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STOCHASTIC HOMOGENIZATION OF PLASTICITY EQUATIONS

Martin Heida1,∗ and Ben Schweizer2

Abstract. In the context of infinitesimal strain plasticity with hardening, we derive a stochastic ho-
mogenization result. We assume that the coefficients of the equation are random functions: elasticity
tensor, hardening parameter and flow-rule function are given through a dynamical system on a prob-
ability space. A parameter ε > 0 denotes the typical length scale of oscillations. We derive effective
equations that describe the behavior of solutions in the limit ε → 0. The homogenization procedure is
based on the fact that stochastic coefficients “allow averaging”: For one representative volume element,
a strain evolution [0, T ] � t �→ ξ(t) ∈ R

d×d
s induces a stress evolution [0, T ] � t �→ Σ(ξ)(t) ∈ R

d×d
s . Once

the hysteretic evolution law Σ is justified for averages, we obtain that the macroscopic limit equation
is given by −∇ · Σ(∇su) = f .

Mathematics Subject Classification. 74C05, 35R60, 74Q10.

Received 27 April, 2016. Accepted January 31, 2017.

1. Introduction

In its history, mathematics has often been inspired by questions from continuum mechanics: Given a body of
metal and given a force acting on it, what is the deformation that the body of metal is experiencing? Euler has
been inspired by this question; much later, the development of linear and non-linear elasticity theory provided
excellent models (and mathematical theories) for non-permanent deformations. In contrast, the description of
permanent deformations with plasticity models is much less developed. The only well-established plasticity
models are based on infinitesimal strain theories, ad-hoc decomposition rules of the strain tensor and flow rules
for the plastic deformation tensor.

Homogenization theory is, in its origins, concerned with the following question: How does a heterogeneous
material (composed of different materials) behave effectively? Can we characterize an effective material such
that a heterogeneous medium (consisting of a very fine mixture) behaves like the effective material? This
homogenization question has a positive answer in the context of linear elasticity: effective coefficients can be
computed and bounds for these effective coefficients are available. The situation is quite different for plasticity
models: Results have been obtained only in the last ten years. The effective model cannot be reduced to one
macroscopic set of differential equations. The effective system either remains a two-scale model or, as we do
here, must be formulated with a hysteretic stress-strain map.
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With only two exceptions, so far, homogenization results in plasticity treat essentially the same system:
Infinitesimal strains and an additive decomposition of the strain tensor are used, some hardening effect is
included, and the homogenization is performed in a periodic setting. The two exceptions are [6, 19]: In [6],
no hardening effect is used and the limit system is much more involved. In [19], stochastic coefficients are
permitted, but at the expence of a one-dimensional setting. The present article is based on [9] and provides the
third exception: We treat a model with stochastic coefficients in dimensions 2 and 3.

We mention at this point the more abstract approach in the framework of energetic solutions, see [12, 13],
and its application in gradient plasticity in [8].

Plasticity equations.

We study a bounded domain Q ⊂ R
d, d ∈ {2, 3}, occupied by a heterogeneous material, and its evolution in

a time interval (0, T ) ⊂ R. For a parameter ε > 0, we consider on Q× (0, T ) the plasticity system

−∇ · σε = f, σε = C−1
ε eε,

∇suε = eε + pε, ∂tp
ε ∈ ∂Ψε(σε −Bεp

ε).
(1.1)

The first relation is the quasi-static balance of forces in the body, f is a given load, σ the stress tensor. The
second relation is Hooke’s law which relates linearly the stress σ with the elastic strain e. The third relation is
the additive decomposition of the infinitesimal strain ∇su = (∇u + (∇u)T )/2. The fourth relation is the flow
rule for the plastic strain p, it uses the subdifferential ∂Ψε of a convex function Ψε. Kinematic hardening is
introduced with the positive tensor Bε.

Hardening is an experimental fact in metals. From the physical point of view, the model without hardening
(“perfect plasticity”) allows for arbitrarily large deformations once the yield stress is reached. From the analytical
point of view, hardening simplifies the mathematical treatment considerably: Standard function spaces can be
used, while in perfect plasticity the space BD(Q) of bounded deformations must be used (measure-valued shear
bands can occur). In particular, the a priori estimates from Theorem 1.10 and Lemma 2.10 are due to the
hardening assumption. We refer to [1, 7] for the modelling.

Our interest here is to study coefficients B = Bε (hardening), C = Cε (elasticity tensor), and Ψ = Ψε (convex
flow rule function) that depend on the parameter ε > 0. We imagine ε to be the spatial length scale of the
heterogeneities. Since the coefficients depend on ε, also the solution (u, σ, e, p) = (uε, σε, eε, pε) depends on ε.

We consider only positive and symmetric coefficient tensors, using the following setting: We denote by R
d×d
s ⊂

R
d×d the space of symmetric matrices, L(Rd×d

s ,Rd×d
s ) is the space of linear mappings on R

d×d
s . For every ε > 0

and almost every x ∈ Q, the tensors Cε(x), Bε(x) ∈ L(Rd×d
s ,Rd×d

s ) are assumed to be symmetric. Furthermore,
for constants γ, β > 0, we assume the positivity and boundedness

γ |ξ|2 ≤ ξ : (Cε(x) ξ) ≤
1
γ
|ξ|2 , β |ξ|2 ≤ ξ : (Bε(x) ξ) ≤

1
β
|ξ|2 (1.2)

for every ξ ∈ R
d×d
s , a.e. x ∈ Q, and every ε > 0.

System (1.1) is accompanied by a Dirichlet boundary condition uε = U on ∂Q×(0, T ) and an initial condition
for the plastic strain tensor (for simplicity, we assume here a vanishing initial plastic deformation). Finally, the
load f must be imposed. We consider data

U ∈ H1(0, T ;H1(Q; Rd)), f ∈ H1(0, T ;L2(Q,Rd)), pε|t=0 ≡ 0. (1.3)

The fundamental task of homogenization theory is the following: If uε ⇀ u converges in some topology as ε→ 0,
what is the equation that characterizes u?

Known homogenization results and the needle-problem approach.

The periodic homogenization of system (1.1) was performed in the last 10 years. The effective two-scale limit
system was first stated in [2]. The rigorous derivation of the limit system (under different assumptions on the
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coefficients) was obtained by Visintin with two-scale convergence methods [23–25], by Alber and Nesenenko
with phase-shift convergence [3,16], and by Veneroni together with the second author with energy methods [20].
By the same authors, some progress was achieved regarding the monotone flow rule and a simplification of
proofs in [22]. We refer to these publications also for a further discussion of the periodic homogenization of
system (1.1).

The non-periodic homogenization of system (1.1) is much less treated. In particular, we are not aware of any
stochastic homogenization result (with the exception of [19], but the analysis of the one-dimensional case is
much simpler, since the stress variable can be obtained by a simple integration from the force f).

For the non-periodic case, a partial homogenization result has been obtained in [9]. That contribution is
based on the needle-problem approach, which has its origin in [21]. The present article is based on [9] and we
therefore describe in the next paragraph the needle-problem approach in more detail.

In the needle-problem approach, homogenization is seen as a two-step procedure. We describe the two steps
of the needle approach here with the scalar model −∇ · (aε∇uε) = f for a deformation uε : Q → R. Step 1 is
concerned with cell-problems: One verifies that, on a representative elementary volume (an REV, the unit square
in periodic homogenization) and for a vanishing load, the material behaves in a well-defined way: An input (here:
the averaged gradient ξ of the solution across the REV) results in a certain output (here: the averaged stress
σ(ξ) = a∗ξ for a matrix a∗). Step 2 is concerned with arbitrary domains Q and arbitrary loads f . The conclusion
of Step 2 (which can be justified e.g. with the needle-problem approach) is the following: If the REV-analysis
provides the material law ξ �→ σ(ξ), then the behavior of the material on the macroscopic scale is characterized
by −∇ · (σ(∇u)) = f in Q (in our example by −∇ · (a∗∇u) = f). In [21], these methods are developed and
the two-step scheme is illustrated with the linear model: The assumption of an averaging property on simplices
implies the homogenization on the macroscopic scale with the corresponding law.

We emphasize that the idea to decouple the homogenization procedure into two steps is not new. In periodic
homogenization, the periodic cell problem provides the effective parameters; in stochastic homogenization the
splitting appears with a cell problem that is posed on the entire space R

d. In the theory of elliptic equations,
the construction of the corrector function plays the role of Step 1. But the splitting into two steps can be traced
back even further, to the definition of H-convergence [15], early stochastic homogenization results [17], or the
homogenization of integral functionals [5, 14]. The view-point in the needle-problem approach is extreme: We
choose not even to ask why Step 1 can be carried out in a specific situation — we assume that averaging occurs.
With this view-point, one may replace Step 1 also by the determination of material laws from laboratory or
numerical experiments.

The needle-problem approach focusses on Step 2. Assuming that the averaged behavior of samples are de-
scribed by some effective law, the effective behavior on arbitrary samples with arbitrary loads is derived.

In [9], we performed Step 2 (using the needle-problem approach) in the context of plasticity. Our assumption
was that the material parameters allow averaging: solutions on simplices with affine boundary data x �→ ξ · x
and vanishing forces f ≡ 0 have convergent stress averages: in the limit ε→ 0, stress integrals converge to some
deterministic quantity Σ(ξ). Due to memory effects in plasticity problems, one has to find for every evolution of
strains ξ = ξ(t) an evolution of stresses Σ(ξ)(t) = Σ(ξ(.))(t). The result in [9] is a homogenization result under
this averaging assumption: For general domains Q, general boundary data U and general forces f , the effective
problem for every limit u = limε→0 u

ε reads

−∇ ·Σ(∇su) = f in Q× (0, T ). (1.4)

The present work focuses on Step 1, i.e. we will rigorously prove the averaging and admissibility condition for
stationary ergodic coefficients.

Let us briefly describe the relation between the needle-problem approach (used here) with classical stochastic
homogenization results (as in [10, 11, 17]): We believe that our result on the stochastic homogenization of
plasticity equations could also be obtained along the classical route. In such a proof, one would first obtain a
two-scale effective problem in the variables (x, t, ω). In a second step, one can realize that the dependence on x
can be disintegrated: The two-scale system can be written in the form (1.4), if the hysteretic stress operator Σ
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is defined through a stochastic cell problem in the variables (t, ω). In the needle-problem approach, we keep
these two aspects separated: The abstract result “averaging property for Σ implies homogenization” of [9] is
independent of the stochastic description. The stochastic analysis concerns only the operatorΣ and its properties
(the work at hand).

The stochastic homogenization result.

In this contribution, we perform the stochastic homogenization of the plasticity system. In particular, we
demonstrate that the averaging assumption is satisfied for an evolution operator Σ and that equation (1.4)
is the effective plasticity problem. Comparing with other homogenization results for plasticity equations, this
means that we obtain a disintegrated effective system: equation (1.4) is local in space, it is not a two-scale
system. The microscopic behavior is synthesized in the operator Σ. The only non-local effect occurs in the time
variable, since Σ is an evolution operator.

