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DYNAMIC PROGRAMMING PRINCIPLE AND ASSOCIATED

HAMILTON-JACOBI-BELLMAN EQUATION FOR STOCHASTIC RECURSIVE

CONTROL PROBLEM WITH NON-LIPSCHITZ AGGREGATOR

Jiangyan Pu1,∗ and Qi Zhang2,a

Abstract. In this work we study the stochastic recursive control problem, in which the aggregator (or
generator) of the backward stochastic differential equation describing the running cost is continuous but
not necessarily Lipschitz with respect to the first unknown variable and the control, and monotonic with
respect to the first unknown variable. The dynamic programming principle and the connection between
the value function and the viscosity solution of the associated Hamilton-Jacobi-Bellman equation are
established in this setting by the generalized comparison theorem for backward stochastic differential
equations and the stability of viscosity solutions. Finally we take the control problem of continuous-
time Epstein−Zin utility with non-Lipschitz aggregator as an example to demonstrate the application
of our study.
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1. Introduction

The stochastic control theory arose along with the birth of stochastic analysis and developed fast in the last
few decades due to its wide applications. Indeed the stochastic control system is a natural and effective way to
involve the uncertainty, disturbance and ambiguity appearing in the real-world control problems. Its powerful
feature is especially embodied in the mathematical finance problems as we study the pricing of contingent claim
and the optimal strategy in the stochastic financial models, which on the contrary promotes the development
of stochastic control theory.

In the development of stochastic control theory, the backward stochastic differential equation (BSDE for
short) plays a big role. First of all, linear BSDE itself originated from the study of maximum principle for a
stochastic control problem in Bismut [2], where it appears as the adjoint equation, and later the application of
this pioneer work to mathematical finance was presented by Bismut [3]. The maximum principle reveals that
the optimal solution of a stochastic control problem can be depicted by the stochastic Hamiltonian system
which is actually a forward-backward stochastic differential equation (FBSDE for short). Furthermore, when
the stochastic control system is observed partially or the state equation itself is a stochastic partial differential
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equation, the adjoint equation in this case is a backward stochastic partial differential equation, which was
indicated in Bensoussan [1]. The maximum principle for stochastic control system with the diffusion term
dependent on control and the control regions not necessarily convex was another milestone in stochastic control
theory, which was solved in Peng [22] by using the second-order matrix-valued BSDE to serve as the adjoint
equation. We recommend the reader to refer to the monograph [29] by Yong and Zhou, in which comprehensive
introduction to the stochastic control theory is presented.

The role of BSDE in stochastic control theory is not restricted to the maximum principle as an adjoint
equation. The nonlinear BSDE has even more influence in the stochastic recursive utilities and their associated
control problems, thanks to the importance of recursive utilities in modern mathematical finance. The existence
and uniqueness of adapted solution to nonlinear BSDE in mathematics was proved by Pardoux and Peng [20].
Later Duffie and Epstein [8] put forward the concept of stochastic differential utility in a conditional expectation
form which is equivalent to the nonlinear BSDE. Since then both BSDEs and stochastic control problems in
mathematical finance achieved a great progress benefiting from their connections. The reader can refer to El
Karoui, Peng and Quenez [9] which concluded early works on BSDEs and their applications to mathematical
finance.

The stochastic recursive control problem we concern with was introduced by Peng [24]. Its state equation is
a stochastic differential equation (SDE for short):

Xt,x;v
s = x+

∫ s

t

b(r,Xt,x;v
r , vr)dr +

∫ s

t

σ(r,Xt,x;v
r , vr)dBr for x ∈ Rn, s ≥ t. (1.1)

The cost functional is associated with the solution to a BSDE on the interval [t, T ] coupled with the state
process:

Y t,x;v
s = h(Xt,x;v

T ) +

∫ T

s

f(r,Xt,x;v
r , Y t,x;v

r , Zt,x;v
r , vr)dr −

∫ T

s

Zt,x;v
r dBr (1.2)

and defined as below

J(t, x; v) , Y t,x;v
t , (1.3)

where v is an admissible control process in the admissible control set U . The corresponding control problem is to
find an optimal v̄ ∈ U to maximize the cost functional (1.3) for given (t, x). As you can see, FBSDE arises again
to depict this recursive control system. Actually, as a popular equation, FBSDEs appear in numerous control
and related mathematical finance problems. For the theories and applications of FBSDEs, we recommend the
reader to refer to e.g. Ma, Protter and Yong [17], Peng and Wu [26], Yong [28] or the classical book [18] by Ma
and Yong.

For this stochastic recursive control system (1.1)–(1.3), Peng [24] established the dynamic programming
principle in the Lipschitz setting of the aggregator (or generator from BSDE point of view) and connected its
value function with the Hamilton-Jacobi-Bellman (HJB for short) equation. Since the recursive utility can be
regarded as the solution of BSDE (1.2) with the conditional expectation form, the stochastic recursive control
system in form includes the control problem related to stochastic (recursive) differential utilities

Vt = EFt

[∫ T

t

f(cs, Vs)ds

]
, (1.4)

where c is the consumption process serving as the control. It is well known that the recursive utility is an
extension of the time-additive expected utility. In comparison with the latter, the former’s risk aversion and
intertemporal substitutability are separated in the aggregator which is “useful in clarifying the determinants of
asset prices and presumably for a number of other issues in capital theory and finance” (see [8]).
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In our study we aim to relax the Lipschitz restriction to the aggregator, i.e. the aggregator f(c, u) in (1.4)
is continuous but not necessarily Lipschitz with respect to both the utility variable u and the consumption
variable c, moreover, it is of polynomial growth with respect to u in our assumptions. These settings would
make much difference in the deduction of the dynamic programming principle and bring much trouble in the
verification of conditions for the stability of viscosity solutions which gives the connection between the value
function and the viscosity solution of the associated HJB equation. Although there are some further results on
stochastic recursive control problem from the dynamic programming principle point of view, such as Peng [25]
for non-Markovian framework, Buckdahn and Li [6] for stochastic differential games, Wu and Yu [27] for the
cost functional generated by reflected BSDE, Li and Peng [16] for the cost functional generated by BSDE with
jumps, Chen and Wu [7] for the state equation with delay, etc., as far as we know there are no existing results
in the non-Lipschitz aggregator setting. However, back to the stochastic recursive utilities, the aggregators in
many situations are not Lipschitz with respect to the utilities and consumptions. For instance, the aggregator
of the well-known continuous-time Epstein−Zin utility has a form

f(c, u) =
δ

1− 1
ψ

(1− γ)u

( c

((1− γ)u)
1

1−γ

)1− 1
ψ

− 1

, (1.5)

where δ > 0 is the rate of time preference, 0 < γ 6= 1 is the coefficient of relative risk aversion and 0 < ψ 6= 1
is the elasticity of intertemporal substitution. In general, the aggregator f(c, u) in (1.5) is not Lipschitz with
respect to c and u but could be monotonic with respect to the latter by appropriate choices of parameters.
We notice that a remarkable progress for stochastic recursive control problem with non-Lipschitz aggregator
had been made by Kraft, Seifried and Steffensen [13], in which the verification theorem is proved for the non-
Lipschitz Epstein−Zin aggregator and explicit solutions to HJB equation are given in some cases. Nevertheless,
the dynamic programming principle for non-Lipschitz stochastic recursive control system is still not involved.

Certainly, one important technique to study stochastic recursive control problem in the non-Lipschitz setting is
how to deal with the BSDE with non-Lipschitz aggregator. There is much literature devoting to the relaxation
of Lipschitz condition of the aggregator f(t, y, z) with respect to the first unknown variable y and/or the
second unknown variable z, such as Lepeltier and San Martin [15] for linear growth condition of y and z,
Kobylanski [14] for quadratic growth condition of z, Briand and Carmona [4] for polynomial growth condition
of y and Pardoux [19]) for arbitrary growth condition of y, to name but a few. As for the monotonic condition
of y it was first introduced to BSDE theory by Peng [23] for the infinite horizon BSDE. After that many
works adopted the monotonic condition to weaken the Lipschitz assumption or make BSDE more applicable
to the related fields, including e.g. Hu and Peng [12], Pardoux and Tang [21], Briand, Delyon, Hu, Pardoux
and Stoica [5], besides [4,19,26] mentioned above. However, to our best knowledge there are no existing results
about the dynamic programming principle and associated HJB equation for a stochastic control system involving
nonlinear BSDE with the monotonic or other non-Lipschitz aggregators.

