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BELLMAN EQUATION AND VISCOSITY SOLUTIONS

FOR MEAN-FIELD STOCHASTIC CONTROL PROBLEM ∗

Huyên Pham1,a and Xiaoli Wei1

Abstract. We consider the stochastic optimal control problem of McKean−Vlasov stochastic differ-
ential equation where the coefficients may depend upon the joint law of the state and control. By
using feedback controls, we reformulate the problem into a deterministic control problem with only the
marginal distribution of the process as controlled state variable, and prove that dynamic programming
principle holds in its general form. Then, by relying on the notion of differentiability with respect
to probability measures recently introduced by [P.L. Lions, Cours au Collège de France: Théorie des
jeux à champ moyens, audio conference 2006−2012], and a special Itô formula for flows of probability
measures, we derive the (dynamic programming) Bellman equation for mean-field stochastic control
problem, and prove a verification theorem in our McKean−Vlasov framework. We give explicit solutions
to the Bellman equation for the linear quadratic mean-field control problem, with applications to the
mean-variance portfolio selection and a systemic risk model. We also consider a notion of lifted viscosity
solutions for the Bellman equation, and show the viscosity property and uniqueness of the value func-
tion to the McKean−Vlasov control problem. Finally, we consider the case of McKean−Vlasov control
problem with open-loop controls and discuss the associated dynamic programming equation that we
compare with the case of closed-loop controls.
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1. Introduction

The problem studied in this paper concerns the optimal control of mean-field stochastic differential equations
(SDEs), also known as McKean−Vlasov equations. This topic is closely related to the mean-field game (MFG)
problem as originally formulated by Lasry and Lions in [27] and simultaneously by Huang, Caines and Malhamé
in [24]. It aims at describing equilibrium states of large population of symmetric players (particles) with mutual
interactions of mean-field type, and we refer to [14] for a discussion pointing out the subtle differences between
the notions of Nash equilibrium in MFG and Pareto optimality in the optimal control of McKean−Vlasov
dynamics.
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While the analysis of McKean−Vlasov SDEs has a long history with the pioneering works by Kac [26] and
McKean [33], and later on with papers in the general framework of propagation of chaos, see e.g. [25, 36], the
optimal control of McKean−Vlasov dynamics is a rather new problem, which attracts an increasing interest
since the emergence of the MFG theory and its numerous applications in several areas outside physics, like eco-
nomics and finance, biology, social interactions, networks. Actually, it has been first studied in [1] by functional
analysis method with a value function expressed in terms of the Nisio semigroup of operators. More recently,
several papers have adopted the stochastic maximum (also called Pontryagin) principle for characterizing solu-
tions to the controlled McKean−Vlasov systems in terms of an adjoint backward stochastic differential equation
(BSDE) coupled with a forward SDE: see [3, 9, 38] with a state dynamics depending upon moments of the dis-
tribution, and [13] for a deep investigation in a more general setting. Alternatively, and although the dynamics
of mean-field SDEs is non-Markovian, it is tempting to use dynamic programming (DP) method (also called
Bellman principle), which is known to be a powerful tool for standard Markovian stochastic control problem,
see e.g. [21, 34], and does not require any convexity assumption usually imposed in Pontryagin principle. Indeed,
mean-field type control problem was tackled by DP in [5, 28] for specific McKean−Vlasov SDE and cost func-
tional, typically depending only upon statistics like its mean value or with uncontrolled diffusion coefficient, and
especially by assuming the existence at all times of a density for the marginal distribution of the state process.
The key idea in both papers [5,28] is to reformulate the stochastic control problem with feedback strategy as a
deterministic control problem involving the density of the marginal distribution, and then to derive a dynamic
programming equation in the space of density functions.

Inspired by the works [5, 28], the objective of this paper is to analyze in detail the dynamic programming
method for the optimal control of mean-field SDEs where the drift, diffusion coefficients and running costs
may depend both upon the joint distribution of the state and of the control. This additional dependence
related to the mean-field interaction on control is natural in the context of McKean−Vlasov control problem,
but has been few considered in the literature, see however [38] for a dependence only through the moments
of the control. By using closed-loop (also called feedback) controls, we first convert the stochastic optimal
control problem into a deterministic control problem where the marginal distribution is the sole controlled
state variable, and we prove that dynamic programming holds in its general form. The next step for exploiting
the DP is to differentiate functions defined on the space of probability measures. There are various notions
of derivatives with respect to measures which have been developed in connection with the theory of optimal
transport and using Wasserstein metric on the space of probability measures, see e.g. the monographs [2, 37].
For our purpose, we shall use the notion of differentiability introduced by Lions in his lectures at the Collège de
France [32], see also the helpful redacted notes [11]. This notion of derivative is based on the lifting of functions
defined on the space of square integrable probability measures into functions defined on the Hilbert space of
square integrable random variables distributed according to the “lifted” probability measure. It has been used
in [13] for differentiating the Hamiltonian function appearing in stochastic Pontryagin principle for controlled
McKean−Vlasov dynamics. As usual in continuous time control problem, we need a dynamic differential calculus
for deriving the infinitesimal version of the DP, and shall rely on a special Itô’s chain rule for flows of probability
measures as recently developed in [10,16], and used in [12] for deriving the so-called Master equation in MFG. We
are then able to derive the dynamic programming Bellman equation for mean-field stochastic control problem.
This infinite dimensional fully nonlinear partial differential equation (PDE) of second order in the Wassertein
space of probability measures extends previous results in the literature [5, 12, 28]: it reduces in particular to
the Bellman equation in the space of density functions derived by Bensoussan, Frehse and Yam [6] when the
marginal distribution admits a density, and on the other hand, we notice that it differs from the Master equation
for McKean−Vlasov control problem obtained by Carmona and Delarue in [12] where the value function is
a function of both the state and its marginal distribution, and so with associated PDE in the state space
comprising probability measures but also Euclidian vectors. Following the traditional approach for stochastic
control problem, we prove a verification theorem for the Bellman equation of the McKean−Vlasov control
problem, which reduces to the classical Bellman equation in the case of no mean-field interaction. We apply
our verification theorem to the important class of linear quadratic (LQ) McKean−Vlasov control problems,
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addressed e.g. in [7,38] by maximum principle and adjoint equations, and that we solve by a different approach
where it turns out that derivations in the space of probability measures are quite tractable and lead to explicit
classical solutions for the Bellman equation. We illustrate these results with two examples arising from finance:
the mean-variance portfolio selection and an inter-bank systemic risk model, and retrieve the results obtained
in [15,20,29] by different methods.

In general, there are no classical solutions to the Bellman equation, and we thus introduce a notion of viscosity
solutions for the Bellman equation in the Wasserstein space of probability measures. There are several definitions
of viscosity solutions for Hamilton Jacobi equations of first order in Wasserstein space and more generally in
metric spaces, see e.g. [2, 19, 22] or [23]. We adopt the approach in [32], and detailed in [11], which consists,
after the lifting identification between measures and random variables, in working in the Hilbert space of square
integrable random variables instead of working in the Wasserstein space of probability measures, in order to
use the various tools developed for viscosity solutions in separable Hilbert spaces, in particular in our context,
for second order Hamilton-Jacobi equations, see [30, 31], and the recent monograph [18]. We then prove the
viscosity property of the value function and a comparison principle, hence uniqueness result, for our Bellman
equation associated to the McKean−Vlasov control problem.

Finally, we consider the more general class of open-loop controls instead of (Lipschitz) closed-loop controls.
We derive the corresponding dynamic programming equation, and compare with the Bellman equation arising
from McKean−Vlasov control problem with feedback controls.

The rest of the paper is organized as follows. Section 2 describes the McKean−Vlasov control problem and
fix the standing assumptions. In Section 3, we state the dynamic programming principle after the reformulation
into a deterministic control problem, and derive the Bellman equation together with the proof of the verification
theorem. We present in Section 4 the applications to the LQ framework where explicit solutions are provided with
two examples arising from financial models. Section 5 deals with viscosity solutions for the Bellman equation,
and the last section considers the case of open-loop controls.

2. McKean−Vlasov control problem

Let us fix some probability space (Ω,F ,P) on which is defined a n-dimensional Brownian motion B =
(Bt)0≤t≤T , and denote by F = (Ft)0≤t≤T its natural filtration, augmented with an independent σ-algebra F0 ⊂
F . For each random variable X, we denote by P

X
its probability law (also called distribution) under P (which is

deterministic), and by δX the Dirac measure on X. Given a normed space (E, |.|), we denote by P2(E) the set
of probability measures µ on E, which are square integrable, i.e. ‖µ‖2

2
:=
∫
E
|x|2µ(dx) < ∞, and by L2(F0;E)

(= L2(Ω,F0,P;E)) the set of square integrable random variables on (Ω,F0,P). In the sequel, E will be either
Rd, the state space, or A, the control space, a subset of Rm, or the product space Rd × A. We shall assume
without loss of generality (see Rem. 2.1 below) that F0 is rich enough to carry E-valued random variables with
any arbitrary square integrable distribution, i.e. P2(E) = {Pξ, ξ ∈ L2(F0;E)}.

Remark 2.1. A possible construction of a probability space, which is rich enough to satisfy the above conditions
is the following. We consider a Polish space Ω0, its Borel σ-algebra F0 and let P0 be an atomless probability
measure on (Ω0,F0). We consider another probability space (Ω1,F1,P1) supporting a n-dimensional Brownian
motion B and denote by FB = (FBt ) its natural filtration. By defining Ω = Ω0×Ω1, F = F0∨F1, P = P0⊗P1,
and F = (Ft) with Ft = FBt ∨ F0, 0 ≤ t ≤ T , we then obtain that the filtered probability space (Ω,F ,F,P)
satisfies the required condition in the above framework. 2

We also denote by W2 the 2-Wasserstein distance defined on P2(E) by

W2(µ, µ′) := inf

{(∫
E×E

|x− y|2π(dx, dy)

) 1
2

: π ∈ P2(E × E) with marginals µ and µ′

}
= inf

{(
E|ξ − ξ′|2

) 1
2 : ξ, ξ′ ∈ L2(F0;E) with Pξ = µ, Pξ′ = µ′

}
.
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We consider a controlled stochastic dynamics of McKean−Vlasov type for the process Xα = (Xα
t )0≤t≤T

valued in Rd:

Dxαt = b
(
t,Xα

t , αt,P(Xαt ,αt)

)
dt+ σ

(
t,Xα

t , αt,P(Xαt ,αt)

)
dBt, Xα

0 = X0, (2.1)

where X0 ∈ L2(F0,Rd), and the control process α = (αt)0≤t≤T is progressively measurable with values in a
subset A of Rm, assumed for simplicity to contain the zero element. The coefficients b and σ are deterministic
measurable functions from [0, T ]×Rd×A×P2(Rd×A) into Rd and Rd×n respectively. Notice here that the drift
and diffusion coefficients b, σ of the controlled state process do not depend only on the marginal distribution
of the state process Xt at time t but more generally on the joint distribution of the state/control (Xt, αt) at
time t, which represents an additional mean-field feature with respect to classical McKean−Vlasov equations.
We make the following assumption:

(H1) There exists some constant Cb,σ > 0 s.t. for all t ∈ [0, T ], x, x′ ∈ Rd, a, a′ ∈ A, λ, λ′ ∈ P2(Rd ×A),

|b(t, x, a, λ)− b(t, x′, a′, λ′)|+ |σ(t, x, a, λ)− σ(t, x′, a′, λ′)| ≤ Cb,σ
[
|x− x′|+ |a− a′|+W2(λ, λ′)

]
,

and ∫ T

0

|b(t, 0, 0, δ(0,0))|2 + |σ(t, 0, 0, δ(0,0))|2dt < ∞.

