e−
τ
8
λ−e−

τ
4
λ)m̃

)
2
, we obtain that

Ψ(x, y) ≤ m̃+
1

2
(e−

τ
8 λ − e−

τ
4 λ)m̃.

As W (x̃) − V (x̃) − 2ε(|x̃|2H + |x̃(0)|2) > ( 1
2 ∨ e−

τ
8 λ)m̃, there exists a constant T ≤ τ

2 such that for all M > 0

and α > Nm̃,∆ := (1 + 4(2+∆)2

(e−
τ
8
λ−e−

τ
4
λ)m̃

)
2
,

Ψγ(t, x, y) +
1

α
< Mα, t ≥ T, x, y ∈ DM .

Now, we can apply Lemma 4.1 to find t̂ ∈ [0, T ), k̂, l̂ ∈ [0, (t̂− t̄)], x̂, ŷ ∈ DM , which satisfies x̂ = x̄⊗k̂ x̂, ŷ =
ȳ ⊗l̂ ŷ with Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t̄, x̄, ȳ) ≥ Ψγ(0, x̃, x̃) such that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̂)] x, ŷ ⊗[0,(t−t̂)] y), t ≥ t̂, x, y ∈ DM . (5.4)

In particular, we know that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̄)] x, ŷ), Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂, ŷ ⊗[0,(t−t̄)] y), t ≥ t̂, x, y ∈ DM .

We should note that (t̂, x̂, ŷ) depends on t̄, k̄, l̄, x̄, ȳ, α,M .

Step 3. For every M > 0, we have

dα(x̂, ŷ) ≤ eγT

α
+ |W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)| → 0 as α→ +∞. (5.5)
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Let us show the above. We can confirm that

e−γt̂dα(x̂, ŷ) + εe−γt̂(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)

≤ 1

α
+ e−γt̂(W (x̂)− V (ŷ))−Mα ≤

1

α
+ e−γt̂(W (x̂)− V (ŷ))−M∗ (5.6)

≤ 1

α
+ C −M∗,

where C := 2∆(1 +M + τ
1
2M). We also know that

2M∗ ≤
2

α
+ e−γt̂(W (x̂)−W (ŷ) +W (ŷ)− V (ŷ)) + e−γt̂(W (x̂)− V (x̂) + V (x̂)− V (ŷ))

−2e−γt̂dα(x̂, ŷ)− 2εe−γt̂(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)

≤ 2

α
+ e−γt̂(|W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)|) + 2M∗ − 2e−γt̂dα(x̂, ŷ).

Thus,

e−γt̂dα(x̂, ŷ) ≤ 1

α
+ e−γt̂(|W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)|).

Therefore,

dα(x̂, ŷ) ≤ eγT

α
+ |W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)|. (5.7)

According to (5.6), we obtain
1

α
dα(x̂, ŷ)→ 0 as α→ +∞.

Then combining (5.2) and (5.7), we see that (5.5) holds.

Step 4. There exists M > 0 such that (5.4) holds true for all (t, x, y) ∈ [t̂,+∞)×D ×D and α > Nm̃,∆.

We note that there exists an M > (1 + τ
−1
2 )(1 + 2∆

ε ), independent of α, that is sufficiently large that

Ψγ(0, x̃, x̃) = W (x̃)− V (x̃)− 2ε(|x̃|2H + |x̃(0)|2) > 0 > Ψγ(t, x, y),

where t ∈ [0,+∞) and x ∈ D \ DM or y ∈ D \ DM . Therefore, for this M > 0, we know that (5.4) holds true
for all (t, x, y) ∈ [t̂,+∞)×D ×D and α > Nm̃,∆.

Step 5. Completion of the proof.
For the fixed M > 0 in step 4, we find t̂ ∈ [0, T ), k̂, l̂ ∈ [0, (t̂− t̄)], x̂, ŷ ∈ DM and x̂ = x̄⊗k̂ x̂, ŷ = ȳ ⊗l̂ ŷ with

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t̄, x̄, ȳ) ≥ Ψγ(0, x̃, x̃) such that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̂)] x, ŷ ⊗[0,(t−t̂)] y), t ≥ t̂, x, y ∈ D. (5.8)

We put, for (t, x, x0), (t, y, y0) ∈ [0,+∞)×H ×Rd,

W1(t, x, x0) = e−γt[W (x, x0)− ε(|x0|2 + |x|2)− ε|t− t̂|2 − ε|x− x̂|4B − ε(|x|2 − |x̂|2)2],

V1(t, y, y0) = e−γt[V (y, y0) + ε(|y0|2 + |y|2) + ε|t− t̂|2 + ε|y − ŷ|4B + ε(|y|2 − |ŷ|2)2].

For simplicity, we denote W1(t, x, x0) and V1(t, y, y0) by W1(t, x) and V1(t, y), respectively, when x, y ∈ D and
x(0) = x0, y(0) = y0. Moreover, we define, for (t, x, x0), (t, y, y0) ∈ [0,+∞)×D ×Rd,

W̃1(t, x, x0) = sup
z=x̂⊗[0,(t−t̂)]z,z(0)=x0

[
W1(t, z, x0)− e−γtpα(x, z)− e−γthα(z)

]
, t ≥ t̂,

Ṽ1(t, y, y0) = inf
z=ŷ⊗[0,(t−t̂)]z,z(0)=y0

[
V1(t, z, y0) + e−γtpα(y, z) + e−γthα(z)

]
, t ≥ t̂,
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and

W̃1(t, x, x0) = W̃1(t̂, x, x0), t < t̂,

Ṽ1(t, y, y0) = Ṽ1(t̂, y, y0), t < t̂,

where
pα(x, y) = α|x(−τ)− y(−τ)|2 + 2α2|x− y|4B ,

and

hα(x) = α

(∫ 0

−τ
F1(x(θ))− F1(x̂(θ)) + F1(ŷ(θ))

2
dθ

)2

+ 2α2

∣∣∣∣F1(x)− F1(x̂) + F1(ŷ)

2

∣∣∣∣4
B

·

Then we obtain that

W̃1(t, z, x(0))− Ṽ1(t, z, y(0))− e−γt
α|x(0)− y(0)|2

2

= sup
x=x̂⊗[0,(t−t̂)]x,y=ŷ⊗[0,(t−t̂)]y

[
W1(t, x, x(0))− e−γtpα(x, z)− e−γthα(x)

−V1(t, y, y(0))− e−γtpα(y, z)− e−γthα(y)− e−γt
α|x(0)− y(0)|2

2

]
≤ sup

x=x̂⊗[0,(t−t̂)]x,y=ŷ⊗[0,(t−t̂)]y

[
W1(t, x, x(0))− e−γthα(x)− V1(t, y, y(0))− e−γthα(y)

−e−γt
α

2
[|x(−τ)− y(−τ)|2 + |x(0)− y(0)|2 +

α

2
|x− y|4B ]

]
≤ sup

x=x̂⊗[0,(t−t̂)]x,y=ŷ⊗[0,(t−t̂)]y

[
W1(t, x, x(0))− V1(t, y, y(0))− e−γtdα(x, y)

]
≤ W1(t̂, x̂, x̂(0))− V1(t̂, ŷ, ŷ(0))− e−γt̂dα(x̂, ŷ), (5.9)

where the last inequality becomes equality if and only if t = t̂ and x = x̂, y = ŷ, the first inequality becomes
equality if and only if z = x+y

2 , and the second inequality becomes equality if x = x̂, y = ŷ. Then we obtain
that

W̃1(t, z, x(0))− Ṽ1(t, z, y(0))− e−γt
α|x(0)− y(0)|2

2

≤ W1(t̂, x̂, x̂(0))− V1(t̂, ŷ, ŷ(0))− e−γt̂dα(x̂, ŷ), t ∈ [t̂, T ],

and the equality only holds at t̂, x̂(0), ŷ(0), ẑ = x̂+ŷ
2 . Set r = 1

2 t̂, for a given L > 0, let ϕ ∈ C1,2((0, T ) × Rd)
be a function such that W̃1(t, ẑ, x0)− ϕ(t, x0) has a maximum at (s̄, x̄0) ∈ (0, T )×Rd, moreover, the following
inequalities hold true:

|s̄− t̂|+ |x̄0 − x̂0| < r,

|W̃1(s̄, ẑ, x̄0)|+ |∇xϕ(s̄, x̄0)|+ |∇2
xϕ(s̄, x̄0)| ≤ L.

