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LINEAR QUADRATIC CONTROL PROBLEMS OF STOCHASTIC VOLTERRA

INTEGRAL EQUATIONS ∗

Tianxiao Wang∗∗

Abstract. This paper is concerned with linear quadratic control problems of stochastic differential
equations (SDEs, in short) and stochastic Volterra integral equations (SVIEs, in short). Notice that for
stochastic systems, the control weight in the cost functional is allowed to be indefinite. This feature is
demonstrated here only by open-loop optimal controls but not limited to closed-loop optimal controls
in the literature. As to linear quadratic problem of SDEs, some examples are given to point out the
issues left by existing papers, and new characterizations of optimal controls are obtained in different
manners. For the study of SVIEs with deterministic coefficients, a class of stochastic Fredholm−Volterra
integral equations is introduced to replace conventional forward-backward SVIEs. Eventually, instead
of using convex variation, we use spike variation to obtain some additional optimality conditions of
linear quadratic problems for SVIEs.
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1. Introduction

In this paper, we investigate the controlled linear stochastic Volterra integral equation (SVIE, in short) of
the following form

X(t) = ϕ(t) +

∫ t

0

[A1(t, s)X(s) +B1(t, s)u(s)]ds+

∫ t

0

[A2(t, s)X(s) +B2(t, s)u(s)]dW (s), (1.1)

with a quadratic cost functional of the form

J(0, x;u(·)) =
1

2
E
∫ T

0

[
X(t)>Q(t)X(t) + 2u(t)>S(t)X(t) + u(t)>R(t)u(t)

]
dt+

1

2
EX(T )>GX(T ). (1.2)
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The problem of minimizing (1.2) subject to (1.1) is called a linear quadratic (LQ, in short) optimal control
problem for SVIE (1.1). If ϕ, Ai, Bi do not depend on t, (1.1) becomes a controlled linear stochastic differential
equation (SDE, in short), and the problem degenerates into the so-called linear quadratic optimal control
problem for SDEs.

As an extension of SDE, SVIE of the form

X(t) = ϕ(t) +

∫ t

0

b(t, s,X(s))ds+

∫ t

0

σ(t, s,X(s))dW (s), t ∈ [0, T ], (1.3)

was studied in e.g. [3,19]. Related topics along this include: SVIEs with anticipated stochastic integral ([1,17]);
SVIEs or VIEs in economic models ([9, 10, 12]); SVIEs in infinite dimensional spaces and related PDEs ([29]),
etc. In this paper we will study the linear quadratic optimal control problems of SVIEs. Optimal control
problems of deterministic VIEs were received a lot of attentions after the paper [23], see e.g. [2, 5, 12, 18].
The general stochastic case was recently studied in [21, 26, 27]. When dealing with optimal control problems
of SDEs with control domain Rm, spike variation is more advantageous than convex variation in the sense
that the former approach can provide additional useful necessary optimality conditions. However, until now
the spike variation and related tricks have not been spread out successfully in the SVIEs setting. Actually,
for the corresponding study on SDEs, Itô formula and second-order adjoint equations play indispensable roles.
However, their usefulness in the SVIEs setting becomes quite challenging due to the dependence of ϕ, Ai, Bi
on parameter t. To our best, how to provide more information among different coefficients by spike variation is
open even under the linear quadratic framework associated with (1.1) and (1.2).

In this paper, we study linear quadratic problem of SVIEs from the view of open-loop optimal controls,
the reasons of which are based on the following two aspects. In contrast with SDEs case, for SVIEs there is an
additional time variable t appearing in both drift and diffusion terms, see (1.3). This simple change makes one of
the most important notions in control theory, feedback optimal controls, become absent in the SVIEs framework.
For example, even for deterministic VIEs case, the usual feedback controls and related Riccati equations are
replaced by causal feedback controls and some Fredholm integral equations (see [18]). Moreover, even under
the particular SDEs setting, it is shown in this paper that optimal feedback controls become ill-posed while
the control problems are solvable. In other words, for these control problems we have to turn to investigating
optimal open-loop controls. The second motivation is concerned with the natural connections among (open-
loop) optimal controls, necessary optimality conditions and spike variation. It is our belief that more deeper
explorations in this topic, such as the seeking for counterparts of Itô formula and second-order adjoint equations,
can help us a lot in treating the interesting problem mentioned in the last paragraph.

As to linear quadratic problems for SVIEs, there are indeed new features and obstacles arising which are
essentially distinctive from the SDEs case. The first one is concerned with the indefiniteness of R(·). Actually,
in the SDEs setting, when the diffusion terms depend on control variables, it was pointed out in [7] that the
optimal control problem may still make sense even though R(·) is indefinite. The appearance of indefinite R(·) in
solvable linear quadratic problems relies heavily on optimal feedback controls where stochastic Riccati equations
can play substantial roles. However, as we mentioned before, even for LQ problem of deterministic VIEs, there
is no traditional feedback optimal control, not to mention the appearance of Riccati equations. Hence how to
demonstrate indefinite R(·) in LQ problem of SVIEs is a tricky question to answer. The second difficulty lies
in the seeking of proper sufficiency conditions of optimal controls. More precisely, if we follow the conventional
ideas along this (see e.g. [8,25,27]), one must encounter with the solvability of coupled forward-backward SVIEs,
see e.g. (4.9) next. We emphasize that their unusual and complicated structures make some well applicable tools
and methods in FBSDEs setting (e.g. [11, 15]) hard to be proposed or adjusted here. In addition, to represent
optimal controls one has to suppose R−1(·) to be well-defined, see e.g. (4.8) later, not to mention the complicated
expressions of optimal controls.

Instead of following the existing routine, the aim of this paper is devoted to providing new ideas on linear
quadratic problem of both SDEs and SVIEs. As to SDEs case, using the main result of [22] we give three
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examples where optimal closed-loop controls do not exist. Moreover, for these examples the classical open-
loop representations via FBSDEs also fail to work. This motivates us to give some improvements of available
conclusions in this topic. More precisely, we cook up some new equivalent criteria for the existence of optimal
controls, the procedures of which are partially inspired by [6, 13]. Keeping the basic ideas in mind, we then
continue to treat the SVIEs case. Since the general study with respect to (1.1) can not get around anticipated
stochastic integral (see the beginning of Sect. 4) and is substantially much more involved, we then turn to a
systematical investigation with deterministic A1 and A2 = 0. More precisely, we start with some motivations
by analyzing the problems in the related literature. Then we give detailed discussions from both the random
and deterministic coefficients views, point out the comparisons and improvements on existing results. At last,
in Section 4.2 we obtain a new pointwise necessary optimality condition, partial tricks of which rely on the
arguments in Section 4.1.