Definition 1.1 (The structure of the limit problem). Let the domain Q ⊂ R
d and T > 0 be as above, let Ω be

a probability space with ergodic dynamical system as in Section 1.1, let stochastic coefficients C, B and Ψ be
as in Assumption 1.8.

(i) Definition of the hysteretic strain-to-stress map Σ : ξ �→ σ. We consider an input ξ : [0, T ] → R
d×d
s

and solve the following stochastic cell problem with a triplet (p, z, v), where p ∈ H1(0, T ;L2(Ω; Rd×d
s )), z ∈

H1(0, T ;L2
sol(Ω; Rd×d)), v ∈ H1(0, T ;L2

pot(Ω; Rd×d)), and z is symmetric, z = zs:

ξ = Cz − vs + p a.e. in [0, T ]×Ω,

∂tp ∈ ∂Ψ(z −Bp) a.e. in [0, T ]×Ω.
(1.5)

For the definition of the function spaces L2
pot(Ω) and L2

sol(Ω) see (1.12) and (1.14). The solution (p, z, v) defines
the operator Σ,

Σ(ξ)(t) :=
�

Ω

z(t, ω) dP(ω). (1.6)

(ii) Definition of the effective equation. For boundary data U and loading f as in (1.3), we search for
u ∈ H1(0, T ;H1(Q)) such that

� T

0

�
Q

Σ(∇su) : ∇ϕ =
� T

0

�
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)). (1.7)

Additionally, we demand that the boundary condition u = U on ∂Q× (0, T ) is satisfied in the sense of traces.

Remark 1.2. The argument of the stress function Σ is ξ = ξ(t), in the limit problem (1.7) the stress function
is evaluated, for every x ∈ Q, with the argument ξ(.) = ∇s

xu(., x). For a more detailed description of the
limit problem (1.7) see Definition 1.12. The precise statement of the stochastic cell-problem (1.5) and the
corresponding definition of the operator Σ in (1.6) is given in Definition 2.2.

Our stochastic homogenization result follows by applying the main theorem of [9]. Essentially, we only have
to verify that, if the coefficient functions of system (1.1) are given by an ergodic stochastic process, then the
coefficients “allow averaging”: In the limit ε → 0, averages of the stress (for a homogeneous plasticity system
on a simplex with affine boundary data ξ) are given by the operator Σ.

We verify this statement in Sections 2 and 3. The consequence is the following homogenization theorem,
which is our main result.

Theorem 1.3 (Stochastic homogenization in plasticity). Let Q ⊂ R
d be a bounded domain, d ∈ {2, 3}, T > 0.

Let τ be an ergodic dynamical system on the probability space (Ω,ΣΩ,P) as in Section 1.1, let the stochastic
coefficients B, C, Ψ and the data U and f be as in Assumption 1.8. Then, there exists a unique solution u to
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the limit problem (1.5)–(1.7) of Definition 1.1. For ω ∈ Ω, let (uε, σε, eε, pε) be weak solutions to (1.1). Then,
for a.e. ω ∈ Ω, as ε→ 0,

uε ⇀ u weakly in H1(0, T ;H1(Q)) and σε ⇀ Σ(∇su) weakly in H1(0, T ;L2(Q)).

Remark 1.4. The weak solution concept for the ε-problem (1.1) is made precise in Definition 1.9. The unique
existence of a solution uε for a.e.ω ∈ Ω is guaranteed by Theorem 1.10.

The proof of Theorem 1.3 is concluded in Section 3.4. A sketch of the proof is presented at the end of
Section 1.3.

1.1. Setting in stochastic homogenization

We follow the traditional setting in stochastic homogenization, first outlined by Papanicolaou and Varadhan
in [17] and by Kozlov in [11], later used by Jikov, Kozlov and Oleinik [10]. Let (Ω,ΣΩ,P) be a probability
space where we assume that the σ-algebra ΣΩ is countably generated. This implies that L2(Ω) is separable. Let
(τx)x∈Rd be an ergodic dynamical system on (Ω,ΣΩ,P). We rely on the following definitions: A family (τx)x∈Rd

of measurable bijective mappings τx : Ω �→ Ω is called a dynamical system on (Ω,ΣΩ ,P) if it satisfies

(i) τx ◦ τy = τx+y , τ0 = id (group property).
(ii) P(τ−xB) = P(B) ∀x ∈ R

d, B ∈ ΣΩ (measure preservation).
(iii) A : R

d ×Ω → Ω (x, ω) �→ τxω is measurable (measurability property).

We say that the system (τx)x∈Rd is ergodic, if for every measurable function f : Ω → R it holds

[
f(ω) = f(τxω) ∀x ∈ R

d, a.e. ω ∈ Ω
]
⇒ [∃c0 ∈ R : f(ω) = c0 for a.e. ω ∈ Ω] . (1.8)

Example 1.5. Let us provide a simple non-trivial example for a stochastic setting: the checker board construc-
tion of i.i.d. random variables. We use Y := [0, 1[d with the topology of the torus and the partition of R

d with
unit cubes Cz := z + Y for z ∈ Z

d. We consider the sets

Ω̃ :=
{
u ∈ L∞(Rd) |u|Cz ≡ cz, for some c : Z

d → [0, 1], z �→ cz
}

Ω :=
{
u ∈ L∞(Rd) | ∃ξ ∈ Y s.t. u(.− ξ) ∈ Ω̃

}
.

For u ∈ Ω we denote a shift ξ from the above definition as ξ(u). Note that Ω = Y ×
⊗

z∈Zd [1, 2].
The probability measure on Ω corresponding to i.i.d. random variables can be defined with the help of ele-

mentary subsets. For an open set U ⊆ Y , a number k ∈ N, and relatively open intervals Iz := ((az , bz) ∩ [0, 1]) ⊂
[0, 1], z ∈ Z

d and az < bz, the sets

A (U, (Iz)z∈Zd , k) = {u ∈ Ω | ξ(u) ∈ U, u(.− ξ(u))|Cz ∈ Iz ∀z, |z| ≤ k} (1.9)

are open and form a basis of the product σ-algebra in Ω. The product measure of the Lebesgue-measures on Y
and on [0, 1] can then be characterized through such sets A( . ) via

P (A (U, (Iz)z∈Zd , k)) := |U |
∏
|z|≤k

|bz − az|.

We finally introduce τx : Ω → Ω for every x ∈ R
d through τxu( . ) = u(x + .). It is easy to check that the

family (τx)x∈Rd is a dynamical system. Since P(A) = P(τxA) for A as in (1.9) and x ∈ R
d, the dynamical

system is measure preserving.
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Given f ∈ L2(Ω) and ω ∈ Ω, we call fω : R
n → R, x �→ f(τxω) the ω-realization of f . An important property

of ergodic dynamical systems is the fact that spatial averages can be related to expectations. For a quite general
version of the ergodic theorem, we refer to [26]. The following simple version is sufficient for our purposes.

Theorem 1.6 (Ergodic theorem). Let (Ω,ΣΩ,P) be a probability space with an ergodic dynamical system
(τx)x∈Rd on Ω. Let f ∈ L1(Ω) be a function and Q ⊂ R

d be a bounded open set. Then, for P-almost every
ω ∈ Ω,

lim
ε→0

�
Q

f(τx/εω) dx = lim
ε→0

�
Q

fω

(x
ε

)
dx = |Q|

�
Ω

f(ω) dP(ω). (1.10)

Furthermore, for every f ∈ Lp(Ω), 1 ≤ p ≤ ∞, and a.e. ω ∈ Ω, the function fω(x) = f(τxω) satisfies
fω ∈ Lp

loc(R
d). For p <∞ holds fω(·/ε) = f(τ·/εω) ⇀

�
Ω f dP weakly in Lp

loc(R
d) as ε→ 0.

For brevity of notation in calculations and proofs, we will often omit the symbol dP in Ω-integrals. We
assume that the coefficients in (1.1) have the form

Cε(x) = C(τx
ε
ω), Bε(x) = B

(
τx

ε
ω
)
, Ψε(σ) = Ψ

(
σ; τx

ε
ω
)

(1.11)

for some functions B, C, and Ψ , see Assumption 1.8.
Using the function spaces

L2
pot,loc(R

d) :=
{
u ∈ L2

loc(R
d; Rd×d) | ∀U bounded domain, ∃ϕ ∈ H1(U ; Rd) : u = ∇ϕ

}
,

L2
sol,loc(R

d) :=
{
u ∈ L2

loc(R
d; Rd×d) |

�
Rd

u · ∇ϕ = 0 ∀ϕ ∈ C1
c (Rd)

}
,

we follow Chapter 7 in [10] and define

L2
pot(Ω) :=

{
v ∈ L2(Ω; Rd×d) |x �→ v(τxω) in L2

pot,loc(R
d) for a.e. ω ∈ Ω

}
, (1.12)

V2
pot(Ω) :=

{
f ∈ L2

pot(Ω) |
�

Ω

f dP = 0
}
, (1.13)

L2
sol(Ω) :=

{
v ∈ L2(Ω; Rd×d) |x �→ v(τxω) in L2

sol,loc(R
d) for a.e. ω ∈ Ω

}
. (1.14)

The three spaces (1.12)–(1.14) are closed subspaces of L2(Ω; Rd×d). The latter spaces can be decomposed in an
orthogonal sum as L2(Ω; Rd×d) = V2

pot(Ω) ⊕ L2
sol(Ω), see [10].

Remark 1.7. The periodic homogenization setting is a special case of the stochastic setting, and we recover
known results in the periodic case. The cell problem on the periodicity cell is encoded in (1.5) with the help of
the spaces L2

pot(Ω) and L2
sol(Ω) (vs is a symmetrized gradient and z has a vanishing divergence).

1.2. Solution concepts and existence results

To formulate a stochastic setting, we consider C,B ∈ L∞(Ω;L(Rd×d
s ,Rd×d

s )), pointwise symmetric, such that
for γ, β > 0 holds

γ |ξ|2 ≤ ξ : C(ω)ξ ≤ 1
γ
|ξ|2 , β |ξ|2 ≤ ξ : B(ω)ξ ≤ 1

β
|ξ|2 , (1.15)

for every ξ ∈ R
d and a.e. ω ∈ Ω. Let Ψ : R

d×d
s ×Ω → (−∞,+∞], (ξ, ω) �→ Ψ(ξ, ω) be measurable in R

d×d
s ×Ω,

lower semicontinuous and convex in R
d×d
s for a.e. ω ∈ Ω, and with Ψ(0, ω) = 0 for a.e.ω ∈ Ω. We furthermore

assume that for a.e.ω ∈ Ω there is c(ω) > 0 such that the convex dual (in the first variable) satisfies

|Ψ∗(σ; τxω) − Ψ∗(σ; τyω)| ≤ c(ω) |x− y| |σ| ∀σ ∈ R
d×d
s , x, y ∈ R

d. (1.16)

We note that the above assumption on Ψ implies that no discontinuities are allowed in the flow rule.
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Assumption 1.8 (Data). Let C,B ∈ L∞(Ω;L(Rd×d
s ,Rd×d

s )) and Ψ : R
d×d
s × Ω → (−∞,+∞] sat-

isfy (1.15)–(1.16). We consider only parameters ω ∈ Ω such that the ω-realizations Cω(x) := C(τxω),
Bω(x) := B(τxω) are measurable and such that (1.2) and (1.16) hold. We furthermore assume that U and
f satisfy the regularity (1.3) and the compatibility conditions U |t=0 = 0, f |t=0 = 0.