Noting that if s̄ < t̂, we have W̃1(t, ẑ, x0) − ϕ(t + s̄ − t̂, x0) has a maximum at (t̂, x̄0) ∈ (0, T ) × Rd. Without
loss of generality, we can assume s̄ ≥ t̂. We can modify ϕ and extend it to (0,+∞) × Rd and such that
ϕ ∈ C1,2((0,+∞) × Rd), W̃1(t, ẑ, x0) − ϕ(t, x0) has a strict positive maximum at (s̄, x̄0) ∈ [t̂, T ) × Rd and the
above two inequalities hold true. Now we consider the function

Υ (t, x, x0) = W1(t, x, x0)− e−γtpα(x, ẑ)− e−γthα(x)− ϕ(t, x0), (t, x) ∈ [t̂,+∞)×D ×Rd.
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We may assume that ϕ grow quadratically at ∞. For every δ > 0, by the definition of W̃1, there exists xδ such
that

xδ(0) = x̄0, x
δ = x̂⊗p xδ, W1(s̄, xδ, x̄0)− e−γs̄pα(ẑ, xδ)− e−γs̄hα(xδ) ≥ W̃1(s̄, ẑ, x̄0)− δ, (5.10)

where p ∈ [0, (s̄− t̂)]. By Lemma 4.1 and Step 4, there exist M > 0 independent of δ, (ť, x̌) ∈ [s̄,∞)×DM and
p̌ ∈ [0, (ť− s̄)] such that

x̌ = xδ ⊗p̌ x̌, Υ (ť, x̌, x̌(0)) ≥ Υ (s̄, xδ, x̄0),

and

Υ (ť, x̌, x̌(0)) ≥ Υ (t, x, x(0)),

where t ∈ [ť,+∞), x ∈ D, x = x̌⊗[0,(t−ť)] x. Then

W̃1(ť, ẑ, x̌(0))− ϕ(ť, x̌(0)) ≥W1(ť, x̌, x̌(0))− e−γťpα(x̌, ẑ)− e−γťhα(x̌)− ϕ(ť, x̌(0))

≥ W1(s̄, xδ, x̄0)− e−γs̄pα(xδ, ẑ)− e−γs̄hα(xδ)− ϕ(s̄, x̄0) ≥ W̃1(s̄, ẑ, x̄0)− ϕ(s̄, x̄0)− δ.

Letting δ → 0, we obtain

ť→ s̄, x̌(0)→ x̄0, as δ → 0.

Thus, by the definition of the viscosity subsolution, noting γ = λ
2 , we know that

−γe−γťW (x̌)− γe−γť[ε(|x̌(0)|2 + |x̌|2) + ε|ť− t̂|2 + ε|x̌− x̂|4B + ε(|x̌|2 − |x̂|2)2 + pα(x̌, ẑ)

+hα(x̌)] + 2e−γťε(ť− t̂) + ϕt(ť, x̌(0)) + e−γťε[4(|B(x̌− x̂)|2HB(x̌− x̂), x̌(0)1[−τ,0] − x̌)H

+(2|x̌|2 − 2|x̂|2 + 1)(x̌2(0)− x̌2(−τ))] + 8e−γťα2(|B(x̌− ẑ)|2HB(x̌− ẑ), x̌(0)1[−τ,0] − x̌)H

+2e−γťα

∫ 0

−τ
(F1(x̌)− 1

2
(F1(x̂) + F1(ŷ)))(θ)dθ(F1(x̌(0))− F1(x̌(−τ)))

+8e−γťα2(|B(F1(x̌)− 1

2
(F1(x̂) + F1(ŷ)))|2HB(F1(x̌)− 1

2
(F1(x̂) + F1(ŷ))),

F1(x̌(0))1[−τ,0] − F1(x̌))H + e−γťH(x̌, eγť∇xϕ(ť, x̌(0)) + 2εx̌(0), eγť∇2
xϕ(ť, x̌(0)) + 2εI) ≥ 0,

where I will stand for the identity matrix in any dimension. Letting δ → 0, by the definition of H, it follows that
there exists a constant C such that b = ϕt(s̄, x̄0) ≥ C. Then by the following Lemma 5.3 to obtain sequences
tk, sk ∈ (0, T ), xk0 , y

k
0 ∈ Rd such that (tk, x

k
0) → (t̂, x̂(0)), (sk, y

k
0 ) → (t̂, ŷ(0)) as k → +∞ and the sequences of

functions ϕk, ψk ∈ C1,2((0, T )×Rd) such that

W̃1(t, ẑ, x0)− ϕk(t, x0) ≤ 0, Ṽ1(t, ẑ, x0)− ψk(t, x0) ≥ 0,

equalities hold true at (tk, x
k
0), (sk, y

k
0 ), respectively,

(ϕk)t(tk, x
k
0)→ b1, (ψk)t(sk, y

k
0 )→ b2,

∇xϕk(tk, x
k
0)→ αe−γt̂(x̂(0)− ŷ(0)), ∇xψk(sk, y

k
0 )→ αe−γt̂(x̂(0)− ŷ(0)),

∇2
xϕk(tk, x

k
0)→ e−γt̂X, ∇2

xψk(sk, y
k
0 )→ e−γt̂Y,

where b1 + b2 = −γe−γt̂ α2 |x̂(0)− ŷ(0)|2 and X,Y satisfy the following inequality:

−4α

(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ 2α

(
I −I
−I I

)
. (5.11)
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Noting that if tk, sk < t̂, we have

W̃1(tk, ẑ, x0)− ϕk(tk, x0) = W̃1(t̂, ẑ, x0)− ϕk(t̂+ tk − t̂, x0),

Ṽ1(sk, ẑ, x0)− ψk(sk, x0) = Ṽ1(t̂, ẑ, x0)− ψk(t̂+ sk − t̂, x0).

We may assume that tk, sk ≥ t̂. We can modify ϕk, ψk and extend them to (0,+∞) × Rd such that ϕk, ψk ∈
C1,2((0,+∞)×Rd) and the above formulae hold true. We may without loss of generality assume that ϕk,−ψk
grow quadratically at ∞.

Now we consider the function, for t, s ∈ [t̂,+∞) and x, y ∈ D,

Υ1(t, s, x, y) = W1(t, x)− V1(s, y)− e−γtp̂α(x)− e−γsp̂α(y)− ϕk(t, x(0)) + ψk(s, y(0)),

where
p̂α(x) = pα(x, ẑ) + hα(x), x ∈ D.