At this moment we point out some novelties of this work. In the first place, we provide some new charac-
terizations of optimal controls in linear quadratic problem for SDEs. They are potentially useful when neither
closed-loop optimal controls nor classical FBSDEs representations of optimal controls work well. Moreover, R(·)
is allowed to be indefinite by usual open-loop optimal controls but not limited to particular closed-loop optimal
controls. In the second place, by applying the fundamental ideas in the Section 3 we then obtain new condi-
tions for the existence of optimal controls in linear quadratic problem of SVIEs. Compared with the existing
conclusions, ours here seem more straightforward and briefer in terms of representation of optimal controls and
associated forward-backward systems. In addition, the state process X is replaced by X , two pairs of (PQ, ΛQ),
(PG, ΛG) are introduced, and the powerfulness of Itô formula and the idea of second-order adjoint equation
return back. To our best these tricks appear for the first time in the literature. In the third place, when the
coefficients become deterministic, instead of using the forward-backward stochastic equations, a new class of
stochastic Fredholm−Volterra integral equations (SFVIEs, in short) is introduced here. From this new view-
point, the requirement of R−1(·) and the complexity of coupled FBSVIEs can be avoided. In addition, it is
shown by one example that R(·) is allowed to be negative, which does not happen in deterministic VIEs case.
Last but not the least important, using the introduced terms X , (PQ, ΛQ), (PG, ΛG) and spike variation, we
derive new necessary optimality conditions in linear quadratic problems of SVIEs. In contrast with the convex
variation tricks in [21,26,27], we provide additional connections among the involved coefficients. Moreover, ours
here can cover the corresponding results in SDEs case.

The rest of this paper is organized as follows. In Section 2, we give some preliminary results. In Section 3,
after some illustrative counterexamples in the SDEs setting, we give new equivalent conditions for the existence
of optimal controls, and show the advantages of our method by some following-up remarks and examples. In
Section 4, by pointing out some essential difficulties in general framework, we choose to discuss linear quadratic
problem of SVIEs when A2 = 0 and A1 is deterministic. Even so, there are still some unsolved problems in
the related literature, the point of which prompts us to investigate both random and deterministic coefficients
cases. Eventually we obtain new necessary conditions of optimal controls in our linear quadratic problems.

2. Preliminaries

Suppose (Ω,F ,F,P) is a complete filtered probability space on which W (·) is scalar-valued Brownian motion,
F := (Ft)0≤t≤T , Ft := σ{W (s), s ≤ t}. For H := Rm, Rn, Sn, etc. let us give some spaces which are needed in
the sequel.

L2
FT

(Ω;H) :=
{
X : Ω → H

∣∣∣ X is FT -measurable random variable s.t. E|X|2 <∞
}
,

L2
F (0, T ;H) :=

{
X : [0, T ]×Ω → H

∣∣∣ X(·) is F-adapted, measurable process s.t. E
∫ T

0

|X(s)|2ds <∞

}
,
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L2(0, T ;L2
F (0, T ;H)) :=

{
X : [0, T ]2 ×Ω → H

∣∣∣ X(t, ·) is F-adapted, measurable

for almost t ∈ [0, T ] s.t. E
∫ T

0

∫ T

0

|X(t, s)|2dsdt <∞

}
,

L∞(0, T ;H) :=

{
X : [0, T ]→ H

∣∣∣ X is deterministic function s.t. sup
t∈[0,T ]

|X(t)| <∞

}
,

CF ([0, T ];L2(Ω;H)) :=

{
X : [0, T ]→ L2(Ω;H)

∣∣ X(·) is F-adapted, measurable, and continuous

in L2(Ω;H) s.t. sup
r∈[0,T ]

E|X(r)|2 <∞

}
.

Similarly one can define L∞(0, T ;L∞F (0, T ;H)), L2
F (Ω;C([0, T ];H)), etc. In the following we will show some

preliminary results on the linear quadratic control problem for SVIE (1.1). We introduce the assumptions as
follows.

(H1) Suppose ϕ(·) ∈ CF ([0, T ];L2(Ω;Rn)), Q(·), S(·), R(·) and G are bounded and random, A1(·, ·), B1(·, ·),
A2(·, ·), B2(·, ·) ∈ L∞(0, T ;L∞F (0, T ;H)) with H := Rn×m, Rn×n. Moreover, there exists a modulus of continuity
ρ : [0,∞)→ [0,∞) (i.e., ρ(·) is continuous and strictly increasing with ρ(0) = 0) such that

|Ai(t, s)−Ai(t′, s)|+ |Bi(t, s)−Bi(t′, s)| ≤ ρ(|t− t′|), t, t′, s ∈ [0, T ].

Under (H1) we know that there exists a unique solution of (1.1) such that X(·) ∈ CF ([0, T ];L2(Ω;Rn)). For
any x(·) ∈ L2

F (0, T ;Rn), let us define a bounded operator A from L2
F (0, T ;Rn) to itself,

(Ax)(t) =

∫ t

0

A1(t, s)x(s)ds+

∫ t

0

A2(t, s)x(s)dW (s), t ∈ [0, T ]. (2.1)

At this moment, one can show that (I − A)
−1

is bounded under (H1) (see [8, 25]). Similarly one can define B
with A1, A2 in (2.1) replaced by B1, B2. Therefore the state equation can be rewritten as,

X(·) = ϕ(·) + (AX)(·) + (Bu)(·). (2.2)

To treat the terminal term, we need to define bounded and linear operator ∆T from L2
F (0, T ;Rn) to L2

FT
(Ω;Rn),

i.e., for any p(·) ∈ L2
F (0, T ;Rn),

∆T p =

∫ T

0

A1(T, s)p(s)ds+

∫ T

0

A2(T, s)p(s)dW (s). (2.3)

We can also define ΛT with A1, A2 in (2.3) replaced by B1, B2. Like (2.2) we have