Our aim is to study (1.1) with the coefficients defined in (1.11). By slight abuse of notation and omitting
the index ω whenever possible, we also write Cε(x) := Cε,ω(x) := C(τx

ε
ω) and Bε(x) := Bε,ω(x) := B(τx

ε
ω) as

in (1.11). We assume that they satisfy (1.2) and that Ψε satisfies∣∣Ψ∗
ε,ω(σ;x1) − Ψ∗

ε,ω(σ;x2)
∣∣ ≤ c(ε, ω) |x1 − x2| |σ| . (1.17)

This condition is of a technical nature. It is used only in the proof of the existence result of Theorem 1.10.
We remark that the existence result remains valid also without assumption (1.17), as can be shown with the
methods of Section 2. Since we do not want to repeat the proof of Theorem 1.10 here, we assume the above
Lipschitz condition.

Definition 1.9 (Weak formulation of the ε-problem). We say that (uε, σε, eε, pε) is a weak solution to the
ε-problem (1.1) on Q with boundary condition U if the following is satisfied: There holds uε = vε + U with

vε ∈ H1(0, T ;H1
0 (Q)), eε, pε, σε ∈ H1(0, T ;L2(Q; Rd×d

s )),

equation −∇ · σε = f of (1.1) holds in the distributional sense and the other relations of (1.1) hold pointwise
almost everywhere in Q× (0, T ).

We note that, due to the regularity of σε, every weak solution to (1.1) satisfies

� T

0

�
Q

σε : ∇sϕ =
� T

0

�
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)). (1.18)

Theorem 1.2 of [9] provides the following existence result.

Theorem 1.10 (Existence of solutions to the ε-problem). Let the coefficient functions C, B, Ψ , the parameter
ω ∈ Ω, and the data U and f be as in Assumption 1.8. Then, for every ε > 0, there exists a unique weak solution
(uε, σε, eε, pε) to the ε-problem (1.1) in the sense of Definition 1.9. The solutions satisfy the a priori estimate

‖uε‖V1
1

+ ‖eε‖V1
0

+ ‖pε‖V1
0

+ ‖σε‖V1
0
≤ C, (1.19)

in the spaces V1
0 := H1(0, T ;L2(Q; Rd×d

s )) and V1
1 := H1(0, T ;H1

0 (Q)), the constant C = C(U, f, β, γ) depends
on β and γ from (1.2), but it does not depend on ε > 0 or ω ∈ Ω.

1.3. The needle problem approach to plasticity

The main result of [9] is a homogenization theorem. Under the assumption that causal operators Σ and Π
satisfy certain admissibility and averaging properties, we obtain the convergence of the ε-solutions uε to the
solution u of the effective problem (1.4). We next recall the required properties. In the following, we use the
space H1

∗ (0, T ; Rd×d
s ) := H1(0, T ; Rd×d

s ) ∩ {ξ | ξ|t=0 = 0} of evolutions with vanishing initial values.

Definition 1.11 (Averaging). We say that a map F : H1
∗ (0, T ; Rd×d

s ) → H1(0, T ; Rd×d
s ) defines a causal op-

erator, if, for almost every t ∈ [0, T ], the value F (ξ, t) := F (ξ)(t) is independent of ξ|(t,T ]. We say that the
coefficients Cε, Bε and Ψε allow averaging, if there exist causal operators Σ and Π such that the following
property holds: For every simplex T ⊂ Q, every boundary condition ξ ∈ H1

∗ (0, T ; Rd×d
s ) and every additive

constant a ∈ H1(0, T ; Rd), the corresponding solution (uε, σε, eε, pε) of the ε-problem (1.1) on T with f = 0



160 M. HEIDA AND B. SCHWEIZER

and U(x, t) = ξ(t)x+a(t) satisfies the following: As ε→ 0, for a.e. t ∈ (0, T ), the averages of pε and σε converge:
�
T
pε(t) → Π(ξ)(t),

�
T
σε(t) → Σ(ξ)(t). (1.20)

Here,
�
T = |T |−1

�
T denotes averages. In particular, we demand that limits of (averages of) stress and plastic

strain depend only on the (time-dependent) boundary condition ξ, not on a and not on the simplex T .

Definition 1.12 (Effective equation in the needle problem approach). The effective plasticity problem in the
needle problem approach is given by

−∇ ·Σ(∇su) = f in Q× (0, T ), (1.21)

with boundary condition u = U on ∂Q × (0, T ). A function u is a solution to this limit problem if u = U + v
holds with v ∈ H1(0, T ;H1

0(Q; Rd)) and (1.21) is satisfied in the distributional sense. Regarding the expression
Σ(∇su) we note that, for a.e.x ∈ Q, the map t �→ ∇su(x, t) is in the space H1

∗ (0, T ; Rd×d
s ), hence Σ(∇su) is

well-defined for almost every point in Q× (0, T ).

The original intention of the needle problem approach is to avoid any cell–problem or corrector result, since
these might not be available [21]. Nevertheless, in the application, the causal operator Σ is defined through a
kind of cell-problem, see Definition 2.2. We emphasize that this structure is not needed for the result obtained
in [9].

The proof of the subsequent Theorem 1.13 is based on a discretization of Q with a triangulation Th, where
the parameter h > 0 stands for the mesh-size. Given the triangulation, we consider two auxiliary problems. The
first problem is the finite element discretization of the homogenized problem (1.21) with a solution Uh. The
second problem is the “needle problem”, an approximation of the original equation (1.1), with solution uε

h. The
needle problem approach is based on the following diagram of convergences:

uε
h

(1.20)−→
ε

Uh

ε, h

�⏐� h

⏐⏐�admissibility

uε u

(1.22)

The vertical arrow on the left is obtained from a testing procedure. The horizontal arrow is a consequence of
the averaging property, uε

h → Uh as ε → 0. The vertical arrow on the right exploits admissibility, compare
Definition 1.14 below. The work at hand is concerned with the construction of an operator Σ such that (1.20)
holds and such that Σ is admissible in the sense of Definition 1.14 below.

Result of the needle problem approach. In Theorem 1.6 of [9], the abstract operator Σ is assumed to satisfy two
conditions: (i) Averaging property. This assumption is recalled in Definition 1.11. (ii) Admissibility. Admissibility
is defined in Definition 1.5 of [9] as: The effective problem has a solution.

The existence property of the admissibility condition (ii) can be shown by proving that Galerkin approxi-
mations converge to solutions. We formulate a sufficient condition in this spirit in Definition 1.14 below. We
therefore obtain from Theorem 1.6 of [9]:

Theorem 1.13 (Needle-approach homogenization theorem in plasticity). Let Q ⊂ R
d be open and bounded,

let the data f and U be as in Assumption 1.8, let the coefficients Cε, Bε and Ψε be as above, satisfying (1.2).
Let the data allow averaging in the sense of Definition 1.11 with causal operators Σ and Π, and let Σ satisfy
the admissibility condition of Definition 1.14. Let (uε, σε, eε, pε) be the weak solutions to the ε-problems (1.1).
Then, as ε→ 0, there holds

uε ⇀ u weakly in H1(0, T ;H1
0(Q; Rd)), pε ⇀ Π(∇su), σε ⇀ Σ(∇su) weakly in H1(0, T ;L2(Q; Rd×d)),
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where u is the unique weak solution to the homogenized problem

−∇ ·Σ(∇su) = f on Q× (0, T )

with boundary condition U in the sense of Definition 1.12.

An assumption that implies admissibility. For arbitrary h > 0, we use a polygonal domain Qh ⊂ Q and a
triangulation Th with the properties

Th := {Tk}k∈Λh
is a triangulation of Qh, diam (Tk) < h ∀ Tk ∈ Th,

Qh has the property that x ∈ Q, dist(x, ∂Q) ≥ h implies x ∈ Qh, (1.23)

where Tk are disjoint open simplices and Λh ⊂ N is a finite set of indices. We always assume that the sequence
of meshes is regular in the sense of [4], Section 3.1. As in [21], we consider the finite element space of continuous
and piecewise linear functions with vanishing boundary values,

Yh :=
{
φ ∈ H1

0 (Q) | φ|Tk
is affine ∀ Tk ∈ Th, φ ≡ 0 on Q \Qh

}
. (1.24)

Discretization of boundary conditions : We may extend the triangulation of Qh by a finite amount of simplices
with diameter not greater than h to obtain a grid T̃h that coversQ in the sense Q ⊂

⋃
Tk∈T̃h

T̄k and introduce the
finite element space Ỹh := {φ ∈ H1(Q) | φ|Tk∩Q is affine ∀ Tk ∈ T̃h}. Denoting by RQ,h the H1-orthogonal Riesz-
projection H1(Q) → Ỹh, we set Uh := RQ,h(U) and observe that Uh → U converges strongly in H1(0, T ;H1(Q))
as h→ 0.

Definition 1.14 (Sufficient condition for admissibility of Σ). We consider a causal operator Σ :
H1

∗ (0, T ; Rd×d
s ) → H1(0, T ; Rd×d

s ). We say that Σ satisfies the sufficient condition for admissibility if the fol-
lowing property holds: Let h → 0 be a sequence of positive numbers, let Th be a sequence of regular grids
satisfying (1.23), and let vh ∈ L2(0, T ;Yh) be a corresponding sequence of solutions to the discretized problems
(the existence is guaranteed in [9])

�
Q

Σ (∇s (vh + Uh)) : ∇ϕh =
�

Q

fϕh ∀ϕh ∈ L2(0, T ;Yh).

Assume furthermore that the solutions converge, vh ⇀ v weakly in H1(0, T ;H1
0 (Q)) as h → 0. Then v is a

solution to �
Q

Σ (∇s (v + U)) : ∇ϕ =
�

Q

fϕ ∀ϕ ∈ L2(0, T ;H1
0(Q)).

Remaining program. Using Theorem 1.13, our stochastic homogenization result of Theorem 1.3 can be shown
as follows: For stochastic parameters Cε, Bε and Ψε we define causal operators Σ and Π with cell-problems on
Ω. For these operators, we only have to check the averaging property of Definition 1.11 and the admissibility
condition of Definition 1.14.