Condition (H1) ensures that for any control process α, which is square integrable, i.e. E[
∫ T
0
|αt|2dt] < ∞,

there exists a unique solution Xα to (2.1), and moreover this solution satisfies (see e.g. [36] or [25]):

E
[

sup
0≤t≤T

|Xα
t |2
]
≤ C

(
1 + E|X0|2 + E

[∫ T

0

|αt|2dt

])
< ∞. (2.2)

In the sequel of the paper, we stress the dependence of Xα on α if needed, but most often, we shall omit this
dependence and simply write X = Xα when there is no ambiguity.

The cost functional associated to the McKean−Vlasov equation (2.1) is

J(α) := E

[∫ T

0

f
(
t,Xt, αt,P(Xt,αt)

)
dt+ g

(
XT ,PXT

)]
(2.3)

for a square integrable control process α. The running cost function f is a deterministic real-valued function
on [0, T ] × Rd × A × P2(Rd × A) and the terminal gain function g is a deterministic real-valued function on
Rd × P

2
(Rd). We shall assume the following quadratic condition on f , g:

(H2) There exists some constant Cf,g > 0 s.t. for all t ∈ [0, T ], x ∈ Rd, a ∈ A, µ ∈ P
2
(Rd), λ ∈ P

2
(Rd ×A),

|f(t, x, a, λ)|+ |g(x, µ)| ≤ Cf,g
(
1 + |x|2 + |a|2 + ‖µ‖2

2
+ ‖λ‖2

2

)
.

Under Condition (H2), and from (2.2), we see that J(α) is well-defined and finite for any square integrable
control process α. The stochastic control problem of interest in this paper is to minimize the cost functional:

V0 := inf
α∈A

J(α), (2.4)

over a set of admissible controls A to be precised later.

Notations. We denote by x.y the scalar product of two Euclidian vectors x and y, and by Mᵀ the transpose
of a matrix or vector M . For any µ ∈ P2(E), F Euclidian space, we denote by L2

µ(F ) the set of measurable
functions ϕ : E → F which are square integrable with respect to µ, and we set

〈ϕ, µ〉 :=

∫
E

ϕ(x)µ(dx).
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We also denote by L∞µ (F ) the set of measurable functions ϕ : E → F which are bounded µ a.e., and ‖ϕ‖∞
denotes the essential supremum of ϕ ∈ L∞µ (F ).

3. Dynamic programming and Bellman equation

3.1. Dynamic programming principle

In this paragraph, we make the standing assumptions (H1)−(H2), and our purpose is to show that dynamic
programming principle holds for problem (2.4), which we would like to combine with some Markov property
of the controlled state process. However, notice that the McKean−Vlasov type dependence on the dynamics of
the state process rules out the standard Markov property of the controlled process (Xt)t. Actually, this Markov
property can be restored by considering its probability law (P

Xt
)t. To be more precise and for the sake of

definiteness, we shall restrict ourselves to controls α = (αt)0≤t≤T given in closed loop (or feedback) form:

αt = α̃
(
t,Xt,PXt

)
, 0 ≤ t ≤ T, (3.5)

for some deterministic measurable function α̃(t, x, µ) defined on [0, T ] × Rd × P
2
(Rd). We shall discuss in the

last section how one deal more generally with open-loop controls. We denote by Lip([0, T ]×Rd×P2(Rd);A) the
set of deterministic measurable functions α̃ on [0, T ]×Rd ×P

2
(Rd), valued in A, which are Lipschitz in (x, µ),

and satisfy a linear growth condition on (x, µ), uniformly on t ∈ [0, T ], i.e. there exists some positive constant
Cα̃ s.t. for all t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈ P

2
(Rd),

|α̃(t, x, µ)− α̃(t, x′, µ′)| ≤ Cα̃ (|x− x′|+W2(µ, µ′)) ,

∫ T

0

|α̃(t, 0, δ0)|2dt <∞.

Notice that for any α̃ ∈ Lip([0, T ] × Rd × P
2
(Rd);A), and under the Lipschitz condition in (H1), there exists

a unique solution to the SDE:

dXt = b

(
t,Xt, α̃(t,Xt,PXt ),P(Xt,α̃(t,Xt,PXt

))
)

dt+ σ

(
t,Xt, α̃(t,Xt,PXt ),P(Xt,α̃(t,Xt,PXt ))

)
dBt, (3.6)

starting from some square integrable random variable, and this solution satisfies the square integrability con-
dition (2.2). The set A of so-called admissible controls α is then defined as the set of control processes α
of feedback form (3.5) with α̃ ∈ Lip([0, T ] × Rd × P

2
(Rd);A). We shall often identify α ∈ A with α̃ in

Lip([0, T ] × Rd × P
2
(Rd);A) via (3.5), and we see that any α in A is square-integrable: E[

∫ T
0
|αt|2dt] < ∞,

by (2.2) and Gronwall’s lemma.
Let us now check the flow property of the marginal distribution process P

Xt
= P

Xαt
for any admissible control

α in A. For any α̃ ∈ L(Rd;A), the set of Lipschitz functions from Rd into A, we denote by Idα̃ the function

Idα̃ : Rd → Rd ×A
x 7→ (x, α̃(x)).

We observe that the joint distribution P
(Xt,αt)

associated to a feedback control α ∈ A is equal to the image by
Idα̃(t, .,P

Xt
) of the marginal distribution P

Xt
of the controlled state process X, i.e. P

(Xt,αt)
= Idα̃(t, .,P

Xt
)?P

Xt
,

where ? denotes the standard pushforward of measures: for any α̃ ∈ L(Rd;A), and µ ∈ P2(Rd):

(Idα̃ ? µ) (B) = µ
(
Idα̃−1(B)

)
, ∀B ∈ B(Rd ×A).

We consider the dynamic version of (3.6) starting at time t ∈ [0, T ] from ξ ∈ L2(Ft;Rd), which is then written
as:

Xt,ξ
s = ξ +

∫ s

t

b
(
r,Xt,ξ

r , α̃
(
r,Xt,ξ

r ,P
X
t,ξ
r

)
, Idα̃

(
r, .,P

X
t,ξ
r

)
? P

X
t,ξ
r

)
dr

+

∫ s

t

σ
(
r,Xt,ξ

r , α̃
(
r,Xt,ξ

r ,P
X
t,ξ
r

)
, Idα̃

(
r, .,P

X
t,ξ
r

)
? P

X
t,ξ
r

)
dBr, t ≤ s ≤ T. (3.7)
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Existence and uniqueness of a solution to (3.7) implies the flow property:

Xt,ξ
s = X

θ,Xt,ξθ
s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, ξ ∈ L2(Ft;Rd). (3.8)

Moreover, as pointed out in Remark 3.1 in [10] (see also the remark following (2.3) in [16]), the solution to (3.7)
is also unique in law from which it follows that the law of Xt,ξ depends on ξ only through its law P

ξ
. Therefore,

we can define

Pt,µs := P
X
t,ξ
s

, for 0 ≤ t ≤ s ≤ T, µ = P
ξ
∈ P

2
(Rd), (3.9)

As a consequence of the flow property (3.8), and recalling that P2(Rd) = {Pξ, ξ ∈ L2(F0;Rd)}, it is clear that
we also get the flow property for the marginal distribution process:

Pt,µs = Pθ,P
t,µ
θ

s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, µ ∈ P
2
(Rd). (3.10)

Recall that the process Xt,ξ, hence also the law process Pt,µ depends on the feedback control α ∈ A, and if
needed, we shall stress the dependence on α by writing Pt,µ,α.

We next show that the initial stochastic control problem can be reduced to a deterministic control problem.
Indeed, by definition of the marginal distribution P

Xt
, recalling that P

(Xt,αt)
= Idα̃(t, .,P

Xt
) ?P

Xt
, and Fubini’s

theorem, we see that the cost functional can be written for any admissible control α ∈ A as:

J(α) =

∫ T

0

f̂
(
t,P

Xt
, α̃
(
t, .,P

Xt

))
dt+ ĝ

(
P
XT

)
,

where the function f̂ is defined on [0, T ]× P
2
(Rd)× L(Rd;A) and ĝ is defined on P

2
(Rd) by

f̂(t, µ, α̃) := 〈f(t, ., α̃(.), Idα̃ ? µ), µ〉, ĝ(µ) := 〈g(., µ), µ〉. (3.11)

We have thus transformed the initial control problem (2.4) into a deterministic control problem involving the in-
finite dimensional controlled marginal distribution process valued in P

2
(Rd). In view of the flow property (3.10),

it is then natural to define the value function

v(t, µ) := inf
α∈A

[∫ T

t

f̂
(
s,Pt,µs , α̃(s, .,Pt,µs )

)
ds+ ĝ(Pt,µT )

]
, t ∈ [0, T ], µ ∈ P

2
(Rd), (3.12)

so that the initial control problem in (2.4) is given by: V0 = v(0,P
X0

). It is clear that v(t, µ) < ∞, and we shall
assume that

v(t, µ) > −∞, ∀ t ∈ [0, T ], µ ∈ P
2
(Rd). (3.13)

Remark 3.1. The finiteness condition (3.13) can be checked a priori directly from the assumptions on the
model. For example, when f , g, hence f̂ , ĝ, are lower-bounded functions, condition (3.13) clearly holds. Another
example is the case when f(t, x, a, λ), and g(x, µ) are lower bounded by a quadratic function in x, µ, and λ
(uniformly in (t, a)) so that

f̂(t, µ, α̃) + ĝ(x, µ) ≥ −C
(
1 + ‖µ‖

2

)
, ∀µ ∈ P

2
(Rd), α̃ ∈ L(Rd;A),

and we are able to derive moment estimates on the controlled process X, uniformly in α:
∥∥Pt,µ

s

∥∥2
2

= E[|Xt,ξ
s |2]

≤ C(1 + ‖µ‖2
2
), (for µ = P

ξ
) which arises typically from (2.2) when A is bounded. Then, it is clear that (3.13)

holds true. Otherwise, this finiteness condition can be checked a posteriori from a verification theorem, see
Theorem 3.4. 2
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The dynamic programming principle (DPP) for the deterministic control problem (3.12) takes the following
formulation:

Theorem 3.2 (Dynamic Programming Principle). Under (3.13), we have for all 0 ≤ t ≤ θ ≤ T , µ ∈ P2(Rd):

v(t, µ) = inf
α∈A

[∫ θ

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds + v(θ,Pt,µθ )

]
. (3.14)

Proof. In the context of deterministic control problem, the proof of the DPP is elementary and does not require
any measurable selection arguments. For sake of completeness, we provide it. Denote by J(t, µ, α) the cost
functional:

J(t, µ, α) :=

∫ T

t

f̂
(
s,Pt,µ,αs , α̃(s, .,Pt,µ,αs )