X(T ) = ϕ(T ) + (∆TX) + (ΛTu). (2.4)

In what follows, A∗ is denoted as the adjoint operator of A. Substituting (2.2) and (2.4) into the cost functional
we obtain,

J(0, x;u) = 〈Θu+ 2Θ1ϕ, u〉2 + 〈Θ2ϕ,ϕ〉2 + 2
〈
(I −A)−1ϕ,∆∗TGϕ(T )

〉
2

+ 〈Gϕ(T ), ϕ(T )〉1 ,
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where 〈·, ·〉1, 〈·, ·〉2 are the inner product of L2
FT

(Ω;Rn), L2
F (0, T ;Rm) and

Θ :=
(
B∗(I −A∗)−1Q′+S ′

)
(I −A)−1B + B∗(I −A∗)−1S ′∗ +R′,

Θ1ϕ :=
(
B∗(I −A∗)−1Q′+S ′

)
(I −A)−1ϕ+ B∗(I −A∗)−1∆∗TGϕ(T ) + Γ ∗TGϕ(T ),

Θ2 := (I −A∗)−1Q′(I −A)−1,

Q′ := Q+∆∗TG∆T , S ′ := S + Λ∗TG∆T , R′ := R+ Λ∗TGΛT ,[
QX

]
(·) := Q(·)X(·),

[
SX

]
(·) := S(·)X(·),

[
RX

]
(·) := R(·)X(·), ∀X(·) ∈ L2

F (0, T ;R). (2.5)

The following result gives one sufficient and necessary condition for the existence of optimal control via above
operators (see also [8, 16]).

Lemma 2.1. Let (H1) hold and ϕ(·) ∈ CF ([0, T ];L2(Ω;Rn)) be given. Then the linear quadratic problem admits
an optimal control û(·) if and only if the following conditions are true,

(i) Θ ≥ 0, (ii) Θ1ϕ ∈ R(Θ)

where R(Θ) is the range of Θ. In this case any optimal control û(·) is a solution of Θû+Θ1ϕ = 0.

In order to represent the conclusion more explicitly, let us introduce,

Y (t) = Q(t)X(t) + S(t)>u(t) +A1(T, t)>GX(T ) +A2(T, t)>θ(t)

+

∫ T

t

[
A1(s, t)>Y (s) +A2(s, t)>Z(s, t)

]
ds−

∫ T

t

Z(t, s)dW (s),

χ(t) = Et
∫ T

t

[
B1(s, t)>Y (s) +B2(s, t)>Z(s, t)

]
ds,

GX(T ) = E
[
GX(T )

]
+

∫ T

0

θ(s)dW (s), Y (t) = EY (t) +

∫ t

0

Z(t, s)dW (s),

(2.6)

where here and subsequently, EtX := EFtX with random variable X. We emphasize that the first equation
in (2.6) is a linear backward stochastic Volterra integral equation (BSVIE, in short). As to the study on BSVIEs,
readers are referred to [14,20,24,26,27], etc. The following result is from [8] or [25].

Lemma 2.2. Let (H1) hold, ϕ(·) ∈ CF ([0, T ];L2(Ω;R)). Then the linear quadratic problem of SVIEs is solvable

with optimal pair (X̂(·), û(·)) if and only if the following hold:

(i) given X0(·), χ0 in (1.1), (2.6) associated with ϕ(·) = 0, X0(·), respectively, we have

E
∫ T

0

u(s)>
[
χ0(s) + S(s)X0(s) +R(s)u(s) +B1(T, s)>GX0(T ) +B2(T, s)>θ0(s)

]
ds ≥ 0, (2.7)

(ii) for (χ̂(·), θ̂(·)) in (2.6) associated with (X̂(·), û(·)), we have

χ̂(t) + S(t)X̂(t) +R(t)û(t) +B1(T, t)>Et
[
GX̂(T )

]
+B2(T, t)>θ̂(t) = 0, t ∈ [0, T ]. a.e. (2.8)

To conclude this section, let us point out some preliminary knowledge on pseudo-inverse. For any M ∈ Rm×n,
there exists a unique matrix M† ∈ Rn×m, called the (Moore-Penrose) pseudo-inverse of M , satisfying

MM†M = M, M†MM† = M†,
[
MM†

]>
= MM†,

[
M†M

]>
= M†M.

In addition, if M ∈ Sm, then

M† =
[
M†
]>
, MM† = M†M, M ≥ 0⇐⇒M† ≥ 0.
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3. Linear quadratic problem for SDEs

In this section, we give some discussions on linear quadratic problem of SDEs with deterministic coefficients.
It seems that the results here are new in the literature, and some of them are sharper than existing counterparts.
More importantly, the ideas developed here inspire us to study the SVIEs case in the next section.

If ϕ, Ai, Bi do not depend on t, then (1.1) becomes a SDE of

dX(t) =
[
A1(t)X(t) +B1(t)u(t)

]
dt+

[
A2(t)X(t) +B2(t)u(t)

]
dW (t), t ∈ [0, T ], (3.1)

with X(0) = x. The cost functional is defined as (1.2). For later usefulness, let us introduce the following
equation for (P(·),Q(·)),{

dP(t) = −
[
A1(t)>P(t) + P(t)A1(t) +A2(t)>P(t)A2(t) +Q(t)

]
dt, t ∈ [0, T ],

P(T ) = G,
(3.2)

and two associated notations,

S := S +B>2 PA2 +B>1 P, R := R+B>2 PB2. a.e. (3.3)

3.1. Some motivations

Before stating the main result, we give a revisit to the traditional study and illustrate the starting
points/motivations for later arguments. At first, we discuss closed-loop optimal controls via stochastic Ric-
cati equations under this framework. Before it, we recall the definitions of closed-loop optimal strategies and
closed-loop optimal controls when the coefficients are deterministic (see [22]).

Definition 3.1. Suppose all the coefficients in (3.1) and (1.2) are deterministic. A pair (Θ̄(·), v̄(·)) ∈
L2(0, T ;Rm×n)× L2

F (0, T ;Rm) is called a closed-loop optimal strategy on [0, T ] if

J(0, x; Θ̄(·)X̄(·) + v̄(·)) ≤ J(0, x;u(·)), x ∈ Rn, u(·) ∈ L2
F (0, T ;Rm).

