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DISTANCE ESTIMATES FOR STATE CONSTRAINED TRAJECTORIES
OF INFINITE DIMENSIONAL DIFFERENTIAL INCLUSIONS *

HELENE FRANKOWSKA!, ELSA M. MARCHINI>* AND MARCO MAZZOLA?

Abstract. This paper concerns estimates on the distance between a trajectory of a differential in-
clusion and the set of feasible trajectories of the same inclusion, feasible meaning confined to a given
set of constraints. We apply these estimates to investigate Lipschitz continuity of the value functions
arising in optimal control, and to variational inclusions, useful for proving non degenerate necessary
optimality conditions. The main feature of our analysis is the infinite dimensional framework, which
can be applied to models involving PDEs.
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1. INTRODUCTION

Consider the differential inclusion
x(t) € F(t,z(t)), a.e.t€[to,1], z(to) =0 (1.1)

under the state constraint:
x(t) e K, forté€ [to,1], (1.2)

where F': I x R™ ~» R" is a set-valued map, I = [0,1], tg € I and K is a closed subset of R™. Estimates on
the distance between a trajectory of differential inclusion (1.1) and the set of all its feasible trajectories, that is
satisfying in addition the state constraint (1.2), have been the object of an intense study, see [4,5,10,19,21,22]
and their bibliographies, to mention only a few. Such estimates are usually called neighbouring feasible trajectory
theorems and their interest is due, on one hand, to constructive proofs, not requiring penalization and, on another
hand, to the wide-spread applications in state constrained optimal control problems. Regularity properties of
the value function, sensitivity relations, dynamic programming, non degenerate form of necessary optimality
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conditions, are some of the results obtained by using such distance estimates. Also the developed constructions
of feasible trajectories did allow to obtain relaxation theorems under state constraints, i.e. to prove density of
feasible trajectories in the set of relaxed feasible trajectories (that is when F'(¢,z) are replaced by their convex
envelopes).

The infinite dimensional control systems and differential inclusions under state constraints, the natural frame-
work for the description of many physical phenomena modeled by PDEs, as diffusion, vibration of strings or
membranes, population dynamics, fluid dynamics, have been analyzed, by such direct approach, for the first time
in [18], where, in particular, a relaxation theorem has been proved. The differential inclusion under investigation
takes the following form

z(t) € Az(t) + F(t,xz(t)), a.e. te€]to, 1], x(to) =0 (1.3)
subject to the similar, but infinite dimensional, state constraint:
z(t) € K, forallt € [to,1]. (1.4)

Here, the densely defined unbounded linear operator A is the infinitesimal generator of a strongly continuous
semigroup S(t) : X — X, X is an infinite dimensional separable Banach space, F': I x X ~» X is a set-valued
map with closed non-empty images and K is a given subset of X. The trajectories of (1.3) are understood in
the mild sense (see [27]).

The main result in [18] states that, under a convenient inward pointing condition, any feasible trajectory,
that is any mild solution z of (1.3) satisfying (1.4), can be approximated by mild trajectories of (1.3) lying
in the interior of K for ¢ > t3. The aim of the present paper is to make a further step forward and to extend
results on distance estimates to the infinite dimensional setting. In particular, we prove a neighboring feasible
trajectory theorem stating that under an inward pointing condition, there exists ¢y > 0 such that for any € > 0
and any trajectory & of (1.3), possibly violating (1.4), one can construct a feasible trajectory x lying in the
interior of K and satisfying

12 = zlle(o,11,x) < o ( max_distx (£(t)) —|—5> ,
t€[to,1]
where maxycy, 1) distg (#(t)) is interpreted as a measure of the constraint violation by #. As we said above, in
the finite dimensional case this property plays a crucial role in the study of optimal control problems under
state constraints. In the present paper we show that such results are equally useful in the infinite dimensional
context, usually far more difficult to deal with. Indeed, we apply here our main results (Theorems 4.1 and 4.2)
to prove the local Lipschitz continuity of the value function associated to the Mayer optimal control problem
under state constraints, and to obtain some results on variational inclusions. The last application is particularly
important, since it plays a crucial role in proving nondegenerate necessary conditions for optimality.

To obtain neighbouring feasible trajectory theorems in the finite dimensional framework under very general
assumptions on F' and K, in [19,20] a new inward pointing condition has been introduced. When F' is bounded
and continuous near the boundary of K, it can be written in the following way:

VY R>0,3p>0 such that Yz € 0K N RB, (1.5)

it o(z;v) >0 forsome t €I, ve F(tT), then irtf )0(:7:;17 —v) < —p.
BEF (t,&

In the above
o(z;y)= sup (§y), VyeX,

£€ddK ()
where dg () is the oriented distance from z € X to K defined by
infrex || — k|| x if z¢ K
dr(r) =4 :
—infrex\iy llz — k|l x otherwise,

and ddk (z) denotes the Clarke generalized gradient of di at the point € X.



DISTANCE ESTIMATES FOR STATE CONSTRAINED TRAJECTORIES 1209

Below we will use also the classical notion of distance from = € X to K, defined by

dist i () :éélf(“x_kllx

Condition (1.5) can be interpreted in the following way: for every (¢,Z) € I x 0K, any admissible velocity
v € F(t,z) that is “pushing outward” in the sense that o(Z;v) > 0, can be corrected by a “compensating
velocity” © € F(t, %), satisfying o(Z; 7 — v) < —p.

This kind of condition allows to treat constraints with nonsmooth boundary, arising naturally in applied
sciences. Nevertheless, when K has a smooth boundary, then (1.5) reduces to the classical inward pointing
condition

YR >0, 3p > 0 such that 76%11(5 7)<VdK(f),17> < —p,V(t,z) e I x (OKNRB) (1.6)
v \T
that is equivalent to the Soner condition [28] when K and F' are bounded, see [20] for more details.

In Proposition 5.4 we discuss an analogous reduction of the inward pointing condition (1.5) when X is a
reflexive Banach space.

We aim to work in great generality, to cover a large class of models: the infinite dimensional state space X
is Banach, and the unbounded operator A generates a semigroup S(t) which is merely strongly continuous. For
this reason, in our paper the semigroup S(t) is involved in the formulation of the inward pointing conditions.