For every k and δ > 0, by the definitions of W̃1 and Ṽ1, there exist xk,δ and yk,δ such that

xk,δ(0) = xk0 , x
k,δ = x̂⊗pk xk,δ, W1(tk, x

k,δ)− e−γtk p̂α(xk,δ) ≥ W̃1(tk, ẑ, x
k
0)− δ, (5.12)

and

yk,δ(0) = yk0 , y
k,δ = ŷ ⊗lk yk,δ, V1(sk, y

k,δ) + e−γsk p̂α(yk,δ) ≤ Ṽ1(sk, ẑ, y
k
0 ) + δ, (5.13)

where pk ∈ [0, (tk − t̂)] and lk ∈ [0, (sk − t̂)]. By Lemma 4.1 and Step 4, there exist M > 0 independent of δ,
(ť, š, x̌, y̌) ∈ [tk,+∞)× [sk,+∞)×DM ×DM and p̌ ∈ [0, (ť− tk)], ľ ∈ [0, (š− sk)] such that

x̌ = xk,δ ⊗p̌ x̌, y̌ = yk,δ ⊗ľ y̌,

Υ1(ť, š, x̌, y̌) ≥ Υ1(tk, sk, x
k,δ, yk,δ),

and
Υ1(ť, š, x̌, y̌) ≥ Υ1(t, s, x, y),

where t ∈ [ť,+∞), s ∈ [š,+∞), x, y ∈ D, x = x̌⊗[0,(t−ť)], y = y̌ ⊗[0,(t−š)] y. Then

W̃1(ť, ẑ, x̌(0))− Ṽ1(š, ẑ, y̌(0))− ϕk(ť, x̌(0)) + ψk(š, y̌(0))

≥ W1(ť, x̌)− V1(š, y̌)− e−γťp̂α(x̌)− ϕk(ť, x̌(0))− e−γšp̂α(y̌) + ψk(š, y̌(0))

≥ W1(tk, x
k,δ)− V1(sk, y

k,δ)− e−γtk p̂α(xk,δ)− ϕk(tk, x
k
0)− e−γsk p̂α(yk,δ) + ψk(tk, y

k
0 )

≥ W̃1(tk, ẑ, x
k
0)− Ṽ1(sk, ẑ, y

k
0 )− ϕk(tk, x

k
0) + ψk(sk, y

k
0 )− 2δ.

Moreover, letting δ → 0, we obtain

ť→ tk, x̌(0)→ xk0 , š→ sk, y̌(0)→ yk0 , as δ → 0;

and

W1(ť, x̌)− V1(š, y̌)− e−γťp̂α(x̌)− e−γšp̂α(y̌)− ϕk(ť, x̌(0)) + ψk(š, y̌(0))

→ W̃1(tk, ẑ, x
k
0)− Ṽ1(sk, ẑ, y

k
0 )− ϕk(tk, x

k
0) + ψk(sk, y

k
0 ) as δ → 0.

Letting δ → 0 and k →∞, by (5.9) we show that

lim
k→∞

lim
δ→0

[
W1(ť, x̌, x̌(0))− V1(š, y̌, y̌(0))− e−γťp̂α(x̌)− e−γšp̂α(y̌)

]
= lim

k→∞

[
W̃1(tk, ẑ, x

k
0)− Ṽ1(sk, ẑ, y

k
0 )

]
= W̃1(t̂, ẑ, x̂(0))− Ṽ1(t̂, ẑ, ŷ(0))

= W1(t̂, x̂, x̂(0))− V1(t̂, ŷ, ŷ(0))− e−γt̂dα(x̂, ŷ) + e−γt̂
α|x̂(0)− ŷ(0)|2

2
· (5.14)
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We claim that

lim
k→∞

lim
δ→0

[|x̌− x̂|4B + (|x̌|2 − |x̂2|)2 + |y̌ − ŷ|4B + (|y̌|2 − |ŷ|2)2] = 0. (5.15)

In fact, if not, there exist a ν > 0 and two subsequence of k and δ, still denoted by themselves, such that

ε[|x̌− x̂|4B + (|x̌|2 − |x̂2|)2 + |y̌ − ŷ|4B + (|y̌|2 − |ŷ|2)2] ≥ ν.

We can assume š ≤ ť, then

W1(ť, x̌, x̌(0))− V1(š, y̌, x̌(0))− e−γťp̂α(x̌)− e−γšp̂α(y̌)

= e−γť[W (x̌)− ε(|x̌(0)|2 + |x̌|2)− ε|x̌− x̂|4B − ε|ť− t̂|2 − ε(|x̌|2 − |x̂|2)2 − p̂α(x̌)]

+e−γš[−V (y̌)− ε(|y̌(0)|2 + |y̌|2)− ε|š− ŝ|2 − ε|y̌ − ŷ|4B − ε(|y̌|2 − |ŷ|2)2 − p̂α(y̌)]

≤ e−γť[W (x̌)− ε(|x̌(0)|2 + |x̌|2)− ε|ť− t̂|2]− e−γšV (y̌)

−εe−γť(|y̌(0)|2 + |y̌|2 + |š− ŝ|2)− e−γťdα(x̌, y̌) + e−γť
α|x̌(0)− y̌(0)|2

2
− e−γťν

= e−γťW (x̌)− e−γťV (y̌)− εe−γť(|x̌(0)|2 + |x̌|2 + |y̌(0)|2 + |y̌|2) + e−γťV (y̌)

−e−γšV (y̌)− εe−γť(|š− ŝ|2 + |ť− t̂|2)− e−γťdα(x̌, y̌) + e−γť
α|x̌(0)− y̌(0)|2

2
− e−γťν

≤ W1(t̂, x̂, x̂(0))− V1(t̂, ŷ, ŷ(0))− e−γt̂dα(x̂, ŷ) + e−γť
α|x̌(0)− y̌(0)|2

2

+e−γťV (y̌)− e−γšV (y̌)− εe−γť(|š− ŝ|2 + |ť− t̂|2)− e−γťν.

Letting δ → 0 and k →∞, we obtain

limk→∞limδ→0

[
W1(ť, x̌, x̌(0))− V1(š, y̌, x̌(0))− e−γťp̂α(x̌)− e−γšp̂α(y̌)

]
≤ W1(t̂, x̂, x̂(0))− V1(t̂, ŷ, ŷ(0))− e−γt̂dα(x̂, ŷ) + e−γt̂

α|x̂(0)− ŷ(0)|2

2
− e−γt̂ν.