)
ds+ ĝ

(
Pt,µ,αT

)
, 0 ≤ t ≤ T, µ ∈ P

2
(Rd), α ∈ A,

so that v(t, µ) = infα∈A J(t, µ, α), and by w(t, µ) the r.h.s. of (3.14) (here we stress the dependence of the
controlled marginal distribution process Pt,µ,α on α). Then,

w(t, µ) = inf
α∈A

[∫ θ

t

f̂
(
s,Pt,µ,αs , α̃(s, .,Pt,µ,αs )

)
ds+ inf

β∈A
J
(
θ, P t,µ,αθ , β

)]

= inf
α∈A

inf
β∈A

[∫ θ

t

f̂(s,Pt,µ,αs , α̃(s, .,Pt,µ,αs ))ds+ J
(
θ, P t,µ,αθ , β

)]

= inf
α∈A

inf
β∈A

[∫ θ

t

f̂
(
s,Pt,µ,γ[α,β]s , γ̃[α, β](s, .,Pt,µ,γ[α,β]s )

)
ds+ J

(
θ, P

t,µ,γ[α,β]
θ , γ[α, β]

)]

where we define γ[α, β] ∈ A by: γ̃[α, β](s, .) = α̃(s, .)10≤s≤θ + β̃(s, .)1θ<s≤T . Now, it is clear that when α, β run
over A, then γ[α, β] also runs over A, and so:

w(t, µ) = inf
γ∈A

[∫ θ

t

f̂
(
s,Pt,µ,γs , γ̃

(
s, . . . ,Pt,µ,γs

))
ds+ J

(
θ, P t,µ,γθ , γ

)]

= inf
γ∈A

[∫ θ

t

f̂
(
s,Pt,µs , γ̃

(
s, .,Pt,µs

))
ds+

∫ T

θ

f̂
(
s,Pθ,P

t,µ
θ

s , γ̃
(
s, .,Pθ,P

t,µ
θ

s

))
+ ĝ

(
Pθ,P

t,µ
θ

T

)]

= inf
γ∈A

[∫ θ

t

f̂
(
s,Pt,µs , γ̃(s, .,Pt,µs )

)
ds+

∫ T

θ

f̂
(
s,Pt,µs , γ̃

(
s, .,Pt,µs

))
+ ĝ

(
Pt,µT

)]
,

by the flow property (3.10) (here we have omitted in the second and third line the dependence of Ps in γ). This
proves the required equality: w(t, µ) = v(t, µ). �

Remark 3.3. Problem (2.4) includes the case where the cost functional in (2.3) is a nonlinear function of the
expected value of the state process, i.e. the running cost functions and the terminal gain function are in the form:
f(t,Xt, αt,P(Xt,αt)

) = f̄(t,Xt,E[Xt], αt), t ∈ [0, T ], g(XT ,PXT ) = ḡ(XT ,E[XT ]), which arises for example in
mean-variance problem (see Sect. 4). It is claimed in [8,38] that Bellman optimality principle does not hold, and
therefore the problem is time-inconsistent. This is correct when one takes into account only the state process X
(that is its realization), since it is not Markovian, but as shown in this section, dynamic programming principle
holds true whenever we consider the marginal distribution as state variable. This gives more information and
the price to paid is the infinite-dimensional feature of the marginal distribution state variable.
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3.2. Bellman equation

The purpose of this paragraph is to derive from the dynamic programming principle (3.14), a partial differ-
ential equation (PDE) for the value function v(t, µ), called Bellman equation. We shall rely on the notion of
derivative with respect to a probability measure, as introduced by P.L. Lions in his course at Collège de France,
and detailed in the lecture notes [11].

This notion is based on the lifting of functions u : P
2
(Rd) → R into functions U defined on L2(F0;Rd) by

U(X) = u(P
X

). We say that u is differentiable (resp. C1) on P2(Rd) if the lift U is Fréchet differentiable (resp.
Fréchet differentiable with continuous derivatives) on L2(F0;Rd). In this case, the Fréchet derivative [DU ](X),
viewed as an element DU(X) of L2(F0;Rd) by Riesz’ theorem: [DU ](X)(Y ) = E[DU(X).Y ], can be represented
as

DU(X) = ∂µu(P
X

)(X), (3.15)

for some function ∂µu(P
X

) : Rd → Rd, which is called derivative of u at µ = P
X

. Moreover, ∂µu(µ) ∈ L2
µ(Rd)

for µ ∈ P2(Rd) = {P
X
, X ∈ L2(F0;Rd)}. Following [16], we say that u is partially C2 if it is C1, and one can

find, for any µ ∈ P
2
(Rd), a continuous version of the mapping x ∈ Rd 7→ ∂µu(µ)(x), such that the mapping

(µ, x) ∈ P2(Rd)×Rd 7→ ∂µu(µ)(x) is continuous at any point (µ, x) such that x ∈ Supp(µ), and if for any µ ∈
P

2
(Rd), the mapping x ∈ Rd 7→ ∂µu(µ)(x) is differentiable, its derivative being jointly continuous at any point

(µ, x) such that x ∈ Supp(µ). The gradient is then denoted by ∂x∂µu(µ)(x) ∈ Sd, the set of symmetric matrices
in Rd×d. We say that u ∈ C2b (P

2
(Rd)) if it is partially C2, ∂x∂µu(µ) ∈ L∞µ (Sd), and for any compact set K of

P
2
(Rd), we have

sup
µ∈K

[∫
Rd

∣∣∂µu(µ)(x)|2µ(dx) +
∥∥∂x∂µu(µ)‖∞

]
<∞.

As shown in [16], if the lifted function U is twice continuously Fréchet differentiable on L2(F0;Rd) with Lipschitz
Fréchet derivative, then u lies in C2b (P

2
(Rd)). In this case, the second Fréchet derivative D2U(X) is identified

indifferently by Riesz’ theorem as a bilinear form on L2(F0;Rd) or as a symmetric operator (hence bounded)
on L2(F0;Rd), denoted by D2U(X) ∈ S(L2(F0;Rd)), and we have the relation (see Appendix A.2 in [12]):

E
[
D2U(X)(Y N).Y N

]
= E

[
tr
(
∂x∂µu(P

X
)(X)Y Y ᵀ

)]
, (3.16)

for any X ∈ L2(F0;Rd), Y ∈ L2(F0;Rd×q), and where N ∈ L2(F0;Rq) is independent of (X,Y ) with zero mean
and unit variance.

We shall need a chain rule (or Itô’s formula) for functions defined on P
2
(Rd), proved independently in [10,16],

see also the Appendix in [12], and that we recall here. Let us consider an Rd-valued Itô process

dXt = btdt+ σtdBt, X0 ∈ L2
(
F0;Rd

)
,

where (bt) and (σt) are progressively measurable processes with respect to the filtration generated by the n-
dimensional Brownian motion B, valued respectively in Rd and Rd×n, and satisfying the integrability condition:

E

[∫ T

0

|bt|2 + |σt|2dt

]
< ∞. (3.17)

Let u ∈ C2b (P
2
(Rd)). Then, for all t ∈ [0, T ],

u(P
Xt

) = u(P
X0

) +

∫ t

0

E
[
∂µu(P

Xs
)(Xs).bs +

1

2
tr
(
∂x∂µu(P

Xs
)(Xs)σsσ

ᵀ
s

)]
ds. (3.18)
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We have now the ingredients for deriving the Bellman equation associated to the DPP (3.14), and it turns
out that it takes the following form:{

∂tv + inf
α̃∈L(Rd;A)

[
f̂(t, µ, α̃) + 〈Lα̃t v(t, µ), µ〉

]
= 0, on [0, T )× P2(Rd),

v(T, .) = ĝ, on P2(Rd)
(3.19)

where for α̃ ∈ L(Rd;A), ϕ ∈ C2b (P
2
(Rd)) and (t, µ) ∈ [0, T ] × P

2
(Rd), Lα̃t ϕ(µ) ∈ L2

µ(R) is the function: Rd →
R defined by

Lα̃t ϕ(µ)(x) := ∂µϕ(µ)(x).b(t, x, α̃(x), Idα̃ ? µ) +
1

2
tr
(
∂x∂µϕ(µ)(x)σσᵀ(t, x, α̃(x), Idα̃ ? µ)

)
. (3.20)

In the spirit of classical verification theorem for stochastic control of diffusion processes, we prove the following
result in our McKean−Vlasov control framework, which is a consequence of Itô’s formula for functions defined
on the Wasserstein space.

Proposition 3.4 (Verification theorem). Let w : [0, T ] × P
2
(Rd) → R be a function in C1,2b ([0, T ] × P

2
(Rd)),

i.e. w is continuous on [0, T ]×P2(Rd), w(t, .) ∈ C2b (P2(Rd)), for all t ∈ [0, T ], and w(., µ) ∈ C1([0, T )). Suppose
that w is solution to (3.19), and there exists for all (t, µ) ∈ [0, T ) × P

2
(Rd) an element α̃∗(t, ., µ) ∈ L(Rd;A)

attaining the infimum in (3.19) s.t. the mapping (t, x, µ) 7→ α̃∗(t, x, µ) ∈ Lip([0, T ]×Rd×P2(Rd);A). Then, w
= v, and the feedback control α∗ ∈ A defined by

α∗t = α̃∗(t,Xt,PXt ), 0 ≤ t < T,

is an optimal control, i.e. V0 = J(α∗).

Proof. Fix (t, µ = Pξ) ∈ [0, T )×P2(Rd), and consider some arbitrary feedback control α ∈ A associated to Xt,ξ

the solution to the controlled SDE (3.7). Under condition (H1), we have the standard estimate

E
[

sup
t≤s≤T

|Xt,ξ
s |2

]
≤ C

(
1 + E|ξ|2

)
< ∞,

which implies that

E

[∫ T

t

∣∣∣b(s,Xt,ξ
s , α̃

(
s,Xt,ξ

s ,P
X
t,ξ
s

)
, Idα̃

(
s, .,P

X
t,ξ
s

)
? P

X
t,ξ
s

)∣∣∣2
+
∣∣∣σ (s,Xt,ξ

s , α̃
(
s,Xt,ξ

s ,P
X
t,ξ
s

)
, Idα̃

(
s, .,P

X
t,ξ
s

)
? P

X
t,ξ
s

)∣∣∣2 ds

]
< ∞.

One can then apply the Itô’s formula (3.18) to w(s,P
X
t,ξ
s

) = w(s,Pt,µs ) (with the definition (3.9)) between s =

t and s = T , and obtain

w(T,Pt,µT ) =w(t, µ) +

∫ T

t

∂w

∂t
(s,Pt,µs )

+ E
[
∂µw(s,Pt,µs )(Xt,ξ

s ).b(s,Xt,ξ
s , α̃(s,Xt,ξ

s ,Pt,µs ), Idα̃(s, .,Pt,µs ) ? Pt,µs )

+
1

2
tr
(
∂x∂µw(s,Pt,µs )(Xt,ξ

s )σsσ
ᵀ
s

(
s,Xt,ξ

s , α̃(s,Xt,ξ
s ,Pt,µs ), Idα̃(s, .,Pt,µs ) ? Pt,µs

) )]
ds

=w(t, µ) +

∫ T

t

∂w

∂t
(s,Pt,µs ) + 〈Lα̃(s,.,P

t,µ
s )

s w(s,Pt,µs ),Pt,µs 〉ds, (3.21)
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where we used in the second equality the fact that Pt,µs is the distribution of Xt,ξ
s for s ∈ [t, T ]. Since x 7→

α̃(s, .,Pt,µs ) ∈ L(Rd;A) for s ∈ [t, T ], we deduce from the Bellman equation satisfied by w and (3.21) that

ĝ(Pt,µT ) ≥ w(t, µ)−
∫ T

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds.