To simplify the notation, let us define for any positive 7 the set

'K = {zx € K+nB: S(t)x € 9K +nB for some 7 € [0,7]},
and for every n > 0 and x € X, the set
Al(z) = {(1,2) € [0,n] x X : S(1)z € 0K + 1B, z € B(S()z,n)},
and the function X, (z;-) : X — [—00, +00) that associates to any v € X the value

In(xv) = sup  o(%8(7)v),
(1,2)EAN (x)
with the convention that the supremum over the empty set is equal to —oo. The introduction of the sets 97K
and A"(z) is due to the fact that, because of the presence of the semigroup S(-) and since, in general, the
boundary of K is not compact, we cannot consider anymore only the points on the boundary of K, but we are
led to extend the inward pointing condition to points that are “sent” by the semigroup into a neighborhood of
OK. Let us underline that 0K 4+ nB C 9"K for any n > 0 and that this inclusion may be strict. The function
Yy (x;-) allows to define “outward” and “compensating” velocities. Observe that it is equal to —oo whenever
S(7) z does not belong to IK + nB for all 7 € [0, 7).
Thus, in our very general context, the inward pointing condition takes the form

VR>0,3n,p,M >0, 3J C I such that p(J) =1 and if X, (z;v) >0 (1.7)
for some t € J, x € RBNJ"K, v € F(t,x), then 37 € F(t,z) N B(v, M) satisfying
max { 2, (2,0 — ) ; Zy(z;0)} < —p;
where p stands for the Lebesgue measure. Because of the generality of setting, this inward pointing condition
may seem complicated. Nevertheless, some simplifications of (1.7) hold: we will prove in Lemma 5.1 that, when

working with locally bounded and convex valued F', condition (1.7) is reduced to
VR>0,3n,p>0,3J CIsuch that x(J) = 1 and whenever X, (z;v) >0 (1.8)
for some t € J,x € RBNJ"K, v € F(t,x), then 30 € F(t,x) satisfying
Yo(x;7 —v) < —p.
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Further, if some compactness is present, conditions (1.7), (1.8) can be drastically simplified and, in some cases,
reduced to its finite dimensional counterpart (1.5) or (1.6), as we show in Section 5.

The paper is structured as follows: Section 2 contains notations, definitions and assumptions. In Section 3
we provide examples of physical models satisfying the main hypotheses in use. The new results are stated
in Section 4, while in Section 5 we provide the conditions allowing to simplify (1.7) into (1.5) or (1.6), and
applications to the concrete examples. Sections 6 and 7 deal with Lipschitz continuity of the value function and
with variational inclusions, and the final Section 8 is devoted to the proofs of the main results.

2. PRELIMINARIES

In this section we list the notation and the main assumptions in use throughout the paper.

2.1. Notation

— X is a separable Banach space;

— B(x,r) denotes the closed ball of center € X and radius r > 0; B is the closed unit ball in X centered at
0;

— given a Banach space Y, L(X,Y) denotes the Banach space of bounded linear operators from X into Y,
C(1I, X) the space of continuous functions from I to X, LP(I, X) the space of Bochner LP integrable functions
from I to X, and L*°(I, X) the space of measurable essentially bounded functions from I to X;

— (-, -) stands for the duality pairing on X* x X;

— u is the Lebesgue measure on the real line;

— given a set-valued map F : X ~» X, z € X and y € F(z), the derivative dF(z,y) : X ~» X is defined by

v € dF(z,y)w & lim dist (v,

Flx + hw) —y
h—0+

h =0

— the intermediate (or adjacent) cone to K at x is defined as

K —
Ig(z) = {v € X : lim dist (v, a:> = 0}
h—0+ h

={ve X :Vh; = 0%, 3w; — v such that =+ h;w; € K}.

We will use the following notion of solution.

Definition 2.1. Let tp € I and xy € X. A function x € C([tg, 1], X) is a (mild) solution of (1.3) with initial
datum z(tg) = zo if there exists a function f* € L'([tg, 1], X) such that

fE(t) € F(t,x(t)), for a.e. t€ (to,1) (2.1)

and
t

z(t) = S(t —to) xo + ) S(t—s) f*(s)ds, for any t € [tg, 1], (2.2)

i.e. f* is an integrable selection of the set valued map t ~» F(t,2(t)) and z is a mild solution (see [27]) of the
initial value problem

{g’c(t) = Az(t) + f*(t), forae. t€lt,l1]

1‘(t0) = X9.
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We denote by S[ft(o,l] (x0) the set of feasible trajectories of (1.3) with initial datum zq. Since S(t) is a strongly

continuous semigroup, there exists Mg > 1 such that
[1S()|lLx,x) < Ms, for any tel. (2.3)

The differential inclusion (1.3) is a convenient tool to investigate for example the semilinear control system

{:’v(t) = Ax(t) + f(t,z(t),u(t)), u(t) €U, ae.t€ [to,1] 2.0

x(to) = Xo

where U is a complete separable metric space. Setting F(t,x) = f(¢t,2,U), we can reduce (2.4) to (1.3) by
applying a measurable selection theorem.

2.2. Assumptions

The following conditions are assumed in the main results:
— positive invariance of K by the semigroup:
St)K C K, Vtel; (2.5)
— for every (t,x) € I x X, F(t,z) is closed, non empty, and, for any = € X,
the set-valued map F(-,x) is Lebesgue measurable; (2.6)

— for every t € I, the set-valued map F(¢,-) is locally Lipschitz in the following sense: for any R > 0, there
exists kp € L1(I,R") such that, for a.e. t € I and any z,y € RB,

F(t,z) C F(t,y) + kr(t)|lz — yl|x B; (2.7)
— there exists ¢ € L*(I,R*") such that, for a.e. t € [ and any z € X,

F(t,z) € 6(t) (1+ |lz] ) B. (2.8)

3. EXAMPLES OF INVARIANT SETS

The great generality of the main assumptions allows to apply our results to a number of phenomena modeled
by PDEs. The only restrictive condition regards the positive invariance of the state constraint K by the linear
semigroup S(t), namely assumption (2.5). A large literature has been devoted to ensure such a property. For
instance, when K is closed and convex, necessary and sufficient conditions for (2.5) are well known. To mention
only few contributions in this direction, see e.g. [7,12,17,26] and the references therein. See also [9] for a recent
result dealing with the non convex case. In particular, in the case when K is a cone inducing a partial ordering
in the Banach space X, invariance properties have been deeply studied due to their importance in several
applications. For instance in models describing populations phenomena this kind of constraint is a natural
requirement. When A is the realization of a second order elliptic operator, invariance of pointwise constraints
(such as positivity of solutions) is provided by the maximum principle (and its generalizations). Among this
variety of models, we have selected a family of problems satisfying (2.5), to which we can apply our main
theorems, see Section 5 for further details.
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3.1. The case of the contraction semigroups

A meaningful class of examples is provided by systems of type (1.3), where the operator A generates a Cj
semigroup S(t) of contraction. Here the constraint K = RB fulfills the required invariance (2.5), allowing to
impose an upper bound on the associated energy. In this framework, many systems arising from PDEs can be
found in the literature.

Example 3.1 (Boltzmann viscoelasicity). We analyze at first a model for the isothermal viscoelasticity, see [18]
and the references therein, where the same problem has been studied. This phenomenon is described by an
integrodifferential equation. Namely, taking 2 C R?, a bounded domain with smooth boundary 9f2 representing
the region occupied by an elastic body, and a memory kernel u, accounting for the hereditary properties of the
viscoelastic material, the displacement function u = u(t,x), t € (0,1) and x € (2, satisfies

Duu(t) — A {u(t) - /0 " (s)ult — ) ds| € Bt u(e)), (3.1)

(we omit the variable x). Imposing Dirichlet boundary conditions, complies with the assumption that the body
is kept fixed at the boundary of 2. As detailed in [11,18], by introducing an auxiliary variable in accord to
the classical Dafermos’ history approach [15], (3.1) can be rewritten as a differential inclusion of type (1.3),
where, in a suitable functional Hilbert space X, a linear operator A generates a strongly continuous semigroup
of contractions S(t) : X — X.