In this case, the control variable
ū(·) := Θ̄(·)X̄(·) + v̄(·) ∈ L2

F (0, T ;R)

is called a closed-loop optimal control associated with initial pair (0, x).

For (Θ̄(·), v̄(·)), that are independent of initial state x ∈ Rn, the authors in [22] obtained the following kind
of equivalent condition,

Proposition 3.1. Suppose (H1) holds true with deterministic coefficients. Then the linear quadratic problem
associated with (3.1) and (1.2) admits a closed-loop optimal strategy (Θ̄, v̄)/closed-loop optimal control ū(·) in
the sense of Definition 3.1 if and only if the following Riccati equation admits a solution P (·) ∈ C([0, T ];Sn),{

Ṗ (t) + P (t)A1(t) +A1(t)>P (t) +A2(t)>P (t)A2(t) +Q(t)− S̄(t)>R̄(t)†S̄(t) = 0, a.e. t ∈ [0, T ],

R
(
S̄(t)

)
⊆ R

(
R̄(t)

)
, R̄(t) ≥ 0, a.e. t ∈ [0, T ], P (T ) = G,

(3.4)

such that R̄†(·)S̄(·) ∈ L2(0, T ;Rm). Here R(R̄(t)) represents the range of R̄(t) with t ∈ [0, T ], and

R̄(·) := R(·) +B2(·)>P (·)B2(·), S̄(·) := B1(·)>P (·) +B2(·)>P (·)A2(·) + S(·). (3.5)

In this case, any closed-loop optimal strategy (Θ̄(·), v̄(·)) can be represented as,

Θ̄(t) = −R̄(t)†S̄(t) +
[
I − R̄(t)†R̄(t)

]
θ(t), v̄(t) =

[
I − R̄(t)†R̄(t)

]
v(t),

for some θ(·) ∈ L2(0, T ;Rm×n) and v(·) ∈ L2
F (0, T ;Rm).

By means of Proposition 3.1 let us look at a few examples.
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Example 3.1. Suppose

m = n = 1, R(·) = B2(·) = Q(·) = S(·) = 0, A1(·) = B1(·) = A2(·) = G = 1.

Hence according to (3.4) and (3.5), S̄(t) = P (t) and P(t) = e−3t with t ∈ [0, T ]. Moreover,

X(t) = e
t
2+W (t)x+

∫ t

0

e
t−s
2 +W (t)−W (s)u(s)ds, t ∈ [0, T ].

In this case, it is easy to see that

û(s) = −e
s
2+W (s) x

T
, s ∈ [0, T ],

is an optimal control such that X̂(T ) = 0. If there exists an closed-loop optimal strategy/control, by Proposi-
tion 3.1 there exists P (·) satisfying

R
(
S̄(t)

)
⊆ R

(
R̄(t)

)
, R̄(t) ≥ 0, t ∈ [0, T ]. a.e. (3.6)

For such P (·), by comparison theorem and the second condition in (3.6),

0 = R(·) +B2
2(·)P(·) ≥ R̄(·) = R(·) +B2

2(·)P (·) ≥ 0

which implies that R̄(t) = 0 and S̄(t) = P(t) = P (t) = e−3t > 0 with t ∈ [0, T ]. However, this contradicts with
the first condition in (3.6). Consequently, according to Proposition 3.1 the closed-loop optimal control does not
exist. �

Above example shows that closed-loop optimal control may not exist when B2(·) = 0. As to B2(·) 6= 0, let us
look at,

Example 3.2. Suppose m = n = 2, R(·) = Q(·) = S(·) = 0, and for H1(·) = A1(·), B1(·), A2(·),

H1(·) =

[
1, 0

0, 1

]
, B2(·) =

[
1, 0

0, 0

]
, G =

[
0, 0

0, 1

]
.

In this case, for X(·) := (X1(·), X2(·))>, u(·) := (u1(·), u2(·))>, the linear quadratic problem is to find suitable
û(·) such that J(u(·)) = E|X2(T )|2 is minimized where,

dX2(t) =
[
X2(t) + u2(t)

]
dt+X2(t)dW (t), X2(0) = x2.

Similar as Example 3.1, it is easy to see that

û(t) =
(
û1(t),−e

t
2+W (t)x2

T

)T
, t ∈ [0, T ],

is an optimal control. At this moment we claim that there is no closed-loop optimal control. Actually, if it is so,
by Proposition 3.1 there exists P (·) satisfying

R
(
S̄(t)

)
⊆ R

(
R̄(t)

)
= R

(
R(t) +B2(t)>P(t)B2(t)

)
, t ∈ [0, T ]. a.e. (3.7)

For such P (·), by comparison theorem and some simple calculations,

P (·) ≤ P(·), 0 = R(·) +B2(·)>P(·)B2(·) ≥ R̄(·) ≥ 0,

which implies that R̄(·) = 0 and P(·) = P (·). Moreover,

S̄11(t) = S̄12(t) = S̄21(t) = 0, S̄22(t) = e−3t, S̄(t) =
[
S̄i,j(t)

]
1≤i, j≤2.

Therefore the obtained results of R̄(·) and S̄(·) contradict with (3.7). �
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Note that in above two examples, a common feature is R(·) +B2(·)>P(·)B2(·) = 0. The next example shows
that even though R(·) +B2(·)>P(·)B2(·) > δ > 0, the feedback control still may not exist.

Example 3.3. Suppose m = n = 1, and

A1(·) = A2(·) = 0, B1(·) = 2, B2(·) = 1, R(·) = 0,

Q(s) = 2s− 6s2, S(s) = 2s2 − 4s3, G = 2T 3.

If the linear quadratic admits a closed-loop optimal control, then according to Proposition 3.1 the following
equation admits a solution P (·)

Ṗ (s) + 2s− 6s2 −
[
2P (s) + 2s2 − 4s3

]2
P †(s) = 0, P (T ) = 2T 3. (3.8)

such that the conditions in (3.4) are satisfied. Now let us look at the solvability of (3.8). To this end, since
P (T ) = 2T 3, let us denote by T0 the biggest point satisfying P (T0) = 0. It is easy to see that,

P (s) = 2s3, ∀s ∈ [T1, T ], ∀T1 ∈ (T0, T ].