This paper generalizes the results in [24] by studying a stochastic recursive control problem, in which the
cost functional generated by BSDE with the non-Lipschitz but continuous and monotonic aggregator. We
first establish the dynamic programming principle with the help of the backward semigroups and generalized
comparison theorem in non-Lipschitz setting, and then connect the value function of our concerned control
problem with a viscosity solution of the corresponding HJB equation by means of stability of viscosity solution.
Needless to say, the relaxation of Lipschitz condition makes our control problem applicable to more mathematical
finance models, including the continuous-time Epstein−Zin utility with non-Lipschitz aggregator.

The rest of this paper is organized as follows. In Section 2, some useful notation is introduced and the
necessary preliminaries are clarified. Then we deduce the dynamic programming principle in a non-Lipschitz
aggregator setting in Section 3. In Section 4 we establish the relationship between the value function of the control
problem and the viscosity solution of the corresponding HJB equation, provided that the aggregator of BSDE is
independent of the second unknown variable. Finally, an example from the control problem of continuous-time
Epstein−Zin utilities is given in Section 5 to demonstrate the application of our work to mathematical finance.
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2. Notation and preliminaries

Given a complete probability space (Ω,F ,P), let (Bs)0≤s≤T be a d-dimensional Brownian motion on the
probability space. Denote by (Fs)0≤s≤T the nature filtration generated by (Bs)0≤s≤T with F0 containing all
P-null sets of F . We use | · | and 〈·, ·〉 throughout the paper to denote the Euclidean norm and dotproduct,
respectively, and then we define some useful notation.

Definition 2.1. For q ≥ 1, 0 ≤ t ≤ T , we denote by:
• L2q(Ω,Ft;Rn): the space of all Ft-measurable random variables ξ : Ω → Rn satisfying E[|ξ|2q] <∞;
• S2q(t, T ;Rn): the space of all jointly measurable processes ϕ : [t, T ]×Ω → Rn satisfying

(i) ϕs is Fs-adapted and ϕs is a.s. continuous for t ≤ s ≤ T ,
(ii) E[ sup

s∈[t,T ]

|ϕs|2q] <∞;

• M2q(t, T ;Rn): the space of all jointly measurable processes ϕ : [t, T ]×Ω → Rn satisfying

(i) ϕs is Fs-adapted for t ≤ s ≤ T ,

(ii) E[
∫ T
t
|ϕs|2qds] <∞.

Next we clarify the set of admissible control processes U in the control system (1.1)–(1.3) which is defined as
below:

U , {v| v ∈M2(0, T ;Rm) and takes values in a compact set U ⊂ Rm}.

We make the following assumptions on the coefficients of state equation (1.1).

(H1) Both b(t, x, v) : [0, T ]× Rn × U → Rn and σ(t, x, v) : [0, T ]× Rn × U → Rn×d are jointly measurable and
continuous with respect to t.

(H2) For any t ∈ [0, T ], x, x′ ∈ Rn, v, v′ ∈ U , there exists a constant L ≥ 0 such that

|b(t, x, v)− b(t, x′, v′)|+ |σ(t, x, v)− σ(t, x′, v′)| ≤ L(|x− x′|+ |v − v′|).

A standard argument for SDE with Lipschitz condition gives the existence and uniqueness result to the
solution of SDE (1.1). To prove the dynamic programming principle, we consider a general SDE with
a random variable initial value, and conclude the existence result, uniqueness result and some useful
estimates to its solution.

Proposition 2.2. Assume Conditions (H1)–(H2). Given q ≥ 1, for any t ∈ [0, T ], v ∈ U , η ∈
L2q(Ω,Ft;Rn), the following SDE

Xt,η;v
s = η +

∫ s

t

b(r,Xt,η;v
r , vr)dr +

∫ s

t

σ(r,Xt,η;v
r , vr)dBr (2.1)

has a unique strong solution Xt,η;v
· ∈ S2q(t, T ;Rn).

Moreover, there exists a constant C > 0 depending only on L, T, q such that for any t ≤ s ≤ T , v, v′ ∈ U ,
η, η′ ∈ L2q(Ω,Ft;Rn), we have

E

[
sup
s∈[t,T ]

|Xt,η;v
s |2q

]
≤ C

(
1 + E

[
|η|2q +

∫ T

t

|vr|2qdr

])

and

EFt

[
sup
s∈[t,T ]

|Xt,η;v
s −Xt,η′;v′

s |2q
]
≤ C

(
|η − η′|2q + EFt

[∫ T

t

|vr − v′r|2qdr

])
.
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Then we turn to the assumptions on the coefficients of BSDE (1.2).

(H3) Both h(x) : Rn → R and f(t, x, y, z, v) : [0, T ] × Rn × R × Rd × U → R are jointly measurable, and
f(t, x, y, z, v) is continuous with respect to (t, y, v).

(H4) For any t ∈ [0, T ], x, x′ ∈ Rn, y ∈ R, z, z′ ∈ Rd, v ∈ U , there exists a constant λ ≥ 0 such that

|h(x)− h(x′)|+ |f(t, x, y, z, v)− f(t, x′, y, z′, v)| ≤ λ(|x− x′|+ |z − z′|).

(H5) For any t ∈ [0, T ], x ∈ Rn, y, y′ ∈ R, z ∈ Rd, v ∈ U , there exists a constant µ ∈ R such that

(y − y′)
(
f(t, x, y, z, v)− f(t, x, y′, z, v)

)
≤ µ|y − y′|2.

(H6) For a given p ≥ 1 and any t ∈ [0, T ], x ∈ Rn, y ∈ R, z ∈ Rd, v ∈ U , there exists a constant κ > 0 such
that

|f(t, x, y, z, v)− f(t, x, 0, z, v)| ≤ κ(1 + |y|p).

With Conditions (H1)–(H6), the existence and uniqueness of solution of BSDE (1.2) is an existing result and
we recommend the reader to refer to [19] for details. Also here we consider a general BSDE coupled with the
solution of SDE (2.1), and conclude the existence result, uniqueness result and some useful estimates to its
solution.

Proposition 2.3. Assume Conditions (H1)–(H6). Given q ≥ 1, for any t ∈ [0, T ], s ∈ [t, T ], v ∈ U , η ∈
L2q(Ω,Ft;Rn), the following BSDE

Y t,η;v
s = h(Xt,η;v

T ) +

∫ T

s

f(r,Xt,η;v
r , Y t,η;v

r , Zt,η;v
r , vr)dr −

∫ T

s

Zt,η;v
r dBr (2.2)

has a unique solution (Y t,η;v
· , Zt,η;v

· ) ∈ S2q(t, T ;R)×M2(t, T ;Rd).

Moreover, there exists a constant C > 0 depending only on L, λ, µ, κ, T, q such that for any t ≤ s ≤ T , v ∈ U ,
η, η′ ∈ L2q(Ω,Ft;Rn), we have

|Y t,η;v
t |2q ≤ C

(
1 + |η|2q + EFt

[∫ T

t

|f(r, 0, 0, 0, vr)|2qdr

])
,

|Y t,η;v
t − Y t,η

′;v
t | ≤ C|η − η′|

and

E

[
sup
s∈[t,T ]

|Y t,η;v
s |2q +

∫ T

t

|Y t,η;v
s |2q−2|Zt,η;v

s |2ds

]
≤ C

(
1 + E

[
|η|2q +

∫ T

t

|f(s, 0, 0, 0, vs)|2qds

])
.

Remark 2.4. In the proof of Proposition 2.3, we substitute the monotonic condition (H5) for the global
Lipschitz condition in the standard deduction by Itô’s formula to obtain the same forms of estimates. As
for the L2q estimates of solutions, q ≥ 1, the common localization method is applied in the proof and the reader
can refer to e.g. Lemma 3.3 in Zhang and Zhao [30].