Since α is arbitrary in A, this shows that w(t, µ) ≤ v(t, µ).
In the final step, let us apply the same Itô’s argument (3.21) with the feedback control α∗ ∈ A associated

with the fonction α̃∗ ∈ Lip([0, T ]× Rd × P2(Rd);A). Since α̃ attains the infimum in (3.19), we thus get

ĝ(Pt,µT ) = w(t, µ)−
∫ T

t

f̂(s,Pt,µs , α̃∗(s, .,Pt,µs ))ds,

which shows that w(t, µ) = J(t, µ, α∗) (≥ v(t, µ)), and therefore gives the required result: v(t, µ) = w(t, µ) =
J(t, µ, α∗). �

We shall apply the verification theorem in the next section, where we can derive explicit (smooth) solutions
to the Bellman equation (3.19) in some class of examples, but first discuss below the case when there are no
mean-field interaction, and the structure of the optimal control (when it exists).

Remark 3.5 (No mean-field interaction).
We consider the classical case of stochastic control where there is no mean-field interaction in the dynamics

of the state process, i.e. b(t, x, a) and σ(t, x, a) do not depend on λ, as well as in the cost functions f(t, x, a) and
g(x). In this special case, let us show how the verification Theorem 3.4 is reduced to the classical verification
result for smooth functions on [0, T ]× Rd, see e.g. [21] or [34].

Suppose that there exists a function u in C1,2([0, T ]× Rd) solution to the standard HJB equation{
∂tu+ inf

a∈A

[
f(t, x, a) + Lat u(t, x)

]
= 0, on s [0, T )× Rd,

u(T, .) = g on Rd.
(3.22)

where Lat is the second-order differential operator

Lat u(t, x) = ∂xu(t, x).b(t, x, a) +
1

2
tr
(
∂2xxu(t, x)σσᵀ(t, x, a)

)
,

and that for all (t, x) ∈ [0, T )×Rd, there exists â(t, x) attaining the argmin in (3.22), s.t. the map x 7→ â(t, x)
is Lipschitz on Rd.

Let us then consider the function defined on [0, T ]× P2(Rd) by

w(t, µ) = 〈u(t, .), µ〉 =

∫
Rd
u(t, x)µ(dx).

The lifted function of w is thus equal to W(t,X) = E[u(t,X)] with Fréchet derivative (with respect to X
∈ L2(F0,P)): [DW](t,X)(Y ) = E[∂xu(t,X).Y ]. Assuming that the time derivative of u w.r.t. t satisfies a
quadratic growth condition in x, the first derivative of u w.r.t. x satisfies a linear growth condition, and the
second derivative of u w.r.t. x is bounded, this shows that w lies in C1,2b ([0, T ]× P

2
(Rd)) with

∂tw(t, µ) = 〈∂tu(t, .), µ〉, ∂µw(t, µ) = ∂xu(t, .), ∂x∂µv(t, µ) = ∂2xxu(t, .).

Recalling the definition (3.20) of Lα̃t w(t, µ), we then get for any fixed (t, µ) ∈ [0, T )× P
2
(Rd):

∂tw(t, µ) + inf
α̃∈L(Rd;A)

[
f̂(t, µ, α̃) + 〈Lα̃t w(t, µ), µ〉

]
= inf

α̃∈L(Rd;A)

∫
Rd

[
∂tu(t, x) + f(t, x, α̃(x)) + L

α̃(x)
t u(t, x)

]
µ(dx)

=

∫
Rd

inf
a∈A

[
∂tu(t, x) + f(t, x, a) + Lat u(t, x)

]
µ(dx). (3.23)
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Indeed, the inequality ≥ in (3.23) is clear since α̃(x) lies in A for all x ∈ Rd, and α̃ ∈ L(Rd;A). Conversely, by
taking â(t, x) which attains the infimum in (3.22), and since the map x ∈ Rd 7→ â(t, x) is Lipschitz, we then
have∫

Rd
inf
a∈A

[
∂tu(t, x) + f(t, x, a) + Lat u(t, x)

]
µ(dx) =

∫
Rd

[
∂tu(t, x) + f(t, x, â(t, x)) + L

â(t,x)
t u(t, x)

]
µ(dx)

≥ inf
α̃∈L(Rd;A)

∫
Rd

[
∂tu(t, x) + f(t, x, α̃(x)) + L

α̃(x)
t u(t, x)

]
µ(dx),

which thus shows the equality (3.23). Since u is solution to (3.22), this proves that w is solution to the Bellman
equation (3.19), α̃∗(t, x) = â(t, x) is an optimal feedback control, and therefore, the value function is equal to
v(t, µ) = 〈u(t, .), µ〉. 2

Remark 3.6 (Form of the optimal control).
Consider the case where the coefficients of the McKean−Vlasov SDE and of the running costs do not depend

upon the law of the control, hence in the form: b(t,Xt, αt,PXt ), σ(t,Xt, αt,PXt ), f(t,Xt, αt,PXt ), and denote
by

H(t, x, a, µ, q,M) = f(t, x, a, µ) + q.b(t, x, a, µ) +
1

2
tr
(
Mσσᵀ(t, x, a, µ)

)
for (t, x, a, µ, q,M) ∈ [0, T ] × Rd × A × P2(Rd) × Rd × Sd, the Hamiltonian function related to the Bellman
equation (3.19) rewritten as:

∂tw(t, µ) + inf
α̃∈L(Rd;A)

∫
Rd

H
(
t, x, α̃(x), µ, ∂µw(µ)(x), ∂x∂µw(µ)(x)

)
µ(dx) = 0, (3.24)

for (t, µ) ∈ [0, T )×P2(Rd). Under suitable convexity conditions on the function a ∈ A 7→ H(t, x, a, µ, q,M), there
exists a minimizer, say â(t, x, µ, q,M), to infa∈AH(t, x, a, µ, q,M). Then, an optimal control α̃∗ in the statement
of the verification Theorem 3.4, obtained from the minimization of the (infinite dimensional) Hamiltonian
in (3.24), is written merely as α̃∗(t, x, µ) = â(t, x, µ, ∂µw(µ)(x), ∂x∂µw(µ)(x)), which extends the form discuss
in Remark 3.5, and says that it depends locally upon the derivatives of the value function. In the more general
case when the coefficients depend upon the law of the control, we shall see how one can derive the form of the
optimal control for the linear-quadratic problem. 2

4. Application: Linear-quadratic McKean−Vlasov control problem

We consider a multivariate linear McKean−Vlasov controlled dynamics with coefficients given by

b(t, x, µ, a, λ) = b0(t) +B(t)x+ B̄(t)µ̄+ C(t)a+ C̄(t)λ̄,

σ(t, x, µ, a, λ) = σ0(t) +D(t)x+ D̄(t)µ̄+ F (t)a+ F̄ (t)λ̄,
(4.25)

for (t, x, µ, a, λ) ∈ [0, T ]× Rd × P2(Rd)× Rm × P2(Rm), where we set

µ̄ :=

∫
Rd
xµ(dx), λ̄ :=

∫
Rm

aλ(da).

Here B, B̄, D, D̄ are deterministic continuous functions valued in Rd×d, and C, C̄, F , F̄ are deterministic
continuous functions valued in Rd×m, and b0, σ0 are deterministic continuous function valued in Rd. The
quadratic cost functions are given by

f(t, x, µ, a, λ) =xᵀQ2(t)x+ µ̄ᵀQ̄2(t)µ̄+ aᵀR2(t)a+ λ̄ᵀR̄2(t)λ̄+ 2xᵀM2(t)a

+ 2µ̄ᵀM̄2(t)λ̄+ q1(t).x+ q̄1(t).µ̄+ r1(t).a+ r̄1(t).λ̄,

g(x, µ) =xᵀP2x+ µ̄ᵀP̄2µ̄+ p1.x+ p̄1.µ̄, (4.26)
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where Q2, Q̄2 are deterministic continuous functions, P2, P̄2 are constants valued in Rd×d, R2, R̄2 are determin-
istic continuous functions valued in Rm×m, M2, M̄2 are deterministic continuous functions valued in Rd×m, q1,
q̄1 are deterministic continuous functions, p1, p̄1 are constants valued in Rd, and r1, r̄1 are deterministic con-
tinuous functions valued in Rm. Since f and g are real-valued, we may assume w.l.o.g. that all the matrices Q2,
Q̄2, R2, R̄2, P2, P̄2 are symmetric. We denote by Sd+ the set of nonnegative symmetric matrices in Sd, and by
Sd>+ the subset of symmetric positive definite matrices. This linear quadratic (LQ) framework is similar to the
one in [38], and extends the one considered in [7] where there is no dependence on the law of the control, and
the diffusion coefficient is deterministic.

The functions f̂ and ĝ defined in (3.11) are then given by

f̂(t, µ, α̃) = Var(µ)(Q2(t)) + µ̄ᵀ(Q2(t) + Q̄2(t))µ̄

+Var(α̃ ? µ)(R2(t)) + α̃ ? µ
ᵀ
(R2(t) + R̄2(t))α̃ ? µ

+2µ̄ᵀ(M2(t) + M̄2(t))α̃ ? µ + 2
∫
Rd(x− µ̄)ᵀM2(t)α̃(x)µ(dx)

+
(
q1(t) + q̄1(t)

)
.µ̄+

(
r1(t) + r̄1(t)

)
.α̃ ? µ

ĝ(µ) = Var(µ)(P2) + µ̄ᵀ(P2 + P̄2)µ̄+ (p1 + p̄1).µ̄,

(4.27)

for any (t, µ) ∈ [0, T )×P2(Rd), α̃ ∈ L(Rd;A) (here with A = Rm), where we set for any Λ in Sd (resp. in Sm),
and µ ∈ P

2
(Rd) (resp. P

2
(Rm)):

µ̄
2
(Λ) :=

∫
xᵀΛxµ(dx), Var(µ)(Λ) := µ̄

2
(Λ)− µ̄ᵀΛµ̄.

We look for a value function solution to the Bellman equation (3.19) in the form

w(t, µ) = Var(µ)(Λ(t)) + µ̄ᵀΓ (t)µ̄+ γ(t).µ̄+ χ(t), (4.28)

for some functions Λ, Γ ∈ C1([0, T ];Sd), γ ∈ C1([0, T ];Rd), and χ ∈ C1([0, T ];R). The lifted function of w
in (4.28) is given by

W(t,X) = E[XᵀΛ(t)X] + E[X]ᵀ(Γ (t)− Λ(t))E[X] + γ(t).E[X] + χ(t),

for X ∈ L2(F0;Rd). By computing for all Y ∈ L2(F0;Rd) the difference

W(t,X + Y )−W(t,X) = E
[(

2XᵀΛ(t) + 2E[X]ᵀ(Γ (t)− Λ(t)) + γ(t)
)
.Y
]

+ o(‖Y ‖
L2 ),

we see that W is Fréchet differentiable (w.r.t. X) with [DW](t,X)(Y ) = E
[(

2XᵀΛ(t) + 2E[X]ᵀ(Γ (t)− Λ(t)) +

γ(t)
)
.Y
]
. This shows that w lies in C1,2b ([0, T ]× P

2
(Rd)) with

∂tw(t, µ) = Var(µ)(Λ′(t)) + µ̄ᵀΓ ′(t)µ̄+ γ′(t)µ̄+ χ′(t),

∂µw(t, µ)(x) = 2xᵀΛ(t) + 2µ̄ᵀ(Γ (t)− Λ(t)) + γ(t),

∂x∂µw(t, µ)(x) = 2Λ(t).