2. Stochastic cell problem and definition of Σ

Given a strain evolution ξ, we want to define the corresponding evolution Σ(ξ) of plastic stresses. For the
strain ξ, we use the function space

H1
∗ (0, T ; Rd×d

s ) :=
{
ξ ∈ H1(0, T ; Rd×d

s ) | ξ|t=0 = 0
}

(2.1)

of evolutions with vanishing initial values. For any function ξ ∈ H1
∗ (0, T ; Rd×d

s ) we consider the ordinary differ-
ential equation (inclusion) for p(t, . ) ∈ L2(Ω; Rd×d

s ),

∂tp(t, ω) ∈ ∂Ψ (z(t, ω) −B(ω) p(t, ω) ; ω) (2.2)
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(equality pointwise a.e.), with the initial condition p(0, ω) = 0. In order to close the system, the function z(t)
must be determined through ξ(t) and p(t). We search for a map z(t) ∈ L2

sol(Ω), symmetric in every point ω,
i.e. z(t, ω) = zT (t, ω), such that the equality

Cz(t) = ξ(t) + vs(t) − p(t) (2.3)

holds in L2(Ω) for a function v ∈ L2(0, T ;V2
pot(Ω)). Throughout this text we use zs = (z + zT )/2 for the

symmetric part of a matrix z; for the symmetric matrix z there holds z = zs. Note that v ∈ V2
pot(Ω) does

not imply vs ∈ V2
pot(Ω). Up to the matrix factor C and the symmetrization, equation (2.3) is a Helmholz

decomposition of the field ξ(t) − p(t): Essentially, the given field is decomposed into a gradient field and a
solennoidal field. It is therefore plausible that, given ξ(t) and p(t), (2.3) yields z(t) and thus closes the evolution
equation (2.2). The rigorous existence result is provided in the following theorem.

Theorem 2.1. Let C, B and Ψ be as in Assumption 1.8. Then, for ξ ∈ H1
∗ (0, T ; Rd×d

s ), there exists a unique
solution (p, z, v) ∈ H1(0, T ;L2(Ω; Rd×d

s )) × H1(0, T ;L2
sol(Ω; Rd×d)) × H1(0, T ;V2

pot(Ω; Rd×d)) with z = zs

to (2.2)–(2.3) satisfying the a priori estimate

‖p‖V1
0

+ ‖z‖V1
0

+ ‖v‖V1
0
≤ C ‖ξ‖H1(0,T ) , (2.4)

where V1
0 := H1(0, T ;L2(Ω; Rd×d

s )). The solution (p, z, v) ∈ (V1
0 )3 depends continuously on ξ ∈ H1

∗ (0, T ; Rd×d
s )

with respect to the weak topologies in both spaces.

Theorem 2.1 permits us to define the operators Σ and Π .

Definition 2.2 (The effective plasticity operators). For arbitrary ξ ∈ H1
∗ (0, T ; Rd×d

s ), let (p, z, v) be the solution
of (2.2)–(2.3) with z = zs. We set

Σ(ξ)(t) :=
�

Ω

z(t, ω) dP(ω), Π(ξ)(t) :=
�

Ω

p(t, ω) dP(ω). (2.5)

We note that the operators Σ, Π : H1
∗ (0, T ; Rd×d

s ) → H1(0, T ; Rd×d
s ) are well defined and continuous by

Theorem 2.1.

The rest of this section is devoted to the proof of Theorem 2.1. We proceed as follows: In Section 2.1, we
introduce a Galerkin approximation scheme for (2.2)–(2.3), using additionally a regularization of Ψ . In 2.2, we
recall some results from the theory of convex functions, in 2.3 we provide a Korn’s inequality in the probability
space Ω. In Section 2.4 we prove existence and uniqueness of solutions to the approximate problems and show
that these solutions satisfy uniform bounds. Finally, in Section 2.5, we show that the solutions of the approximate
problems converge to the unique solution of the original system (2.2)–(2.3).

2.1. Galerkin method and regularization

Finite dimensional approximation. In what follows, let 〈ϕ, ψ〉Ω :=
�

Ω
ϕ : ψ dP denote the scalar product in

L2(Ω) := L2(Ω; Rd×d). We choose complete orthonormal systems {ek}k∈N
of V2

pot(Ω) and {ẽk}k∈N
of L2

sol(Ω)
and consider the finite dimensional spaces

L̃2
n(Ω) := span {ek}k=1,...,n ⊕ span {ẽk}k=1,...,n , L2

n(Ω) := L̃n(Ω) ⊕
{
vs | v ∈ L̃n(Ω)

}
,

V2
pot,n(Ω) := V2

pot(Ω) ∩ L2
n(Ω), L2

sol,n(Ω) := L2
sol(Ω) ∩ L2

n(Ω).

We furthermore set L2
s(Ω) := L2(Ω; Rd×d

s ) and L2
n,s(Ω) :=

{
vs | v ∈ L2

n(Ω)
}
. Since constants are in L2

sol(Ω),
we can assume that they are in L2

n(Ω) and thus in L2
sol,n(Ω) for every n ≥ d2. We finally introduce the

orthogonal projection Pn : L2(Ω) → L2
n(Ω) and note that Pnϕ → ϕ strongly in L2(Ω; Rd×d) as n → ∞ for

every ϕ ∈ L2(Ω; Rd×d).



STOCHASTIC HOMOGENIZATION OF PLASTICITY EQUATIONS 163

Definition of regularized convex functionals. In order to prove Theorem 2.1, we consider the family of
Moreau−Yosida approximations

Ψ δ(σ, ω) := inf
ξ∈R

d×d
s

{
Ψ(ξ, ω) +

|ξ − σ|2

2δ

}
, (2.6)

satisfying (see [18], Exercise 12.23; for the definition of the subdifferential ∂Ψ δ see (2.11))

Ψ δ : R
d×d
s → R is convex, coercive and continuously differentiable

∂Ψ δ : R
d×d
s → R

d×d
s is single valued and globally Lipschitz-continuous (2.7)

lim
δ→0

Ψ δ(σ;ω) = Ψ(σ;ω) ∀σ ∈ R
d×d
s , and a.e. ω ∈ Ω.

Note that the last convergence is monotone, since Ψ δ2 ≥ Ψ δ1 for all δ2 < δ1. Given Ψ and Ψ δ, we consider the
corresponding functionals

Υ, Υ δ : L2
s(Ω) → R, Υ (z) :=

�
Ω

Ψ(z(ω)) dP(ω), Υ δ(z) :=
�

Ω

Ψ δ(z(ω)) dP(ω). (2.8)

We denote by Υn : L2
n,s(Ω) → R the restriction of Υ to L2

n,s(Ω). the subdifferential of Υn is ∂Υn. Accordingly,
we can define Υ δ

n and ∂Υ δ
n .

The approximate problem for (2.2)–(2.3).

We consider the following problem on discretized function spaces: Given an evolution ξ ∈ H1
∗ (0, T ; Rd×d

s ), we
look for

pδ,n ∈ C1(0, T ;L2
n,s(Ω)), zδ,n ∈ H1(0, T ;L2

sol,n(Ω)), vδ,n ∈ H1(0, T ;V2
pot,n(Ω)),

with the symmetry zδ,n = zs
δ,n , satisfying

∂tpδ,n = ∂Υ δ
n (zδ,n −Bn pδ,n) (2.9)

and Cn zδ,n = ξ + vs
δ,n − pδ,n. The last equation can be written as

zδ,n = C−1
n

(
ξ + vs

δ,n − pδ,n

)
. (2.10)

Here, Bn, Cn : L2
n,s(Ω) → L2

n,s(Ω) are bounded positive (and thus invertible) operators defined through

〈Bnψ, ϕ〉Ω =
�

Ω

(Bψ) : ϕ, 〈Cnψ, ϕ〉Ω =
�

Ω

(Cψ) : ϕ ∀ϕ, ψ ∈ L2
n,s(Ω).

We obtain the existence and uniqueness of solutions to (2.9)–(2.10) from the Picard-Lindelöf theorem: We
show that the system can be understood as a single ordinary differential equation for pδ,n with a Lipschitz
continuous right hand side, and that the solutions are uniformly bounded.

2.2. Convex functionals

Basic concepts of convex functions. We recall some well known results from convex analysis on a separable Hilbert
space X with scalar product “·”. In the following, ϕ : X → R ∪ {+∞} is a convex and lower-semicontinuous
functional with ϕ �≡ +∞. The domain of ϕ is dom(ϕ) := {σ ∈ X |ϕ(σ) < +∞}, and the Legendre−Fenchel
conjugate ϕ∗ is defined by

ϕ∗ : X → R ∪ {+∞}, ε �→ sup
σ∈X

{ε · σ − ϕ(σ)}.
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The subdifferential ∂ϕ : dom(ϕ) → P(X) is defined by

∂ϕ(σ) = {ε ∈ X |ϕ(ξ) ≥ ϕ(σ) + ε · (ξ − σ) ∀ ξ ∈ X} . (2.11)

A multivalued operator f : dom(f) ⊂ X → P(X) is said to be monotone if

(σ1 − σ2) · (ε1 − ε2) ≥ 0, ∀ εi ∈ dom(f), σi ∈ f(εi), (i = 1, 2).

In what follows, we frequently use the following properties of convex functionals [18].

Lemma 2.3. For every convex and lower semicontinuous function ϕ on a Hilbert space X with ϕ �≡ +∞ holds

(i) ϕ∗ is convex, lower-semicontinuous; and dom(ϕ∗) �= ∅.
(ii) ∂ϕ, ∂ϕ∗ are monotone operators.
(iii) ϕ(σ) + ϕ∗(ε) ≥ σ · ε ∀σ, ε ∈ X.
(iv) σ ∈ dom(ϕ) and ε ∈ ∂ϕ(σ) ⇔ ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε).
(v) ε ∈ dom(ϕ∗) and σ ∈ ∂ϕ∗(ε) ⇔ ϕ(σ) + ϕ∗(ε) = σ · ε.
(vi) ϕ∗∗ = ϕ.

We refer to (v) as Fenchel’s equality and to (iii) as Fenchel’s inequality.

Continuity properties of Υ and Υ δ and subdifferentials.

In order to obtain the subdifferential of the functional Υ : L2
s(Ω) → R we calculate

a ∈ ∂Υ (z) ⇔ Υ (z + ψ) ≥ Υ (z) + 〈a, ψ〉Ω ∀ψ ∈ L2
s(Ω)

⇔
�

Ω

Ψ(z + ψ) ≥
�

Ω

Ψ(z) + 〈a, ψ〉Ω ∀ψ ∈ L2
s(Ω)

⇔ a(ω) ∈ ∂Ψ(z(ω)) for a.e. ω ∈ Ω. (2.12)

Similarly, a ∈ ∂Υ δ(z) if and only if a ∈ ∂Ψ δ(z) almost everywhere. Both subdifferentials are therefore single-
valued and we may identify ∂Υ δ(z) = ∂Ψ δ(z). We next determine the subdifferential of the restricted func-
tional Υ δ

n .