By the arbitrariness of T1 and the continuity of P (·), one has T0 = 0 and P (s) = 2s3 with s ∈ [0, T ]. In this
case,

R̄(s) = P (s) = 2s3, S̄(s) = 2s2 ⇒ R(S̄(s)) ⊆ R(R̄(s)), s ∈ [0, T ].

However, R̄†(s)S̄(s) = 1
s , with s ∈ (0, T ] which shows that R̄†(·)S̄(·) does not belong to L2(0, T ;R). By

Proposition 3.1 the closed-loop optimal control does not exist. At last we have

R(t) +B2
2(t)P(t) = T 2 + 2t3 − t2 ≥ δ > 0, t ∈ [0, T ].

As to Example 3.3 it is natural to ask whether (open-loop) optimal controls make sense. Before checking it,
let us derive a related result by Lemma 2.2. For SDE (3.1), condition (2.8) becomes,

B1(t)>Et
∫ T

t

Ŷ (s)ds+B2(t)>
∫ T

t

Ẑ(s, t)ds+ S(t)X̂(t) +R(t)û(t) +B1(t)>Et
[
GX̂(T )

]
+B2(t)>θ̂(t) = 0,

(3.9)
where

Ŷ (t) = Q(t)X̂(t) + S(t)>û(t) +A1(t)>GX̂(T ) +

∫ T

t

A1(t)>Ŷ (s)ds

+A2(t)>θ̂(t) +A2(t)>
∫ T

t

Ẑ(s, t)ds−
∫ T

t

Ẑ(t, s)dW (s), t ∈ [0, T ].

By making the following convention,

Ŷ(t) := Et

[
GX̂(T ) +

∫ T

t

Ŷ (s)ds

]
, Ẑ(t) := θ̂(t) +

∫ T

t

Ẑ(s, t)ds, t ∈ [0, T ], (3.10)

one can rewrite (3.9) as,

B1(t)>Ŷ(t) + S(t)X̂(t) +R(t)û(t) +B2(t)>Ẑ(t) = 0, (3.11)

where

dŶ(t) = −
[
Q(t)X̂(t) + S(t)>û(t) +A1(t)>Ŷ(s) +A2(t)>Ẑ(t)

]
dt− Ẑ(t)dW (t), Ŷ(T ) = GX̂(T ). (3.12)
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Similarly the condition Θ ≥ 0 or (2.7) becomes,

E
∫ T

0

〈B1(t)>Y0(t) + S(t)X0(t) +R(t)u(t) +B2(t)>Z0(t), u(t) 〉dt ≥ 0, (3.13)

where (Y0(·),Z0(·)) satisfies (3.12) with û(·) replaced by u(·), and x = 0. To sum up,

Lemma 3.1. Given (3.1) and (1.2), suppose the coefficients satisfy (H1). Then the linear quadratic problem of

SDEs is solvable with optimal pair (X̂(·), û(·)) if and only if (3.11) and (3.13) hold true.

Remark 3.1. Note that Lemma 3.1 also appears in the literature (see e.g. [28]). Here we point it out for the
reason of self-completeness. Now let us return back to Example 3.1, 3.2, 3.3. Unfortunately, it seems that one
can not use Lemma 3.1 to represent optimal control û(·) and obtain corresponding coupled FBSDEs due to
R(·) = 0. �

To conclude this part, let us make some points here. As a particular class of control variables, closed-
loop/feedback optimal controls are quite useful in both theoretical and practical aspects. Nevertheless, even in
some simple cases (like Ex. 3.1, 3.2) this kind of ideal controls do not make sense any more. In other words,
for these linear quadratic problems, we have to investigate the usual optimal controls. Unfortunately again, the
existing criteria for optimal controls (e.g. Lem. 3.1) may fail to represent optimal controls. Therefore furthermore
developments in this topic are needed.

3.2. Main results

Motivated by above arguments, we show some new results in the linear quadratic problem of SDEs. The ideas
here not only enable us to improve the related present conclusions, but also can be extended and adapted into
the SVIEs setting next. As a preparation, let us look at the following type of Fubini theorem between Lebesgue
integral and Itô integral (see also Thm. 4.A. in p. 224 of [3]).

Lemma 3.2. Suppose f(·, ·) is a measurable process on [0, T ]2 s.t. f(t, s) is Fs-measurable for t ∈ [0, T ] and

E
∫ T

0

∫ t

0

|f(t, s)|2dsdt <∞.

Then we have ∫ T

0

∫ t

0

f(t, s)dW (s)dt =

∫ T

0

∫ T

s

f(t, s)dtdW (s).

Given the coefficients in (H1), S(·), R(·) in (3.3), and control variable v(·) ∈ LpF (0, T ;Rm) (p > 2), let us make
the convention that,

dΨ(t) = A1(t)Ψ(t)dt+A2(t)Ψ(t)dW (t), t ∈ [0, T ], Ψ(0) = I,

L1(t) := S(t)Ψ(t); L2(t) := Ψ−1(t)
[
B1(t)−A2(t)B2(t)

]
; L3(t) := Ψ−1(t)B2(t), t ∈ [0, T ],

L4(t) := L1(t)x+ L1(t)

∫ t

0

L2(s)
[
I −R†(s)R(s)

]
v(s)ds+ L1(t)

∫ t

0

L3(s)
[
I −R†(s)R(s)

]
v(s)dW (s)

+L2(t)>Et
∫ T

t

L1(s)>
[
I −R†(s)R(s)

]
v(s)ds+ L3(t)>

∫ T

t

KL1,v(s, t)ds, t ∈ [0, T ],

(3.14)
and introduce the following equation,

λ̂(t) = −L4(t)− L1(t)

∫ t

0

L2(s)R†(s)λ̂(s)ds− L1(t)

∫ t

0

L3(s)R†(s)λ̂(s)dW (s)

−L2(t)>Et
∫ T

t

L1(s)>R†(s)λ̂(s)ds− L3(t)>
∫ T

t

KL1,Rλ̂(s, t)ds, t ∈ [0, T ], (3.15)
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where KL1,v, KL1,Rλ̂ are determined by martingale representation arguments as follows,

L1(t)>g(t) = E
[
L1(t)>g(t)

]
+

∫ t

0

KL1,g(t, r)dW (r), t ∈ [0, T ], g(·) := R†(·)λ̂(·), v(·). (3.16)

For later convenience, for any admissible control u(·) ∈ L2
F (0, T ;Rm) we define KL1,u as follows,

L1(t)>u(t) = E
[
L1(t)>u(t)

]
+

∫ t

0

KL1,u(t, r)dW (r), t ∈ [0, T ], (3.17)

We discuss the case of û(·) ∈ LpF (0, T ;Rm) with p > 2.