This is in contradiction to (5.14). Then we get (5.15) holds true. Therefore, from the definition of viscosity
solution it follows that

−γe−γťW (x̌)− γe−γť[ε(|x̌(0)|2 + |x̌|2) + ε|ť− t̂|2 + ε|x̌− x̂|4B + ε(|x̌|2 − |x̂|2)2 + p̂α(x̌)]

+2e−γťε(ť− t̂) + (ϕk)t(ť, x̌(0)) + e−γťε[4(|B(x̌− x̂)|2HB(x̌− x̂), x̌(0)1[−τ,0] − x̌)H

+(2|x̌|2 − 2|x̂|2 + 1)(x̌2(0)− x̌2(−τ))] + 8e−γťα2(|B(x̌− ẑ)|2HB(x̌− ẑ), x̌(0)1[−τ,0] − x̌)H

+2e−γťα

∫ 0

−τ
(F1(x̌)− 1

2
(F1(x̂) + F1(ŷ)))(θ)dθ(F1(x̌(0))− F1(x̌(−τ)))

+8e−γťα2(|B(F1(x̌)− 1

2
(F1(x̂) + F1(ŷ)))|2HB(F1(x̌)− 1

2
(F1(x̂) + F1(ŷ))), F1(x̌(0))1[−τ,0]

−F1(x̌))H + e−γťH(x̌, eγť∇xϕk(ť, x̌(0)) + 2εx̌(0), eγť∇2
xϕk(ť, x̌(0)) + 2εI) ≥ 0, (5.16)
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and

−γe−γšV (y̌) + γe−γš[ε(|y̌(0)|2 + |y̌|2) + ε|š− t̂|2 + ε|y̌ − ŷ|4B + ε(|y̌|2 − |ŷ|2)2 + p̂α(y̌)]

−2e−γšε(š− t̂)− (ψk)t(š, y̌(0))− e−γšε[4(|B(y̌ − ŷ)|2HB(y̌ − ŷ), y̌(0)1[−τ,0] − y̌)H

−(2|y̌|2 − 2|ŷ|2 + 1)(y̌2(0)− y̌2(−τ))]− 8e−γšα2(|B(y̌ − ẑ)|2HB(y̌ − ẑ), y̌(0)1[−τ,0] − y̌)H

−2e−γťα

∫ 0

−τ
(F1(y̌)− 1

2
(F1(x̂) + F1(ŷ)))(θ)dθ(F1(y̌(0))− F1(y̌(−τ)))

−8e−γťα2(|B(F1(y̌)− 1

2
(F1(x̂) + F1(ŷ)))|2HB(F1(y̌)− 1

2
(F1(x̂) + F1(ŷ))), F1(y̌(0))1[−τ,0]

−F1(y̌))H + e−γšH(y̌,−eγš∇xψk(š, y̌(0))− 2εy̌(0),−eγš∇2
xψk(š, y̌(0))− 2εI) ≤ 0, (5.17)

Letting δ → 0 and k →∞, by (5.16) and (5.17) we obtain

−γW (x̂)− γε(|x̂(0)|2 + |x̂|2)− γp̂α(x̂) + eγt̂b1 + ε[x̂2(0)− x̂2(−τ)]

+8α2(|B(x̂− ẑ)|2HB(x̂− ẑ), x̂(0)1[−τ,0] − x̂)H + 2α

∫ 0

−τ
(F1(x̂)− 1

2
(F1(x̂) + F1(ŷ)))(θ)dθ

×(F1(x̂(0))− F1(x̂(−τ))) + 8α2(|B(F1(x̂)− 1

2
(F1(x̂) + F1(ŷ)))|2HB(F1(x̂)− 1

2
(F1(x̂) + F1(ŷ))),

F1(x̂(0))1[−τ,0] − F1(x̂))H + H(x̂, α(x̂(0)− ŷ(0)) + 2εx̂(0), X + 2εI) ≥ 0, (5.18)

and

−γV (ŷ) + γε(|ŷ(0)|2 + |ŷ|2) + γp̂α(ŷ)− eγt̂b2 − ε[ŷ2(0)− ŷ2(−τ)]

−8α2(|B(ŷ − ẑ)|2HB(ŷ − ẑ), ŷ(0)1[−τ,0] − ŷ)H − 2α

∫ 0

−τ
(F1(ŷ)− 1

2
(F1(x̂) + F1(ŷ)))(θ)dθ

×(F1(ŷ(0))− F1(ŷ(−τ)))− 8α2(|B(F1(ŷ)− 1

2
(F1(x̂) + F1(ŷ)))|2HB(F1(ŷ)− 1

2
(F1(x̂) + F1(ŷ))),

F1(ŷ(0))1[−τ,0] − F1(ŷ))H + H(ŷ, α(x̂(0)− ŷ(0))− 2εŷ(0),−Y − 2εI) ≤ 0. (5.19)

Combining (5.18) and (5.19), we obtain

γ[W (x̂)− V (ŷ)] + γε(|x̂(0)|2 + |x̂|2 + |ŷ(0)|2 + |ŷ|2) + γ(p̂α(x̂) + p̂α(ŷ))

≤ −γ α
2
|x̂(0)− ŷ(0)|2 + ε[x̂2(0)− x̂2(−τ) + ŷ2(0)− ŷ2(−τ)]

+α2(|B(x̂− ŷ)|2HB(x̂− ŷ), x̂(0)1[−τ,0] − x̂− ŷ(0)1[−τ,0] + ŷ)H

+α

∫ 0

−τ
(F1(x̂)− F1(ŷ))(θ)dθ(F1(x̂(0))− F1(x̂(−τ))− F1(ŷ(0)) + F1(ŷ(−τ)))

+α2(|B(F1(x̂)− F1(ŷ))|2HB(F1(x̂)− F1(ŷ)), F1(x̂(0))1[−τ,0] − F1(x̂)

−F1(ŷ(0))1[−τ,0] + F1(ŷ))H + H(x̂, α(x̂(0)− ŷ(0)) + 2εx̂(0), X + 2εI)

−H(ŷ, α(x̂(0)− ŷ(0))− 2εŷ(0),−Y − 2εI). (5.20)
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On the other hand, by a simple calculation we obtain

H(x̂, α(x̂(0)− ŷ(0)) + 2εx̂(0), X + 2εI)−H(ŷ, α(x̂(0)− ŷ(0))− 2εŷ(0),−Y − 2εI) ≤ sup
u∈U

(J1 + J2 + J3), (5.21)

where

J1 = (F (x̂(0), (a, x̂)H , u) + F1(x̂(−τ)), α(x̂(0)− ŷ(0)) + 2εx̂(0))Rd

−(F (ŷ(0), (a, ŷ)H , u) + F1(ŷ(−τ)), α(x̂(0)− ŷ(0))− 2εŷ(0))Rd

≤ αL(|x̂(0)− ŷ(0)|2 + |x̂(0)− ŷ(0)|[τ 1
4 |a|W 1,2 |x̂− ŷ|B + |x̂(−τ)− ŷ(−τ)|]) (5.22)

+2εL|x̂(0)|(2 + |x̂(−τ)|+ |x̂(0)|+ |a|H |x̂|)

+2εL|ŷ(0)|(2 + |ŷ(−τ)|+ |ŷ(0)|+ |a|H |ŷ|);

J2 =
1

2
tr[(X + 2εI)G(x̂(0), (c, x̂)H , u)G>(x̂(0), (c, x̂)H , u)]

−1

2
tr[(−Y − 2εI)G(ŷ(0), (c, ŷ)H , u)G>(ŷ(0), (c, ŷ)H , u)]

≤ α|G(x̂(0), (c, x̂)H , u)−G(ŷ(0), (c, ŷ)H , u)|2

+ε|G(x̂(0), (c, x̂)H , u)G>(x̂(0), (c, x̂)H , u)|

+ε|G(ŷ(0), (c, ŷ)H , u)G>(ŷ(0), (c, ŷ)H , u)|

≤ αL2(|x̂(0)− ŷ(0)|2 + τ
1
2 |c|2W 1,2 |x̂− ŷ|2B)

+3εL2(2 + |x̂(0)|2 + |ŷ(0)|2 + |c|2H |x̂|2 + |c|2H |ŷ|2); (5.23)

and

J3 = q(x̂(0), u)− q(ŷ(0), u) ≤ L|x̂(0)− ŷ(0)|. (5.24)