Together with the quadratic expression (4.27) of f̂ , ĝ, we then see that w satisfies the Bellman equation (3.19)
iff

Var(µ)(Λ(T )) + µ̄ᵀΓ (T )µ̄+ γ(T ).µ̄+ χ(T ) = Var(µ)(P2) + µ̄ᵀ(P2 + P̄2)µ̄+ (p1 + p̄1).µ̄, (4.29)
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holds for all µ ∈ P2(Rd), and

Var(µ)
(
Λ′(t) +Q2(t) +D(t)ᵀΛ(t)D(t) + Λ(t)B(t) +B(t)ᵀΛ(t)

)
+ inf
α̃∈L(Rd,A)

Gµt (α̃)

+ µ̄ᵀ

(
Γ ′(t) +Q2(t) + Q̄2(t) + (D(t) + D̄(t))ᵀΛ(t)(D(t) + D̄(t))

+ Γ (t)(B(t) + B̄(t)) + (B(t) + B̄(t))ᵀΓ (t)
)
µ̄

+
(
q1(t) + q̄1(t) + γ(t)(B(t) + B̄(t)) + 2σᵀ

0Λ(t)(D(t) + D̄(t)) + 2b0(t)ᵀΓ (t)
)
µ̄

+ χ′(t) + γ(t).b0(t) + σ0(t)ᵀΛ(t)b0(t)

= 0, (4.30)

holds for all t ∈ [0, T ), µ ∈ P
2
(Rd), where the function Gµt : L2

µ(A) ⊃ L(Rd;A) → R is defined by

Gµt (α̃) = Var(α̃ ? µ)(Ut) + α̃ ? µ
ᵀ
Vtα̃ ? µ + 2

∫
Rd

(x− µ̄)ᵀStα̃(x)µ(dx) + 2µ̄ᵀZtα̃ ? µ + Yt.α̃ ? µ, (4.31)

and we set Ut = U(t, Λ(t)), Vt = V (t, Λ(t)), St = S(t, Λ(t)), Zt = Z(t, Λ(t), Γ (t)), Yt = Y (t, Γ (t), γ(t)) with

U(t, Λ(t)) = F (t)ᵀΛ(t)F (t) +R2(t),

V (t, Λ(t)) = (F (t) + F̄ (t))ᵀΛ(t)(F (t) + F̄ (t)) +R2(t) + R̄2(t),

S(t, Λ(t)) = D(t)ᵀΛ(t)F (t) + Λ(t)C(t) +M2(t),

Z(t, Λ(t), Γ (t)) = (D(t) + D̄(t))ᵀΛ(t)(F (t) + F̄ (t)) + Γ (t)(C(t) + C̄(t)) +M2(t) + M̄2(t)

Y (t, Γ (t), γ(t)) =
(
C(t) + C̄(t)

)ᵀ
γ(t) + r1(t) + r̄1(t) + 2

(
F (t) + F̄ (t)

)ᵀ
Λ(t)σ0(t).

(4.32)

We now search for the infimum of the function Gµt . After some straightforward calculation, we derive the
Gateaux derivative of Gµt at α̃ in the direction β ∈ L2

µ(A), which is given by:

DGµt (α̃, β) := lim
ε→0

Gµt (α̃+ εβ)−Gµt (α̃)

ε
=

∫
Rd
ġµt (x, α̃).β(x)µ(dx)

with

ġµt (x, α̃) = 2Utα̃+ 2(Vt − Ut)α̃ ? µ+ 2Sᵀ

t (x− µ̄) + 2Zᵀ

t µ̄+ Yt.

Suppose that the symmetric matrices Ut and Vt in (4.32) are positive, hence invertible (this will be discussed
later on). Then, the function Gµt is convex and coercive on the Hilbert space L2

µ(A), and attains its infimum at

some α̃ = α̃∗(t, ., µ) s.t. DGµt (α̃; .) vanishes, i.e. ġµt (x, α̃∗(t, ., µ)) = 0 for all x ∈ Rd, which gives:

α̃∗(t, x, µ) = −U−1t Sᵀ

t (x− µ̄) − V −1t Zᵀ

t µ̄ −
1

2
V −1t Yt. (4.33)

It is clear that α̃∗(t, ., µ) lies in L(Rd;A), and so after some straightforward caculation:

inf
α̃∈L(Rd,A)

Gµt (α̃) =Gµt (α̃∗(t, ., µ)) = −Var(µ)
(
StU

−1
t Sᵀ

t

)
− µ̄ᵀ

(
ZtV

−1
t Zᵀ

t

)
µ̄

− Y ᵀ

t V
−1
t Zᵀ

t µ̄ −
1

4
Y ᵀ

t V
−1
t Yt. (4.34)
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Plugging the above expression in (4.30), we observe that the relation (4.29)−(4.30), hence the Bellman equation,
is satisfied by identifying the terms in Var(µ)(.), µ̄ᵀ(.)µ̄, µ̄, which leads to the system of ordinary differential
equations (ODEs) for (Λ, Γ, γ, χ):

Λ′(t) +Q2(t) +D(t)ᵀΛ(t)D(t) + Λ(t)B(t) +B(t)ᵀΛ(t)

−S(t, Λ(t))U(t, Λ(t))−1S(t, Λ(t))ᵀ = 0,

Λ(T ) = P2,

(4.35)


Γ ′(t) +Q2(t) + Q̄2(t) + (D(t) + D̄(t))ᵀΛ(t)(D(t) + D̄(t)) + Γ (t)(B(t) + B̄(t))

+ (B(t) + B̄(t))ᵀΓ (t)− Z(t, Λ(t), Γ (t))V (t, Λ(t))−1Z(t, Λ(t), Γ (t))ᵀ = 0,

Γ (T ) = P2 + P̄2,

(4.36)


γ′(t) +

(
B(t) + B̄(t))ᵀγ(t)− Z(t, Λ(t), Γ (t))V (t, Λ(t))−1Y (t, Γ (t), γ(t))

+ q1(t) + q̄1(t) + 2
(
D(t) + D̄(t)

)ᵀ
Λ(t)σ0(t) + 2Γ (t)b0(t) = 0,

γ(T ) = p1 + p̄1

(4.37)


χ′(t)− 1

4
Y (t, Γ (t), γ(t))ᵀV (t, Λ(t))−1Y (t, Γ (t), γ(t))

+ γ(t).b0(t) + σ0(t)ᵀΛ(t)σ0(t) = 0,

χ(T ) = 0.

(4.38)

Therefore, the resolution of the Bellman equation in the LQ framework is reduced to the resolution of the
Riccati equations (4.35) and (4.36) for Λ and Γ , and then given (Λ, Γ ), to the resolution of the linear ODEs (4.37)
and (4.38) for γ and χ. Suppose that there exists a solution (Λ, Γ ) ∈ C1([0, T ];Sd)×C1([0, T ]; Sd) to (4.35)−(4.36)
s.t. (Ut, Vt) in (4.32) lies in Sm>+ × Sm>+ for all t ∈ [0, T ] (see Rem. 4.1). Then, the above calculations are
justifieda posteriori, and by noting also that the mapping (t, x, µ) 7→ α̃∗(t, x, µ) ∈ Lip([0, T ]×Rd×P

2
(Rd);A),

we deduce by the verification theorem that the value function v is equal to w in (4.28) with (Λ, Γ, γ, χ) solution
to (4.35)−(4.38). Moreover, the optimal control is given in feedback form from (4.33) by

α∗t = α̃∗(t,X∗t ,PX∗t ) = −U−1t Sᵀ

t (X∗t − E[X∗t ]) − V −1t Zᵀ

t E[X∗t ] − 1

2
V −1t Yt, (4.39)

where X∗ is the state process controlled by α∗.

Remark 4.1. In the case where M2 = M̄2 = 0 (i.e. no crossing term between the state and the control in the
quadratic cost function f), it is shown in Proposition 3.1 and 3.2 in [38] that under the condition

P2 ≥ 0, P2 + P̄2 ≥ 0, Q2(t) ≥ 0, Q2(t) + Q̄2(t) ≥ 0, R2(t) ≥ δIm, R2(t) + R̄2(t) ≥ δIm (4.40)

for some δ > 0, the Riccati equations (4.35)−(4.36) admit unique solutions (Λ, Γ ) ∈ C1([0, T ];Sd+) ×
C1([0, T ];Sd+), and then Ut, Vt in (4.32) are symmetric positive definite matrices, i.e. lie in Sm>+ for all t ∈
[0, T ]. In this case, we retrieve the expressions (4.39) of the optimal control in feedback form obtained in [38].

We shall see in the next two paragraphs, some other examples arising from finance with explicit solutions
where condition (4.40) is not satisfied. 2

4.1. Mean-variance portfolio selection

The mean-variance problem consists in minimizing a cost functional of the form:

J(α) =
η

2
Var(XT )− E[XT ]

= E
[η

2

(
XT

)2 −XT

]
− η

2

(
E[XT ]

)2
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for some η > 0, with a dynamics for the wealth process X = (Xα) controlled by the amount αt valued in A =
R invested in one risky stock at time t:

dXt = r(t)Xtdt+ αt
(
ρ(t)dt+ ϑ(t)dBt), X0 = x0 ∈ R,

where r is the interest rate, ρ and ϑ > 0 are the excess rate of return (w.r.t. the interest rate) and volatility
of the stock price, and these deterministic functions are assumed to be continuous. This model fits into the LQ
framework (4.25) and (4.26) of the McKean−Vlasov problem, with a linear controlled dynamics that does not
have mean-field interaction:

b0 = 0, B(t) = r(t), B̄ = 0, C(t) = ρ(t), C̄ = 0,

σ0 = D = D̄ = 0, F (t) = ϑ(t), F̄ = 0,

Q2 = Q̄2 = M2 = M̄2 = R2 = R̄2 = 0,

q1 = q̄1 = r1 = r̄1 = 0, P2 =
η

2
, P̄2 = −η

2
, p1 = 0, p̄1 = −1.