Lemma 2.4. The functionals Υ δ
n have a single valued subdifferential in every z0 ∈ L2

n,s(Ω), given through

∂Υ δ
n(z0) = Pn∂Ψ

δ(z0). (2.13)

Proof. Let a ∈ ∂Υ δ
n(z0) ⊂ L2

n,s(Ω) and let id be the identity on L2
s(Ω). For arbitrary ϕ ∈ L2

s(Ω) we set
ϕn := Pnϕ and ϕo := (id− Pn)ϕ. We obtain

�
Ω

Ψ δ(z0 + tϕ) = Υ δ (z0 + tϕn + tϕo) ≥ Υ δ
n (z0 + tϕn) + t

〈
∂Ψ δ (z0 + tϕn) , ϕo

〉
Ω

≥ Υ δ
n (z0) + t 〈a, ϕn〉Ω + t

〈
∂Ψ δ (z0 + tϕn) , ϕo

〉
Ω

Since Ψ δ is differentiable and ∂Ψ δ is Lipschitz continuous, we obtain from the fact that the subdifferential
coincides with the derivative and from the last inequality

〈
∂Ψ δ(z0), ϕ

〉
Ω

= lim
t→0

1
t

(�
Ω

Ψ δ(z0 + tϕ) −
�

Ω

Ψ δ(z0)
)

≥ 〈a, ϕn〉Ω +
〈
∂Ψ δ (z0) , ϕo

〉
Ω
.

Replacing ϕ by −ϕ in the above calculations, we obtain ∂Ψ δ(z0) = a+(id−Pn)∂Ψ δ(z0) or Pn∂Ψ
δ(z0) = a. �
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The Fenchel conjugate of Υ δ
n in L2

n,s(Ω) is

Υ δ∗
n (σ) := sup

{�
Ω

σ : e dP − Υ δ
n(e) | e ∈ L2

n,s(Ω)
}
.

Since −Υ δ
n(·) is coercive in a finite dimensional space, it has compact sublevels in L2

n(Ω), and the supremum is
indeed attained.

Lemma 2.5. Let Υ δ∗ be the Fenchel conjugate of Υ δ. For every p ∈ L2
s(Ω) holds

Υ ∗(p) =
�

Ω

Ψ∗(p) dP , Υ δ∗(p) =
�

Ω

Ψ δ∗(p) dP , (2.14)

and the functionals Υ , Υ ∗, Υ δ and Υ δ∗ are convex and weakly lower semicontinuous on L2
s(Ω).

Proof. The functional Υ is convex with the conjugate

Υ ∗(p) := sup
{
〈p, e〉Ω − Υ (e) | e ∈ L2

s(Ω)
}

∀p ∈ L2
s(Ω).

We first prove (2.14): Let p ∈ domΥ ∗ = L2
s(Ω). Since Υ ∗ is convex, we know that ∂Υ ∗(p) �= ∅. Lemma 2.3 (iv)

yields for any σ ∈ ∂Υ ∗(p) that σ ∈ domΥ with p ∈ ∂Υ (σ) and Lemma 2.3 (v) then yields

Υ ∗(p) + Υ (σ) = 〈p, σ〉Ω . (2.15)

Since p ∈ ∂Υ (σ), (2.12) yields p(ω) ∈ ∂Ψ(σ(ω);ω) for a.e. ω ∈ Ω and Lemma 2.3 (v) yields Ψ∗(p)+Ψ(σ) = p : σ
a.e.. Integrating the last equality over Ω and comparing with (2.15), we find Υ ∗(p) =

�
Ω
Ψ∗(p) since Υ (σ) =�

Ω
Ψ(σ). The proof for the second statement in (2.14) is similar.
We now prove the weak lower semicontinuity of Υ ∗. Let σi ∈ dom(Ψ), i ∈ N, be dense in dom(Ψ). We define

Ψ∗
m as the maximum of finitely many functions

Ψ∗
m(p) := max

i=1,...,m
{p : σi − Ψ(σi)} ∀p ∈ R

d×d
s

and note that Ψ∗
m(p) ≤ Ψ∗(p) for every p ∈ R

d×d
s . For z ∈ L2

s(Ω) and i = 1, . . . ,m, we introduce the sets

Ωi := {ω ∈ Ω |Ψ∗
m(z) = z : σi − Ψ(σi)} \

⋃
j<i

Ωj .

Let (zn)n be a sequence such that zn ⇀ z weakly in L2
s(Ω). We find that

lim inf
n→∞

�
Ω

Ψ∗(zn) ≥ lim inf
n→∞

m∑
i=1

�
Ω

Ψ∗
m(zn) = lim inf

n→∞

∑
i

�
Ωi

max
j=1,...,m

(zn : σj − Ψ(σj))

≥ lim inf
n→∞

∑
i

�
Ωi

(zn : σi − Ψ(σi)) =
∑

i

�
Ωi

(z : σi − Ψ(σi)) =
�

Ω

Ψ∗
m(z).

Since Ψ∗(p) = limm→∞ Ψ∗
m(p) for every p ∈ R

d×d
s by definition of Ψ∗

m, and since this convergence is monotone,
we can apply the monotone convergence theorem and get

�
Ω
Ψ∗

m(z) →
�

Ω
Ψ∗(z) = Υ ∗(z). This yields the weak

lower semicontinuity of Υ ∗.
Since Ψ is convex and lower semicontinuous, we find Ψ = Ψ∗∗ and switching Ψ and Ψ∗ in the above argu-

mentation, the weak lower semicontinuity of Υ follows. The statements for Υ δ and Υ δ∗ follow similarly. �
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Convergence properties.

We will later need additional lower semicontinuity properties: We have to analyze the behavior of, e.g., Υ δ(uδ).

Lemma 2.6 (Lower semicontinuity property of Ψ δ and Ψ δ∗). Let Us := Ω × (0, s) be the space-time cylinder
and let (uδ)δ be a weakly convergent sequence, uδ ⇀ u weakly in L2(Us) as δ → 0. Then, for Ψ δ, Ψ as above,
we find

lim inf
δ→0

�
Us

Ψ δ∗(uδ) dP dt ≥
�

Us

Ψ∗(u) dP dt. (2.16)

For every sequence (uδ)δ with uδ ⇀ u weakly in L2
s(Ω) we find

lim inf
δ→0

Υ δ(uδ) ≥ Υ (u). (2.17)

Proof. The proof of (2.16) is the same as in [20], Lemma 2.6.
Using the definition of Ψ δ in (2.6), we choose, for every δ > 0, a function πδ ∈ L2(Ω; Rd×d) such that

�
Ω

(
|πδ − uδ|2

δ
+ Ψ(πδ)

)
dP ≤

�
Ω

Ψ δ(uδ) dP + δ.

Without loss of generality, we may assume lim infδ→0

�
Ω Ψ

δ(uδ) dP < ∞. Then we get for a subsequence�
Ω |πδ − uδ|2 → 0 as δ → 0 and hence πδ ⇀ u weakly in L2(Ω; Rd×d) for this subsequence. Since

�
Ω |πδ − uδ|2

is positive and Υ (z) =
�

Ω
Ψ(z) is weakly lower semicontinuous, we find (2.17). �

The following lemma uses time-dependent functions and the discretization parameter n ∈ N.

Lemma 2.7. Let s > 0 and let p ∈ L2(0, s;L2
s(Ω)) and pn ∈ L2(0, s;L2

n(Ω)) such that pn ⇀ p weakly in
L2(0, s;L2(Ω; Rd×d)) as n→ ∞. Then, for Υ δ∗

n and Υ δ
n as above we find

lim inf
n→∞

� s

0

Υ δ
n(pn) dt ≥

� s

0

Υ δ(p) dt, lim inf
n→∞

� s

0

Υ δ∗
n (pn) dt ≥

� s

0

Υ δ∗(p) dt. (2.18)

Furthermore, if zn → z strongly in L2(Ω; Rd×d) as n→ ∞, then

lim
n→∞

Υ δ
n(zn) = Υ δ(z). (2.19)

Proof. Let zn → z strongly in L2(Ω; Rd×d). Since Ψ δ is Lipschitz continuous with Ψ δ(0) = 0, we find because
of Υ δ

n(zn) = Υ δ(zn)

lim
n→∞

Υ δ
n(zn) = lim

n→∞

�
Ω

Ψ δ(zn) =
�

Ω

Ψ δ(z)

and thus (2.19). For pn ⇀ p weakly in L2(Us) with pn ∈ L2(0, s;L2
n(Ω)), the first inequality in (2.18) can be

proved similarly to the weak lower semicontinuity results of Lemma 2.5, using Υ δ
n(pn) = Υ δ(pn).

For the second inequality in (2.18), we choose finite sets Bn =
{
ei

n | i = 1, . . . ,Kn

}
⊂ L2

n(Ω) with Kn ≥ n
such that Bn ⊂ Bn+1 and

⋃
nBn is dense in L2(Ω; Rd×d). For fixed N ∈ N, the interval [0, s] is split into subsets

T̃
i
N :=

{
t ∈ [0, s] | max

{
〈e, p(t)〉Ω − Υ δ(e) | e ∈ BN

}
=
〈
ei

N , p(t)
〉

Ω
− Υ δ(ei

N )
}

(2.20)
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and we set T
1
N := T̃

1
N and T

i
N := T̃

i
N\

⋃
j<i T

j
N for i = 2, . . . ,KN . For n ≥ N we find, decomposing the time

integral, taking the maximum, performing the weak limit, and using the definition of T
i
N :

lim inf
n→∞

� s

0

Υ δ∗
n (pn) ≥ lim inf

n→∞

KN∑
i=1

�
Ti

N

max
{
〈e, pn(t)〉Ω − Υ δ

n(e) | e ∈ BN

}
dt

≥ lim inf
n→∞

KN∑
i=1

�
Ti

N

(〈
ei

N , pn(t)
〉

Ω
− Υ δ

n(ei
N )
)
dt

=
KN∑
i=1

�
Ti

N

(〈
ei

N , p(t)
〉

Ω
− Υ δ(ei

N )
)
dt

(2.20)
=

KN∑
i=1

�
Ti

N

max
{
〈e, p(t)〉Ω − Υ δ(e) | e ∈ BN

}
dt

= sup
{� s

0

(
〈ẽ, p(t)〉Ω − Υ δ(ẽ(t))

)
dt | ẽ ∈ L2(0, s;BN)

}
.

This inequality implies, due to density of
⋃

N BN in L2(Ω; Rd×d),

lim inf
n→∞

� s

0

Υ δ∗
n (pn) ≥ sup

{� s

0

�
Ω

(
e : p− Ψ δ(e)

)
| e ∈ L2(0, s;L2(Ω; Rd×d))

}

=
� s

0

�
Ω

Ψ δ∗(p) =
� s

0

Υ δ∗(p),

where we used (2.14) in the last equality. We have thus verified the second inequality of (2.18). �

2.3. Properties of V2
pot(Ω)-functions

Lemma 2.8 (Potentials with small norm). Let U ⊂ R
n be a bounded Lipschitz-domain and let v ∈ V2

pot(Ω).
Then, for P-a.e. ω ∈ Ω and every ε > 0 there exists φε,ω,v ∈ H1(U ; Rn) such that ∇φε,ω,v(x) = v(τx

ε
ω) and

such that
lim
ε→0

‖φε,ω,v‖L2(U) = 0.