Example 3.2 (The acoustic wave equation). The second example arises in theoretical acoustics, when modeling
transverse vibrations in a membrane whose boundary can vibrate. The differential inclusion ruled by the classical
wave equation

8ttu € Au + F‘(t7 U), (32)

for u = u(t,x), t > 0, x € 2, where a smooth bounded domain {2 of RY | is endowed with the so called acoustic
boundary conditions,

underlying the assumption that any x € 32 reacts to the excess pressure of the wave as a resistive harmonic
oscillator. Here 6 = §(t,x), t > 0, x € 9f2 is the normal displacement of the boundary, p is the density,
m,d, k € C(012) represent respectively the mass, the friction coefficient, and the spring constant. Assuming the
boundary impenetrable, the following compatibility condition follows: 9;0 = d,u, where J,u is the directional
derivative of u in the direction of the outward normal to {2. These boundary conditions have been introduced
by Moser and Ingard in [25], and formalized in a rigorous mathematical framework in [3], see also [14,23]. As
shown in [23], equation (3.2) can be rewritten in the form (1.3), with an operator A that is a 4 x 4 matrix
generating a strongly continuous semigroup of contractions in the Hilbert space

X = HY(N) x L*(2) x L*(002) x L*(0N)
with norm
loliy = [ (pIVuP + GiowP) ax+ [ (52 +miaisP) as.
(7] C a0
for x = (u, Opu, 6, 049).

3.2. Conservative systems

We consider here the non convex set K = RB \ rB, with 0 < r < R, complying with the request that
the energy associated to the system should be constrained between two bounds. As example, we can take the
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acoustic wave equation (3.2) and (3.3). Defining as energy of the solution E = ||z||%, a simple estimate, see [23],

shows that
dF

- = 2
= 249@@&da

implying that (3.2) and (3.3) is a conservative system once the friction coefficient d = 0. Hence the annulus
RB\ rB, with 0 < r < R is positively invariant under the action of the associated semigroup, and (2.5) is
satisfied for this type of constraint.

3.3. Pointwise constraints

A class of parabolic problems arising in heat diffusion is considered, where we impose a pointwise state
constraint, such as the positivity of the solutions. With the exception of a one-dimensional problem, whose
framework is the Hilbert space H'(0,1) (embedded in C([0, 1])), in higher dimension, in order to have Int K # 0,
we work in the Banach space of the continuous functions. At first the zero-obstacle problem is investigated,
namely, we require the positivity of the solutions.

Example 3.3 (A one-dimensional heat equation). To model the heat flux in a cylindrical bar, with perfectly
insulated lateral surface and whose length is much larger than its cross-section, a one-dimensional equation is
introduced. For u = u(t, s), t,s € [0,1] x [0, 1], let

By € Dgsu — u+ F(t,u), (3.4)

endowed with the Neumann boundary conditions, complying with the assumption that the heat flux at the two
ends of the bar is zero. In order to rewrite (3.4) as (1.3), we introduce the operator A = 9s; — I with domain
D(A) = {z € H*(0,1) : 2/(0) = /(1) = 0}. A is the infinitesimal generator of a strongly continuous semigroup
S(t) on Y = L?(0,1). The space X = H'(0,1) is an invariant subspace of Y, and the restriction of S(t) to X
(called S(t)) is a strongly continuous semigroup in X, see [29]. Then, we can apply our results to S(¢) : X — X
where the cone of nonnegative functions

K={zeX:xz(s)>0, for s € [0,1]},

has non empty interior. Further, K is positively invariant under the action of S(t). An interesting property of
this constraint set, which will allow to simplify drastically our inward point condition, is that the set of the
external normals to K is pre-compact, see [18] for the proof.

Example 3.4 (Heat equation with dynamical boundary conditions ). In this example, we study a heat con-
duction process with dynamic (or Wentzell) boundary conditions

{8tu€Au+F(t,u) in (0,1) x 2

(3.5)
Oyu = —0,u — yu on (0,1) x 9£2.

Here u = u(t,x), 2 is a bounded domain of R with smooth boundary and v € C(92). This kind of systems
has been the object of an intense research, due to its relevance from a modeling point of view, see e.g. [24]. As
outlined in [2,30], problem (3.5) can be seen as a heat equation with Wentzell boundary condition, and studied
in the space C(£2), a natural space for such boundary conditions. We associate to (3.5) the operator

A=A dom(A) = {u € C,(2): AueC(R2); Au+dyu+yu=0 on 9N},

with CL(£2) being the space of functions u € C(£2) for which the outer normal derivative d,u exists and is
continuous on 92 , see [1,16]. As proveii e.g. in [16], this operator generates a positive compact C semigroup
in the space of continuous functions C(§2). Hence, the constraint set

K={uelC():u(x)>0, for xe 2}

has non-empty interior and (2.5) is satisfied.
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Example 3.5 (A further diffusion equation). In this last example, we consider again a pointwise constraint:
we want to control a temperature in a room by imposing that it is constrained between two fixed values. The
model describing the heat process is governed by the heat equation with Neumann boundary conditions

Opu € Au+ F(t, u) in (0,1) x £2 (3.6)
ou=0 on (0,1) x 942, .
where u = u(t,x) and (2 is a bounded domain of RY with smooth boundary. The operator associated to
the system (3.6) generates a positive Cp-semigroup on Y = L?(£2). As done in example 3.3, we can consider
its restriction to the invariant subspace X = C({2), see e.g. in [1], where it has been proved that the strongly
continuous semigroup induced on X is positive and compact. Further, applying the parabolic maximum principle,
see [6], we deduce that the state constraint

K={uelC2):-1<ux) <1, xe R}
is positively invariant, yielding the validity of (2.5).

4. THE MAIN RESULTS

This section contains the main results of the paper. Their proofs are postponed to Section 8.
Consider the semilinear differential inclusion

(t) € Az(t) + F(t,z(t)), ae.t€ [to,1], (4.1)

subject to the state constraint:
x(t) € K, forallté€ [tg,1], (4.2)

where K is a closed subset of X.
4.1. Neighbouring feasible trajectory theorems

Our first neighboring feasible trajectory theorem is stated in the greatest generality.

Theorem 4.1. Assume (2.5)-(2.8) and (1.7). Then, for any Ry > 0 there exists co > 0 such that, for any
to € I, any e > 0, and any trajectory & of (4.1) with Z(ty) € K N RyB, there exists x € S[K (Z(to)) satisfying

t(],l]
z(t) eIt K,  for anyt € (to,1] (4.3)
and
Hf — ‘THC([to,l],X) <co < max diStK(i(t)) + €> . (44)
te[to,l]

The same conclusions are valid if (2.5)~(2.8) hold true with ¢ € L>®(I,R"), F is convex valued, and (1.7) is
replaced by (1.8).

Some applications (see Sect. 7) require weaker estimates than those expressed in Theorem 4.1 and hold true
under weaker versions of conditions (1.7) and (1.8):

VD C X compact, 31, p, M > 0, 3J C I such that pu(J) =1 and if (4.5)

sup o(z;S(T)v) >0 for some t € J, z € DN (0K +nB), v € F(t,x), then
T€[0,n], z€B(x,n)
3v € F(t,x) N B(v, M) with sup {o(z;8(1)([® —v)); 0(2;5(1)0)} < —p,
7€(0,n],2€B(x,n)
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respectively

VD C X compact,dn,p > 0, 3J C I such that u(J) =1 and if (4.6)

sup o(z;8(t)v) >0 for some t € J, x € DN (0K +nB), v € F(t,x), then
7€(0,n], zEB(x,n)

30 € F(t,x) satisfying sup o(z;8(T)(v —v)) < —p.
T€[0,n], z€B(x,n)

Theorem 4.2. Assume (2.5)—(2.8), (4.5) and that

for any compact Dy C X, there exists a compact D C X such that (4.7)
Vo €1, y([to,1]) C D, for any trajectory y of (4.1) satisfying y(to) € Do.

