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UPPER SEMICONTINUITY OF THE LAMINATION HULL ∗

Terence L.J. Harris1,2

Abstract. Let K ⊆ R2×2 be a compact set, let Krc be its rank-one convex hull, and let L(K) be
its lamination convex hull. It is shown that the mapping K 7→ L(K) is not upper semicontinuous on
the diagonal matrices in R2×2, which was a problem left by Kolář. This is followed by an example of a
5-point set of 2× 2 symmetric matrices with non-compact lamination hull. Finally, another 5-point set
K is constructed, which has L(K) connected, compact and strictly smaller than Krc.
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1. Introduction

Let Rm×n denote the space of m × n matrices with real entries. Two matrices X,Y ∈ Rm×n with
rank(X − Y ) = 1 are called rank-one connected. A set S ⊆ Rm×n is lamination convex if

λX + (1− λ)Y ∈ S for all λ ∈ [0, 1],

whenever X,Y ∈ S are rank-one connected. For a set K ⊆ Rm×n, the smallest lamination convex set containing
K is denoted by L(K).

This work contains a counterexample to a question posed in [5], concerning the continuity of the mapping
K 7→ L(K) on R2×2. The example is similar to Example 2.2 in [1]. This is followed by a 5-point set K of
symmetric 2 × 2 matrices with non-compact L(K), similar to Example 2.4 in [5]. Then, another 5-point set
K is constructed which has L(K) connected, compact and strictly smaller than Krc. This is contrasted with
Proposition 2.5 in [8], which says that Kpc = L(K) = K if K is connected, compact and has no rank-one
connections. Finally, a weaker version of this result is given for sets with rank-one connections.

2. Main results

Define the Hausdorff distance between two compact sets K1,K2 in Rm×n by

ρ(K1,K2) = inf{ε ≥ 0 : K1 ⊆ Uε(K2) and K2 ⊆ Uε(K1)},
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Figure 1: The set K0 from Theorem 2.1. The dotted lines are rank-one lines in L(K), where K is a small
perturbation of K0.

where Uε(K) is the open ε-neighbourhood of K, corresponding to the Euclidean distance. Let K be the set of
compact subsets of Rm×n. A function f : K → K is upper semicontinuous if for every ε > 0 and for every
K0 ∈ K, there exists a δ > 0 such that f(K) ⊆ Uε(f(K0)) whenever ρ(K,K0) < δ. It is known that the function
K 7→ Krc is upper semicontinuous on the compact subsets of Rm×n (see for example the proof of Thm. 1 in [7],
Example 4.18 in [4], or Thm. 3.2 in [9]). The following example (pictured in Fig. 1) shows that this fails on
diagonal matrices in R2×2, for the lamination convex hull.

Theorem 2.1. There exists a compact set K0 of diagonal matrices in R2×2 such that the mapping K 7→ L(K)
is not upper semicontinuous at K0.

Proof. Identify the space of 2× 2 diagonal matrices with R2 in the natural way. Let

K0 = {(1, 0)} ∪
∞⋃
n=0

{(
1− 3

2n+1
,

1

2n+1

)
,

(
1− 1

2n
,

3

2n+1

)}
·

The set K0 is compact and has no rank-one connections, thus L(K0) = K0. For each integer n ≥ −1 let

Pn =

(
1− 1

2n+1
,

1

2n+1

)
·

Given δ > 0, choose a positive integer N large enough to ensure that 1
2N

< δ, and let K = K0 ∪ {PN}, so that
ρ(K,K0) < δ. Then (

1− 1

2N
,

1

2N+1

)
=

1

2

(
1− 3

2N+1
,

1

2N+1

)
+

1

2
PN ∈ L(K),

and hence

PN−1 =
1

2

(
1− 1

2N
,

1

2N+1

)
+

1

2

(
1− 1

2N
,

3

2N+1

)
∈ L(K).
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Figure 2: A 5-point set K ⊆ R2×2
tri together with 5 rank-one lines in L(K). The dashed lines indicate rank-one

lines in L(K), which spiral toward the diagonal plane and make L(K) non-compact.

It follows by induction that (0, 1) = P−1 ∈ L(K). Since ρ(P−1, L(K0)) ≥ 1
2 , this shows that the function

K 7→ L(K) is not upper semicontinuous at K0. �

The next result gives two examples of 5-point subsets of R2×2, each with a non-compact lamination hull. The
upper-triangular example is pictured in Figure 2. It consists of 4 points in the diagonal plane arranged in a T4
configuration, together with a point whose projection onto the diagonal plane is a corner of the inner rectangle
of the T4 configuration.