Proof. Let v ∈ V2
pot(Ω) and write vε,ω(x) := v(τx

ε
ω). By the ergodic Theorem 1.6, there exists Ωv ⊂ Ω with

P(Ωv) = 1 such that for all ω ∈ Ωv there exists Cω > 0 with

sup
ε>0

‖vε,ω‖L2(U) ≤ Cω. (2.21)

Let (ϕi)i∈N
⊂ L2(Ω; Rd×d) a countably dense family. For every i ∈ N there exists Ωi ⊂ Ω with P(Ωi) = 1 such

that for every ω ∈ Ωi

�
U

vε,ω(x)ϕi(x) dx→
�

U

(�
Ω

v dP
)
ϕi dx = 0 as ε→ 0. (2.22)

We define Ω̃ := Ωv ∪
⋃

i∈N
Ωi. By (2.21) and (2.22) we obtain that vε,ω(x) ⇀ 0 as ε→ 0 for all ω ∈ Ω̃.

By the definition of L2
pot(Ω) in (1.12), there exists φε,ω,v ∈ H1(U) such that ∇φε,ω,v(x) = v(τx

ε
ω). By adding

a constant, we can achieve
�

U
φε,ω,v = 0. By the Poincaré inequality, it follows that

‖φε,ω,v‖L2(U) ≤ ‖∇φε,ω,v(x)‖L2(U) +
∣∣∣∣
�

U

φε,ω,v

∣∣∣∣ = ‖∇φε,ω,v(x)‖L2(U) =
�

U

|vε,ω(x)|2.
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Since the family φε,ω,v is bounded in H1(U), it is precompact in L2(U). We chose f ∈ C∞
c (U ; Rn) and denote

by F the solution to the Neumann boundary problem −ΔF = f . We obtain

− lim
ε→0

�
U

φε,ω,v · f = lim
ε→0

�
U

∇φε,ω,v : ∇F = lim
ε→0

�
U

v(τx
ε
ω) : ∇F (x) dx = 0.

Therefore, φε,ω,v ⇀ 0 in L2(U). Since (φε,ω,v)ε>0 is precompact in L2(U), it follows that φε,ω,v → 0 in
L2(U). �
Lemma 2.9 (A Korn’s inequality on Ω). For every f ∈ V2

pot(Ω) holds

‖f‖L2(Ω;Rd×d) ≤ 2 ‖fs‖L2(Ω;Rd×d) . (2.23)

Proof. In what follows, we denote Q := (−1, 1)d and Qη := (−1 + η, 1 − η)d for 1
2 > η > 0. We choose

ψη ∈ C∞
c (Q) with 0 ≤ ψη ≤ 1, ψη ≡ 1 on Qη and |∇ψη| < 2η−1.

Let f ∈ V2
pot(Ω) and for every ε > 0 and ω ∈ Ω let φε,ω,f denote the potential of fω from Lemma 2.8. If we

denote the characteristic function of Q\Qη by χQ\Qη
, we have the pointwise inequality∣∣∣ |∇φε,ω,f |2 − |∇ (φε,ω,fψη)|2

∣∣∣ ≤ χQ\Qη

(
2 |∇φε,ω,f |2 +

4
η
|φε,ω,f | |∇φε,ω,f | +

4
η2

|φε,ω,f |2
)

Using this inequality, we get from the ergodic Theorem 1.6 and Lemma 2.8 for P-a.e. ω ∈ Ω

lim
ε→0

�
Q

∣∣∣ |∇φε,ω,f |2 − |∇ (φε,ω,fψη)|2
∣∣∣

≤ lim
ε→0

�
Q\Qη

2 |∇φε,ω,f |2 +
4
η

lim
ε→0

‖φε,ω,f‖L2(Q)‖∇φε,ω,f‖L2(Q) +
4
η2

lim
ε→0

‖φε,ω,f‖2
L2(Q)

= 2|Q\Qη|
�

Ω

f2 dP , (2.24)

where we have used that φε,ω,f → 0 strongly in L2(Q). Arguing along the same limes with symmetrized
functions, we can show that

lim
ε→0

�
Q

∣∣∣ |∇sφε,ω,f |2 − |∇s (φε,ω,fψη)|2
∣∣∣ ≤ 2|Q\Qη|

�
Ω

(fs)2 dP . (2.25)

Since (φε,ω,fψη) ∈ H1
0 (Q), we can apply Korn’s inequality in R

n and obtain�
Q

|∇ (φε,ω,fψη)|2 ≤ 2
�

Q

|∇s (φε,ω,fψη)|2 . (2.26)

Combining (2.24)–(2.26) with the ergodic Theorem 1.6, we obtain that

|Q|
�

Ω

|f |2 dP 1.6= lim
ε→0

�
Q

(
f(τx

ε
ω)
)2 dx = lim

ε→0

�
Q

|∇φε,ω,f |2 dx

(2.24)

≤ lim
ε→0

�
Q

|∇ (φε,ω,fψη)|2 + 2|Q\Qη|
�

Ω

f2 dP

(2.26)

≤ lim
ε→0

2
�

Q

|∇s (φε,ω,fψη)|2 + 2|Q\Qη|
�

Ω

f2 dP

(2.25)

≤ lim
ε→0

2
�

Q

|∇sφε,ω,f |2 + (2 + 4)|Q\Qη|
�

Ω

f2 dP

1.6
≤ |Q| 2

�
Ω

|fs|2 dP + 6|Q\Qη|
�

Ω

f2 dP .

Since the last estimate holds for every small η > 0, we obtain inequality (2.23). �
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2.4. Solutions to the approximate problem and a priori estimates

Lemma 2.10. There exists a unique solution pδ,n, zδ,n, vδ,n to problem (2.9)–(2.10) which satisfies the a priori
estimate

‖pδ,n‖V1
0

+ ‖zδ,n‖V1
0

+ ‖vδ,n‖V1
0
≤ c

(
Υ δ

n(zδ,n(0)) + ‖ξ‖H1(0,T )

)
, (2.27)

with V1
0 := H1(0, T ;L2(Ω; Rd×d

s )) and c independent of δ and n.

Proof. In the following, all integrals over Ω are with respect to P and we omit dP for ease of notation. We will
prove the lemma in two steps: we first show that the system (2.9)–(2.10) is equivalent to an ordinary differential
equation for pδ,n with Lipschitz continuous right hand side. Then, we show that the solution admits uniform
a priori estimates.

Step 1. Existence. In order to study (2.9)–(2.10), we fix p̃ ∈ L2
n,s(Ω) and ξ̃ ∈ R

d×d
s , and search for ṽ ∈

V2
pot,n(Ω) such that

〈
C−1

n ṽs, ζ
〉

Ω
=
〈
C−1

n p̃, ζ
〉

Ω
−
〈
C−1

n ξ̃, ζ
〉

Ω
∀ζ ∈ V2

pot,n(Ω). (2.28)

The Lax-Milgram theorem in combination with Korn’s inequality (2.23) yields a unique solution ṽ ∈ V2
pot,n(Ω)

of the last equality. We introduce the mapping Vξ̃ : L2
n,s(Ω) → V2

pot,n(Ω) with Vξ̃(p̃) = ṽ and note that this
operator is linear and bounded. We then look for a solution pδ,n ∈ C1(0, T ;L2

n(Ω)) to the following version
of (2.9):

∂tpδ,n = ∂Υ δ
n

(
C−1

n (ξ + Vξ(pδ,n)s − pδ,n) −Bn pδ,n

)
.

Relation (2.13) yields the Lipschitz continuity of ∂Υ δ
n . Therefore, since also ∂Υ δ

n , C−1
n , V s

ξ and Bn are Lipschitz-
continuous mappings L2

n,s(Ω) → L2
n,s(Ω), we find a unique solution pδ,n ∈ C1([0, T ];L2

n,s(Ω)) of the or-
dinary differential equation (a priori bounds are provided below). We furthermore set vδ,n = Vξ(pδ,n) ∈
C1([0, T ];V2

pot,n(Ω)) and zδ,n = C−1
n (ξ + vs

δ,n − pδ,n) ∈ H1(0, T ;L2
n,s(Ω)). From (2.28) and the definition of

vδ,n, it follows that zδ,n ∈ H1(0, T ;L2
sol,n(Ω)). Note that pδ,n, zδ,n and vδ,n are constructed in such a way

that (2.9)–(2.10) holds. The construction shows that the solution is uniquely determined.

Step 2. A priori estimates of order 0. We take the time derivative of (2.10), multiply by zδ,n and integrate
over [0, t] ×Ω for t ∈ (0, T ] to find

� t

0

�
Ω

∂tξ : zδ,n
(2.10)
=

� t

0

�
Ω

(
(Cn∂tzδ,n) : zδ,n + ∂tpδ,n : zδ,n − ∂tv

s
δ,n : zδ,n

)

=
1
2

�
Ω

(pδ,n : Bnpδ,n + zδ,n : Cnzδ,n)
∣∣∣∣
t

0

+
� t

0

〈∂tpδ,n, zδ,n −Bnpδ,n〉Ω −
� t

0

�
Ω

zδ,n : ∂tvδ,n

(∗)
=

1
2

�
Ω

(pδ,n : (Bpδ,n) + zδ,n : (Czδ,n))
∣∣∣∣
t

0

+
� t

0

(
Υ δ∗

n (∂tpδ,n) + Υ δ
n (zδ,n −Bnpδ,n)

)
. (2.29)

In (∗) we used the orthogonality of potentials and (symmetric) solenoidals,
�

Ω zδ,n : ∂tvδ,n = 0, and Lemma 2.3
(v), written as

〈∂tp, z −Bp〉Ω = Υ δ
n(z −Bp) + Υ δ∗

n (∂tp) ⇔ ∂tp = ∂Υ δ
n(z −Bp).
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A priori estimates of order 1. Taking the time derivative of (2.10), multiplying the result by ∂tzδ,n and
integrating over Ω, we get

�
Ω

∂tξ : ∂tzδ,n =
�

Ω

∂tzδ,n : ∂t (pδ,n + Cnzδ,n − vδ,n) +
�

Ω

(Bn∂tpδ,n −Bn∂tpδ,n) : ∂tpδ,n

(2.9)
=

〈
∂tzδ,n −Bn∂tpδ,n, ∂Υ

δ
n(zδ,n −Bnpδ,n)

〉
Ω

+
�

Ω

(Bn∂tpδ,n) : ∂tpδ,n

+
�

Ω

(Cn∂tzδ,n) : ∂tzδ,n −
�

Ω

∂tzδ,n : ∂tvδ,n

(∗)
=

d
dt
Υ δ

n(zδ,n −Bnpδ,n) +
�

Ω

((C∂tzδ,n) : ∂tzδ,n + (B∂tpδ,n) : ∂tpδ,n) ,

where we used
�

Ω ∂tzδ,n : ∂tvδ,n = 0 in (∗). We integrate the last equality over (0, t) for t ∈ (0, T ] and obtain

Υ δ
n(zδ,n(0)) +

� t

0

�
Ω

∂tzδ,n : ∂tξ
s ≥ Υ δ

n(zδ,n(t) −Bnpδ,n(t)) +
� t

0

�
Ω

((C∂tzδ,n) : ∂tzδ,n + (B∂tpδ,n) : ∂tpδ,n) .