Combining (5.20)−(5.24), we obtain

γ[W (x̂)− V (ŷ)] + γε(|x̂(0)|2 + |x̂|2 + |ŷ(0)|2 + |ŷ|2) + γ(p̂α(x̂) + p̂α(ŷ))

≤ −γ α
2
|x̂(0)− ŷ(0)|2 + ε[x̂2(0)− x̂2(−τ) + ŷ2(0)− ŷ2(−τ)]

+
α

2
|x̂(0)− ŷ(0)|2 +

α3

2
τ

5
2 |x̂− ŷ|6B +

αL2

2
|x̂(0)− ŷ(0)|2 +

α3

2
τ

5
2 |F1(x̂)− F1(ŷ)|6B

+α

(∫ 0

−τ
F1(x̂(θ))− F1(ŷ(θ))dθ

)2

+
αL2

2
(|x̂(0)− ŷ(0)|2 + |x̂(−τ)− ŷ(−τ)|2)

+2αL|x̂(0)− ŷ(0)|2 + αL[τ
1
2 |a|2W 1,2 |x̂− ŷ|2B + |x̂(−τ)− ŷ(−τ)|2]

+(5εL+ 3εL2)(|x̂(0)|2 + |ŷ(0)|2) + εL(|x̂(−τ)|2 + |ŷ(−τ)|2)

+(εL|a|2H + 3εL2|c|2H)(|x̂|2 + |ŷ|2) + αL2(|x̂(0)− ŷ(0)|2 + τ
1
2 |c|2W 1,2 |x̂− ŷ|2B)

+L|x̂(0)− ŷ(0)|+ 4εL+ 6εL2. (5.25)
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Recalling x̂, ŷ ∈ DM and Ψγ(t̂, x̂, ŷ) ≥ Ψγ(0, x̃, x̃), and combining it with εL supθ∈[−τ,0] |x̃(θ)|2+2εL+3εL2 < λm̃
16

and λ > (5L+ 3L2 + 1) ∨ (L|a|2H + 3L2|c|2H), it follows that

γ

2
m̃ < γ[W (x̃)− V (x̃)− 2ε(|x̃|2H + |x̃(0)|2)] ≤ γΨγ(t̂, x̂, ŷ)

≤ γ[W (x̂)− V (ŷ)− dα(x̂, ŷ)− ε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)]

≤ (2 + 8L2 + 8L− λ)
α

4
|x̂(0)− ŷ(0)|2 +

α3

2
τ

5
2 (|x̂− ŷ|6B + |F1(x̂)− F1(ŷ)|6B)

+α

(∫ 0

−τ
F1(x̂(θ))− F1(ŷ(θ))dθ

)2

+ (L2 + 2L)
α

2
|x̂(−τ)− ŷ(−τ)|2

+(Lτ
1
2 |a|2W 1,2 + L2τ

1
2 |c|2W 1,2)α|x̂− ŷ|2B + L|x̂(0)− ŷ(0)|

+(5εL+ 3εL2 + ε)(|x̂(0)|2 + |ŷ(0)|2) + εL(|x̂(−τ)|2 + |ŷ(−τ)|2)

+(εL|a|2H + 3εL2|c|2H)(|x̂|2 + |ŷ|2)

+4εL+ 6εL2 − λε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)

≤ (2 + 8L2 + 8L− λ)
α

4
|x̂(0)− ŷ(0)|2 +

α3

2
τ

5
2 (|x̂− ŷ|6B + |F1(x̂)− F1(ŷ)|6B)

+α

(∫ 0

−τ
F1(x̂(θ))− F1(ŷ(θ))dθ

)2

+ (L2 + 2L)
α

2
|x̂(−τ)− ŷ(−τ)|2

+(Lτ
1
2 |a|2W 1,2 + L2τ

1
2 |c|2W 1,2)α|x̂− ŷ|2B + L|x̂(0)− ŷ(0)|+ λm̃

8
·

Letting α→ +∞, the following contradiction is induced:

λm̃

4
≤ λm̃

8
·

The proof is now complete. �

The following Lemma is needed in the proof of Theorem 5.1.

Lemma 5.3. Let ui ∈ C((0, T ) × Rd), i = 1, 2, ϕ : (0, T ) × R2d → R be once continuously differentiable in t
and twice continuously differentiable in x. Suppose that

u1(t, x1) + u2(t, x2)− ϕ(t, x1, x2)

has a maximum at (t̂, x̂) = (t̂, x̂1, x̂2) ∈ (0, T ) × R2d. Assume, moreover, that there is an r > 0 such that for
every M > 0 there is an C such that for i = 1, 2

bi ≥ C whenever (bi, qi, Xi) ∈ P2,+ui(t, xi),

|xi − x̂i|+ |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ ||Xi|| ≤M. (5.26)

Then for each ε > 0 there are Xi ∈ Γ (Rd) such that
(i) (bi,∇xiϕ(x̂), Xi) ∈ P̄2,+ui(t̂, x̂i) for i = 1, 2,

(ii) −
(

1

ε
+ ||D||

)
I ≤

(
X1 0

0 X2

)
≤ D + εD2,

(iii) b1 + b2 = ϕt(t̂, x̂1, x̂2),

(5.27)

where D = ∇2
xϕ(t̂, x̂1, x̂2). (For the definitions of the parabolic “superjet” P2,+u and its closure P̄2,+u see [8]).
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Proof. Let vi(t, xi) = ui(T − t, xi), ψ(t, x1, x2) = ϕ(T − t, x1, x2), (t, x1, x2) ∈ (0, T )×Rd ×Rd, i = 1, 2, then

v1(t, x1) + v2(t, x2)− ψ(t, x1, x2)

has a maximum at (T − t̂, x̂) = (T − t̂, x̂1, x̂2) ∈ (0, T )×R2d.

Moreover, for every M > 0, let

(−bi, qi, Xi) ∈ P2,+vi(t, xi), |xi − x̂i|+ |t− T + t̂| ≤ r and |vi(t, xi)|+ |qi|+ ||Xi|| ≤M.

Then

(bi, qi, Xi) ∈ P2,+ui(T − t, xi), |xi − x̂i|+ |t− T + t̂| ≤ r and |ui(T − t, xi)|+ |qi|+ ||Xi|| ≤M.

Therefore, by (5.26), there is an C such that −bi ≤ C, i = 1, 2. Thus, vi, i = 1, 2, and ψ satisfy the condition
of Theorem 8.3 in [8], then we obtain that for each ε > 0 there are Xi ∈ Γ (Rd) such that

(i) (−bi,∇xiϕ(x̂), Xi) ∈ P̄2,+vi(T − t̂, x̂i) for i = 1, 2,

(ii) − ( 1
ε + ||D||)I ≤

(
X1 0

0 X2

)
≤ D + εD2,

(iii) − b1 − b2 = ψt(T − t̂, x̂1, x̂2).

(5.28)

Thus, we obtain (5.27) holds true. �

6. Deterministic cases

In this section, we study the deterministic delay optimal control problems and the associated first order HJB
equation.