Throughout, the upper triangular matrix

(
x z
0 y

)
will be identified with the point (x, y, z) ∈ R3. The symmetric

example uses essentially the same idea as in Figure 2, so the matrix

(
x z
z y

)
will also be denoted by the point

(x, y, z) ∈ R3. Since the cases are treated separately, the notations do not conflict. The symmetric notation also
differs from the usual identification, used for example in [5]. The space of 2 × 2 upper triangular matrices is
denoted by R2×2

tri , and the space of 2 × 2 symmetric matrices by R2×2
sym. Up to linear isomorphisms preserving

rank-one directions, these are the only two 3-dimensional subspaces of R2×2 (see [2], Cor. 6 or [6], Lem. 3.1)

Theorem 2.2.

(i) There exists a 5-point set K ⊆ R2×2
tri such that L(K) is not compact.

(ii) There exists a 5-point set K ⊆ R2×2
sym such that L(K) is not compact.

Proof. For part (i) let x1 < x2, y2 < y1, z0 > 0 and α0, α1, α2, α3 > 0. Let

P0 = (x1, y2, 0), P1 = (x1, y1, 0), P2 = (x2, y1, 0), P3 = (x2, y2, 0),

and set

A0 = (x1, y1 + α0, 0), A1 = (x2 + α1, y1, 0),

A2 = (x2, y2 − α2, 0), A3 = (x1 − α3, y2, 0).

For i ∈ {0, 1, 2, 3} let A4 = A0 and

λi =
det(Ai −Ai+1)

det(Ai −Ai+1)− det(Pi −Ai+1)
∈ (0, 1),
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let X0 = P0 + (0, 0, z0) and K = {A0, A1, A2, A3, X0}. For i ≥ 0 let

Xi+1 = (1− λi mod 4)Ai mod 4 + λi mod 4Xi,

so that for i ≥ 0 and k ∈ {0, 1, 2, 3}, induction gives

X4i+k = Pk + (λ0λ1λ2λ3)i

k−1∏
j=0

λj

 (0, 0, z0), det(Xi −Ai mod 4) = 0,

which implies that Xi ∈ L(K) for every i ≥ 0. Hence P0 ∈ L(K), and it remains to show that P0 /∈ L(K). This
follows from the fact that

{(x, y, z) ∈ R2×2
tri : z > 0} ∪ {A0, A1, A2, A3}

is a lamination convex set containing K, which does not contain P0.
For part (ii), let all the scalars and diagonal points be the same as in part (i). Using the symmetric notation

let Y0 = P0 + (ξ1, ξ2, ξ3) where ξ3 > 0 and

ξ1 =
1

2

−α3 +

√
α2
3 −

4α3ξ23
y1 + α0 − y2

 , ξ2 =
−ξ1(y1 + α0 − y2)

α3
·

so that det(Y0−A0) = det(Y0−A3) = 0, and Y0 → P0 as ξ3 → 0. The fact that det(P0−A1) > 0 > det(A0−A1)
means that

det(Y0 −A1) > 0 > det(A0 −A1),

whenever ξ3 ∈ (0, ε1), for some ε1 > 0. Set B0 = Y0. For i ∈ {0, 1, 2, 3} and Bi with

det(Bi −Ai+1) 6= 0 and sgn det(Bi −Ai+1) 6= sgn det(Ai −Ai+1),

let

Bi+1 = (1− ti)Ai + tiBi, where ti =
det(Ai −Ai+1)

det(Ai −Ai+1)− det(Bi −Ai+1)
∈ (0, 1),

so that det(Bi+1 − Ai+1) = 0. By induction ti → λi as ξ3 → 0 for i ∈ {0, 1, 2, 3}, Bi → Pi mod 4 as ξ3 → 0
for each i ∈ {0, 1, 2, 3, 4}, and B1, B2, B3, B4 all exist if ξ3 is sufficiently small. Hence there exists ε2 > 0 such
that (t0t1t2t3) < 1

2 (1 + λ0λ1λ2λ3) and B1, B2, B3, B4 all exist whenever ξ3 ∈ (0, ε2). Put (η1, η2, η3) = B4 − P0.
Then since det(B4 −A0) = det(B4 −A3) = 0,

η1 =
1

2

−α3 ±

√
α2
3 −

4α3η23
y1 + α0 − y2

 , η2 =
−η1(y1 + α0 − y2)

α3
· (2.1)

But since B4 → P0 as ξ3 → 0, there exists ε3 > 0 such that the sign in (2.1) is positive whenever ξ3 ∈ (0, ε3).
Let ε = min{ε1, ε2, ε3}. If ξ3 ∈ (0, ε). then

η3 = (t0t1t2t3)ξ3 <
1

2
(1 + λ0λ1λ2λ3)ξ3. (2.2)