(2.30)
Since Υ δ∗

n and Υ δ
n are positive, we can neglect them in (2.29). Applying the Cauchy-Schwarz inequality to the

right hand side of (2.29) and then Gronwall’s inequality yields an estimate

sup
t∈[0,T ]

‖zδ,n(t)‖L2(Ω;Rd×d) + sup
t∈[0,T ]

‖pδ,n(t)‖L2(Ω;Rd×d) ≤ c ‖ξ‖H1 .

From positivity of Υ δ
n on the right hand side of (2.30), it follows that

� t

0

�
Ω

((C∂tzδ,n) : ∂tzδ,n + (B∂tpδ,n) : ∂tpδ,n) ≤ Υ δ
n(zδ,n(0)) + ‖ξ‖H1 .

The last two inequalities yield (2.27) for zδ,n and pδ,n. The inequality for vδ,n follows from equation (2.10). �

2.5. Proof of Theorem 2.1

Existence. Using the sequence (pδ,n, zδ,n, vδ,n) of solutions to (2.9)–(2.10), we can now prove Theorem 2.1. For
n → ∞, we find weakly convergent subsequences of pδ,n, zδ,n, vδ,n in V1

0 with limits pδ, zδ, vδ. We note that
zδ,n(0) is the unique solution in L2

sol,n(Ω) to

�
Ω

(Cnzδ,n(0)) : ψ =
�

Ω

ξ(0) : ψ ∀ψ ∈ L2
sol,n(Ω).

Hence, since we consider only ξ with ξ(0) = 0, the initial values zδ,n(0) vanish identically. As a consequence,
also Υ δ

n(zδ,n(0)) in (2.27) vanishes. The estimate (2.27) therefore implies (2.4) for (pδ, zδ, vδ).
Since pδ,n, zδ,n, vδ,n satisfy (2.10), the limits pδ, zδ, vδ satisfy

Czδ = ξ + vs
δ − pδ. (2.31)

We take the limit n → ∞ in (2.29), apply Lemma 2.7 and exploit the vanishing initial data to conclude that
the functions pδ, zδ, vδ satisfy

� t

0

�
Ω

(
Ψ δ∗ (∂tpδ) + Ψ δ (zδ −B pδ)

)
≤

� t

0

�
Ω

zδ : ∂tξ −
1
2

�
Ω

(pδ : (B pδ) + zδ : (Czδ))
∣∣∣∣
t

0

. (2.32)
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In the limit δ → 0 we find weakly convergent subsequences of pδ, zδ, vδ with the respective weak limits p,
z, v satisfying the estimate (2.4). Passing to the limit δ → 0 in (2.31), we find that (p, z, v) satisfies (2.3).
Furthermore, passing to the limit in (2.32), using Lemma 2.6, we find that the functions p, z, v satisfy

� t

0

�
Ω

(Ψ∗ (∂tp) + Ψ (z −B p)) ≤
� t

0

�
Ω

z : ∂tξ −
1
2

(�
Ω

p : (Bp) +
�

Ω

z : (Cz)
)∣∣∣∣

t

0

.

We thus obtain� t

0

�
Ω

(Ψ∗ (∂tp) + Ψ (z −B p)) =
� t

0

�
Ω

(z : ∂tξ − ∂tp : Bp− ∂tz : Cz)

(2.3)
=

� t

0

�
Ω

(z : C∂tz − z : ∂tv
s + z : ∂tp− ∂tp : Bp− ∂tz : Cz)

=
� t

0

�
Ω

(−z : ∂tv
s + ∂tp : (z −B p)) =

� t

0

�
Ω

∂tp : (z −B p)

for every t ∈ (0, T ). On the other hand, since Lemma 2.3 (iii) yields (Ψ∗ (∂tp) + Ψ (z −Bp)) ≥ ∂tp : (z −Bp)
pointwise a.e., we find

(Ψ∗ (∂tp) + Ψ (z −Bp)) = ∂tp : (z −Bp)

pointwise a.e. in (0, T )×Ω. The Fenchel equality of Lemma 2.3 (v) then yields (2.2).

Uniqueness and continuity. Let ξ1, ξ2 ∈ H1
∗ (0, T ; Rd×d

s ). Let (pi, zi, vi)i∈{1,2} be two solutions to (2.2)−(2.3)
for ξ1, ξ2 respectively with the difference (p̃, z̃, ṽ) := (p1, z1, v1) − (p2, z2, v2). We integrate z̃ : ∂t (ξ1 − ξ2) over
Ω and obtain from a calculation similar to (2.29)

�
Ω

z̃ : (ξ1 − ξ2)
∣∣∣∣
t

0

−
� t

0

�
Ω

∂tz̃ : (ξ1 − ξ2)

=
� t

0

�
Ω

z̃ : ∂t(ξ1 − ξ2) =
�

Ω

z̃ : ∂t (Cz̃ − p̃+ ṽ)

=
1
2

d
dt

�
Ω

(p̃ : (Bp̃) + z̃ : (Cz̃))

+
�

Ω

[(z1(t, ω) −B(ω) p1(t, ω)) − (z2(t, ω) −B(ω) p2(t, ω))] (∂tp1 − ∂tp2) .

From the monotonicity of ∂Ψ (Lem. 2.3(ii)) and (2.2)1,2, we find

1
2

�
Ω

(p̃ : (Bp̃) + z̃ : (Cz̃))
∣∣∣∣
t

0

≤
�

Ω

z̃ : (ξ1 − ξ2)
∣∣∣∣
t

0

−
� t

0

�
Ω

∂tz̃ : (ξ1 − ξ2)

for every t ∈ (0, T ). Compactness of the embedding H1(0, T ; Rd×d
s ) ⊂ C([0, T ]; Rd×d

s ) and boundedness of ∂tz̃
provide the weak continuity of the mapping ξ �→ (z, p, v). At the same time, it implies uniqueness of solutions,
i.e. (p̃, z̃, ṽ) = (0, 0, 0) for ξ1 = ξ2. This completes the proof of Theorem 2.1.

3. Proof of the main theorem

3.1. Preliminaries

Lemma 3.1 (A time dependent ergodic theorem). Let f ∈ Lp(0, T ;Lp(Ω)), 1 ≤ p < ∞ and fω(t, x) :=
f(t, τxω). Then, for almost every ω ∈ Ω, there holds fω ∈ Lp(0, T ;Lp

loc(R
d)). Furthermore, for almost every

ω ∈ Ω, there holds

lim
ε→0

� T

0

�
Q

f(t, τx
ε
ω) dxdt = |Q|

� T

0

�
Ω

f(t, ω) dP(ω) dt. (3.1)
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Proof. Since the mapping (x, ω) �→ τxω is measurable, we find that f̃(ω, t, x) := f(t, τxω) is P ⊗ L ⊗ Ld-
measurable. Since the mappings τx : Ω → Ω are measure preserving, we find for every x ∈ R

d

� T

0

�
Ω

|f(t, ω)|p dP(ω)dt =
� T

0

�
Ω

|f(t, τxω)|p dP(ω)dt.

Integrating the last equation over Q ⊂ R
d and applying Fubini’s theorem, we obtain

|Q|
� T

0

�
Ω

|f(t, ω)|p dP(ω)dt =
�

Ω

� T

0

�
Q

|f(t, τxω)|p dxdt dP(ω).

Thus, f̃ has the integrability f̃ ∈ Lp(Ω;Lp(0, T ;Lp(Q))) and fω ∈ Lp(0, T ;Lp(Q)) for almost every ω ∈ Ω. In
particular, fω ∈ L1(0, T ;L1(Q)). Setting F (ω) :=

� T

0
f(t, ω) dt, we find as a consequence of Theorem 1.6:

lim
ε→0

� T

0

�
Q

f(t, τx
ε
ω) dxdt = lim

ε→0

�
Q

F (τx
ε
ω) dx = |Q|

�
Ω

F dP = |Q|
� T

0

�
Ω

f dP dt.

This was the claim in (3.1). �

Lemma 3.2 (Div-curl-lemma). Let U ⊂ R
d be open and bounded with Lipschitz-boundary ∂U . For a sequence

ε→ 0 we consider sequences of functions uε and vε as follows:

uε ∈ L2(0, T ;L2(U ; Rd×d)) with ∇ · uε(t) = 0 in D′(U) for a.e. t ∈ [0, T ],

vε ∈ L2(0, T ;L2(U ; Rd×d)), vε(t, x) := v(t, τx
ε
ω) for v ∈ L2(0, T ;V2

pot(Ω))

and some ω ∈ Ω. We assume the boundedness ‖uε‖L2(0,T ;L2(U)) ≤ C0. Then, for almost every ω ∈ Ω, there
holds

lim
ε→0

� T

0

�
U

uε : vε = 0. (3.2)

Proof. In this proof, we omit the time-dependence of uε and v for simplicity of notation, i.e. we consider
uε ∈ L2(U ; Rd×d) and v ∈ V2

pot(Ω). In the time dependent case, one has to apply Lemma 3.1 instead of the
ergodic Theorem 1.6.

We consider a compact set K ⊂ U and a cut-off function ψ ∈ C∞(Rd) with ψ ≡ 1 on K, ψ ≡ 0 on R
d\U ,

and 0 ≤ ψ ≤ 1. We fix ω ∈ Ω such that x �→ v(τxω) ∈ L2
pot,loc(R

d) and such that the assertion of Theorem 1.6
holds. Furthermore, we make use of φε,ω,v of Lemma 2.8 and observe the limit behavior

�
U

uε : vεψ =
�

U

uε : (∇φε,ω,v)ψ =
�

U

uε : ∇x (φε,ω,vψ) −
�

U

uε : (φε,ω,v ⊗∇xψ)

= −
�

U

uε : (φε,ω,v ⊗∇xψ) → 0 (3.3)

as ε→ ∞ due to φε,ω,v → 0 of Lemma 2.8 and the boundedness of ∇ψ and uε.
Concerning the integral over uε : vε(1 − ψ), we find by the ergodic Theorem 1.6∣∣∣∣

�
U

uε : vε(1 − ψ)
∣∣∣∣ ≤ C0 ‖vε‖L2(U\K) → C0 ‖v‖L2(Ω;Rd×d) |U\K|

1
2 (3.4)

as ε→ 0. Choosing K ⊂ U large we obtain (3.2). �
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3.2. The averaging property of Σ

Theorem 3.3 (Averaging property). Let the coefficients B(ω), C(ω), Ψ( · ; ω) be as in Assumption 1.8 and let
realizations Cε, Bε, Ψε be defined by (1.11). Then, for a.e.ω ∈ Ω, the coefficients allow averaging in sense of
Definition 1.11 with the operators Σ and Π of (2.5).