Just as in the classical situation, the comparison theorem for BSDE (1.2) is necessary to establish the dynamic
programming principle, without the exception to the new situation that the aggregator satisfies the continuous
and monotonic condition rather than the Lipschitz condition. For the new situation, the following comparison
theorem in Fan and Jiang [10] is applicable.
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Theorem 2.5 (Comparison theorem in [10]). Let (y, z) ∈ S2(0, T ;R)×M2(0, T ;Rd) and (y′, z′) ∈ S2(0, T ;R)×
M2(0, T ;Rd) be the solutions of the following BSDEs

yt = ξ +

∫ T

t

f(s, ys, zs)ds−
∫ T

t

zsdBs

and

y′t = ξ′ +

∫ T

t

f ′(s, y′s, z
′
s)ds−

∫ T

t

z′sdBs,

respectively. Assume that the terminal values ξ, ξ′ ∈ L2(Ω,FT ;R) satisfy ξ ≤ ξ′ a.s. and the aggregator f
(resp. f ′) satisfies the following conditions:

(A1) f(t, y, z) is weakly monotonic with respect to y, i.e. there exists a nondecreasing concave function ρ : R+ →
R+ with ρ(0) = 0 and ρ(u) > 0 for u > 0 such that

∫
0+

1
ρ(u)du = +∞ and for any t ∈ [0, T ], y1, y2 ∈ R,

z ∈ Rd,

sgn(y1 − y2) · (f(t, y1, z)− f(t, y2, z)) ≤ ρ(|y1 − y2|) a.s.;

(A2) there exists a continuous, nondecreasing and linear growth function φ : R+ → R+ satisfying φ(0) = 0 such
that for any t ∈ [0, T ], y ∈ R, z1, z2 ∈ Rd,

|f(t, y, z1)− f(t, y, z2)| ≤ φ(|z1 − z2|) a.s.;

(A3) for any t ∈ [0, T ], f(t, y′t, z
′
t) ≤ f ′(t, y′t, z′t) (resp. f(t, yt, zt) ≤ f ′(t, yt, zt)).

Then we have

yt ≤ y′t for all t ∈ [0, T ] a.s.

3. Dynamic programming principle with non-Lipschitz aggregator

In this section, we prove a generalized dynamic programming for the stochastic recursive control problem, in
which the aggregator f is not necessarily Lipschitz but continuous and monotonic. To begin with, we introduce
the so-called backward semigroup brought forward by Peng in [25].

For given t ∈ [0, T ], t1 ∈ (t, T ], x ∈ Rn, v ∈ U and ς ∈ L2(Ω,Ft1 ;R), we define

Gt,x;v
r,t1 [ς] , Ŷ t,x;v

r , r ∈ [t, t1], (3.1)

where (Ŷ t,x;v
· , Ẑt,x;v

· ) ∈ S2(t, t1;R)×M2(t, t1;Rd) is the solution of the following BSDE on the interval [t, t1]:

Ŷ t,x;v
s = ς +

∫ t1

s

f(r,Xt,x;v
r , Ŷ t,x;v

r , Ẑt,x;v
r , vr)dr −

∫ t1

s

Ẑt,x;v
r dBr

and Xt,x;v
· is the solution of SDE (1.1).

Based on the definition of G, i.e. (3.1) with r = t and t1 = T , we know from BSDE (1.2) that

J(t, x; v) = Y t,x;v
t = Gt,x;v

t,T

[
h
(
Xt,x;v
T

)]
. (3.2)

On the other hand, back to the control system (1.1)–(1.3), the relevant value function of the control problem
maximizing the cost functional is defined as below:

u(t, x) , esssupv∈U J(t, x; v), (t, x) ∈ [0, T ]× Rn. (3.3)

In fact, u is still deterministic in our non-Lipschitz setting.
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Lemma 3.1. Assume Conditions (H1)–(H6). Then the value function u defined in (3.3) is a deterministic
function.

Proof. To prove this lemma we follow Peng [25]. But due to the lack of Lipschitz condition of f(t, x, y, z, v) with
respect to y and v, some changes should be made in this proof.

To begin with, we denote by (Ft,s)t≤s≤T the natural filtration generated by (Bs − Bt)0≤t≤s≤T and define
two subspaces of U :

U t , {v ∈ U| vs is Ft,s −measurable for t ≤ s ≤ T};

Ū t ,

v ∈ U| vs =

N∑
j=1

vjsIAj , where vj ∈ U t and {Aj}Nj=1 is a partition of (Ω,Ft)

 .

We first prove
esssupv∈U J(t, x; v) = esssupv∈Ūt J(t, x; v). (3.4)

Noticing U t ⊂ Ū t ⊂ U , we only need to prove that “≤” holds. To see this, note that Ū t is dense in U as shown
in the proof of Proposition 3.1 in [16], so for any v ∈ U , there exists a sequence {vn}∞n=1 ⊂ Ū t such that:

lim
n→∞

E

[∫ T

t

|vns − vs|2ds

]
= 0.

Moreover, we can choose a subsequence from {vn}∞n=1, still denoted by {vn}∞n=1 without loss of any generality,
which satisfies

lim
n→∞

vns = vs a.s.

Applying Itô formula to |Y t,x;v
s − Y t,x;vn

s |2, together with the monotonic condition, we have

E[|Y t,x;vn

t − Y t,x;v
t |2] + E

[∫ T

t

|Zt,x;vn

s − Zt,x;v
s |2ds

]

=E[|h(Xt,x;vn

T )− h(Xt,x;v
T )|2] + 2E

[∫ T

t

(Y t,x;vn

s − Y t,x;v
s )

×
(
f(s,Xt,x;vn

s , Y t,x;vn

s , Zt,x;vn

s , vns )− f(s,Xt,x;vn

s , Y t,x;v
s , Zt,x;vn

s , vns )
)

ds

]

+ 2E

[∫ T

t

(Y t,x;vn

s − Y t,x;v
s )×

(
f(s,Xt,x;vn

s , Y t,x;v
s , Zt,x;vn

s , vns )− f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vns )

)
ds

]

+ 2E

[∫ T

t

(Y t,x;vn

s − Y t,x;v
s )×

(
f(s,Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vns )− f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vs)

)
ds

]

≤λ2E[|Xt,x;vn

T −Xt,x;v
T |2] + 2µE

[∫ T

t

|Y t,x;vn

s − Y t,x;v
s |2ds

]

+ 4λ2E

[∫ T

t

|Y t,x;vn

s − Y t,x;v
s |2ds

]
+

1

2
E

[∫ T

t

|Xt,x;vn

s −Xt,x;v
s |2ds

]

+
1

2
E

[∫ T

t

|Zt,x;vn

s − Zt,x;v
s |2ds

]
+ E

[∫ T

t

|Y t,x;vn

s − Y t,x;v
s |2ds

]

+ E

[∫ T

t

|f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vns )− f(s,Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)|2ds

]
.
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Then an application of Gronwall’s inequality leads to

E[|Y t,x;vn

t − Y t,x;v
t |2] ≤CpE

[∫ T

t

|Xt,x;vn

s −Xt,x;v
s |2ds

]

+ CpE

[∫ T

t

|f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vns )− f(s,Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)|2ds

]
. (3.5)

Here and in the rest of this paper Cp is a generic constant depending only on given parameters and its values may
change from line to line, moreover, we use a bracket immediately after Cp to indicate the relevant parameters
when necessary.

By (3.5) and Propositions 2.2, it turns out that

E[|Y t,x;vn

t − Y t,x;v
t |2] ≤CpE

[∫ T

t

|vns − vs|2ds

]

+ CpE

[∫ T

t

|f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vns )− f(s,Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)|2ds

]
. (3.6)

Noticing Conditions (H3), (H4), (H6) and the fact that controls take value in a compact set, we know that

|f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vns )− f(s,Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)|2 ≤ Cp
(
1 + |Xt,x;v

s |2 + |Y t,x;v
s |2p + |Zt,x;v

s |2
)
,

which is integrable in L2(Ω × [t, T ];R) in view of Propositions 2.2 and 2.3. Thus by the dominated control
theorem it yields

lim
n→∞

E

[∫ T

t

|f(s,Xt,x;v
s , Y t,x;v

s , Zt,x;v
s , vns )− f(s,Xt,x;v

s , Y t,x;v
s , Zt,x;v

s , vs)|2ds

]
= 0.