Therefore let K = {A0, A1, A2, A3, Y0}, and set Y1 = B4. Then Y1 ∈ L(K) by the preceding working. By (2.2),
iterating this process gives a sequence Yn ∈ L(K) with Yn → P0 ∈ L(K). Again the point P0 is not in L(K)
since

{(x, y, z) ∈ R2×2
sym : z > 0} ∪ {A0, A1, A2, A3}

is a lamination convex set separating P0 from K. Hence L(K) is not compact. �
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A function f : Rm×n → R is called rank-one convex if

f(λX + (1− λ)Y ) ≤ λf(X) + (1− λ)f(Y ) for all λ ∈ [0, 1],

whenever rank(X − Y ) ≤ 1. The rank-one convex hull of a compact set K ⊆ Rm×n is defined by

Krc = {X ∈ Rm×n : f(X) ≤ 0 ∀ rank-one convex f with f |K ≤ 0}.

The polyconvex hull is defined similarly via polyconvex functions; a function f : R2×2 → R is polyconvex if
there exists a convex function g : R2×2 × R→ R such that f(X) = g(X,detX) for all X ∈ R2×2. For compact
K, the following characterisation of Kpc will be used (see Theorem 1.9 in [4]):

Kpc = {µ : µ ∈Mpc(K)}, (2.3)

where Mpc(K) is the class of probability measures supported in K which satisfy Jensen’s inequality for all
polyconvex f ;

f(µ) ≤
∫
R2×2

f(X) dµ(X) where µ =

∫
R2×2

X dµ(X).

Definition 2.3. An ordered set {Xi}4i=1 ⊆ Rm×n without rank-one connections is called a T4 configuration if
there exist matrices P,C1, C2, C3, C4 ∈ Rm×n and real numbers µ1, µ2, µ3, µ4 > 1 satisfying

rankCi = 1 for 1 ≤ i ≤ 4,

4∑
i=1

Ci = 0,

and

X1 = P + µ1C1

X2 = P + C1 + µ2C2

X3 = P + C1 + C2 + µ3C3

X4 = P + C1 + C2 + C3 + µ4C4. (2.4)

An unordered set {Xi}4i=1 is a T4 configuration if it has at least one ordering which is a T4 configuration.

The following result is a slight generalisation of Theorem 1 in [7] (see also Cor. 3 in [3]). The proof is similar
to the one in [7], with minor technical changes.

Theorem 2.4. If K ⊆ R2×2 is compact, and does not have a T4 configuration {Xi}4i=1 with at least two Xi, Xj

in distinct connected components of L(K), then

Krc =
⋃
i

(Ui ∩K)rc and Kqc =
⋃
i

(Ui ∩K)qc,

where the Ui are the connected components of L(K).

On diagonal matrices the conclusion reduces to Krc = L(K). The following proposition shows that this fails in
the full space R2×2.

Proposition 2.5. There exists a 5-point set K ⊆ R2×2 with L(K) connected, compact and strictly smaller
than Krc.
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Proof. Fix ε ∈ (0, 1), let

X1 =

(
1 0
0 0

)
, X2 =

(
0 0
0 1

)
, X3 =

(
−ε −1
−ε2 −ε

)
, X4 =

(
−ε ε2
1 −ε

)
,

and let

µ1 =
1 + 2ε

ε(1− ε2)
, µ2 = 1 + ε2µ1, µ3 = 1 +

(
1 + ε2

ε

)
µ2, µ4 = 1 + ε2µ3, (2.5)

so that
µ1 = 1 +

µ4

ε(1 + ε2)
· (2.6)

Set

P1 =
1

ε(µ1 − 1)

(
−ε 0
1 0

)
, P2 =

1

µ1ε

(
0 0
1 0

)
,

P3 =
1

µ2

(
0 0
ε 1

)
, P4 =

1

µ3ε

(
−ε2 −ε
ε 1

)
,

and let Ci = Pi+1 − Pi, where P5 := P1. Then clearly rankCi = 1 for all i, whilst (2.5) and (2.6) imply that
this is a solution of (2.4). Let

K = {0, X1, X2, X3, X4}, so that L(K) =

4⋃
i=1

[0, Xi] .

To prove the second formula for L(K), it suffices to show that the set S =
⋃4
i=1 [0, Xi] is lamination convex.