The Riccati system (4.35)–(4.38) for (Λ(t), Γ (t), γ(t), χ(t)) is written in this case as

Λ′(t)−
(
ρ2(t)

ϑ2(t)
− 2r(t)

)
Λ(t) = 0, Λ(T ) =

η

2
,

Γ ′(t)− ρ2(t)Γ 2(t)

ϑ2(t)Λ(t)
+ 2r(t)Γ (t) = 0, Γ (T ) = 0,

γ′(t) + r(t)γ(t)− γ(t)
ρ2(t)Γ (t)

ϑ2(t)Λ(t)
= 0, γ(T ) = −1,

χ′(t)− ρ2(t)γ2(t)

4ϑ2(t)Λ(t)
= 0, χ(T ) = 0,

(4.41)

whose explicit solution is given by

Λ(t) =
η

2
exp

(∫ T
t

2r(s)− ρ2(s)

ϑ2(s)
ds

)
,

Γ (t) = 0,

γ(t) = − exp
(∫ T

t
r(s)ds

)
χ(t) = − 1

2η

[
exp

(∫ T
t

ρ2(s)

ϑ2(s)
ds

)
− 1

]
·

(4.42)

Although the condition (4.40) is not satisfied, we see that (Ut, Vt) in (4.32), which are here explicitly given by
Ut = Vt = ϑ(t)2Λ(t), are positive, and this validates our calculations for the verification theorem. Notice also
that the functions (Zt, Yt) in (4.32) are explicitly given by Zt = 0, Yt = ρ(t)γ(t). Therefore, the optimal control
is given in feedback form from (4.39) by

α∗t = α̃∗(t,X∗t ,PX∗t )

= − ρ(t)

ϑ2(t)
(X∗t − E[X∗t ]) +

ρ(t)

ηϑ2(t)
exp

(∫ T

t

ρ2(s)

ϑ2(s)
− r(s) ds

)
, (4.43)

where X∗ is the optimal wealth process with portfolio strategy α∗, hence with mean process governed by

dE[X∗t ] = r(t)E[X∗t ]dt +
ρ2(t)

ηϑ2(t)
exp

(∫ T

t

ρ2(s)

ϑ2(s)
− r(s) ds

)
dt,
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and explicitly given by

E[X∗t ] = x0e
∫ t
0
r(s)ds +

1

η
exp

(∫ T

t

ρ2(s)

ϑ2(s)
− r(s) ds

)(
exp

(∫ t

0

ρ2(s)

ϑ2(s)
ds

)
− 1

)
·

Plugging into (4.43), we get the optimal control for the mean-variance portfolio problem

α∗t =
ρ(t)

ϑ2(t)

[
x0e

∫ t
0
r(s)ds +

1

η
exp

(∫ T

0

ρ2(s)

ϑ2(s)
ds−

∫ T

t

r(s)ds

)
−X∗t

]
,

and retrieve the closed-form expression of the optimal control found in [3, 29] or [20] by different approaches.

4.2. Inter-bank systemic risk model

We consider a model of inter-bank borrowing and lending studied in [15] where the log-monetary reserve of
each bank in the asymptotics when the number of banks tend to infinity, is governed by the McKean−Vlasov
equation:

dXt =
[
κ(E[Xt]−Xt) + αt]dt+ σdBt, X0 = x0 ∈ R. (4.44)

Here, κ ≥ 0 is the rate of mean-reversion in the interaction from borrowing and lending between the banks, and
σ > 0 is the volatility coefficient of the bank reserve, assumed to be constant. Moreover, all banks can control
their rate of borrowing/lending to a central bank with the same policy α in order to minimize a cost functional
of the form

J(α) = E

[∫ T

0

(
1

2
α2
t − qαt(E[Xt]−Xt) +

η

2
(E[Xt]−Xt)

2

)
dt+

c

2
(E[XT ]−XT )2

]
,

where q > 0 is a positive parameter for the incentive to borrowing (αt > 0) or lending (αt < 0), and η > 0, c > 0
are positive parameters for penalizing departure from the average. This model fits into the LQ McKean−Vlasov
framework (4.25) and (4.26) with d = m = 1 and

b0 = 0, B = −κ, B̄ = κ, C = 1, C̄ = 0,

σ0 = σ, D = D̄ = F = F̄ = 0,

Q2 =
η

2
, Q̄2 = −η

2
, R2 =

1

2
, R̄2 = 0, M2 =

q

2
, M̄2 = −q

2
,

q1 = q̄1 = r1 = r̄1 = 0, P2 =
c

2
, P̄2 = − c

2
, p1 = p̄1 = 0.

The Riccati system (4.35)–(4.38) for (Λ(t), Γ (t), γ(t), χ(t)) is written in this case as
Λ′(t)− 2(κ+ q)Λ(t)− 2Λ2(t)− 1

2
(q2 − η) = 0, Λ(T ) =

c

2
,

Γ ′(t)− 2Γ 2(t) = 0, Γ (T ) = 0,

γ′(t)− 2γ(t)Γ (t) = 0, γ(T ) = 0,

χ′(t) + σ2Λ(t)− 1
2γ

2(t) = 0, χ(T ) = 0,

(4.45)

whose explicit solution is given by Γ = γ = 0, and

χ(t) = σ2

∫ T

t

Λ(s)ds,

Λ(t) =
1

2

(q − η2)
(
e(δ

+−δ−)(T−t) − 1
)
− c
(
δ+e(δ

+−δ−)(T−t) − δ−
)

δ−e(δ+−δ−)(T−t) − δ+
)
− ce(δ+−δ−)(T−t) − 1

,
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where we set

δ± = −(κ+ q)±
√

(κ+ q)2 + (η − q2).

Moreover, the functions (Ut, Vt, Zt, Yt) in (4.32) are explicitly given by: Ut = Vt = 1
2 (hence > 0), St = Λ(t)+ q

2 ,
Zt = Γ (t) = 0, Yt = γ(t) = 0. Therefore, the optimal control is given in feedback form from (4.39) by

α∗t = α̃∗(t,X∗t ,PX∗t ) = −(2Λ(t) + q) (X∗t − E[X∗t ]) , (4.46)

where X∗ is the optimal log-monetary reserve controlled by the rate of borrowing/lending α∗. We then retrieve
the expression found in [15] by sending the number of banks N to infinity in their formula for the optimal
control. Actually, from (4.44), we have dE[X∗t ] = E[α∗t ]dt, while E[α∗t ] = 0 from (4.46). We conclude that the
optimal rate of borrowing/lending is equal to

α∗t = −(2Λ(t) + q)(X∗t − x0), 0 ≤ t ≤ T.

5. Viscosity solutions

In general, there are no smooth solutions to the HJB equation, and in the spirit of HJB equation for standard
stochastic control, we shall introduce in this section a notion of viscosity solutions for the Bellman equation (3.19)
in the Wasserstein space of probability measures P2(Rd). We adopt the approach in [32], and detailed in [11],
which consists, after the lifting identification between measures and random variables, in working in the Hilbert
space L2(F0;Rd) instead of working in the Wasserstein space P2(Rd), in order to use the various tools developed
for viscosity solutions in Hilbert spaces, in particular in our context, for second order Hamilton-Jacobi equations.

Let us rewrite the the Bellman equation (3.19) in the “Hamiltonian” form:{
−∂v
∂t

+H(t, µ, ∂µv(t, µ), ∂x∂µv(t, µ)) = 0 on [0, T )× P2(Rd),
v(T, .) = ĝ on P2(Rd)

(5.47)

where H is the function defined by

H(t, µ, p, Γ ) = − inf
α̃∈L(Rd;A)

[
〈f(t, ., µ, α̃(.), Idα̃ ? µ) + p(.).b(t, ., µ, α̃(.), Idα̃ ? µ)

+
1

2
tr
(
Γ (.)σσᵀ(t, ., µ, α̃(.), Idα̃ ? µ)

)
, µ〉

]
, (5.48)

for (t, µ) ∈ [0, T ]× P
2
(Rd), (p, Γ ) ∈ L2

µ(Rd)× L∞µ (Sd).
We then consider the “lifted” Bellman equation in [0, T ]× L2(F0;Rd):−

∂V

∂t
+H(t, ξ,DV (t, ξ), D2V (t, ξ)) = 0 on [0, T )× L2(F0;Rd),

V (T, ξ) = Ĝ(ξ) := E[g(ξ,P
ξ
)], ξ ∈ L2(F0;Rd),

(5.49)

where H : [0, T ]× L2(F0;Rd)× L2(F0;Rd)× S(L2(F0;Rd)) → R is defined by

H(t, ξ, P,Q) = − inf
α̃∈L(Rd;A)

{
E
[
f(t, ξ,P

ξ
, α̃(ξ), Idα̃ ? P

ξ
) + P.b(t, ξ,P

ξ
, Idα̃ ? P

ξ
)

+
1

2
Q
(
σ(t, ξ,P

ξ
, α̃(ξ), Idα̃ ? P

ξ
)N
)
.
(
σ(t, ξ,P

ξ
, α̃(ξ), Idα̃ ? P

ξ
)N
)]}

, (5.50)
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with N ∈ L2(F0,Rn) of zero mean, unit variance, and independent of ξ. Observe that when v and V are
smooth functions respectively in [0, T ]×P

2
(Rd) and [0, T ]×L2(F0;Rd), linked by the lifting relation V (t, ξ) =

v(t,P
ξ
), then from (3.15) and (3.16), v is solution to the Bellman equation (5.47) iff V is solution to the Bellman

equation (5.49). Let us mention that the lifted Bellman equation was also derived in [5] in the case where σ =
σ(x) is not controlled and does not depend on the distribution of the state process, and there is no dependence
on the marginal distribution of the control process on the coefficients b and f .

It is then natural to define viscosity solutions for the Bellman equation (5.47) (hence (3.19)) from viscosity
solutions to (5.49). As usual, we say that a function u (resp. U) is locally bounded in [0, T ]×P2(Rd) (resp. on
[0, T ] × L2(F0;Rd)) if it is bounded on bounded subsets of [0, T ] × P

2
(Rd) (resp. of [0, T ] × L2(F0;Rd)), and

we denote by u∗ (resp. U∗) its upper semicontinuous envelope, and by u∗ (resp. U∗) its lower semicontinuous
envelope. Similarly as in [22], we define the set C2` ([0, T ] × L2(F0;Rd)) of test functions for the lifted Bellman
equation, as the set of real-valued continuous functions Φ on [0, T ]×L2(F0;Rd) which are continuously differen-
tiable in t ∈ [0, T ), twice continuously Fréchet differentiable on L2(F0;Rd), and which are liftings of functions
on [0, T ]×P

2
(Rd), i.e. Φ(t, ξ) = ϕ(t,Pξ), for some ϕ ∈ C1,2b ([0, T ]×P

2
(Rd)), called inverse-lifted function of Φ.

Definition 5.1. We say that a locally bounded function u : [0, T ] × P
2
(Rd) → R is a viscosity (sub, super)

solution to (5.47) if the lifted function U : [0, T ]× L2(F0;Rd) → R defined by

U(t, ξ) = u(t,P
ξ
), (t, ξ) ∈ [0, T ]× L2(F0;Rd),

is a viscosity (sub, super) solution to the lifted Bellman equation (5.49), that is:

(i) U∗(T, .) ≤ Ĝ, and for any test function Φ ∈ C2` ([0, T ] × L2(F0;Rd)) such that U∗ − Φ has a maximum at
(t

0
, ξ

0
) ∈ [0, T )× L2(F0;Rd), one has

−∂Φ
∂t

(t
0
, ξ

0
) +H(t

0
, ξ

0
, DΦ(t

0
, ξ

0
), D2Φ(t

0
, ξ

0
)) ≤ 0.

(ii) U∗(T, .) ≥ Ĝ, and for any test function Φ ∈ C2` ([0, T ] × L2(F0;Rd)) such that U∗ − Φ has a minimum at
(t0 , ξ0) ∈ [0, T )× L2(F0;Rd), one has

−∂Φ
∂t

(t
0
, ξ

0
) +H(t

0
, ξ

0
, DΦ(t

0
, ξ

0
), D2Φ(t

0
, ξ

0
)) ≥ 0.