Theorem 3.1. Suppose (H1) holds true with deterministic coefficients. Then the linear quadratic problem is
solvable with optimal control û(·) ∈ LpF (0, T ;Rm) (p > 2) if and only if the following hold,

(i) (3.15) admits a solution λ̂(·) ∈ LpF (0, T ;Rm)
(ii) for any u(·) ∈ L2

F (0, T ;Rm), we have

E
∫ T

0

u(t)>

[
R(t)u(t) + 2L2(t)>

∫ T

t

L1(s)>u(s)ds+ 2L3(t)>
∫ T

t

KL1,u(s, t)ds

]
dt ≥ 0, (3.18)

where KL1,u(·, ·) is defined in (3.17). In this case,

û(t) = R†(t)λ̂(t) +
[
I −R†(t)R(t)

]
v(t), t ∈ [0, T ], a.e. (3.19)

for some v(·) ∈ L2
F (0, T ;Rm).

Proof. In the following, we split the proof into three parts.

Step 1. By Lemma 2.1 and 3.1, it is easy to see that the linear quadratic problem is solvable with optimal
control û(·) ∈ LpF (0, T ;Rm) if and only if (3.11), (3.13) are satisfied with û(·) ∈ LpF (0, T ;Rm) and any u(·) ∈
L2
F (0, T ;Rm), respectively.

Step 2. In this step by exploring the potential relations between (Ŷ(·), Ẑ(·)) ((Y0(·),Z0(·)) resp.) and û(·) (u(·)
resp.), we obtain new equivalent versions of (3.11), (3.13).

Given P(·) in (3.2), S(·) in (3.3), we know that S(·) is bounded. As a result,
[
S(·)>u(·)

]
∈ L2

F (0, T ;Rn)
with u(·) ∈ L2

F (0, T ;Rm). By the standard BSDE theory, the following equation admits a pair of processes
(M(·),N (·)) ∈ L2

F (Ω;C([0, T ];Rn))× L2
F (0, T ;Rn),{

dM(t) = −
[
A1(t)>M(t) +A2(t)>N (t) + S(t)>u(t)

]
dt+N (t)dW (t), t ∈ [0, T ],

M(T ) = 0.
(3.20)

For later usefulness we point out the following fact,

E
∫ T

0

u(t)>
[
B1(t)>M(t) +B2(t)>N (t)

]
dt = E

∫ T

0

u(t)>S(t)X0(t)dt, (3.21)

where X0(·) satisfies (3.1) with x = 0. Actually, using Itô formula to 〈X0(·),M(·) 〉 on [0, T ], we can obtain
that,

0 =

∫ T

0

[
〈B1(t)u(t),M(t) 〉+ 〈B2(t)u(t),N (t) 〉− 〈X0(t),S(t)>u(t) 〉

]
dt

+

∫ T

0

[
〈A2(t)X0(t) +B2(t)u(t),M(t) 〉+ 〈X0(t),N (t) 〉

]
dW (t). (3.22)
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Since

E

[∫ T

0

[
〈A2(t)X0(t) +B2(t)u(t),M(t) 〉+ 〈X0(t),N (t) 〉

]2
ds

] 1
2

<∞,

by taking expectation on both sides of (3.22) one then obtain (3.21). At this moment, we want to obtain one

equivalent condition of (3.11). To this end, given û(·) and X̂(·), we use Itô formula to P(·)X̂(·) on [0, T ],

d
[
PX̂

]
= −

[[
A>1 P +A>2 PA2 +A>2 Q+Q

]
X̂ +

[
PB1 +QB2

]
û
]
dt+

[
QX̂ + PA2X̂ + PB2û

]
dW (t).

By denoting (M̂(·), N̂ (·)) in (3.20) associated with û(·),

d
[
P(t)X̂(t) + M̂(t)

]
= −

[
A1(t)>

[
P(t)X̂(t) + M̂(t)

]
+A2(t)>

[
P(t)A2(t)X̂(t) +Q(t)X̂(t)

+P(t)B2(t)û(t) + N̂ (t)
]

+Q(t)X̂(t) + S(t)>û(t)
]
dt

+
[
P(t)A2(t)X̂(t) +Q(t)X̂(t) + P(t)B2(t)û(t) + N̂ (t)

]
dW (t).

The uniqueness of BSDE (3.12) then indicates that,

Ŷ(t) = P(t)X̂(t) + M̂(t), ∀t ∈ [0, T ], a.s.

Ẑ(t) =
[
Q(t) + P(t)A2(t)

]
X̂(t) + P(t)B2(t)û(t) + N̂ (t), a.s. t ∈ [0, T ], a.e.

(3.23)

Therefore given û(·) ∈ LpF (0, T ;Rm), condition (3.11) is equivalent with,

R(t)û(t) + S(t)X̂(t) +B1(t)>M̂(t) +B2(t)>N̂ (t) = 0, t ∈ [0, T ]. a.e. (3.24)

Following above arguments, for any u(·) ∈ LpF (0, T ;Rm), condition (3.13) can be rewritten as,

E
∫ T

0

u(t)>
[
B1(t)>M(t) + S(t)X0(t) +R(t)u(t) +B2(t)>N (t)

]
dt ≥ 0. (3.25)

Thanks to (3.21), one can furthermore simplify (3.25) as,

E
∫ T

0

[
u(t)>R(t)u(t) + 2u(t)>S(t)X0(t)

]
dt ≥ 0. (3.26)

Step 3. In this step by studying the relation between (M̂(·), N̂ (·)) and û(·), let us continue to establish the
equivalent link between (3.24), (3.26) and (3.15), (3.18) in the previous.