Proof. We will prove a slightly stronger result: Given ξ ∈ H1
∗ (0, T ; Rd×d

s ), let (p, z, v) be the unique solution
of (2.2)–(2.3) (which exists by Thm. 2.1). Let ω ∈ Ω be such that pω(t, x) := p(t, τxω), zω(t, x) := z(t, τxω) and
vω(t, x) := v(t, τxω) satisfy

pω ∈ H1(0, T ;L2
loc(R

d; Rd×d
s )), zω ∈ H1(0, T ;L2

sol,loc(R
d)), vω ∈ H1(0, T ;L2

pot,loc(R
d)).

This regularity is valid for a.e. ω as can be seen applying Lemma 3.1 to time derivatives. Furthermore, we choose
ω as in Assumption 1.8. For any ε > 0 let p̃ε(t, x) := p

(
t, τx

ε
ω
)
, z̃ε(t, x) := z

(
t, τx

ε
ω
)
, ṽε(t, x) := v

(
t, τx

ε
ω
)

be
realizations. Let T ⊂ R

d be a simplex and let uε, pε, σε be the unique solution to

−∇ · σε = 0,
∇suε = Cεσ

ε + pε (3.5)
∂tp

ε ∈ ∂Ψε(σε −Bεp
ε ; . )

on T with boundary condition
uε(x) = ξ · x on ∂T (3.6)

and initial condition pε(0, ·) = 0 (we recall ∂Ψε(σ ; x) := ∂Ψ(σ ; τx
ε
ω)). We will prove that the realizations of

the stochastic cell solutions and the plasticity solutions on T coincide in the limit ε → 0; more precisely, we
claim that

lim
ε→0

(
‖σε − z̃ε‖L2(0,T ;L2(T )) + ‖pε − p̃ε‖L2(0,T ;L2(T )

)
= 0. (3.7)

Let us first show that (3.7) indeed implies Theorem 3.3: The ergodic theorem in the version of Lemma 3.1 and
the definition ofΣ andΠ in (2.5) imply that

�
T z̃

ε(.) →
�

Ω z(.) = Σ(ξ)(.) and
�
T p̃

ε(.) →
�

Ω p(.) = Π(ξ)(.) holds
in the space L2(0, T ; Rd×d

s ). Equation (3.7) therefore yields
�
T σ

ε → Σ(ξ) and
�
T p

ε → Π(ξ) in L2(0, T ; Rd×d
s ).

This provides the averaging property (1.20) of Definition 1.11 (at first, for a subsequence ε→ 0 for almost every
t ∈ (0, T ), then, since the limit is determined, along the original sequence ε→ 0).

Let us now prove (3.7). We will use a testing procedure and energy-type estimates. Due to (2.2)–(2.3), z̃ε, p̃ε

and ṽε satisfy the following system of equations on T × (0, T )

−∇ · z̃ε = 0,

ξ = Cεz̃
ε + p̃ε − (ṽε)s

, (3.8)
∂tp̃

ε ∈ ∂Ψε(z̃ε −Bεp̃
ε ; . ).

In what follows we use the notation |ζ|2Bε
:= ζ : Bεζ and |ζ|2Cε

:= ζ : Cεζ. We take the difference of (3.5)1
and (3.8)1, multiply the result by (∂tu

ε − ∂t (ξ · x)) and integrate over T . We integrate by parts and exploit
that boundary integrals vanish due to (3.6),

0 = −
�
T

(z̃ε − σε) : (∂t∇suε − ∂tξ)

=
�
T

(z̃ε − σε) : ∂t (Cεz̃
ε + p̃ε − (ṽε)s − Cεσ

ε − pε)

=
1
2

d
dt

�
T

[(z̃ε − σε) : (Cε (z̃ε − σε)) + (p̃ε − pε) : (Bε (p̃ε − pε))] +
�
T

(z̃ε − σε) : ∂tṽ
ε
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+
�
T

(∂tp̃
ε − ∂tp

ε) : ((z̃ε −Bεp̃
ε) − (σε −Bεp

ε)) .

∈ 1
2

d
dt

�
T

[
|z̃ε − σε|2Cε

+ |p̃ε − pε|2Bε

]
+
�
T

(z̃ε − σε) : ∂tṽ
ε

+
�
T

(∂Ψε (z̃ε −Bεp̃
ε) − ∂Ψε (σε −Bεp

ε)) : ((z̃ε − Bεp̃
ε) − (σε −Bεp

ε)) . (3.9)

In the second line, we used (3.5)2 and (3.8)2. In the third line we used the symmetry of σε and z̃ε to replace
(ṽε)s by ṽε.

Concerning the second integral on the right hand side of (3.9), note that
� t

0

�
T z̃

ε : ∂tṽ
ε →

� t

0

�
T
�

Ω
z : ∂tv = 0

by Lemma 3.1 and orthogonality of L2
sol(Ω) and V2

pot(Ω). Furthermore,
� t

0

�
T σ

ε : ∂tṽ
ε → 0 by Lemma 3.2. By

monotonicity of ∂Ψε, the last integral on the right hand side of (3.9) is positive. An integration over (0, t)
therefore provides

lim sup
ε→0

�
T

[
|z̃ε − σε|2Cε

+ |p̃ε − pε|2Bε

]
(t) ≤ lim sup

ε→0

� t

0

�
T

(z̃ε − σε)∂tṽ
ε = 0, (3.10)

where we used that initial data vanish, z̃ε|t=0 = 0 by (3.8) and σε|t=0 = 0 by (3.5) for vanishing pε and ξ in
t = 0. We have thus shown (3.7) and hence Theorem 3.3. �

3.3. Admissibility of Σ

Theorem 3.4 (Admissibility). Let the coefficients B(ω), C(ω), Ψ( · ; ω) and data U , f be as in Assumption 1.8.
Then the causal operator Σ of Definition 2.2 satisfies the sufficient condition for admissibility of Definition 1.14.

Proof. We have to study solutions uh of the discretized effective problem with the discretized boundary data
Uh → U strongly in H1(0, T ;H1(Q)) as h → 0. With Σ given through (2.5), let uh ∈ H1(0, T ;H1(Q)) be a
sequence with uh ∈ Uh +H1(0, T ;Yh), satisfying the discrete system

� T

0

�
Q

Σ(∇suh) : ∇ϕ =
� T

0

�
Q

f · ϕ ∀ϕ ∈ L2(0, T ;Yh). (3.11)

We furthermore have the weak convergence uh ⇀ u ∈ H1(0, T ;H1(Q; Rd) as h → 0 for some u ∈ U +
H1(0, T ;H1

0 (Q; Rd)). Our aim is to show that u solves the effective problem

� T

0

�
Q

Σ(∇su) : ∇ϕ =
� T

0

�
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)). (3.12)

Step 1. For every x ∈ Q, we denote by ph(t, x, ·), zh(t, x, ·), vh(t, x, ·) the solutions of (2.2)–(2.3) corresponding
to ξ(t) = ∇suh(t, x). By definition of Σ, there holds Σ(∇suh) =

�
Ω
zh(ω) dP(ω). The a priori estimate of

Theorem 2.1 provides
‖ph‖V1

0,0
+ ‖zh‖V1

0,0
+ ‖vh‖V1

0,0
≤ C ‖∇su‖H1(0,T ;L2(Q)) ,

where V1
0,0 := H1(0, T ;L2(Q;L2(Ω; Rd×d))). By this estimate, we obtain the weak convergence in (V1

0,0)
3 of a

subsequence, again denoted (ph, zh, vh), weakly converging to some limit (p, z, v). The limit satisfies again the
linear law (2.3),

Cz = ∇su+ vs − p. (3.13)

Equation (3.11) can be rewritten as

� T

0

�
Q

�
Ω

zh(t, x, ω) dP(ω) : ∇ϕ(x) dx =
� T

0

�
Q

f · ϕ ∀ϕ ∈ L2(0, T ;Yh),
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and the limit h→ 0 provides
� T

0

�
Q

�
Ω

z : ∇ϕ =
� T

0

�
Q

f · ϕ ∀ϕ ∈ L2(0, T ;H1
0 (Q)). (3.14)

Step 2. It remains to verify
�

Ω
z = Σ(∇su). We use ϕ = ∂t (uh − Uh) as a test function in (3.11) and exploit

the orthogonality 0 =
�

Q

�
Ω zh : ∂tvh. We follow the lines of the calculation in (2.29) to obtain

�
Q

f · ∂t (uh − Uh) +
�

Q

�
Ω

zh : ∇∂tUh

=
�

Q

�
Ω

zh : ∂t∇suh =
�

Q

�
Ω

[zh : C∂tzh + zh : ∂tph − zh : ∂tvh]

=
1
2

d
dt

(�
Q

�
Ω

ph : Bph +
�

Q

�
Ω

zh : Czh

)
+
�

Q

�
Ω

(Ψ∗ (∂tph) + Ψ (zh −Bph)) . (3.15)

Taking weak limits in (3.15) yields

� T

0

�
Q

�
Ω

(Ψ∗ (∂tp) + Ψ (z −Bp))

≤
� T

0

�
Q

f · ∂t (u− U) +
� T

0

�
Q

�
Ω

z : ∇∂tU − 1
2

(�
Q

�
Ω

p : (Bp) +
�

Q

�
Ω

z : (Cz)
)∣∣∣∣

T

0

.

Relations (3.13) and (3.14) allow to perform the calculations of (3.15) also for the limit functions. We obtain
from the last inequality

� T

0

�
Q

�
Ω

(Ψ∗ (∂tp) + Ψ (z −Bp)) ≤
� T

0

�
Q

�
Ω

∂tp : (z −Bp).

The Fenchel inequality of Lemma 2.3 (iii) yields ∂tp : (z − Bp) ≤ Ψ∗ (∂tp) + Ψ (z −Bp) pointwise. We can
therefore conclude from the Fenchel equality

∂tp ∈ ∂Ψ(σ −Bp). (3.16)

Relations (3.13) and (3.16) imply that z is defined as in the definition of Σ, hence
�

Ω
z(t, x, . ) =

Σ(∇su)(t, x, . ) for every t ∈ [0, T ] and a.e. x ∈ Q. Therefore, (3.14) is equivalent with (3.12) and the the-
orem is shown. �

3.4. Conclusion of the proof

We can now conclude the proof of our main result, Theorem 1.3. Theorem 3.4 implies that Σ of (2.5) is
admissible. Theorem 3.3 yields that, for almost every ω ∈ Ω, the coefficients Cε,ω(x), Bε,ω(x), Ψε,ω(σ;x) allow
averaging with limit operator Σ. We can therefore apply Theorem 1.13 and obtain

uε ⇀ u weakly in H1(0, T ;H1(Q; Rd))

pε ⇀ Π(∇su), σε ⇀ Σ(∇su) weakly in H1(0, T ;L2(Q; Rd×d)),

where u is the unique weak solution to the homogenized problem

−∇ ·Σ(∇su) = f

with boundary condition U as in Definition 1.12. Theorem 1.3 is shown.
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