We consider the controlled state equation

Xu(t) = x0 +

∫ t

0

F (Xu(σ), (a,Xu
σ )H , u(σ))dσ +

∫ t

0

F1(Xu(σ − τ))dσ, t ∈ [0,+∞), (6.1)

where Xu
0 = x ∈ H, and a cost function of the form

J(x, x0, u) =

∫ +∞

0

e−λσq(Xu(σ, x, x0), u(σ))dσ, (6.2)

where

u(·) ∈ U [0,+∞) := {u(·) : [0,+∞)→ U | u(·) is measurable},

with U representing a compact subset U of Rd1 . Our aim is to minimize the function J over all controls
u ∈ U [0,+∞). We define the function V : H ×Rd → R by

V (x, x0) := inf
u∈U [0,+∞)

J(x, x0, u). (6.3)

The function V is called the value function of the optimal control problems (6.1) and (6.2).
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Theorem 6.1. Assume that Hypothesis 2.1 holds. If we let Λ = 2L(1 + τ |a|W 1,2), then a unique continuous
function X : [0,+∞)→ Rd exists that is a solution to (6.1). Moreover,

|Xu(t, x, x0)| ≤ C1

(
1 + |x0|+

∣∣∣∣ ∫ 0

−τ
F1(x(σ))dσ

∣∣∣∣+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣+ |Bx|H + |BF1(x)|H
)

eΛt

≤ C2(1 + |x0|+ |x|H)eΛt, t ≥ 0, (6.4)

for some constants C1, C2 > 0 depending only on L, τ and a(·), and

|Xu(t, x, x0)−Xu(t, y, y0)|

≤ C3

(
|x0 − y0|+

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣
+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣+ |B(x− y)|H + |B(F1(x)− F1(y))|H
)

eΛt

≤ C4(|x0 − y0|+ |x− y|H)eΛt, t ≥ 0, (6.5)

for some constants C3, C4 > 0 depending only on L, τ and a(·).

Proof. Existence and uniqueness are satisfied by Theorem 2.2. We only need to prove that (6.4) and (6.5) hold
true.

By the definition of Xu, we know that

|Xu(t, x, x0)| ≤ |x0|+
∫ t

0

|F (Xu(σ, x, x0), (a,Xu
σ (x, x0))H , u(σ))|dσ +

∣∣∣∣ ∫ t

0

F1(Xu(σ − τ, x, x0))dσ

∣∣∣∣
≤ |x0|+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣+ τL|a|W 1,2 |Bx|H + Lt

+2L(1 + τ |a|W 1,2)

∫ t

0

|Xu(σ, x, x0)|dσ.

The Gronwall Lemma implies that

|Xu(t, x, x0)| ≤
(
|x0|+

∣∣∣∣ ∫ 0

−τ
F1(x(σ))dσ

∣∣∣∣+ τL|a|W 1,2 |Bx|H +
L

Λ

)
eΛt

+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))dσ

∣∣∣∣+ Λ
1
2 |BF1(x)|HeΛτ ,

where Λ = 2L(1 + τ |a|W 1,2). Therefore, there exist some constants C1, C2 > 0 depending only on L, τ and a(·)
such that (6.4) holds true. Now, let us show that (6.5) holds.

|Xu(t, x, x0)−Xu(t, y, y0)| ≤ |x0 − y0|+
∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F2(y(σ))dσ

∣∣∣∣+ τL|a|W 1,2 |B(x− y)|H

+2L(1 + τ |a|W 1,2)

(∫ t

0

|Xu(σ, x, x0)−Xu(σ, y, y0)|dσ
)
.

The Gronwall Lemma implies that

|Xu(t, x, x0)−Xu(t, y, y0)| ≤
(
|x0 − y0|+

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣+ τL|a|W 1,2 |B(x− y)|H
)

eΛt

+

∣∣∣∣ ∫ (t−τ)∧0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣+ Λ
1
2 |B(F1(x)− F1(y))|HeΛτ ,
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where Λ = 2L(1 + τ |a|W 1,2). Therefore, there exist some constants C3, C4 > 0 depending only on L, τ and a(·)
such that (6.5) holds. The proof is now complete. �

By the similar (even simpler) procedure in Section 3, we can show that Theorems 3.2 and 3.3 also hold true
for the value function V defined in (6.3) when Λ = 2L(1 + τ |a|W 1,2), and Lemma 3.9 holds for g ∈ C1(H ×Rd)
and G = 0.

Now we consider the following first order HJB equation

−λV (x) + S(V )(x) +H(x,∇x0V (x)) = 0, x ∈ D(S(V )), (6.6)

where

H(x, p) = inf
u∈U

[(p, F (x, u) + F1(x(−τ)))Rd + q(x(0), u)], (x, p) ∈ D ×Rd.

Here, and throughout this article, for simplicity, we let V (x) and F (x, u) denote V (x, x(0)) and
F (x(0), (a, x)H , u), respectively, if x ∈ D.

Theorem 6.2. Let V denote the value function defined by (6.3). If V ∈ C1(H ×Rd), then V satisfies the HJB
equation (6.6).

Proof. The proof is very similar to Theorem 3.8. Here, we omit it. �

We now give the following definition for the viscosity solution.

Definition 6.3. w ∈ C(H × Rd) is called a viscosity subsolution (supersolution) of (6.6) if for every ϕ ∈
C1([0,+∞) × (H × Rd)), whenever the constants γ, λ̃, λ > 0 and the function wγ − ϕ (resp. wγ + ϕ) satisfy
λ̃ < λ, λ− λ̃ = γ, and

(wγ − ϕ)(s, z) = sup
(t,x)∈[s,+∞)×D

(wγ − ϕ)(t, z ⊗[0,(t−s)] x),

(respectively, (wγ + ϕ)(s, z) = inf
(t,x)∈[s,+∞)×D

(wγ + ϕ)(t, z ⊗[0,(t−s)] x), )

where wγ(s, z) = e−γsw(z), (s, z) ∈ [0,+∞)×D and z ∈ D(S(ϕ(s, ·))), we have

−λ̃w(z) + eγsϕs(s, z) + eγsS(ϕ(s, ·))(z) + H(z, eγs∇x0ϕ(s, z)) ≥ 0,

(respectively,−λ̃w(z)− eγsϕs(s, z)− eγsS(ϕ(s, ·))(z) + H(z,−eγs∇x0ϕ(s, z)) ≤ 0).

w ∈ C(H × Rd) is said to be a viscosity solution to (6.6) if it is both a viscosity subsolution and a viscosity
supersolution.

By the similar (even simpler) procedure of Theorem 4.4, we have the existence result for the viscosity solution.

Theorem 6.4. Suppose that Hypotheses 2.1 and 3.1 hold. Then, for λ > Λ, the value function V defined by (6.3)
is a viscosity solution to (6.6).

We now state the comparison principle for the viscosity solution.

Theorem 6.5. Suppose that Hypotheses 2.1 and 3.1 hold, and assume λ > 2L(1 + τ |a|W 1,2)∨ (5L+ 1)∨L|a|2H .
Let W (resp. V ) be a viscosity subsolution (resp. supsolution) to (6.6). In addition, let there exist a constant
∆ > 0 such that for (x, x0), (y, y0) ∈ H ×Rd,

|W (x, x0)| ∨ |V (x, x0)| ≤ ∆(1 + |x0|+ |x|H), (6.7)
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|W (x, x0)−W (y, y0)| ∨ |V (x, x0)− V (y, y0)|

≤ ∆

(
|x0 − y0|+

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣+ |B(x− y)|H + |B(F1(x)− F1(y))|H
)
. (6.8)

Then, W ≤ V .

From this theorem, the viscosity solution to the HJB equation (6.6) can characterize the value function V of
our optimal control problems (6.1) and (6.2) as follows:

Theorem 6.6. Let Hypotheses 2.1 and 3.1 hold, and assume λ > 2L(1+τ |a|W 1,2)∨ (5L+1)∨L|a|2H . Then, the
value function V defined by (6.3) is a unique viscosity solution to (6.6) in the class of functions satisfying (3.4)
and (3.5).