For i 6= j, the fact that detXi = detXj = 0 and det(Xi −Xj) 6= 0 implies that det(Xi − tXj) 6= 0 whenever
t ∈ (0, 1], since the determinant is linear along rank-one lines. It follows similarly that det(sXi − tXj) 6= 0 for
s, t ∈ (0, 1], and so the only rank-one connected pairs in S are 0 and tXi for any i. Hence S is lamination convex.
By Lemma 2 in [7], the point P1 is in Krc \ L(K), so this proves the proposition. �

The preceding example contrasts with Lemma 3 in [8], which states (in a weakened form) that Kpc = K if K
is a connected compact subset of R2×2 without rank-one connections. The example shows that the assumption
that K has no rank-one connections cannot be weakened to L(K) = K. The reason is that det(X − Y ) cannot
change sign on connected subsets of R2×2 without rank-one connections, whilst it can on lamination convex
sets. If the assumption that det(X − Y ) does not change sign is added, Kpc is equal to the lamination hull of
order 2: given a set K ⊆ Rm×n, let L(0)(K) = K and define L(k)(K) inductively by

L(k+1)(K) =
⋃

X,Y ∈L(k)(K)
rank(X−Y )≤1

[X,Y ].

Proposition 2.6. If K ⊆ R2×2 is a compact set such that det(X − Y ) ≥ 0 for every X,Y ∈ K, then
Kpc = L(2)(K).

Proof. If µ is a probability measure supported in K with detµ =
∫
R2×2 detX dµ, then as in [8],∫

R2×2

∫
R2×2

det(X − Y ) dµ(X) dµ(Y ) = 0,

and therefore det(X − Y ) = 0 whenever X and Y are in the support of µ. This implies (see the following
Lem. 2.7) that the support of µ is contained in a 2-dimensional affine plane P consisting only of rank-one
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directions. Therefore µ ∈ (K ∩P )co, and so Carathéodory’s Theorem gives 3 points Xi ∈ K ∩P such that µ is a
convex combination µ = λ1X1+λ2X2+λ3X3, and without loss of generality λ1 6= 0. Then λ1

λ1+λ2
·X1+ λ2

λ1+λ2
·X2 ∈

P ∩ L(1)(K) since P is a plane consisting of rank-one directions, and similarly

µ = (λ1 + λ2)

(
λ1

λ1 + λ2
·X1 +

λ2
λ1 + λ2

·X2

)
+ λ3X3 ∈ L(2)(K).

It follows from (2.3) that Kpc = L(2)(K). �

Lemma 2.7. Let X0, Y0 ∈ Rm×n satisfy rank(X0 − Y0) = 1, and let

S = {X ∈ Rm×n : rank(X −X0) ≤ 1 and rank(X − Y0) ≤ 1}.

Then:

(i) S = P1 ∪ P2, where P1 is an m-dimensional affine plane and P2 is an n-dimensional affine plane, and for
each fixed i, rank(X − Y ) ≤ 1 for X,Y ∈ Pi.

(ii) The planes P1 and P2 satisfy

rank(X − Y ) > 1 for X ∈ P1 \ P2 and Y ∈ P2 \ P1.

Proof. By translation invariance it may be assumed that Y0 = 0, so that rankX0 = 1 and X0 = v0w
T
0 for some

nonzero v0 ∈ Rm, w0 ∈ Rn. Let

P1 = {xwT0 : x ∈ Rm}, P2 = {v0yT : y ∈ Rn}.

If X ∈ S then X = vwT for some v ∈ Rm and w ∈ Rn, and

X −X0 = vwT − v0wT0 = abT , (2.7)

for some a ∈ Rm and b ∈ Rn. Suppose for a contradiction that X /∈ P1 ∪ P2. Then since X /∈ P1 there exists a
vector w⊥0 such that 〈w0, w

⊥
0 〉 = 0 and 〈w,w⊥0 〉 6= 0. Right multiplying both sides of (2.7) with w⊥0 gives

v =
〈b, w⊥0 〉a
〈w,w⊥0 〉

, and similarly w =
〈a, v⊥0 〉b
〈v, v⊥0 〉

·

Let λ =
〈a,v⊥0 〉〈b,w

⊥
0 〉

〈v,v⊥0 〉〈w,w⊥0 〉
. Then λ 6= 1 by (2.7) since v0w

T
0 6= 0, and therefore

X = vwT =

(
λ

λ− 1

)
v0w

T
0 ∈ P1 ∩ P2,

which is a contradiction. This proves part (i).

For part (ii), let X = xwT0 ∈ P1 \ P2, let Y = v0y
T ∈ P2 \ P1 and suppose for a contradiction that

rank(X − Y ) = 1. Then by part (i), Y = xzT for some nonzero z ∈ Rn, and therefore x = v0〈y,z〉
‖z‖2 , which

contradicts the fact that X /∈ P2. �
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[8] V. Šverák, On Tartar’s conjecture. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 405–412.
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