Then, for every compact set Dy C X, we can find co = ¢(Dg) > 0 such that, for any ty € I, any € > 0, and any
trajectory & of (4.1) with &(to) € K N Dy, there exists x € S[Ifo}l] (Z(to)) satisfying (4.3) and (4.4).
The same conclusions hold true if (4.5) is replaced by (4.6), ¢ € L°°(I,RY) and F is convexr valued.

The following proposition provides two sufficient conditions for (4.7) to be satisfied. The first of them holds
true for instance in the model of Examples 3.4, 3.5.

Proposition 4.3. Assume (2.8) and that either
S(+) 4s a compact semigroup (4.8)

or
V' R > 0 there exists a compact Kr C X such that F(t,x) C Kg, ¥V (t,z) € I X RB. (4.9)

Then condition (4.7) is satisfied.

Proof. Let Dy be a compact subset of X. Assume first (4.9) and consider a trajectory y of (4.1) with initial
datum yo = y(to) € Dy. By the representation formula (2.2),

y(t) = S(t — to)yo + / S(t — 5)f¥(s)ds,

with f¥ asin (2.1) (and x replaced by y). By (2.8) and the Gronwall lemma there exists R > 0 only depending
on Dy and ¢, such that y(t) € RB, for any t € [tg, 1]. By the continuity properties of the semigroup S(¢) and
by the compactness assumption (4.9), there exists a compact set D C X, depending on Dy and R satisfying

S(t —to)yo € D and S(t —s)fY(s) € D, for any t and a.e. s in [to, 1]

implying the claimed ~
y([to, 1]) C D =2coD.

In case assumption (4.8) holds, our proof is based on ([8], Lem. 5.4). Consider the relaxed system
z(t) € Ax(t) + coF (t,z(t)), a.e.t € [to,1]. (4.10)
Adapting to the differential inclusions setting the assumptions of Lemma 5.4 in [8], we deduce that the set
8(Dy) = { solution to (4.10) with Z(ty) € Do}
is compact in C([tg, 1], X). This implies that the set

D = {i’(t) 1T € S(Do)ﬂf € [t(), 1]}



1216 H. FRANKOWSKA ET AL.

is compact. Indeed, let z;(t;) € D, taking a subsequence and keeping the same notation we have that t; — £,
for some t € [tg, 1] and, for some trajectory & € S(Dy),

sup ||Z;(t) — Z(t)||x — 0.
te[to,l]

This yields

li(ts) = 2(@)llx < lloa(ts) — 2(to)llx + 12(t:) — 2(@)llx
< o les(t) = 2(0)]lx + [2(t:) — 2D x — 0,

proving the compactness. Finally, since any solution of (1.3) is also a solution of (4.10), D is as claimed.
O

4.2. Approximation and relaxation theorems

Results obtained in [18] can be generalized by using a less restrictive inward pointing condition stated in terms
of the mapping X, (x;-). We do not provide here the proofs, since they follow easily by slight modifications of
the proofs contained in [18].

Theorem 4.4. Assume (2.5)—(2.8) and that

VzedK, dn, p, M >0,3J C I such that u(J) =1 and if (4.11)
sup o(z;8(t)v) >0 for some t € J, x € KNB(Z,n),v € F(t,x), then
7€[0,n],2€ B(x,n)
37 € F(t,z) N B(v, M) satisfying Xp(x;0 —v) < —

hs)

Then, for any € > 0 and any trajectory & of (4.1), (4.2), there exists x € S[It(o 1] (Z(to)) satisfying (4.3) and

% = zlle(ito,11,x) < & (4.12)
A consequence of the previous result is the following relaxation theorem:
Theorem 4.5. Assume (2.5)—(2.8) and that

VzeodK, In, p, M >0,3J CI such that u(J) =1 and if

sup o(z;S(T)v) >0 for some t € J, x € KN B(Z,n), v € coF (t,x), then
T€[0,n],2€ B(x,n)

37 € CoF (t,x) N B(v, M) satisfying X,(x;0 —v) < —p.
Then, for any € > 0 and any trajectory T of
@(t) € Ax(t) + e F(t,x(t)), a.e t€ [t 1]

and (4.2), there exists x € S[Ifml] (Z(to)) satisfying (4.3) and (4.12).

4.3. The case of Hilbert spaces

When X is a Hilbert space, the inward pointing conditions can be reformulated by using normal vectors to
the boundary of K, instead of generalized gradients of the oriented distance function. This formulation is useful
in the applications, as is Examples 3.1—-3.3.
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Let (-,-)x denote the scalar product in X and let K be a proper closed subset of X such that K = Int K.
Denote by Z the set of points z € X \ 0K admitting a unique projection Py (z) on K. This set is dense in
X. For every z € Z, set
22— Por(2)

|2 — Pox (2) x

Let us define for any nn > 0 and x € X, the set

sgn(dg(2)).

ny

B'(z) = {(1,2) € [0,n] x Z : S(r)xz € 0K +nB, z € B(S(1)z,n)} C A'(z),
and the extended real valued function IT,(x;-) : X — [—00,+00) that associates to any v € X the value

IIy(z;v) = sup  (n,S(1)v),
(1,2)eBn(x)

again with the convention that the supremum over the empty set takes the value —oo. Then an inward pointing
condition can be expressed in this setting by replacing (1.7) by

VR>0,3n,p,M >0, 3J C I such that u(J) =1 and whenever II,(x;v) >0 (4.13)
for some t € J,x € RBNI"K, v € F(t,x), then 30 € F(t,z) N B(v, M) satisfying
max {II,)(z;0 — v) ; I, (z;0)} < —p

to get the same conclusions as those in Theorems 4.1, 4.2, 4.4, 4.5. To prove it, it is sufficient to follow arguments
from [18] using the new conditions.

5. REMARKS ON THE INWARD POINTING CONDITIONS

In this section we analyze the inward pointing conditions. In the presence of compactness assumptions some
simplifications hold. The first result below deals with (1.8) and (4.6), useful when working with relaxed differen-
tial inclusions, hence important in many applications. In the other three propositions of this section, we provide
conditions which guarantee the validity of the neighboring feasible trajectory theorem under the classical inward
pointing conditions (1.5) and (1.6).

Lemma 5.1. Let F : I x X ~ X be a set-valued map with convex nonempty images, satisfying (2.8) with
¢ € L>®(I,RT). Then condition (1.8) implies (1.7) and (4.6) implies (4.5).

Proof. We only prove that (1.8) implies (1.7), the proof of the second implication being analogous. )
Assume (1.8), fix R > 0, and let 7, p and J be as in (1.8). Set a = ||¢|| Lo (1;r+), M = 2a(1 + R) and J C J

such that u(J) =1, and .
F(t,z) C a(l+|z|x)B V(t,z) e J x X.