Proof. According to Theorem 6.4, we know that V is a viscosity solution to (6.6). Thus, our conclusion follows
from Theorem 3.2 and Theorem 6.5. �

We are now in a position to prove Theorem 6.5.

Proof of Theorem 6.5. The proof of this theorem is rather long. Thus, we split it into several steps.

Step 1. Definitions of the auxiliary functions and sets.
To prove the theorem, we assume on the contrary that there exists ε > 0 a small number such that m̃ :=

sup(x,x0)∈H×Rd [W (x, x0)−V (x, x0)− 2ε(|x|2H + |x0|2)] > 0. Because simple functions are dense in H, according

to (6.8) there exist a simple function ỹ =
∑m
i=1 ai1[ti,ti+1), ti ∈ [−τ, 0], i = 1, 2, . . . ,m+1 and a constant ã ∈ Rd

such that W (x̃) − V (x̃) − 2ε(|x̃|2H + |x̃(0)|2) > ( 1
2 ∨ e−

τ
8 λ)m̃, where x̃ = ỹ + ã10(·). First, we can let ε > 0 be

small enough such that

εL sup
θ∈[−τ,0]

|x̃(θ)|2 + 2εL <
λm̃

16

Next, for every α > 0, we define, for any (x, y) ∈ D ×D,

Ψ(x, y) = W (x)− V (y)− α

2
d(x, y)− ε(|x|2H + |x(0)|2 + |y|2H + |y(0)|2),

and
Ψγ(t, x, y) = e−γtΨ(x, y),

where

d(x, y) = |x(0)− y(0)|2 + |x(−τ)− y(−τ)|2 + |B(x− y)|2H

+

∣∣∣∣ ∫ 0

−τ
F1(x(σ))− F1(y(σ))dσ

∣∣∣∣2 + |B(F1(x)− F1(y))|2H , (6.9)

and

γ =
λ

3
·

Finally, for every M > 0, we define

Mα := sup
t≥0;x,y∈DM

Ψγ(t, x̃⊗[0,t] x, x̃⊗[0,t] y),

where

Mα ≥M∗ := sup
t≥0

sup
x∈DM ;l∈[0,t]

Ψγ(t, x̃⊗l x, x̃⊗l x) ≥ m̃

2
·
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Step 2. Properties of Ψγ(t, x, y).

For every M,α > 0, from the definition of Mα, we can fix t̄ ≥ 0, k̄, l̄ ∈ [0, t̄] and x̄, ȳ ∈ DM satisfying

x̄ = x̃⊗k̄ x̄, ȳ = x̃⊗l̄ ȳ, Ψγ(0, x̃, x̃) ≤ Ψγ(t̄, x̄, ȳ) and Ψγ(t̄, x̄, ȳ) +
1

α
> Mα.

By the definition of Ψ , we obtain that

2Ψ(x, y) = Ψ(x, x) + Ψ(y, y) + V (x)− V (y) +W (x)−W (y)− αd(x, y).

Therefore,

Ψ(x, y) ≤ 1

2
(|Ψ(x, x)|+ |Ψ(y, y)|+ |V (x)− V (y)|+ |W (x)−W (y)|)− α

2
d(x, y)

≤ m̃+ 4∆d
1
2 (x, y)− α

2
d(x, y) ≤ m̃+

8∆2

α
.

Letting α ≥ 1 + 16∆2

(e−
τ
8
λ−e−

τ
4
λ)m̃

, we obtain that

Ψ(x, y) ≤ m̃+
1

2
(e−

τ
8 λ − e−

τ
4 λ)m̃.

As W (x̃) − V (x̃) − 2ε(|x̃|2H + |x̃(0)|2) > ( 1
2 ∨ e−

τ
8 λ)m̃, there exists a constant T ≤ 3τ

4 such that for all M > 0

and α > Mm̃,∆ := 2

(e−
τ
8
λ−e−

τ
4
λ)m̃
∨ (1 + 16∆2

(e−
τ
8
λ−e−

τ
4
λ)m̃

),

Ψγ(t, x, y) +
1

α
< Mα, t ≥ T, x, y ∈ DM .

Now, we can apply Lemma 4.1 to find t̂ ∈ [0, T ), k̂, l̂ ∈ [0, (t̂− t̄)], x̂, ŷ ∈ DM , which satisfies x̂ = x̄⊗k̂ x̂, ŷ =
ȳ ⊗l̂ ŷ with Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t̄, x̄, ȳ) ≥ Ψγ(0, x̃, x̃) such that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̂)] x, ŷ ⊗[0,(t−t̂)] y), t ≥ t̂, x, y ∈ DM . (6.10)

In particular, we know that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̄)] x, ŷ), Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂, ŷ ⊗[0,(t−t̄)] y), t ≥ t̂, x, y ∈ DM .

We should note that (t̂, x̂, ŷ) depends on t̄, k̄, l̄, x̄, ȳ, α,M .

Step 3. For every M > 0, we have

α

2
d(x̂, ŷ) ≤ eγT

α
+ |W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)| → 0 as α→ +∞. (6.11)

Let us show the above. We can confirm that

α

2
e−γt̂d(x̂, ŷ) + εe−γt̂(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)

≤ 1

α
+ e−γt̂(W (x̂)− V (ŷ))−Mα ≤

1

α
+ e−γt̂(W (x̂)− V (ŷ))−M∗ (6.12)

≤ 1

α
+ C −M∗,
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where C := 2∆(1 +M + τ
1
2M). We also know that

2M∗ ≤
2

α
+ e−γt̂(W (x̂)−W (ŷ) +W (ŷ)− V (ŷ)) + e−γt̂(W (x̂)− V (x̂) + V (x̂)− V (ŷ))

−αe−γt̂d(x̂, ŷ)− 2εe−γt̂(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)

≤ 2

α
+ e−γt̂(|W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)|) + 2M∗ − 2αe−γt̂d(x̂, ŷ).

Thus,

αe−γt̂d(x̂, ŷ) ≤ 1

α
+ e−γt̂(|W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)|).

Therefore,

αd(x̂, ŷ) ≤ eγT

α
+ |W (x̂)−W (ŷ)|+ |V (x̂)− V (ŷ)|. (6.13)

According to (6.12), we obtain d(x̂, ŷ) → 0 as α → +∞. Then combining (6.8) and (6.13), we see that (6.11)
holds.

Step 4. There exists M > 0 such that (6.10) holds true for all (t, x, y) ∈ [t̂,+∞)×D ×D and α > Nm̃,∆.

We note that there exists an M > (1 + τ
−1
2 )(1 + 2∆

ε ), independent of α, that is sufficiently large that

Ψγ(0, x̃, x̃) = W (x̃)− V (x̃)− 2ε(|x̃|2H + |x̃(0)|2) > 0 > Ψγ(t, x, y),

where t ∈ [0,+∞) and x ∈ D \ DM or y ∈ D \ DM . Therefore, for this M > 0, we know that (6.10) holds true
for all (t, x, y) ∈ [t̂,+∞)×D ×D and α > Nm̃,∆.

Step 5. Completion of the proof.