To this end, recalling Ψ(·) in (3.14), we use Itô formula to 〈Ψ(·),M(·) 〉 on [0, T ],

Ψ(t)>M(t) =

∫ T

t

Ψ(s)>S(s)>u(s)ds−
∫ T

t

Ψ(s)>
[
A2(s)>M(s) +N (s)

]
dW (s), t ∈ [0, T ]. (3.27)

Given û(·) ∈ LpF (0, T ;Rm) with p > 2, since S(·) is bounded, for L1(·) in (3.14) we have

E|L1(s)>û(s)|2 = E|Ψ(s)>S(s)>û(s)|2 <∞, s ∈ [0, T ], a.e. (3.28)

By martingale representation theorem there exists measurable process KL1,û(t, ·) ∈ L2
F (0, t;Rn) such that

L1(t)>û(t) = E
[
L1(t)>û(t)

]
+

∫ t

0

KL1,û(t, r)dW (r), t ∈ [0, T ], a.e.
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As to KL1,û(·, ·), using Lemma 3.2 to BSDE (3.27) associated with û(·), we can obtain,

∫ T

s

KL1,û(r, s)dr = Ψ(s)>
[
A2(s)>M̂(s) + N̂ (s)

]
, s ∈ [0, T ]. a.e. (3.29)

Therefore it then follows from (3.27), (3.29) that,

M̂(t) =
(
Ψ(t)>

)−1Et ∫ T

t

Ψ(s)>S(s)>û(s)ds, ∀t ∈ [0, T ], a.s.

N̂ (t) =
(
Ψ(t)>

)−1 ∫ T

t

KL1,û(s, t)ds−A2(t)>
(
Ψ(t)>

)−1Et ∫ T

t

Ψ(s)>S(s)>û(s)ds. a.e.

(3.30)

Recalling Ψ(·), Li(·) in (3.14), one can rewrite (3.1) as,

X(t) = Ψ(t)x+ Ψ(t)

∫ t

0

L2(s)u(s)ds+ Ψ(t)

∫ t

0

L3(s)u(s)dW (s). (3.31)

Plugging (3.30), (3.31) into (3.24), one then rewrite (3.24) as,

R(t)û(t) + L1(t)

∫ t

0

L2(s)û(s)ds+ L1(t)

∫ t

0

L3(s)û(s)dW (s) + L1(t)x

+L2(t)>Et
∫ T

t

L1(s)>û(s)ds+ L3(t)>
∫ T

t

KL1,û(s, t)ds = 0. (3.32)

Let λ̂(·) := R(·)û(·), one then obtain the representation (3.19) and equation (3.15). From (3.31),

E
∫ T

0

u(t)>S(t)X0(t)dt = E
∫ T

0

u(t)>L1(t)

∫ t

0

L2(s)u(s)dsdt+ E
∫ T

0

u(t)>L1(t)

∫ t

0

L3(s)u(s)dW (s)dt

= E
∫ T

0

∫ T

s

u(t)>L1(t)dtL2(s)u(s)ds+ E
∫ T

0

∫ T

s

KL1,u(t, s)>dtL3(s)u(s)ds.

Hence condition (3.26) is equivalent with (3.18). �
In order to obtain result (3.30) via Lemma 3.2, we need some square integrable condition in (3.28). However,

due to the lack of boundedness of Ψ(·), in Step 3 we have to assume that û(·) ∈ LpF (0, T ;Rm) with p > 2. Note
that such situation can be improved if A2(·) = 0.

Theorem 3.2. Suppose (H1) is imposed with deterministic coefficients and A2(·) = 0. Then the linear quadratic
problem is solvable with optimal û(·) ∈ L2

F (0, T ;Rm) if and only if the following hold,

(i) (3.15) admits a solution λ̂(·) ∈ L2
F (0, T ;Rm),

(ii) (3.18) is true for any u(·) ∈ L2
F (0, T ;Rm).

The proof is almost the same as above and we omit it here.

Remark 3.2. We emphasize that Theorem 3.1, Theorem 3.2 also work when the coefficients in (3.1), (1.2) are
random. Actually, in this case we require (P,Q) to be bounded where

dP(t) = −
[
A1(t)>P(t) + P(t)A1(t) +A2(t)>P(t)A2(t) +A2(t)>Q(t)

+Q(t)A2(t) +Q(t)
]
dt+Q(t)dW (t), t ∈ [0, T ],

P(T ) = G.

(3.33)
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Also we define S(·), R(·) as,

S := S +B>2 PA2 +B>1 P +B>2 Q, R := R+B>2 PB2. a.e. a.s. (3.34)

Then one can easily repeat the arguments in Theorems 3.1 and 3.2 to obtain desired conclusions. To get more
feelings about this point, let us give one explicit example. Suppose A1 = A2 = 0, G = sinW (T ), Q(·) = cosW (·).
Using Mallivain calculus one can obtain that

P(t) := Et

[
sinW (T ) +

∫ T

t

cosW (s)ds

]
, Q(t) := −Et

[
cosW (T )−

∫ T

t

sinW (r)dr

]
,

is the unique pair of solutions for (3.33). Of course, above (P,Q) are bounded processes.

Remark 3.3. To see the basic ideas above, let us make some comparisons with traditional approach. In the
existing literature, under certain conditions one can firstly obtain a formal representation of û(·) by (3.11).
The following-up steps are plugging û(·) into the state equation and adjoint equation respectively, and solving
a fully coupled FBSDE afterward. In contrast, it seems that our method here is established in a essential
different way. Firstly by using P and (M,N ) one can simplify/transform equivalently (3.11), (3.13) into other
forms (i.e. Step 2). By doing so, one can conveniently represent (M,N , X) via û(·), plug the representations
into (3.24), (3.26), and finally end up with a new equation for û(·), like (3.32). We emphasize that by these
tricks we not only provide another way of dealing with optimal controls, but also demonstrate new advantages
in dealing with the linear quadratic problem, see e.g. Remark 3.5 and Example 3.4 next. More importantly, the
ideas here can be nicely applied into the SVIEs setting, which is one of the main aims of this paper.

Let us return back to Example 3.3.

Example 3.4. We study the existence of open-loop optimal control in Example 3.3. Given P (·) in (3.8) and
X0(·) being the state process with x = 0, by Itô formula to P (·)X2

0 (·),

2E|X0(T )|2 = E
∫ T

0

[
2s3|u(s)|2 + 8s3X0(s)u(s) + 6s2|X0(s)|2

]
ds.