Hence, taking the limits on both sides of (3.6) we have

lim
n→∞

E
[∣∣∣Y t,x;vn

t − Y t,x;v
t

∣∣∣2] = 0.

Consequently, there exists a subsequence of {vn}∞n=1, still denoted by {vn}∞n=1 without loss of any generality,
such that

lim
n→∞

Y t,x;vn

t = Y t,x;v
t a.s.

Due to the definition of cost functionals and the arbitrariness of v ∈ U , we have

esssupv∈U J(t, x; v) ≤ esssupv∈Ūt J(t, x; v),

and then (3.4) follows.
The next step is to prove

esssupv∈Ūt J(t, x; v) = esssupv∈Ut J(t, x; v), (3.7)

whose proof is similar to the classical case where f(t, x, y, z, v) satisfies the Lipschitz condition with respect to
y and v in [16,25] or [27]. Here we only give a sketch of proof for the reader’s convenience.

For any v ∈ Ū t, we assume vs =
N∑
j=1

vjsIAj , where vj ∈ U t and {Aj}Nj=1 is a partition of (Ω,Ft). By the

uniqueness of solution of BSDE (2.2), we know

Y
t,x;

N∑
j=1

vjIAj

s =

N∑
j=1

IAjY
t,x;vj

s , t ≤ s ≤ T.
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So

J(t, x; v) = J

t, x;

N∑
j=1

vjIAj

 =

N∑
j=1

IAjJ(t, x; vj).

Note that vj ∈ U t, hence Y
t,x;vj
s is Ft,s-measurable for t ≤ s ≤ T . In particular, J(t, x; vj) is a constant for j =

1, 2, . . . , N . Without loss of any generality, we assume J(t, x; v1) = max{J(t, x; v1), J(t, x; v2), . . . , J(t, x; vN )}.
Then

J(t, x; v) ≤ J(t, x; v1) ≤ esssupv∈Ut J(t, x; v).

The arbitrariness of v implies

esssupv∈Ūt J(t, x; v) ≤ esssupv∈Ut J(t, x; v).

On the other hand, since U t ⊂ Ū t, the reverse inequality also holds, which yields (3.7).
Therefore, we conclude from (3.4) and (3.7) that

esssupv∈U J(t, x; v) = esssupv∈Ut J(t, x; v). (3.8)

Bear in mind that the solution Y t,x;v
s to BSDE (2.2) is Ft,s-measurable for t ≤ s ≤ T if v ∈ U t. So

Y t,x;v
t = J(t, x; v) is a constant. Therefore, (3.8) implies that u defined by (3.3) is a deterministic function. �

With Proposition 2.3 we can also obtain two lemmas related to the value function. In fact, their proofs are
similar to the counterparts in [16, 25, 27], in which the estimates in Proposition 2.3 are used but the Lipschitz
conditions for f(t, x, y, z, v) with respect to y and v are not needed any more.

The first lemma claims the Lipschitz continuity and linear growth of the value function u(t, x) with respect
to x.

Lemma 3.2. For any t ∈ [0, T ], x, x′ ∈ Rn, there exists a constant C such that

(i) |u(t, x)− u(t, x′)| ≤ C|x− x′|,
(ii) |u(t, x)| ≤ C(1 + |x|).

Proof. By Proposition 2.3, we know that for each v ∈ U ,

|J(t, x; v)− J(t, x′; v)| ≤ C|x− x′| and |J(t, x; v)| ≤ C(1 + |x|). (3.9)

Moreover, for any ε > 0, by the definition of value function (3.3), there exist v and v′ ∈ U such that

J(t, x; v′) ≤ u(t, x) ≤ J(t, x; v) + ε and J(t, x′; v) ≤ u(t, x′) ≤ J(t, x′; v′) + ε.

The above implies (ii) since

−C(1 + |x|) ≤ J(t, x; v′) ≤ u(t, x) ≤ J(t, x; v) + ε ≤ C(1 + |x|) + ε.

As for (i), note that

J(t, x; v′)− J(t, x′; v′)− ε ≤ u(t, x)− u(t, x′) ≤ J(t, x; v)− J(t, x′; v) + ε,

which implies

|u(t, x)− u(t, x′)| ≤ max{|J(t, x; v′)− J(t, x′; v′)|, |J(t, x; v)− J(t, x′; v)|}+ ε

≤ C|x− x′|+ ε.

Therefore, (i) follows due to the arbitrariness of ε. �
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The other lemma connects the cost functional (1.3) with the solution of BSDE (2.2), where the initial state
variable of SDE is a random variable.

Lemma 3.3. For any t ∈ [0, T ], v ∈ U , η ∈ L2(Ω,Ft;Rn), we have

J(t, η; v) = Y t,η;v
t . (3.10)

Proof. We first prove that (3.10) is true for simple random state variables. For η =
N∑
j=1

xjIAj , where xj ∈ Rn for

j = 1, 2, . . . , N and {Aj}Nj=1 is a finite partition of (Ω,Ft), the uniqueness of solution of BSDE (2.2), together
with the definition of cost functional (1.3), leads to

Y t,η;v
t = Y

t,
N∑
j=1

xjIAj ;v

t =

N∑
j=1

IAjY
t,xj ;v
t =

N∑
j=1

IAjJ(t, xj ; v) = J

t, N∑
j=1

xjIAj ; v

 = J(t, η; v).

Therefore, (3.10) follows for simple random state variables.

For a general η ∈ L2(Ω,Ft;Rn), we can find a sequence of simple random state variables {ηj}∞j=1 such that
ηj converges to η in L2(Ω,Ft;Rn) as j →∞. Also, by Proposition 2.3 and (3.9), as j →∞ we have

E[|Y t,η;v
t − Y t,ηj ;vt |2] ≤ C2E[|η − ηj |2] −→ 0

and

E[|J(t, η; v)− J(t, ηj ; v)|2] ≤ C2E[|η − ηj |2] −→ 0.

Then (3.10) holds for any random state variable in L2(Ω,Ft;Rn) based on Y
t,ηj ;v
t = J(t, ηj ; v) for j =

1, 2, . . . �

Moreover, we need the following lemma which plays a big role in the proof of dynamic programming principle.

Lemma 3.4. For any t ∈ [0, T ], v ∈ U , η ∈ L2(Ω,Ft;Rn), we have

u(t, η) ≥ Y t,η;v
t a.s. (3.11)

On the other hand, for any ε > 0, there exists an admissible control v ∈ U such that

u(t, η) ≤ Y t,η;v
t + ε a.s. (3.12)

Proof. We first prove that Lemma 3.4 holds for any simple random state variable ζ =
N∑
j=1

xjIAj , where N ∈ N,

xj ∈ Rn and {Aj}Nj=1 is a partition of (Ω,Ft).

For any v ∈ U , since

Y t,ζ;vt =

N∑
j=1

Y
t,xj ;v
t IAj ≤

N∑
j=1

u(t, xj)IAj = u(t, ζ),

(3.11) is true for the simple random variables. To prove (3.12), we notice that for each xj , by (3.8) there exists
an admissible control vj ∈ U t such that

u(t, xj) ≤ Y
t,xj ;vj
t + ε.
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Hence taking v =
N∑
j=1

vjIAj ∈ U we have

Y t,ζ;vt + ε =

N∑
j=1

(Y
t,xj ;vj
t + ε)IAj ≥

N∑
j=1

u(t, xj)IAj = u(t, ζ).

That is to say that both (3.11) and (3.12) are satisfied for the simple random state variables.
For any random state variable η ∈ L2(Ω,Ft;Rn), there exists a sequence of simple random variables {ζ}∞n=1

such that
lim
n→∞

|ζn − η| = 0.

By Proposition 2.3 and Lemma 3.2 we have for any v ∈ U ,

lim
n→∞

|Y t,ζn;v
t − Y t,η;v

t | = 0 a.s. and lim
n→∞

|u(t, ζn)− u(t, η)| = 0 a.s.

Since Y t,ζn;v
t ≤ u(t, ζn) holds for all n, (3.11) follows for η as n→∞.