For the fixed M > 0 in step 4, we find t̂ ∈ [0, T ), k̂, l̂ ∈ [0, (t̂− t̄)], x̂, ŷ ∈ DM and x̂ = x̄⊗k̂ x̂, ŷ = ȳ ⊗l̂ ŷ with
Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t̄, x̄, ȳ) ≥ Ψγ(0, x̃, x̃) such that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̄)] x, ŷ ⊗[0,(t−t̄)] y), t ≥ t̂, x, y ∈ D. (6.14)

Then, we know that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂⊗[0,(t−t̄)] x, ŷ), t ≥ t̂, x ∈ D.

Thus, by the definition of the viscosity solution, we know that

−λ̃W (x̂)− (λ− λ̃)(V (ŷ) +
α

2
d(x̂, ŷ) + ε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2))

+ε(|x̂(0)|2 − |x̂(−τ)|2) + α(B(x̂− ŷ), x̂(0)1[−τ,0](·)− x̂)H

+α(B(F1(x̂)− F1(ŷ)), F1(x̂(0))1[−τ,0](·)− F1(x̂))H (6.15)

+α(F1(x̂(0))− F1(x̂(−τ)))

∫ 0

−τ
F1(x̂(θ))− F1(ŷ(θ))dθ

+H(x̂, α(x̂(0)− ŷ(0)) + 2εx̂(0)) ≥ 0,

and also, according to (6.14), that

Ψγ(t̂, x̂, ŷ) ≥ Ψγ(t, x̂, ŷ ⊗[0,(t−t̄)] y), t ≥ t̂, y ∈ D.
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Thus, we obtain

−λ̃V (ŷ) + (λ− λ̃)(−W (x̂) +
α

2
d(x̂, ŷ) + ε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2))

−ε(|ŷ(0)|2 − |ŷ(−τ)|2) + α(B(x̂− ŷ), ŷ(0)1[−τ,0] − ŷ)H

+α(B(F1(x̂)− F1(ŷ)), F1(ŷ(0))1[−τ,0](·)− F1(ŷ))H (6.16)

+α(F1(ŷ(0))− F1(ŷ(−τ)))

∫ 0

−τ
F1(x̂(θ))− F1(ŷ(θ))dθ

+H(ŷ, α(x̂(0)− ŷ(0))− 2εŷ(0)) ≤ 0.

Note that λ̃ = λ− γ = 2λ
3 . Combining (6.15) and (6.16), we obtain

λ

3
[W (x̂)− V (ŷ) + αd(x̂, ŷ) + 2ε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)]

≤ ε(|ŷ(0)|2 − |ŷ(−τ)|2 + |x̂(0)|2 − |x̂(−τ)|2)

+α(B(x̂− ŷ), x̂(0)1[−τ,0](·)− x̂− ŷ(0)1[−τ,0](·) + ŷ)H

+α(B(F1(x̂)− F1(ŷ)), F1(x̂(0))1[−τ,0](·)− F1(x̂)− F1(ŷ(0))1[−τ,0](·) + F1(ŷ))H (6.17)

+α(F1(x̂(0))− F1(x̂(−τ))− F1(ŷ(0)) + F1(ŷ(−τ)))

∫ 0

−τ
F1(x̂(θ))− F1(ŷ(θ))dθ

+H(x̂, α(x̂(0)− ŷ(0)) + 2εx̂(0))−H(ŷ, α(x̂(0)− ŷ(0))− 2εŷ(0)).

On the other hand, by a simple calculation we obtain

H(x̂, α(x̂(0)− ŷ(0)) + 2εx̂(0))−H(ŷ, α(x̂(0)− ŷ(0))− 2εŷ(0)) (6.18)

≤ sup
u∈U

(J1 + J2),

where

J1 = (F (x̂(0), (a, x̂)H , u) + F1(x̂(−τ)), α(x̂(0)− ŷ(0)) + 2εx̂(0))Rd

−(F (ŷ(0), (a, ŷ)H , u) + F1(ŷ(−τ)), α(x̂(0)− ŷ(0))− 2εŷ(0))Rd

≤ αL(|x̂(0)− ŷ(0)|2 + |x̂(0)− ŷ(0)|[|a|W 1,2 |B(x̂− ŷ)|H + |x̂(−τ)− ŷ(−τ)|]) (6.19)

+2εL|x̂(0)|(2 + |x̂(−τ)|+ |x̂(0)|+ |a|H |x̂|H)

+2εL|ŷ(0)|(2 + |ŷ(−τ)|+ |ŷ(0)|+ |a|H |ŷ|H);

and

J2 = q(x̂(0), u)− q(ŷ(0), u) ≤ L|x̂(0)− ŷ(0)|. (6.20)
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Combining (6.17)−(6.20), we obtain

λ

3
[W (x̂)− V (ŷ) + αd(x̂, ŷ) + 2ε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)]

≤ ε(|ŷ(0)|2 + |x̂(0)|2) +
α

2
p(x̂, ŷ) + 2εL|x̂(0)|(2 + |x̂(−τ)|+ |x̂(0)|+ |a|H |x̂|H)

+2εL|ŷ(0)|(2 + |ŷ(−τ)|+ |ŷ(0)|+ |a|H |ŷ|H) + L|x̂(0)− ŷ(0)|

≤ ε(|ŷ(0)|2 + |x̂(0)|2) +
α

2
p(x̂, ŷ) + 5εL(|ŷ(0)|2 + |x̂(0)|2) + εL(|x̂(−τ)|2 + |ŷ(−τ)|2)

+εL|a|2H(|x̂|2H + |ŷ|2H) + 4εL+ L|x̂(0)− ŷ(0)|,

where

p(x̂, ŷ) = |B(x̂− ŷ)|2H + [τ(1 + L2) + 2L2]|x̂(0)− ŷ(0)|2 + 2L2|x(−τ)− y(−τ)|2

+|B(F1(x̂)− F1(ŷ))|2H +

∣∣∣∣ ∫ 0

−τ
F1(x(θ))− F1(y(θ))dθ

∣∣∣∣2
+2L(2|x̂(0)− ŷ(0)|2 + |a|2W 1,2 |B(x̂− ŷ)|2H + |x̂(−τ)− ŷ(−τ)|2).

Recalling x̂, ŷ ∈ DM and Ψγ(t̂, x̂, ŷ) ≥ Ψγ(0, x̃, x̃), and combining it with εL supθ∈[−τ,0] |x̃(θ)|2 + 2εL < λm̃
16 and

λ > 2L(1 + τ |a|W 1,2) ∨ (5L+ 1) ∨ L|a|2H , it follows that

λ̃m̃

4
<
λ̃

2
[W (x̃)− V (x̃)− 2ε(|x̃|2H + |x̃(0)|2)] ≤ λ̃

2
Ψγ(t̂, x̂, ŷ)

≤ λ̃

2
[W (x̂)− V (ŷ)− α

2
d(x̂, ŷ)− ε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)]

≤ α

2
p(x̂, ŷ) + L|x̂(0)− ŷ(0)|+ (5L+ 1)ε(|ŷ(0)|2 + |x̂(0)|2) + εL(|x̂(−τ)|2 + |ŷ(−τ)|2)

+εL|a|2H(|x̂|2H + |ŷ|2H) + 4εL− λε(|x̂|2H + |x̂(0)|2 + |ŷ|2H + |ŷ(0)|2)

≤ α

2
p(x̂, ŷ) + L|x̂(0)− ŷ(0)|+ λm̃

8
·

Letting α→ +∞, the following contradiction is induced:

λm̃

6
≤ λm̃

8
·

The proof is now complete. �
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