LetteJ, € RBNOK and v € F(t,x) satisfy
Yp(z;v) > 0.

Then
D= {’U € F(t,x) : p(x;0—v) < fp}

is nonempty. It is clear that D C B(v, M). The proof is performed in two steps.
Step 1. We claim that, there exists ¥ € D such that

S, (;9) < 0. (5.1)
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Indeed, arguing by contradiction, assume that any v € D satisfies
Xy (z;0) > 0. (5.2)
Let 7y € D, then by (1.8) and (5.2), there exists v; € F (¢, ) such that
Yo(x;01 — p) < —p.

Notice that
(01 — ) < 5y (301 — Do) + Xy (350 — v) < —2p,

implying #; € D. Iterating the procedure we obtain a sequence {7, }nen C D satisfying, for any n € N,
Ep(x;0, — Upo1) < —p.
Hence, for any n € N,

En(x§5n —7p) < Zzn(w;f}i —7;—1) < —np,
i=1

leading to a contradiction since by (2.3) and (2.8)
| 2y (230 — 0g)| < Mg|v —vo| < MM,
for any v € F'(t,x). The claim of Step 1 follows.
Step 2. We prove that there exists © € D such that
Yy(z;0) < —p. (5.3)
Let © € D satisfy (5.1) and consider the continuous function in [0, 1]
©(A) = Zy(z; A0+ (1 = Av).

Since ¢(0) > 0 and (1) < 0, we get p(A) = 0 for some A € [0, 1). Further, as v,9 € F(t,r) and F has convex
images, AU + (1 — A\)v € F(t, z), for any A € [0,1]. Then, by (1.8), for some v € F(¢,z),

(55— Ao — (1- X)) < —p,

implying

Y50 —v) < (230 — A0 — (1 = M) + X, (23 (0 — v)) < —(1+ A)p.

Hence v € D. Further, B B B
Ln(2;0) < Xy(2;0 = 20 — (1 = Mv) + ¢(A) < —p,

yielding (5.3) and ending the proof. a
In case some compactness is assumed, we can use (1.5) as the inward pointing condition.
Proposition 5.2. Let F : [ x X ~~ X be a set-valued map satisfying (2.7)—(2.8) with kg, ¢ € L>°(I,R"). If
F(-,Z) is continuous for any T € 0K, (5.4)
and
F(t,z) is compact, for anyt € I and any T € 0K (5.5)

then, Assumption (1.5) implies (4.5) (for a possibly smaller p).
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Proof. Let D be a compact set and R > 0 be such that D C RB. Set a = ||¢[| o (7;r+), B = ||k2rl| L~ (r;r+) and
let J C I be such that u(J) =1 and

F(t,z) C a(l+|z||x)B V(t,z) e Jx X, (5.6)

F(t,x) C F(t,y) + Blle —ylxB  V(t,2,y) € J x RB x RB. (5.7)

By (5.6), for any t € J and any x € D,
F(t,z) Ca(l+ R)B (5.8)

implying, in particular, that
lv —wlx <M :=2a(1+ R),

for any v, w € F(t,z). Observe also that, by (5.4), the inclusion (5.8) is valid for every (¢,z) € I x (0K N D).
Fix € 0K N D and let p > 0 be as in (1.5). As in the first step in the proof of Lemma 5.1, for any t € T
and v € F(t, ) satisfying o(z;v) > 0, define

Dy = {17 e F(t,z) : o(Z;0—v) < —p}.

By (1.5) we know that D, ,, # (). The proof proceeds in three steps.
Step 1. We claim that there exists v € D, , satisfying

o(Z;0) < 0. (5.9)

Arguing by contradiction, we assume that o(Z;v) > 0, for any v € D, ,, and fix Ty € D;,. Then by (1.5), there
exists U7 such that

o(Z;01 — 9g) < —p.

Further, v; € Dy, indeed
o(z;91 —v) < o(T;01 — Uo) + 0(Z; 09 —v) < —2p.

Iterating the procedure we obtain a sequence {0y, }nen C Dy, satisfying, for any n € N,
n
0(Z; 0y — Up—1) < —p hence o(Z; 0y, — Tg) < Za(j;{;n — Tp_1) < —np.
i=1
A contradiction, since by (2.3) and (2.8), for any © € Dy,
|o(&; 0, — V)| < M,
implying the first claim.
Step 2. Now, we prove that
3p > 0 such that if o(Z;v) >0 for some t €I, v € F(t,7), (5.10)
then 30 € F(t, %) satisfying max {a(ﬁc;@ —v), U(f;@)} < —p.

Notice first that the set
&= {(t,v) €elIxX:veF(t,z) and o(z;v) > O}

is compact. Indeed, let (t,,v,) € &, then up to a subsequence ¢, — ¢t € I. By the continuity assumptions on F,
there exists o, € F'(t,Z) such that

[lvn — Onllx < éen, with en — 0.
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The compactness Assumption (5.5) allows to deduce that, up to a subsequence, v,, — v € F(t,Z) in X, implying
that also v, — ¥ in X. Since o(Z;v,) > 0 for any n € N, also o(Z;7) > 0, yielding that (¢,7) € £. Now, define
for every (t,v) € £, the set

ﬁt,v = {6 e F(t,z) : o(x;0—v) < _g}

As in the previous step we show that
inf o(Z;0) = —pte <0
V€D v

for some p;, > 0. In order to prove the claim of Step 2, it remains to show that
inf {prv : (t,v) €E}=p>0.

Assume for a moment that g = 0. Then we can find a sequence (t,,v,) € £ such that, for any v,, € ﬁtmvn,
there exist &, € 0dk () satisfying

1
s 1
<£’I’La ’U’n> - n
Since £ is compact, up to a subsequence (t,,v,) — (t,v) € £. By Step 1 there exists v € F(t, Z) such that
(&v—v) <—p, (£,0)<0, for every £ € Odg (T). (5.11)
By continuity, there exist ,, € F(t,,Z) converging to ¥ when n — co. Then for all large n,

sup (&,0, —vp) < P
£€0ds (z) 2

Therefore v,, € }Stn,vru Let &, be as above and consider its subsequence converging weakly-star to some 5 S
Odk (Z). Thus (£,7) > 0 leading to a contradiction with (5.11).
Hence, taking p = min {p/27 ﬁ}, we obtain the second claim.

Step 3. We will show that there exist 1, 5 > 0 such that, for any ¢t € J, z € DN (0K +nB), and v € F(t,x)
satisfying

sup o(z;S(T)v) >0, for some z € B(x,n),
T€[0,n]

we have

{1—) € F(t,x) : sup {o(2;8(7) (v —v)), o(z;S(1)v)} < —,5} # 0.