The main goal of this section is to prove the viscosity characterization of the value function v in (3.12) to
the Bellman equation (3.19), hence equivalently the viscosity characterization of the lifted value function V :
[0, T ]× L2(F0;Rd) defined by

V (t, ξ) = v(t,P
ξ
), ξ ∈ L2(F0;Rd),

to the lifted Bellman equation (5.49). We shall strenghten condition (H1) by assuming in addition that b, σ are
uniformly continuous in t, and bounded in (a, λ):

(H1’) There exists some constant Cb,σ > 0 s.t. for all t, t′ ∈ [0, T ], x, x′ ∈ Rd, a, a′ ∈ A, λ, λ′ ∈ P2(Rd ×A),

|b(t, x, a, λ)− b(t′, x′, a′, λ′)|+ |σ(t, x, a, λ)− σ(t′, x′, a′, λ′)|
≤ Cb,σ

[
mb,σ(|t− t′|) + |x− x′|+ |a− a′|+W2(λ, λ′)

]
,

for some modulus mb,σ (i.e. mb,σ(τ) → 0 when τ goes to zero) and

|b(t, 0, a, δ
0,0)

)|+ |σ(t, 0, a, δ
(0,0)

)| ≤ Cb,σ.
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We also strenghten condition (H2) by making additional (uniform) continuity assumptions on the running
and terminal cost functions, and boundedness conditions in (a, λ):

(H2’) (i) g is continuous on Rd ×P
2
(Rd) and there exists some constant Cg > 0 s.t. for all x ∈ Rd, µ ∈ P

2
(Rd),

|g(x, µ)| ≤ Cg
(
1 + |x|2 + ‖µ‖2

2

)
.

(ii) There exists some constant Cf > 0 s.t. for all t ∈ [0, T ], x ∈ Rd, a ∈ A, λ ∈ P
2
(Rd ×A),

|f(t, x, a, λ)| ≤ Cf
(
1 + |x|2 + ‖λ‖2

2

)
,

and some modulus mf (i.e. mf (τ) → 0 when τ goes to zero) s.t. for all t, t′ ∈ [0, T ], x, x′ ∈ Rd, a ∈ A, λ, λ′ ∈
P

2
(Rd ×A),

|f(t, x, a, λ)− f(t′, x′, a, λ′)| ≤ mf

(
|t− t′|+ |x− x′|+W2(λ, λ′)

)
.

The boundedness condition in (H1’)−(H2’) of b, σ, f w.r.t. (a, λ) ∈ A × P
2
(Rd × A) is typically satisfied

when A is bounded. Under (H1’), we get by standard arguments

sup
α∈A

E
[

sup
t≤s≤T

|Xt,ξ
s |2

]
< ∞,

for any t ∈ [0, T ], ξ ∈ L2(Ft;Rd), which shows under the quadratic growth condition of g and f in (H2’)
(uniformly in a) that v and V also satisfy a quadratic growth condition: there exists some positive constant C
s.t. {

|v(t, µ)| ≤ C
(
1 + ‖µ‖2

2

)
, (t, µ) ∈ [0, T ]× P

2
(Rd),

|V (t, ξ)| ≤ C
(
1 + E|ξ|2

)
, (t, ξ) ∈ [0, T ]× L2(F0;Rd),

(5.51)

and are thus in particular locally bounded.
We first state a flow continuity property of the marginal distribution of the controlled state process. Indeed,

from standard estimates on the state process under (H1’), one easily checks (see also Lem. 3.1 in [10]) that there
exists some positive constant C, such that for all α ∈ A, t, t′ ∈ [0, T , t ≤ s ≤ T, t′ ≤ s′ ≤ T , µ = Pξ, µ′ = Pξ′ ∈
P2(Rd):

E
∣∣Xt,ξ

s −X
t′,ξ′

s′

∣∣2 ≤ C
(
1 + E|ξ|2 + E|ξ′|2

)(
|t− t′|+ |s− s′|+ E|ξ − ξ′|2

)
,

and so from the definition of the 2-Wasserstein distance

W2

(
Pt,µs ,Pt

′,µ′

s′

)
≤ C (1 + ‖µ‖

2
+ ‖µ′‖

2
)
(
|t− t′| 12 + |s− s′| 12 +W2(µ, µ′)

)
. (5.52)

The next result states the viscosity property of the value function to the Bellman equation as a consequence
of the dynamic programming principle (3.14).

Proposition 5.2. The value function v is a viscosity solution to the Bellman equation (3.19).

Proof. We first show the continuity of t 7→ v(t, .) and V (t, .) at t = T . For any (t, µ = Pξ) ∈ [0, T )×P
2
(Rd), α

∈ A, we have from (5.52)

W2(Pt,µT , µ) ≤
(
E|Xt,ξ

T − ξ|
2
) 1

2 ≤ C(1 + ‖µ‖
2
)|T − t| 12 , (5.53)

for some positive constant C (independent of t, µ, α). This means that Pt,µT converges to µ in P
2
(Rd) when t

↗ T , uniformly in α ∈ A. Now, from the definition of v in (3.12), we have

|v(t, µ)− ĝ(µ)| ≤ sup
α∈A

∫ T

t

∣∣f̂(s,Pt,µs , α̃(s, .,Pt,µs ))
∣∣ds+

∣∣ĝ(Pt,µT )− ĝ(µ)
∣∣

≤ C(1 + ‖µ‖2
2
)|T − t| + sup

α∈A

∣∣ĝ(Pt,µT )− ĝ(µ)
∣∣, (5.54)
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from the growth condition on f in (H2’). By the continuity assumption on g together with the growth condition
on g in (H2’), which allows to use dominated convergence theorem, we deduce from (5.53) that ĝ(Pt,µT ) converges
to ĝ(µ) when t ↗ T , uniformly in α ∈ A. This proves by (5.54) that v(t, µ) converges to ĝ(µ) when t ↗ T , i.e.
v∗(T, µ) = v∗(T, µ) = ĝ(µ) = v(T, µ), and equivalently that V (T, ξ) converges to Ĝ(ξ) when t↗ T , i.e. V ∗(T, ξ)
= V∗(T, µ) = Ĝ(ξ) = V (T, ξ),

Let us now prove the viscosity subsolution property of V on [0, T ) × L2(F0;Rd). Fix (t0 , ξ0) ∈ [0, T ) ×
L2(F0;Rd), and consider some test function Φ ∈ C2` ([0, T ] × L2(F0;Rd)) such that V ∗ − Φ has a maximum at
(t

0
, ξ

0
), and w.l.o.g. V ∗(t

0
, ξ

0
) = Φ(t

0
, ξ

0
), so that V ∗ ≤ Φ. By definition of V ∗(t

0
, ξ

0
), there exists a sequence

(tn, ξn)n in [0, T )× L2(F0;Rd) s.t.

(tn, ξn) −→ (t
0
, ξ

0
), V (tn, ξn) −→ V ∗(t

0
, ξ

0
),

as n goes to infinity. By continuity of Φ, we have

γn := (V − Φ)(tn, ξn) −→ (V ∗ − Φ)(t
0
, ξ

0
) = 0,

and let (hn) be a strictly positive sequence s.t. hn → 0 and γn/hn → 0. Consider the inverse-lifted function
of Φ, namely ϕ : [0, T ]×P2(Rd) → R defined by ϕ(t, µ) = Φ(t, ξ) for t ∈ [0, T ] and µ = P

ξ
∈ P2(Rd), and recall

that ϕ ∈ C1,2b ([0, T ] × P2(Rd)). Let α̃ be an arbitrary element in L(Rd;A), and consider the time-independent
feedback control α ∈ A associated with α̃. From the DPP (3.14) applied to v(tn, µn), with µn = P

ξn
, we have

v(tn, µn) ≤
∫ tn+hn

tn

f̂(s,Ptn,µns , α̃)ds + v
(
tn + hn,Ptn,µntn+hn

)
.

Since v(t, µ) = V (t, ξ) ≤ V ∗(t, ξ) ≤ Φ(t, ξ) = ϕ(t, µ) for all (t, µ = P
ξ
) ∈ [0, T ]× P2(Rd), this implies

γn
hn
≤ 1

hn

∫ tn+hn

tn

f̂(s,Ptn,µns , α̃)ds +
ϕ(tn + hn,Ptn,µntn+hn

)− ϕ(tn, µn)

hn
·

Applying Itô’s formula (3.18) (similarly as in the verification Thm. 3.4) to ϕ(s,Ptn,µns ) between tn and tn + hn,
we get

γn
hn
≤ 1

hn

∫ tn+hn

tn

[
f̂(s,Ptn,µns , α̃) +

∂ϕ

∂t
(s,Ptn,µns ) + 〈Lα̃sϕ(s,Ptn,µns ),Ptn,µns 〉

]
ds

Recall that W2(µn, µ0
) ≤

(
E|ξn − ξ0|2

) 1
2 , where µ

0
= P

ξ0
, which shows that µn → µ0 in P

2
(Rd) as n goes to

infinity. By the continuity of b, σ, f, ϕ on their respective domains, the flow continuity property (5.52), we then
obtain by sending n to infinity in the above inequality:

0 ≤ f̂(t
0
, µ

0
, α̃) +

∂ϕ

∂t
(t

0
, µ

0
) + 〈Lα̃t

0
ϕ(t

0
, µ

0
), µ

0
〉,

Since α̃ is arbitrary in L(Rd;A), this shows

−∂ϕ
∂t

(t
0
, µ

0
) +H(t0, µ0

, ∂µϕ(t
0
, µ

0
), ∂x∂µϕ(t0, µ0

)) ≤ 0,

and thus at the lifted level:

−∂Φ
∂t

(t
0
, ξ

0
) +H(t0, ξ0 , DΦ(t

0
, ξ

0
), D2Φ(t0, ξ0)) ≤ 0,

which is the required viscosity subsolution property.
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We proceed finally with the viscosity supersolution property. Fix (t0 , ξ0) ∈ [0, T )× L2(F0;Rd), and consider
some test function Φ ∈ C2` ([0, T ]×L2(F0;Rd)) such that V∗−Φ has a minimum at (t

0
, ξ

0
), and w.l.o.g. V∗(t0 , ξ0) =

Φ(t
0
, ξ

0
), so that V∗ ≥ Φ. Again, by definition of V∗(t0 , ξ0), there exists a sequence (tn, ξn)n in [0, T )×L2(F ;Rd)

s.t. (tn, ξn) −→ (t0 , ξ0), and V (tn, ξn) −→ V∗(t0 , ξ0) as n goes to infinity. We set γn := (V − Φ)(tn, ξn), which
converges to zero, and we consider a strictly positive sequence (hn) converging to zero and s.t. γn/hn also
converges to zero. Consider the inverse-lifted function of Φ, namely ϕ ∈ C1,2b ([0, T ]×P2(Rd)) defined by ϕ(t, µ)
= Φ(t, ξ) for t ∈ [0, T ] and µ = P

ξ
∈ P

2
(Rd). From the DPP (3.14), for each n, and denoting by µn = P

ξn
∈

P
2
(Rd), there exists αn ∈ A associated to a feedback control α̃n ∈ Lip([0, T ]× Rd × P

2
(Rd);A) s.t.

v(tn, µn) + h2n ≥
∫ tn+hn

tn

f̂(s,Ptn,µns , α̃n)ds + v
(
tn + hn,Ptn,µntn+hn

)
.