Also (3.12) is true for any random state variable η ∈ L2(Ω,Ft;Rn). To demonstrate this, we choose a simple
random variable ζ such that |ζ − η| < ε

3C . In view of Proposition 2.3 and Lemma 3.2 again it yields that for
any v ∈ U ,

|Y t,ζ;vt − Y t,η;v
t | ≤ ε

3
and |u(t, ζ)− u(t, η)| ≤ ε

3
·

Moreover, since ζ is a simple random variable, (3.12) holds for ζ and there exists an admissible control ṽ ∈ U
such that

Y t,ζ;ṽt +
ε

3
≥ u(t, ζ).

Hence

Y t,η;ṽ
t ≥ −|Y t,ζ;ṽt − Y t,η;ṽ

t |+ Y t,ζ;ṽt ≥ u(t, ζ)− 2ε

3
≥ u(t, η)− ε,

which puts an end of proof for Lemma 3.4. �

Now we are well prepared to prove the dynamic programming principle in our settings.

Theorem 3.5 (Dynamic programming principle with non-Lipschitz aggregator). Assume Condi-
tions (H1)–(H6). Then for any 0 ≤ δ ≤ T − t, the value function u(t, x) defined by (3.3) has the following
property:

u(t, x) = esssupv∈U G
t,x;v
t,t+δ

[
u(t+ δ,Xt,x;v

t+δ )
]
.

Proof. First of all, we claim that

u(t, x) = esssupv∈U G
t,x;v
t,T

[
h(Xt,x;v

T )
]

= esssupv∈U G
t,x;v
t,t+δ

[
Y t,x;v
t+δ

]
= esssupv∈U G

t,x;v
t,t+δ

[
Y
t+δ,Xt,x;vt+δ ;v

t+δ

]
.

(3.13)

In the above deductions of (3.13), the first equality comes from the property of the operator G in (3.2) and the
definition of the value function u(t, x) in (3.3), the second equality holds due to the uniqueness of solution Y to
BSDE (2.2), and the last equality is true since (2.1) has a unique strong solution X.

In the next step we need to use the comparison theorem for BSDE. Bear in mind that the aggregator of
BSDE (1.2) is not Lipschitz with respect to the first unknown variable, so the classical comparison theorem
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does not work. Instead, we apply the generalized comparison theorem with “weakly” monotonic aggregator
(Thm. 2.5) to our case. But before using this generalized comparison theorem we first need to show that
u(s,Xt,x;v

s ), for t ≤ s ≤ T and v ∈ U , is square integrable (which acts as the terminal value of BSDE). To see
this, note that for any ε > 0, by (3.11) and (3.12) there exists ṽ ∈ U such that

Y
s,Xt,x;vs ;ṽ
s ≤ u(s,Xt,x;v

s ) ≤ Y s,X
t,x;v
s ;ṽ

s + ε,

so we only need to prove E[|Y s,X
t,x;v
s ;ṽ

s |2] <∞. Noticing the uniform boundedness of the control processes in U
we use Propositions 2.2 and 2.3 to know that

E[|Y s,X
t,x;v
s ;ṽ

s |2] ≤ Cp

(
1 + E

[
|Xt,x;v

s |2 +

∫ T

s

|f(r, 0, 0, 0, ṽr)|2dr

])

≤ Cp

(
1 + E

[
|x|2 +

∫ T

t

|vr|2dr +

∫ T

t

|f(r, 0, 0, 0, ṽr)|2dr

])
<∞.

Hence an application of Theorem 2.5, together with (3.13), yields

u(t, x) ≤ esssupv∈U G
t,x;v
t,t+δ

[
u(t+ δ,Xt,x;v

t+δ )
]
. (3.14)

On the other hand, according to (3.12), for arbitrary ε, there exists an admissible control v̄ ∈ U such that

u(t+ δ,Xt,x;v
t+δ ) ≤ Y t+δ,X

t,x;v
t+δ ;v̄

t+δ + ε. (3.15)

Hence we have

u(t, x) ≥ esssupv∈U G
t,x;v
t,t+δ

[
Y
t+δ,Xt,x;vt+δ ;v̄

t+δ

]
≥ esssupv∈U G

t,x;v
t,t+δ

[
u(t+ δ,Xt,x;v

t+δ )− ε
]

≥ esssupv∈U G
t,x;v
t,t+δ

[
u(t+ δ,Xt,x;v

t+δ )
]
−
√
Cpε,

(3.16)

with a constant Cp. Here the second inequality in (3.16) is based on (3.15) and Theorem 2.5, and the last
inequality comes from a basic estimate of BSDE. To see this, we set Y 1;v

t = Gt,x;v
t,t+δ[u(t+ δ,Xt,x;v

t+δ )] and Y 2;v
t =

Gt,x;v
t,t+δ[u(t + δ,Xt,x;v

t+δ ) − ε]. Applying Itô’s formula to e−ks|Y 1;v
s − Y 2;v

s |2, where t ≤ s ≤ t + δ and k > 0 is a
sufficiently large constant, we have

|Y 1;v
t − Y 2;v

t |2 ≤ CpEFt [|u(t+ δ,Xt,x;v
t+δ )− ε− u(t+ δ,Xt,x;v

t+δ )|2] = CpEFt [ε2].

Thus

esssupv∈U Y
1;v
t − esssupv∈U Y

2;v
t ≤ esssupv∈U (Y 1;v

t − Y 2;v
t ) ≤ esssupv∈U |Y

1;v
t − Y 2;v

t | ≤
√
Cpε,

which implies

esssupv∈U Y
1;v
t ≤ esssupv∈U Y

2;v
t +

√
Cpε,

i.e.

esssupv∈U G
t,x;v
t,t+δ[u(t+ δ,Xt,x;v

t+δ )] ≤ esssupv∈UG
t,x;v
t,t+δ[u(t+ δ,Xt,x;v

t+δ )− ε] +
√
Cpε.

Therefore, the dynamic programming follows from (3.14) and (3.16), due to the arbitrariness of ε in (3.16). �
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4. Viscosity solution of HJB equation

In this section we aim to establish the connection between the value function (3.3) of our concerned stochastic
recursive control problem and the viscosity solution of its corresponding HJB equation. For this, we need to
assume that the aggregator of BSDE in our concerned recursive control problem is independent of the second
unknown variable throughout Section 4, i.e. f(t, x, y, z, v) = f(t, x, y, v) for f in BSDE (1.2).

In this situation the HJB equation, a second-order fully nonlinear PDE of parabolic type, has a form:
∂

∂t
u+H(t, x, u,Dxu,D

2
xu) = 0, (t, x) ∈ [0, T )× Rn,

u(T, x) = h(x). (4.1)

Here Dxu and D2
xu denote the gradient matrix and the Hessian matrix of u, respectively. The Hamiltonian

H = H(t, x, r, p, A) : [0, T ]× Rn × R× Rn × Sn → R is defined as below:

H , sup
v∈U

{
1

2
Tr(σ(t, x, v)σ∗(t, x, v)A) + 〈p, b(t, x, v)〉+ f(t, x, r, v)

}
, (4.2)

where Sn is the matrix space including all n× n symmetric matrices.
Denote by C1,2([0, T ]×Rn;R) the space of all functions from [0, T ]×Rn to R whose derivatives up to the first

order with respect to time variable and up to the second order with respect to state variable are continuous.
Then we recall the definition for the viscosity solution of HJB equation (4.1).

Definition 4.1. A continuous function u : [0, T ] × Rn → R is a viscosity subsolution (resp. supersolution) of
HJB equation (4.1), if for any x ∈ Rn, u(T, x) ≤ h(x) (resp. u(T, x) ≥ h(x)), and for any ϕ ∈ C1,2([0, T ]×Rn;R),
(t, x) ∈ [0, T )× Rn, ϕ− u attains a global minimum (resp. maximum) at (t, x) and ϕ satisfies

∂

∂t
ϕ(t, x) +H(t, x, ϕ,Dxϕ,D

2
xϕ) ≥ 0(

resp.
∂

∂t
ϕ(t, x) +H(t, x, ϕ,Dxϕ,D

2
xϕ) ≤ 0

)
.

We call u the viscosity solution of (4.1) if u is both a viscosity subsolution and a viscosity supersolution.

We need some preliminaries to establish the connection. First, we indicate the continuity of the value function.

Proposition 4.2. Assume Conditions (H1)–(H6). Then the value function u(t, x) : [0, T ] × Rn → R defined
in (3.3) is continuous with respect to (t, x).