T€[0,1], z€B(z,n)

Assume by contradiction that we can find sequences §; — 0+,

1 1
tiGJ, xleDﬁ<3K+;B>, ZiGB(l'i7g)7 £Z€8dK(ZZ)7 0<r <~ 'UiGF(ti,iEi)

such that )
(&, S(ri)vi) > —-, (5.12)

7

and, for any v; € F(t;, z;) there exist

, y}eB(xh%), yfeB(xh%), ¢ e adi(y}), ¢ € adi(y?)

satisfying
max { (¢}, S(s;) (0 —v)) , (¢7,S(s7)v:)} > 0.
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Passing to the limit ¢ — oo we obtain that, up to subsequences,
ti—»tel, zy,2i > T €OKNDin X, & = & weakly-star in X*, v; = v € F(t,z) in X. (5.13)

Concerning the last limit, notice that by (5.4) and (5.7), for any k € N there exists i; such that
v, 1 S
v; € F(t;, ;) CF(t,x)—!—EB, for any 7 > iy

implying that ||v; — w;||x < %, for some w; € F(t,z) and, as F(¢,Z) is a compact set, up to a subsequence,
w; — v € F(t,Z) yielding v; — v. Further, by ([13], Prop. 2.1.5), & € 0dk(Z). Finally, as 7; — 0, from (5.12)
we deduce that

0 < hHl <§i, S(Tz)’l}l> = <§0,1}>.
11— 00
Then, from (5.10) there exists ¥ € F(t,Z) such that
max {o(Z;0 —v), o(Z;0)} < —p. (5.14)

Let ©; € F(t;,2;) such that v; — v in X. Taking subsequences and keeping the same notation we obtain

yl,y? >z in X, G A, A weakly-star in - X*, (5.15)
and
0< liminfmax{@ilﬁi —v;), <C12,171>} = max{(Cl,T) —), <C2,T)>} . (5.16)
1— 00
As (1, (% € ddk (Z), (5.16) contradicts (5.14), ending the proof. O

Proposition 5.3. Let X be reflexive, F : I x X ~ X be a set-valued map with nonempty images, satisfy-
ing (5.4), (2.7)~(2.8) with kr,¢ € L>®°(I,RT), and that, for any T € 0K, F(t,%) is conver, and

the set-valued map Odk (-) is upper semicontinuous at T and ddk (T) is compact. (5.17)
Then, Assumption (1.5) implies (4.5).
If X is Hilbert, then (1.7) can be expressed in terms of normal vectors to dK as in (4.13). The model in

Example 3.3 provides a concrete situation in which this simplified version of the inward pointing condition can
be used.

Proof of Proposition 5.3. The proof is similar to the one of Proposition 5.2, modifying suitably limits in (5.13)
and (5.15), as outlined in the proof of Proposition 2 in [18]. O

Proposition 5.4. Assume X is reflezive, (5.4) and that kr,¢ € L®(I,R"). If for any & € 0K, F(t,z) 1is
convex, and the function dg is continuously differentiable on 0K, then, Assumption (1.6) implies (4.5).

Note that if X is a Hilbert space and the state constraint K is the ball RB or the annulus RB \ rB, as in
Sections 3.1 and 3.2, then dx € C* on a neighborhood of IK.

Proof of Proposition 5.4. Note that (1.6) implies immediately (1.5). Once (1.5) is proved, we verify (4.5), as in
the proof of Proposition 5.3. (]
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6. LIPSCHITZ CONTINUITY OF THE VALUE FUNCTION

The first application of our approximation theorems concerns the local Lipschitz continuity of the value
function associated to the Mayer problem of optimal control theory. Namely, given a cost function g : X — R,
and xg € K, consider the problem

min {g(m(l)) Lo e Sh ) (xo)} .

The corresponding value function V : I x X — RU {+oo} is defined by

V(to,yo) = inf {g(m(l)) tx € S[It(ml](yo)} , foranytpel,yoe X,
with the convention that inf ) = +oc.

Theorem 6.1. Assume (1.7), (2.5)—(2.8), and that g is locally Lipschitz continuous on K, that is, for any
R > 0, there exists gg > 0 such that, for any x,y € RBN K,

lg(z) — 9(¥)| < grllz — yllx.

Then V is continuous on I x K and the map yo — V (to,yo0) is locally Lipschitz continuous on K uniformly in
time, that is, for any R > 0, there exists lr > 0 such that, for any to € I, y1,y2 € RBN K,

[V (to, y1) = V(to, y2))| < lrllyr — v2llx- (6.1)

Proof. The key ingredient is the neighboring feasible trajectory Theorem 4.1. Indeed, let R > 0 be fixed, ¢y be
as in Theorem 4.1 and take y; # yo € K N RB. Let R be such that any solution # to (4.1) with the initial
datum in RB satisfies z(t) € RB, for any t. By the definition of value function, we know that, for any tg € I,
there exists 1 € Sf ;)(y1) such that

g(z1(1)) < V(to,y1) + [lyn — w2 x-
Taking the function .
ws(t) = S(t — to)y» +/t S(t — s) £ (s) ds,
0
with f** the selection corresponding to x1 in (2.2), by (2.3) we have, for any ¢ € [to, 1],
[z1(t) — w2 ()|l x < Msllyr — yallx-
Since for a.e. s € [to, 1],

f7(s) € F(s,x1(s)) C F(s,w2(s)) + kg(s)|z1(s) —wals)lx
C F(s,wa(s)) + kp(s)Ms|lyr — yallx

by an infinite dimensional version of the Filippov theorem, see ([18], Lem. A.1), there exists z5 solution to (4.1)
such that 29(tg) = y2 and for any t € [to, 1],

t
lwa(t) — 22(t) | x < Mg eMslFaler / ka(s) Ms |lyr — gollx ds < Cillyr — yo|x
to

with Oy = Mg eMslkaller ||k 5| 1 Ms. From Theorem 4.1, we obtain the existence of a5 € S[Ifo 17(y2) such that

lz2 = 22llc(jto.1],x) < co (tg[lta)i] distx (22(t)) + [ly1 — yzx) < co((C1+ Ms) +1)[ly1 — yallx,
0
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so that, for a positive constant Cy depending only on R, and for any ¢ € [tg, 1],

[z2(t) — 21 (t)[|x < Callyr — y2| x-

This estimate jointly with the definition of the value function imply that

V(to,y2) < g(x2(1)) < g(x1(1)) + 9zColly1 — v2llx < V(to,y1) + Irllyr — w2l x,

where g = g3Cs + 1. By interchanging y; and > in the previous calculation, we obtain (6.1).
In order to prove the continuity of V on I x K, consider t1,t; € I and yo € K. Suppose t; < to and let
x € S[tK1 11(%0) such that

9(x(1)) < V(t1,50) +t2 — ta.
The properties of the value function ensure that
V(t1,90) < V(t2,2(t2)) < g(x(1)) < V(t1,90) +t2 — t. (6.2)

Let R > 0 be such that z(t) € RB for every t € [t1,1]. Then we can conclude the proof by remarking that
inequality (6.2), the Lipschitz regularity (6.1), and (2.8), imply

[V (t1,90) = V(t2,y0)| < V(t2,z(t2)) — V(t1,90) + [V (t2, x(t2)) — V(t2, yo)|

< to —t1 +Irllz(t2) — yollx
to
<ty —t1 +1g|[(S(t2 — t1) — Id)yol|x + Ir / S(ta =) f*(t) dtH
t1 X
ta
<ty —ty +UR|[(S(t2 — t1) — Id)yollx +1r Ms (1+ R) o(t) dt. 0
t1

7. VARIATIONAL INCLUSIONS

In this section, as application of the approximation Theorem 4.2, we prove a theorem on variational inclusions
which is the infinite dimensional version of Theorem 4.1 in [19].