Since v(t, µ) = V (t, ξ) ≥ V∗(t, ξ) ≥ Φ(t, ξ) = ϕ(t, µ) for all (t, µ = P
ξ
) ∈ [0, T ]× P

2
(Rd), this implies

γn
hn

+ hn ≥
1

hn

∫ tn+hn

tn

f̂(s,Ptn,µns , α̃n)ds +
ϕ(tn + hn,Ptn,µntn+hn

)− ϕ(tn, µn)

hn
·

Applying Itô’s formula (3.18) to ϕ(s,Ptn,µns ), we then get

γn
hn

+ hn ≥
1

hn

∫ tn+hn

tn

[
∂ϕ

∂t

(
s,Ptn,µns

)
+ f̂

(
s,Ptn,µns , α̃n(s, .,Ptn,µns )

)
+
〈
Lα̃

n(s,.,Ptn,µns )
s ϕ(s,Ptn,µns ),Ptn,µns

〉]
ds

≥ 1

hn

∫ tn+hn

tn

(
∂ϕ

∂t
(s,Ptn,µns ) + inf

α̃∈L(Rd;A)

[
f̂(s,Ptn,µns , α̃) +

〈
Lα̃sϕ(s,Ptn,µns ),Ptn,µns

〉])
ds.

By sending n to infinity together with the continuity assumption in (H1’)−(H2’) of b, σ, f, ϕ, uniformly in a
∈ A, and the flow continuity property (5.52), we get

−∂ϕ
∂t

(t0 , µ0) +H(t0, µ0 , ∂µϕ(t0 , µ0), ∂x∂µϕ(t0, µ0)) ≥ 0,

which gives the required viscosity supersolution property of V∗, and ends the proof. �

We finally turn to comparison principle (hence uniqueness result) for the Bellman equation (3.19) (or (5.47)),
hence equivalently for the lifted Bellman equation (5.49), which shall follow from comparison results for second
order Hamilton-Jacobi equations in separable Hilbert space stated in [31], see also [18]. We shall assume that
the σ-algebra F0 is countably generated upto null sets, which ensures that the Hilbert space L2(F0;Rd) is
separable, see [17], p. 92. This is satisfied for example when F0 is the Borel σ-algebra of a canonical space Ω0

of continuous functions on R+, in which case, F0 = ∨
s≥0
FB0

s , where (FB0

s ) is the canonical filtration on Ω0,
and it is then known that F0 is countably generated, see for instance Exercise 4.21 in Chapter 1 of [35].

Proposition 5.3. Let u and w be two functions defined on [0, T ]×P
2
(Rd) satisfying a quadratic growth condition

such that u (resp. w) is an upper (resp. lower) semicontinuous viscosity subsolution (resp. supersolution )
to (3.19). Then u ≤ w. Consequently, the value function v is the unique viscosity solution to the Bellman
equation (3.19) satisfying a quadratic growth condition (5.51).

Proof. In view of our Definition 5.1 of viscosity solution, we have to show a comparison principle for viscosity
solutions to the lifted Bellman equation (5.49). We use the comparison principle proved in Theorem 3.50 in [18]
and only need to check that the hypotheses of this theorem are satisfied in our context for the lifted Hamiltonian
H defined in (5.50). Notice that the lifted Bellman equation (5.49) is a bounded equation in the terminology of
[18] (see their Sect. 3.3.1) meaning that there is no linear dissipative operator on L2(F0;Rd) in the equation.
Therefore, the notion of B-continuity reduces to the standard notion of continuity in L2(F0;Rd) since one can
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take for B the identity operator. Their Hypothesis 3.44 follows from the uniform continuity of b, σ, and f
in (H1’)−(H2’). Hypothesis 3.45 is immediately satisfied since there is no discount factor in our equation, i.e.
H does not depend on V but only on its derivatives. The monotonicity condition in Q ∈ S(L2(F0;Rd)) of H
in Hypothesis 3.46 is clearly satisfied. Hypothesis 3.47 holds directly when dealing with bounded equations.
Hypothesis 3.48 is obtained from the Lipschitz condition of b, σ in (H1’), and the uniform continuity condition
on f in (H2’), while Hypothesis 3.49 follows from the quadratic growth condition of σ in (H1’). One can then
apply Theorem 3.50 in [18] and conclude that comparison principle holds for the Bellman equation (5.49), hence
for the Bellman equation (3.19). �

6. The case of open-loop controls

In this section, we discuss how one can consider more generally open-loop controls instead of (Lipschitz)
closed-loop controls as imposed in the previous sections. We shall restrict our framework to usual controlled
McKean−Vlasov SDE with coefficients that do not depend on the law of the control but only on the law of the
state process, hence in the form

dXs = b(s,Xs, αs,PXs )ds+ σ(s,Xs, αs,PXs )dBs, (6.55)

where b, σ are measurable functions from [0, T ] × Rd × A × P
2
(Rd) into Rd, respectively Rd×n, satisfying a

Lipschitz condition: for all t ∈ [0, T ], x, x′ ∈ Rd, a ∈ A, µ, µ′ ∈ P
2
(Rd),

|b(t, x, a, µ)− b(t, x′, a, µ′)|+ |σ(t, x, a, µ)− σ(t, x′, a, µ′)| ≤ C
[
|x− x′|+W2(µ, µ′)

]
, (6.56)

for some positive constant C. We denote by Ao the set of F-progressive processes α valued in A, assumed for
simplicity here to be a compact space of Rm, and consider the McKean−Vlasov control problem with open-loop
controls when there is no running cost:

V0 := inf
α∈Ao

E
[
g
(
XT ,PXT

)]
.

Under (6.56), and given t ∈ [0, T ], ξ ∈ L2(Ft;Rd), α ∈ Ao, there exists a unique (pathwise and in law) solution
Xt,ξ
s = Xt,ξ,α

s , t ≤ s ≤ T , solution to (6.55) starting from ξ at time t, satisfying

E
[

sup
t≤s≤T

|Xt,ξ
s |2

]
≤ C

(
1 + E|ξ|2

)
,

for some positive constant C independent of α ∈ Ao. As in (3.9), one can then define the flow Pt,µs = Pt,µ,αs ,
t ≤ s ≤ T , µ ∈ P

2
(Rd), α ∈ Ao, of the law of Xt,ξ

s , for µ = Pξ, and it satisfies the flow property (3.10). We
then define the value function in the Wasserstein space

vo(t, µ) := inf
α∈Ao

ĝ(Pt,µT ), t ∈ [0, T ], µ ∈ P
2
(Rd), (6.57)

so that V0 = vo(0,PX0
). Since the set of open-loop controls is larger than the set of feedback controls, it is clear

that vo is smaller than v the value function to the McKean−Vlasov control problem with feedback controls
considered in the previous sections. By similar arguments as in Theorem 3.2, one can show the DPP for the
value function with open-loop controls, namely:

vo(t, µ) = inf
α∈Ao

vo(θ,Pt,µθ ),

for all 0 ≤ t ≤ θ ≤ T , µ = Pξ ∈ P2
(Rd). It would be possible to consider a nonzero running cost function f ,

but in this case, one could not reformulate the value function vo as a deterministic control problem as in (6.57),
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and instead one has to consider the pair (Xt,PXt ) as state variable in order to state a dynamic programming
principle. This will be investigated in detail in [4]. From Itô’s formula (3.18), the infinitesimal version of the
above DPP leads to the dynamic programming Bellman equation:{

−∂tvo(t, µ) +Ho

(
t, µ, ∂µvo(t, µ), ∂x∂µvo(t, µ)

)
= 0, on [0, T )× P

2
(Rd),

vo(T, .) = ĝ, on P
2
(Rd)

(6.58)

where Ho is the function defined by

Ho(t, µ, p, Γ ) := − inf
α∈Ao

E
[
p(ξ).b(t, ξ, αt, µ) +

1

2
tr
(
Γ (ξ)σσᵀ(t, ξ, αt, µ)

)]
,

for (t, µ) ∈ [0, T ]×P2(Rd), (p, Γ ) ∈ L2
µ(Rd)×L∞µ (Sd), and with Pξ = µ. Similarly as in Propositions 3.4 and 5.3,

one can show a verification theorem for vo and prove that vo is the unique viscosity solution to (6.58).

For any α̃ ∈ L(Rd;A), it is clear that the control α defined by αs = α̃(ξ), t ≤ s ≤ T , lies in Ao, so that

Ho(t, µ, p, Γ ) ≥ − inf
α̃∈L(Rd;A)

E
[
p(ξ).b(t, ξ, α̃(ξ), µ) +

1

2
tr
(
Γ (ξ)σσᵀ(t, ξ, α̃(ξ), µ)

)]
= H(t, µ, p, Γ ),

with H the Hamiltonian in (5.48) for the McKean−Vlasov control problem with feedback control. This inequality
Ho ≥ H combined with comparison principle for the Bellman equation (6.58) is consistent with the inequality
v ≥ vo. If we could prove that Ho is equal to H (which is not trivial in general), then this would show that vo is
equal to v, i.e. the value functions to the McKean−Vlasov control problems with open-loop and feedback controls
coincide. Actually, we notice that the minimization over the infinite dimensional space Ao in the Hamiltonian
Ho can be reduced into a minimization over the finite dimensional space A, namely:

Ho(t, µ, p, Γ ) = H̃o(t, µ, p, Γ ) (6.59)

:= −
〈

inf
a∈A

[
p(.).b(t, ., a, µ) +

1

2
tr
(
Γ (.)σσᵀ(t, ., a, µ)

)]
, µ

〉
.

Indeed, it is clear that Ho ≤ H̃o. Conversely, by continuity of the coefficients b, σ w.r.t. the argument a
lying the compact space A, and invoking a measurable selection theorem, one can find for any (t, µ, p, Γ ) ∈
[0, T ] × P2(Rd) × L2

µ(Rd) × L∞µ (Sd), some measurable function x ∈ Rd 7→ â(t, x, µ, p(x), Γ (x)) = α̂(x) s.t. for

all x ∈ Rd,

inf
a∈A

[
p(x).b(t, x, a, µ) +

1

2
tr
(
Γ (x)σσᵀ(t, x, a, µ)

)]
= p(x).b(t, x, α̂(x), µ) +

1

2
tr
(
Γ (x)σσᵀ(t, x, α̂(x), µ)

)
.

By integrating w.r.t. µ = Pξ, we then get

H̃o(t, µ, p, Γ ) = −E
[
p(ξ).b(t, ξ, α̂(ξ), µ) +

1

2
tr
(
Γ (ξ)σσᵀ(t, ξ, α̂(ξ), µ)

)]
≤ Ho(t, µ, p, Γ ),

which shows the equality (6.59). Suppose now that there exists some smooth solution w on [0, T ] × P
2
(Rd) to

the equation: {
−∂tw(t, µ) + H̃o

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
= 0, on [0, T )× P2(Rd),

w(T, .) = ĝ, on P
2
(Rd),
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such that for all (t, µ) ∈ [0, T )× P2(Rd), the element x 7→ â(t, x, µ, ∂µw(t, µ)(x), ∂x∂µw(t, µ)(x)) achieving the
infimum in the definition of H̃o

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
, is Lipschitz, i.e. lies in L(Rd;A), then (recall also

Rem. 3.3)

H̃o

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
= H

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
,

which shows with (6.59) that w solves both the Bellman equations (6.58) and (5.47). By comparison principle,
we conclude that w = v = vo, which means in this case that the value functions to the McKean−Vlasov control
problems with open-loop and feedback controls coincide. Such condition was satisfied for example in the case
of the mean-variance portfolio selection problem studied in paragraph 4.1.
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