Note that the Lipschitz continuity of u(t, x) with respect to x is a result of Lemma 3.2. Also we can prove the
1
2 -Hölder continuity of u(t, x) with respect to t in a similar way referring to e.g. Theorem 3.2 in [16], which
together with Lemma 3.2 implies the continuity of the value function with respect to (t, x). In the proof of
1
2 -Hölder continuity of u(t, x), the only difference between the non-Lipschitz aggregator in our paper and the
Lipschitz aggregator in classical cases is that the Lipschitz condition is replaced by the monotonic condition of
aggregator in the application of Itô formula, so we leave out the proof here.

Then we define a sequence of smootherized functions fn, n ∈ N, based on the aggregator f as follows:

fn(t, x, y, v) , (ρn ∗ f(t, x, ·, v))(y), (4.3)

where ρn : R → R+, n ∈ N, is a family of sufficiently smooth functions with compact support in [− 1
n ,

1
n ] and

satisfies ∫
R
ρn(a)da = 1.
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Consequently, we have a sequence of BSDEs with the smootherized aggregators fn, n ∈ N, on the interval [t, T ]:

Y t,x,n;v
s = h(Xt,x;v

T ) +

∫ T

s

fn(r,Xt,x;v
r , Y t,x,n;v

r , vr)dr −
∫ T

s

Zt,x,n;v
r dBr for t ≤ s ≤ T. (4.4)

With the solutions of BSDEs (4.4), we can define a sequence of stochastic recursive control problems whose cost
functional for each n ∈ N is

Jn(t, x; v) , Y t,x,n;v
t for v ∈ U , t ∈ [0, T ], x ∈ Rn (4.5)

and corresponding control problem is to find an optimal v̄ ∈ U to maximize above cost functional (4.5) for
given (t, x). Thus, for each n ∈ N, the value function of control problem is defined by

un(t, x) , esssupv∈UJn(t, x; v) for t ∈ [0, T ], x ∈ Rn (4.6)

and the Hamiltonian appears like

Hn(t, x, r, p, A) , sup
v∈U

{
1

2
Tr(σ(t, x, v)σ∗(t, x, v)A) + 〈p, b(t, x, v)〉+ fn(t, x, r, v)

}
, (4.7)

where (t, x, r, p, A) ∈ [0, T ]× Rn × R× Rn × Sn.
Then we prove the uniform convergence of the smootherized aggregators in a compact subset of their domain

utilizing the continuity of the aggregator.

Lemma 4.3. Assume Conditions (H3)–(H4). Then fn defined in (4.3) converges to f , uniformly in every
compact subset of [0, T ]× Rn × R× U .

Proof. Since
∫
R ρn(a)da = 1, we have

fn(t, x, y, v)− f(t, x, y, v) =

∫
R

(f(t, x, y − a, v)− f(t, x, y, v))ρn(a)da.

For any given compact setK ⊂ [0, T ]×Rn×R×U , there exists another compact set K̂ such that (t, x, y−a, v) ∈ K̂
for any (t, x, y, v) ∈ K and a ∈ [−1, 1]. Notice that since f(t, x, y, v) is continuous with respect to (t, y, v) and
Lipschitz continuous with respect to x, we know the continuity and further the uniform continuity of f(t, x, y, v)
with respect to (t, x, y, v) in the compact set K̂. So, for any ε > 0, as n is sufficiently large we have

sup
(t,x,y,v)∈K

|fn(t, x, y, v)− f(t, x, y, v)| ≤ sup
(t,x,y,v)∈K

∫
|a|≤ 1

n

|f(t, x, y − a, v)− f(t, x, y, v)|ρn(a)da

≤ ε
∫
|a|≤ 1

n

ρn(a)da

= ε,

which implies the desired conclusion. �

As a result, we can further get the uniform convergence of the solutions of BSDEs with smootherized aggre-
gators in L2(Ω) space.

Lemma 4.4. Assume Conditions (H1)–(H6). Then for any v ∈ U ,

lim
n→∞

sup
(t,x)∈K

E
[∣∣Y t,x,n;v

t − Y t,x;v
t

∣∣2] = 0,

where K is an arbitrary compact set in [0, T ]×Rn, Y t,x;v
· and Y t,x,n;v

· are the solutions of BSDEs (1.2) and (4.4),
respectively.
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Proof. Firstly, it is obvious that the smootherized aggregator fn satisfies Conditions (H3)–(H6). Hence, applying
Itô’s formula to |Y t,x,n;v

s − Y t,x;v
s |2, we have for any (t, x) ∈ K,

E[|Y t,x,n;v
t − Y t,x;v

t |2] ≤CpE

[∫ T

t

|fn(s,Xt,x;v
s , Y t,x;v

s , vs)− f(s,Xt,x;v
s , Y t,x;v

s , vs)|2ds

]

=CpE

∫ T

t

|fn − f |2I{{
sup

s∈[t,T ]

|Xt,x;vs |≥N
}
∪
{

sup
s∈[t,T ]

|Y t,x;vs |≥N
}}ds


+ CpE

∫ T

t

|fn − f |2I{{
sup

s∈[t,T ]

|Xt,x;vs |<N
}
∩
{

sup
s∈[t,T ]

|Y t,x;vs |<N
}}ds


≤CpE

∫ T

t

|fn − f |2I{
sup

s∈[t,T ]

|Xt,x;vs |≥N
}ds

+ CpE

∫ T

t

|fn − f |2I{
sup

s∈[t,T ]

|Y t,x;vs |≥N
}ds


+ CpE

∫ T

t

|fn − f |2I{{
sup

s∈[t,T ]

|Xt,x;vs |<N
}
∩
{

sup
s∈[t,T ]

|Y t,x;vs |<N
}}ds

.
Then we define

J1 , E

∫ T

t

|fn(s,Xt,x;v
s , Y t,x;v

s , vs)− f(s,Xt,x;v
s , Y t,x;v

s , vs)|2I{
sup

s∈[t,T ]

|Xt,x;vs |≥N
}ds

 ,
J2 , E

∫ T

t

|fn(s,Xt,x;v
s , Y t,x;v

s , vs)− f(s,Xt,x;v
s , Y t,x;v

s , vs)|2I{
sup

s∈[t,T ]

|Y t,x;vs |≥N
}ds

 ,
J3 , E

∫ T

t

|fn(s,Xt,x;v
s , Y t,x;v

s , vs)− f(s,Xt,x;v
s , Y t,x;v

s , vs)|2 × I{{
sup

s∈[t,T ]

|Xt,x;vs |<N
}
∩
{

sup
s∈[t,T ]

|Y t,x;vs |<N
}}ds

,
and deal with J1, J2 and J3 in turn.

For J1, it turns out that

sup
(t,x)∈K

J1 ≤ sup
(t,x)∈K

2E

∫ T

t

(
|fn(s,Xt,x;v

s , Y t,x;v
s , vs)|2 + |f(s,Xt,x;v

s , Y t,x;v
s , vs)|2

)
I{

sup
s∈[t,T ]

|Xt,x;vs |≥N
}ds


≤ sup

(t,x)∈K
CpE

∫ T

t

(1 + |Xt,x;v
s |2 + |Y t,x;v

s |2p)I{
sup

s∈[t,T ]

|Xt,x;vs |≥N
}ds


≤ sup

(t,x)∈K
Cp

(
E

[∫ T

t

(1 + |Xt,x;v
s |4 + |Y t,x;v

s |4p)ds

]) 1
2
(

sup
(t,x)∈K

P

[
sup
s∈[t,T ]

|Xt,x;v
s | ≥ N

]) 1
2

.



370 J. PU AND Q. ZHANG

To estimate above, we use Chebychev’s inequality and Proposition 2.2 to obtain for any N > 0,

P

[
sup
s∈[t,T ]

|Xt,x;v
s | ≥ N

]
≤ 1

N2
E

[
sup
s∈[t,T ]

|Xt,x;v
s |2

]
≤ Cp
N2
|x|2·

Thus for any δ > 0, when we take a sufficiently large N , it follows from the boundedness of x in K that

sup
(t,x)∈K

P

[
sup
s∈[t,T ]

|Xt,x;v
s | ≥ N

]
≤ δ. (4.8)

Moreover, by Propositions 2.2 and 2.3, we know

sup
(t,x)∈K

(
E

[∫ T

t

(1 + |Xt,x;v
s |4 + |Y t,x;v

s |4p)ds

]) 1
2

<∞,

which together with (4.8) implies that for any given ε > 0, there exists a sufficiently large N1 such that
as N ≥ N1, for all n ∈ N,

J1 ≤ ε, uniformly in the compact set K.