Theorem 7.1. Under assumptions of Theorem 4.1 or Theorem 4.2, let zg € K, T € S[tKU 1] (z9), hiy — 0+,

w; — wo € I (xg) be such that o + hyw; € K, for all i. Consider a solution w to the linearized inclusion
w(t) € Aw(t) + d. F(t, Z(t), £ (t))w(t), for a.e. t € [to,1] (7.1)
with w(ty) = wo and subject to the constraint
w(t) € Ix(Z(t)), for a.e. t € [to, 1]
If

o1 . - _
hlg&r 7 tg[ltz;)’cl] distg (Z(t) + hw(t)) =0, (7.2)

then for any i there exists x; € S[Ifo 1] (zo + hyw;) such that

T, — T

i

—w in C([to, 1], X).
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Proof. Fix a solution w to (7.1) and let 7(s) € d, F(s,Z(s), f*(s))w(s) a.e. be an integrable selection such that
t
w(t) = S(#)wo + / S(t—s)m(s)ds V¢ € [to,1].
0

By the definition of derivative, we obtain that

lim dist (w(t), Ft,2(t) + ho(t)) - f z(t)) —0, for ac. t € [to, 1]. (7.3)

h—0+ h

Set
yi(t) = 2(t) + hi(w(t) +w; —wo)  and  yi(t) = dist(f7(t) + him (1), F(t,5:(1)))-

From (2.7) and (7.3), we obtain that fti ~i(s)ds = o(h;). Hence applying Lemma A.1 from [18] there exists Z;
solving (4.1) with initial datum &;(tp) = x¢ + h;w; such that

xi};yi—ﬂ) in C([to, 1], X), implying xzhfx

Now consider the compact set Dy = U;en{zo + hjw; } U{xo}. In light of Theorem 4.2, there exists c¢p, such that
for any i, we can find z; € Sff (w0 + hijw;) satisfying

Sw  in C(fto, 1], X). (7.4)

- . - h;
[z = Zilleieo,11.x) < €y (tg[lt%fg] distx (%4(¢)) + Z> : (7.5)
Further,
dist g (Zi(t)) < [|2:() — va(t) [ x + dist (2(¢) + hi(w(t) + wi — wo))
< NZi(t) — i (D)l x + hallwi — wollx + distx (Z(t) + hyw(?)).

Hence, Assumption (7.2) allows to conclude. Indeed,

Ti— T w <1||j x| + T w
- S 1T — Zille([to,1],X -
I . By 10 ([to,1],X) h; C(fto].X)

<y max dist (Z:(1)) + s +0(1)
7 X i -

= Do hi \telto,1] K i

CDy || ~

< hlo 1Zi = ville(to.1),x)
Do max distg(Z(t) + hiw(t)) + cpy |Jws — wollx + o(1) = 0,
hi telto,1]

in light of (7.4), (7.5), ending the proof. O

8. PROOFS OF THEOREMS 4.1 AND 4.2

To prove the main theorems of Section 4, we need the following lemma.

Lemma 8.1. Under the assumptions of Theorem 4.1, for every Ry > 0, there exist ¢,d > 0 such that, for any
e’ >0, any t € [to, 1], and any solution y of (4.1) with y(tp) € K N RyB and y(t) € K, we can find a solution
z of (4.1) satisfying

ze (8) = y(¥), xe (t) € Int K, for any t € (¢, (¢ + ) A 1],

and ||z = ylleqz,x) < ¢ trél[%)f] dist (y(t)) + €.

The same conclusions are valid if (2.5)—(2.8) hold true with ¢ € L>(I,RT), F is convex valued, and (1.7)
is replaced by (1.8).
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Proof. Fix Ry > 0 and & > 0. Let y be a solution of (4.1) satisfying the assumptions of the lemma. By the
Gronwall lemma, in light of (2.2), (2.3), and (2.8), there exists R > 0 depending only on R such that

y(t) € gB and S(7)y(t) € RB, for any 7 € I, t € [to, 1]. (8.1)

We can assume, without loss of generality, that ¢’ < R. Taking n, p, M, J, kg, ¢ as in (1.7), (2.7), (2.8), we define

2
0::zwgﬂ4(2wamkRanﬂ@HhﬂLl471), c::49¥ (8.2)
p
and choose 1
0<o6< Y min{ R, n} (8.3)
such that, for any measurable E C I with u(E) <4,
plkrllL / U
kr(s)ds < ——= d ds < ————- A4
/E r(s)ds < 0120 an E¢(s)s<2MS(1+R) (8.4)
Finally, we set
'=<¢selt,l]nJ: for some 19 <n, S(m0)y(s) € 0K +nB and sup o(z; S(m) fY(s)) >0
2€B(S(70)y(s).n)
and i
T+ 8 AL if (0O (E+0) A1) < [c - max distc(y(1)) + g'}
telt,
T = . €l (8.5)
min {s >t N, s]) = ol [c : tren[%}f] distx (y(¢)) + 6’} }, otherwise.

By assumption (1.7) and the measurable selection theorem, there exists a measurable selection 9(s) € F(s,y(s))
such that, for any s € I'N [¢, T
[o(s) = fY(s)llx <M (8.6)

and

R GO CICORFEONECRCEON S (8.7)

(1,2)EAM (y(s
Define

v(s), forevery sc I'N[t, T
fs/(S){ ) AR (8.8)

f¥(s), otherwise.

Consider the trajectory
t

e t) = (¢ =Dy + [ St = )1 (s)ds

= st 0u0+ [

I'N[t,tAT)

S(t—s)v(s)ds + / S(t—s)fY(s)ds.

[\ (I'N[EEATT])
Applying (2.2), (2.3), (8.2), (8.5), (8.6) and (8.8), we obtain that on [f,1]

lyer (t) =y x < /t [S(t = s)[f(s) = £7(s)] || xds < MS/F [9(s) = f¥(s)llxds

N[E,tAT]
< MsMu(I'N[ELtAT]) <c- max distg (y(t)) + €.
telt,
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Hence, by (8.2), (8.3)
R
lye () = y(@)llx < MsMé < o

We can apply an infinite dimensional version of the Filippov Theorem, see ([18], Lem. A.1), to deduce that
there exists a solution z.s of (4.1) with z./ (¢) = y(¢) satisfying for any t € [t, 1]

t
|z (t) — yer (8) || x < 2MgeMsIFrller ppg Nypu(I N [, 8 A T])/ kr(s)ds,
t

t
W”@ﬁﬁmxﬁmwwfﬂwMTb@MwmmmﬂhM/kM$B+MhM>
t
Therefore

ze (t) =y ()l x < llzer () — yer (D)l x + llyer (8) — y(B)]x
< 2Mg||kg|| preMsIkrRI Mg Mu(I A [E ¢ AT)) + MsMu(I N [Et AT))
=Cu(CN[ttAT])<c- max di (y(t)) + €.
telt

)

Further, by the definition of § in (8.3), for any ¢ € [t, (t + ) A 1], we obtain

o) = y(O)lx < min { 5,21 (5.9

||z (t) — yer (2) w( N[t A T])/{ kr(s)ds < g# (C'N [t tAT)) (8.10)

lx = Tnlr
and
17 1) = futt) | < BT N AT (& + 2051,

We claim that z./(t) € Int K for any ¢ € (¢, (¢ + §) A 1]. Assume first that ¢t € (¢, (¢ +
w(I'N[t,t AT)]) = 0. This implies that t < T, since if t > T, (I’ N[t ¢ AT]) = p(I' N
the definition of T, the contradictory ¢t > (t + §) A 1 = T. Hence, we obtain that u(I"'N
n [t,t], so our claim becomes y(t) € Int K. From the definition of I", we have that for a.
7 € [0,7)] either S(7)y(s) ¢ OK +nB or S(7)y(s) € 0K + nB and

sup (€,8(7) f(s)) <0
£ € 0dk(z)
2 € B(S(r) y(s), 1)

, (T + &) A 1] satisfies
[£,T]) = 0 yielding by
[t,¢])) =0 and 2z =y
e. s € [t,t] and every

Observe that, by (2.8) and (8.4), for every s € [t,t] we have

/ [t =) xar < 3 (8.11)

implying together with (2.5),

N3

A (S(t - $)y(s)) < die(S(t — Dy(D) + H [ ste=npar < (.12)

Consequently, if there exists 5 € [t,t] such that S(t — 5) y(5) ¢ OK + nB, we obtain by (8.11)

n

di (y(t)) < dr (S(t = 5)y(s)) + ‘ / S(t —r) f¥(r)dr —n+ 2 <0,

X
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yielding y(¢) € Int K. Otherwise, for every s € [t,t], S(t — s) y(s) € OK + nB and

sup (€,S(t—s) fY(s))) <0 for a.e. s € [t,1]. (8.13)
¢ € ddk(z)
z € B(S(t —s)y(s),n)
Applying the mean value theorem (see [13]) and (2.2), there exist z € [y(t), S(¢t — ¢) y(f)] and & € ddk (z) such
that
di (y(t)) = dr (S(t — 1) y(t)) + (€, y(t) = St =) y(?)) (8.14)

= di(St=Du®) + [ (€503 ()i
Since, for any s € [t, ],
[z =St —=s)ys)llx < llz—y®)lx + ly®) — St = s)y(s)llx
<S¢ =8)y) —y@®)llx + ly@®) — St —s)y(s)llx <m,

by (2.5), (8.13) and (8.14) we have that dx (y(t)) < 0, implying the claim.

Now we consider the case u(I' N [t,t AT]) > 0. Notice that, by (8.1) and (8.9), z..(t) € RB, for any
t € [t,(t + d) A 1]. Now, if there exists 5 € [f,¢] such that dx(S(t — 5)y(5)) < —n, then using (2.2), (2.8),
and (8.4), we obtain

di (v (1)) < di (S(t = 8)y(8)) + [lz= (1) = St =Dy x + S = Dy(?) = St - 5)y(5)l|x

t
< —17+2MS(1+R)/ 6(s)ds < 0,
t

Therefore, recalling also (8.1) and (8.12), we can restrict our attention to the case where
S(t—s)y(s) e 0K +nB  Vsel[tt],

that is, (t — s,2) € A"(y(s)) for every s € [t,t] and z € B(S(t — s)y(s),n). By (8.7), we deduce that for all
sefttnl

sip {6505 [os) - (). (€S- 0(s) ) <~ (815)

£ € 0dk (2)
z € B(S(t —s)y(s),m)
On the other hand, for a.e. s € [t,t] \ " we have
sup (&,8(t—s)fY(s)) <0. (8.16)

§ € 9dk (=)
z € B(S(t — s)y(s),n)

If t € (T, (t + &) A 1], then

P = e i /
w(I'N[ET]) = e [c tren[%>14] distg (y(t)) + ¢ ] (8.17)
From the mean value theorem, as above, for some z € [y(t), zo/(t)] and £ € Odk(z), we have
di (zer(t)) = di (y(1)) + (€, = (1) — y(1))- (8.18)

Further, since by (8.9) and (8.11), for any s € [¢, ],

Iz = 5t = $)y(s)x < = = y(@)llx + < o () = y(®)lx + 5 <,

/: S(t —r) fY(r)dr

X
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then z € B(S(t — s)y(s),n). Hence, from (8.2), (8.8), (8.10), (8.15), (8.17), and (8.18), we obtain
di (wer (1) = dic (y(1)) + (& zer () — yer (1)) + (€ wer (8) — (1))
< dicy(®) + SuT N ETY + [ (650 9)[ol) - P(5)])as

rnft,T]

< dic(y(0) = GuT O ET)) = dicly() = e max di (y(5)) = 55’ <0

Then, x. (t) € Int K. Finally, let ¢ € (¢, T]. By the mean value theorem there exist z € [S(t — ) y(?), ye (¢)] and
& € 0dk(z) such that

di (yer (1) = dr (S(t — ) y(D)) + (& yer (t) = S(t = 1) y(1)). (8.19)
Applying again (2.2), (2.8), and (8.4), we have for every s € [t, ]

Iz = S(t = s)y(s)llx <llz =St =D y(Dllx + 1S = Dy(t) = St —s)y(s)lx
< lyer(8) = SE =D y@)llx + [1SE =) y(£) = S = 5)y(s)l|x

<oms4m) [ oryar <o
Then from (8.8), (8.10), (8.15), (8.16) and (8.19), we obtain
di (zer () < lzer (t) — yer (D)l x + dic (yer (1))

< gu(Fﬁ[ﬂt])erK(S(t—t_)y(t_))Jr/f (€,5(t = s) fer(s)))ds

<Purafd+ [
2 g

(€509 ods+ [ (65t s) o))

[N\

<G -purnd) <o.

Also in this case z./(t) € Int K.
If (2.5)-(2.8) are valid with ¢ € L>(I,R"), convex valued F, and (1.7) replaced by (1.8), the same claim
follows from Lemma 5.1 and the proof above. (]

Proof of Theorem 4.1. The construction of the trajectory z, based on Lemma 8.1, proceeds exactly as in ([19],
p. 745). O

Proof of Theorem 4.2. Notice that, by the uniform continuity of the semigroup S(t) over compact sets, we have
that for any compact D and any n > 0, there exists 0 < 7 < n/2 such that, for any 7 < 7 and any = € D,
IIS(7)x — z||x < mn/2. Then, it is possible to prove that assumption (4.5) implies

VD C X compact, 37, p, M > 0, 3J C I such that pu(J) = 1 and whenever (8.20)

Ys(x;v) >0 for some t €I, x € DNI'K,v € F(t,x),

then 370 € F(t,z) N B(v, M) satisfying max {¥;(z;0 —v); Ys(x;0)} < —p.
Then, following the same proof as the one of Lemma 8.1 we obtain that for every compact Dy C X there exist
¢, > 0 such that, for any ¢’ > 0, any ¢ € [to, 1], and any solution y of (1.3) with y(t9) € K N Dy and y(%) € K,
we can find a solution x.s of (1.3) satisfying

ze () = y(¥), zer(t) € Int K, for any t € (¢, (f + ) A 1],
and  |lzer — Y|l poez1),x) < € max disti (y(t)) + €'

This allows to conclude as in Theorem 4.1.
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With the help of Lemma 5.1, the same conclusions hold true if (2.5)—(2.8) are valid with ¢ € L>®(I,R"), F
is convex valued, and (1.7) is replaced by (1.8). O
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