Then we turn to J2, and by Proposition 2.3 we have

E

[
sup
s∈[t,T ]

|Y t,x;v
s |2p

]
≤ Cp(1 + |x|2p).

Again with a sufficiently large N , the application of Chebychev’s inequality in K leads to for any δ > 0,

sup
(t,x)∈K

P

[
sup
s∈[t,T ]

|Y t,x;v
s | ≥ N

]
≤ δ. (4.9)

Similar to the treatment of J1, by (4.9) we can find a sufficiently large N2 such that as N ≥ N2, for all n ∈ N,

J2 ≤ ε, uniformly in the compact set K.

We take N̂ = N1 ∨N2 and use N̂ to prove the uniform convergence of J3.
To this end, notice for any v ∈ U ,

sup
(t,x)∈K

J3 ≤ E

∫ T

t

sup
(t,x)∈K

|fn − f |2I{{
sup

s∈[t,T ]

|Xt,x;vs |<N̂
}
∩
{

sup
s∈[t,T ]

|Y t,x;vs |<N̂
}}ds


≤
∫ T

t

sup
(t,x,y)∈[0,T ]×B̄n

N̂
×[−N̂,N̂ ]

|fn(t, x, y, v)− f(t, x, y, v)|2ds,

where B̄n
N̂

is the closed ball with the radium N̂ in Rn. By the dominated convergence theorem and Lemma 4.3,
as n is sufficiently large, we have

J3 ≤ ε, uniformly in the compact set K.

Therefore, due to the arbitrariness of ε, the claim that lim
n→∞

sup
(t,x)∈K

E[|Y t,x,n;v
t − Y t,x;v

t |2] = 0 follows, which

puts an end of proof. �
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The uniform convergence in compact subset of domain holds for the value function as well, which is displayed
in next lemma.

Lemma 4.5. Assume Conditions (H1)–(H6). Then un converges to u, uniformly in every compact subset of
[0, T ]× Rn.

Proof. Given arbitrary ε > 0, for any t ∈ [0, T ] and x ∈ Rn, we can find v1 ∈ U such that

u(t, x) < Y t,x;v1
t + ε.

So
u(t, x)− un(t, x) = u(t, x)− sup

v∈U
Y t,x,n;v
t ≤ Y t,x;v1

t + ε− Y t,x,n;v1
t . (4.10)

On the other hand, for above ε, there exists v2 ∈ U such that

un(t, x) ≤ Y t,x,n;v2
t + ε,

which implies
u(t, x)− un(t, x) ≥ u(t, x)− Y t,x,n;v2

t − ε ≥ Y t,x;v2
t − Y t,x,n;v2

t − ε. (4.11)

Since (4.10) and (4.11), we have

|u(t, x)− un(t, x)| ≤ E
[
|Y t,x;v1
t − Y t,x,n;v1

t |
]

+ E
[
|Y t,x;v2
t − Y t,x,n;v2

t |
]

+ 2ε.

Noticing v1 and v2 are given admissible controls, by Lemma 4.4 we know that for any compact set K ⊂
[0, T ]× Rn,

lim
n→∞

sup
(t,x)∈K

E
[
|Y t,x;v1
t − Y t,zx,n;v1

t

]
+ E

[
|Y t,x;v2
t − Y t,x,n;v2

t |
]

= 0.

Due to the arbitrariness of ε, we obtain the uniform convergence of the value functions un to u in K. �

We have known that fn converges uniformly to f in the compact subset of their domain, so, by definitions
of the Hamiltonians (4.2) and (4.7), it comes without a surprise that the same kind of convergence of the
Hamiltonian Hn to H holds as well.

Lemma 4.6. Assume Conditions (H1)–(H6). Then Hn converges to H, uniformly in every compact subset of
their domain.

Proof. To see this, for any t ∈ [0, T ], x ∈ Rn, r ∈ R, p ∈ Rn, A ∈ Sn, v ∈ U , we set

A =
1

2
Tr(σ(t, x, v)σ∗(t, x, v)A) + 〈p, b(t, x, v)〉+ fn(t, x, r, v)

and

B =
1

2
Tr(σ(t, x, v)σ∗(t, x, v)A) + 〈p, b(t, x, v)〉+ f(t, x, r, v).

Noticing
Hn −H = sup

v∈U
A− sup

v∈U
B ≤ sup

v∈U
(A− B) = sup

v∈U
(fn − f) ≤ sup

v∈U
|fn − f |

and
H −Hn = sup

v∈U
B − sup

v∈U
A ≤ sup

v∈U
(B −A) = sup

v∈U
(f − fn) ≤ sup

v∈U
|f − fn|,

we have
|Hn −H| ≤ sup

v∈U
|fn(t, x, r, v)− f(t, x, r, v)|.
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For any compact set K ⊂ [0, T ] × Rn × R × Rn × Sn and (t, x, r, p, A, v) ∈ K × U , note that (t, x, r, v) ∈ K̂
and K̂ is a compact set in [0, T ]× Rn × R× U . Hence by Lemma 4.3, we have

lim
n→∞

sup
(t,x,r,p,A)∈K

|Hn(t, x, r, p, A)−H(t, x, r, p, A)| ≤ lim
n→∞

sup
(t,x,r,p,A)∈K

sup
v∈U
|fn(t, x, r, v)− f(t, x, r, v)|

≤ lim
n→∞

sup
(t,x,y,v)∈K̂

|fn(t, x, y, v)− f(t, x, y, v)| = 0.

Therefore, the uniform convergence of Hn to H in K follows from above. �

To end the preliminaries, we introduce the stability property of viscosity solutions below (see e.g. Lem. 6.2
in Fleming and Soner [11] for details of proof) which provides a method based on the uniform convergence of
Hamiltonians to get the connection between the value function and the solution of HJB equation.

Proposition 4.7 (Stability). Let un be a viscosity subsolution (resp. supersolution) to the following PDE

∂

∂t
un(t, x) +Hn(t, x, un(t, x), Dxun(t, x), D2

xun(t, x)) = 0, (t, x) ∈ [0, T )× Rn,

where Hn(t, x, r, p, A) : [0, T ]× Rn × R× Rn × Sn → R is continuous and satisfies the ellipticity condition

Hn(t, x, r, p,X) ≤ Hn(t, x, r, p, Y ) whenever X ≤ Y. (4.12)

Assume that Hn and un converge to H and u, respectively, uniformly in every compact subset of their own
domains. Then u is a viscosity subsolution (resp. supersolution) of the limit equation

∂

∂t
u(t, x) +H(t, x, u(t, x), Dxu(t, x), D2

xu(t, x)) = 0.

Now we are well prepared to prove the main theorem in this section.

Theorem 4.8. Assume Conditions (H1)–(H6). Then u defined in (3.3) is a viscosity solution of HJB equa-
tion (4.1).

Proof. We divide our proof into two steps.

Step 1. Assume that |f(t, x, 0, v)| is uniformly bounded on [0, T ]× Rn × U .
Note that the uniform boundedness of |f(t, x, 0, v)| implies the global Lipschitz of fn(t, x, y, v) with respect

to y. To see this, for any (t, x, v) ∈ [0, T ]× Rn × U , y1, y2 ∈ R, by (H6) it yields that

|fn(t, x, y1, v)− fn(t, x, y2, v)| =

∣∣∣∣∣
∫
|a|≤ 1

n

f(t, x, a, v)
(
ρn(y1 − a)− ρn(y2 − a)

)
da

∣∣∣∣∣
≤ max
a∈[− 1

n ,
1
n ]
|f(t, x, a, v)|

∫
|a|≤ 1

n

|ρn(y1 − a)− ρn(y2 − a)|da

≤ max
a∈[− 1

n ,
1
n ]

(
|f(t, x, 0, v)|+ κ(1 + |a|p)

) ∫
|a|≤ 1

n

Cp(n)|y1 − y2|da

≤Cp(κ, n)|y1 − y2|.

Hence we immediately know from Theorem 7.3 in [25] (which establishes the connection between the value
function (3.3) and the solution of HJB equation (4.1) with the Lipschitz continuous aggregator) that un(t, x) is
the viscosity solution of the following equations:

∂

∂t
un +Hn(t, x, un, Dxun, D

2
xun) = 0, (t, x) ∈ [0, T )× Rn,

un(T, x) = h(x), (4.13)

where un and Hn are defined by (4.6) and (4.7), respectively.
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By Lemmas 4.3–4.6 the uniform convergence of fn to f , Y t,x,n;v
t to Y t,x;v

t , un to u and Hn to H holds in
every compact subset of their own domains as n → ∞. Moreover, Hn satisfies the ellipticity condition (4.12).
Therefore, by the stability of viscosity solution stated in Proposition 4.7, we know that u is a viscosity solution
of the limit equation

∂

∂t
u(t, x) +H(t, x, u(t, x), Dxu(t, x), D2

xu(t, x)) = 0,

where u and H are defined by (3.3) and (4.2), respectively.
As for the terminal value of above equation, i.e. u(T, x) = h(x), which can be seen from the definition of the

value function. Thereby u is a viscosity solution of HJB equation (4.1).

Step 2. |f(t, x, 0, v)| is not necessarily uniformly bounded on [0, T ]× Rn × U .
We construct a sequence of functions

fm(t, x, y, v) , f(t, x, y, v)− f(t, x, 0, v) +Πm

(
f(t, x, 0, v)

)
for m ∈ N,

where Πm(x) = inf(m,|x|)
|x| x.

With these fm, we get a family of BSDEs for m ∈ N on the interval [t, T ]:

Y t,x,m;v
t = h(Xt,x;v

T ) +

∫ T

t

fm(s,Xt,x;v
s , Y t,x,m;v

s , vs)ds−
∫ T

t

Zt,x,m;v
s dBs.

Similarly we define the corresponding cost functional

Jm(t, x; v) , Y t,x,m;v
t for v ∈ U , t ∈ [0, T ], x ∈ R,

the value function

um(t, x) , esssupv∈UJm(t, x; v) for t ∈ [0, T ], x ∈ R,

and the Hamiltonian

Hm(t, x, r, p, A) , sup
v∈U

{
1

2
Tr(σ(t, x, v)σ∗(t, x, v)A) + 〈p, b(t, x, v)〉+ fm(t, x, r, v)

}
for (t, x, r, p, A) ∈ [0, T ]× Rn × R× Rn × Sn.

Since fm(t, x, 0, v) = Πm

(
f(t, x, 0, v)

)
, fm(t, x, 0, v) is uniformly bounded. Moreover, it is not difficult to

verify that fm satisfies Conditions (H3)–(H6). Hence fm satisfies the conditions in Step 1. By Step 1 we know
that um is a viscosity solution of the following equation

∂

∂t
um +Hm(t, x, um, Dxum, D

2
xum) = 0, (t, x) ∈ [0, T )× Rn,

um(T, x) = h(x). (4.14)

We then prove that the uniform convergence of fm to f , Y t,x,m;v
t to Y t,x;v

t , um to u and Hm to H also holds
in every compact subset of their own domains as m → ∞, among which only the proof for the convergence of
fm to f is very different from Lemma 4.3 due to the different definitions of fm from fn, and other convergence
can be proved similarly according to Lemmas 4.4–4.6 in turn.

In fact, the uniform convergence of fm to f in every compact subset of [0, T ]× Rn × R× U is easy to see if
we notice that for any given compact set K ⊂ [0, T ]×Rn ×R×U , f(t, x, y, v) is bounded by a positive integer
MK for any (t, x, y, v) ∈ K due to the continuity of f . Hence, when m ≥MK , we have

sup
(t,x,y,v)∈K

|fm(t, x, y, v)− f(t, x, y, v)| = sup
(t,x,y,v)∈K

|f(t, x, 0, v)−Πm

(
f(t, x, 0, v)

)
| = 0,

which implies the uniform convergence of fm to f in every compact subset of their domain as m→∞.
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Finally, using Proposition 4.7 again we know that u satisfies the limit equation of (4.14), which together
with the fact u(T, x) = h(x) by the definition of value function shows that u is still a viscosity solution of HJB
equation (4.1) even if |f(t, x, 0, v)| is not necessary to be uniformly bounded for any (t, x, v) ∈ [0, T ]×Rn×U . �

5. Example

As mentioned in Introduction, Duffie and Epstein [8] put forward the stochastic differential utility which can
be regarded as the solution of a BSDE. Based on this basic correspondence, we give an example to demonstrate
the application of our study to utility.

We start from setting an financial market with two assets which can be traded continuously. One is the bond,
a non-risky asset, whose price process P 0

t is governed by the ordinary differential equation

P 0
t = 1 +

∫ t

0

rsP
0
s ds. (5.1)

The other asset is the stock, a risky asset, whose price process Pt is modeled by the linear SDE

Pt = p+

∫ t

0

Psbsds+

∫ t

0

PsσsdBs, where p > 0 is given. (5.2)

In (5.1) and (5.2), r : [0, T ] → R is the interest rate of the bond, b : [0, T ] → R is the appreciation rate of the
stock and σ : [0, T ]→ R is the volatility process, all of which are continuous functions.

An agent may decide what is the optimal investment and consumption at time t ∈ [0, T ]. We denote by
π : Ω × [0, T ] → [−1, 1] the proportion of the wealth invested into the stock and by c : Ω × [0, T ] → [a1, a2],
0 ≤ a1 < a2, a restricted consumption decision. If Xt denotes the wealth of the agent at time t, then the amount
of money invested in the bond is Xt(1−πt). In view of (5.1) and (5.2), the agent’s wealth satisfies the following
equation: {

dXt = [rtXt + (bt − rt)πtXt − ct]dt+XtπtσtdBt,

X0 = x, (5.3)

where x > 0 is the initial wealth of the agent. It is clear that (5.3) acting as the state equation satisfies
Conditions (H1) and (H2).

We assume that the stochastic differential utility preference of the agent is a continuous time Epstein−Zin
utility as illustrated in (1.5) and the utility satisfies the following BSDE:

dVt = − δ

1− 1
ψ

(1− γ)Vt

( ct

((1− γ)Vt)
1

1−γ

)1− 1
ψ

− 1

 dt+ ZtdBt,

VT = h(XT ), (5.4)

where h : R→ R is a given Lipschitz continuous function. The optimization objective of the agent is to maximize
his/her utility as below:

max
(π,c)∈U

V0,

where
U , {(π, c)| (π, c) : [0, T ]×Ω → [−1, 1]× [a1, a2] is the {Ft}0≤t≤T -adapted process}

is the admissible control set.
Indeed, the aggregator given by (5.4) does not satisfy the Lipschitz condition with respect to the utility

and the consumption in most cases. However, our study is applicable in some non-Lipschitz cases. Note that
Proposition 3.2 in [13] provides four cases in which the aggregator is monotonic with respect to the utility.
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Taking into account the polynomial growth condition (H6) with respect to the utility, we select two cases for
further consideration:

(i) γ > 1 and ψ > 1;

(ii) γ < 1 and ψ < 1.

Then we can find appropriate power such that the aggregator of (5.4) is continuous and monotonic but non-
Lipschitz in R with respect to the utility in both cases. As for the continuity with respect to the consumption,
if a1 > 0, both cases are Lipschitz continuous obviously. In particular, if a1 = 0, only case (i) satisfies the
continuous but not Lipschitz continuous condition with respect to the consumption.

Therefore, for all suitable non-Lipschitz situations which satisfy Conditions (H3)–(H6), we can use Theo-
rem 4.8 to know that the value function of the agent is a viscosity solution of the following HJB equation:

max
(π,c)∈[−1,1]×[a1,a2]

{
wt(t, x) + [x(rt + π(bt − rt))− c]wx(t, x) +

1

2
x2π2σ2

twxx(t, x)

+
δ

1− 1
ψ

(1− γ)w(t, x)

[(
c

((1− γ)w(t, x))
1

1−γ

)1− 1
ψ

− 1

]}
= 0,

w(T, x) = h(x).

(5.5)
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