Plugging it into the corresponding cost functional, one has

J(u(·)) = E
∫ T

0

2s
[
su(s) +X0(s)

]2
ds ≥ 0,

from which Θ ≥ 0 or (3.18) is fulfilled. Now let us look at the other half. According to the coefficients in
Example 3.3,

L1(t) = 2T 2, L2(t) = 2, L3(t) = 1, R(t) = T 2 + 2t3 − t2 > 0, S(t) = 2T 2.

In this case, equation (3.15) becomes,

λ̂(t) = −2T 2x− 4T 2

∫ T

0

R−1(s)λ̂(s)ds− 2T 2

∫ t

0

R−1(s)λ̂(s)dW (s)− 2T 2

∫ T

t

R−1(s)Kλ̂(s, t)ds. (3.35)

To see the solvability of (3.35), we use the idea of fixed point arguments. Given µi(·) ∈ L2
F (0, T ;Rm) with

i = 1, 2, suppose λ̂i(·) ∈ L2
F (0, T ;Rm) satisfies

λ̂i(t) = −2T 2x− 4T 2

∫ T

0

R−1(s)µi(s)ds− 2T 2

∫ t

0

R−1(s)µi(s)dW (s)− 2T 2

∫ T

t

R−1(s)Kµi
(s, t)ds.
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It follows from some computations that,

E
∫ T

0

|λ̂1(s)− λ̂2(s)|2ds ≤ 32T 5
[
4T + 1

]
E
∫ T

0

R−2(s)|µ1(s)− µ2(s)|2ds.

As to R(·), it is easy to check that t 7→ R(t) is non-increasing in [0, T ]. Moreover, R(t) ≥ 2T 3 if T ≤ 1
3 . To sum

up, one can find a positive constant δ0 < 1 such that for any T < δ0, equation (3.35) is solvable. Therefore for

such T , by Theorem 3.1 or 3.2 we can represent optimal control as û(·) = R−1(·)λ̂(·). �

Remark 3.4. We emphasize that (3.15) can be rewritten as

λ̂(t) = −L4(t)−
∫ T

0

H(t, s)R†(s)λ̂(s)ds−
∫ t

0

H2(t, s)R†(s)λ̂(s)dW (s)−
∫ T

t

H2(s, t)>R†(s)Kλ̂(s, t)ds, (3.36)

where for s, t ∈ [0, T ], Hi(·, ·) and Kλ(·, ·) are determined by

H(t, s) = H1(t, s)It≥s +H1(s, t)>Is>t, H1(t, s) = L1(t)L2(s),

H2(t, s) = L1(t)L3(s), λ(t) = Eλ(t) +

∫ t

0

Kλ(t, s)dW (s), t ∈ [0, T ]. a.e. (3.37)

We call (3.36) stochastic Fredholm−Volterra integral equation since it has both the features of Fredholm and
Volterra integral equations. A slight general form also appears in the next section. �

Remark 3.5. Let us make some points on R(·). In the first place, if G and Q(·) are indefinite, then R(·) ≥ R(·).
Hence the requirement ofR−1(·) is weaker than that of R−1(·). In the second place, the optimal control may exist
(see Ex. 3.4) even though R(·) = 0. Moreover, from Theorem 3.1 or 3.2 the representations of optimal controls
do not involve pseudo-inverse if R(·) > 0. In the third place, the replacement of R(·) with R(·) allows us to treat
optimal control (not limited to feedback form in the literature) with potential negative R(·). In the fourth place,
when B2(·) = 0, by maximum principle a necessary optimality condition is R(·) ≥ 0. Hence the requirement
of R−1(·) being well-defined is reasonable. Likewise, for general B2(·), R(·) = R(·) + B2(·)>P(·)B2(·) ≥ 0 is
also necessary when B2(·) 6= 0. Therefore in this case it is more natural to use R−1(·) rather than R−1(·). At
last, the ideas of dealing with R(·), as well as the necessity of R(·) ≥ 0 in some sense inspire us to explore the
counterparts under SVIEs setting, the procedures of which have not been discussed elsewhere to our best. �

Remark 3.6. Define α(·) := B1(·)>M̂(·) + B2(·)>N̂ (·). One can rewrite (3.31), (3.32) as another equivalent
forward-backward system,

X̂(t) = Ψ(t)x+ Ψ(t)

∫ t

0

L2(s)û(s)ds+ Ψ(t)

∫ t

0

L3(s)û(s)dW (s),

α(t) = L2(t)>
∫ T

t

L1(s)>û(s)ds+ L3(t)>
∫ T

t

KL1,û(s, t)ds−
∫ T

t

β(t, s)dW (s),

R(t)û(t) + S(t)X̂(t) + α(t) = 0,

(3.38)

where the related notations are defined in (3.14). We emphasize that the second equation is a linear backward
stochastic Volterra integral equation. We will use this idea in the next section. �

4. The linear quadratic problem of SVIEs

In this section, we discuss linear quadratic optimal control problem of SVIE. Suppose A2 = 0 and A1(·, ·) is
deterministic. As a result, the state equation becomes,

X(t) = ϕ(t) +

∫ t

0

[
A1(t, s)X(s) +B1(t, s)u(s)

]
ds+

∫ t

0

B2(t, s)u(s)dW (s). (4.1)

Before going further, we illustrate the requirements on A1 and A2.
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Since the coefficients in (1.1) depends on t, the corresponding study becomes much more involved than the
SDEs case. To see this, let us recall Ψ(·) in (3.14), from which one can represent state process X(·) via u(·),
see (3.31). We emphasize that this point is crucial in deriving Theorem 3.1. Now we return back to SVIEs case.
Given b(·, ·), σ(·, ·) ∈ L∞(0, T ;L∞F (0, T ;Rn×n)), ϕ(·) ∈ L2

F (0, T ;Rn), suppose X(·) ∈ L2
F (0, T ;Rn) is the unique

solution of

X(t) = ϕ(t) +

∫ t

0

b(t, s)X(s)ds+

∫ t

0

σ(t, s)X(s)dW (s), t ∈ [0, T ].

It was proved in [4] that the solution X(·) can be rewritten as,

X(t) = ϕ(t) +

∫ t

0

b̂(t, s)ϕ(s)ds+

∫ t

0

σ̂(t, s)ϕ(s)dW (s), (4.2)

where the last term is one kind of anticipated stochastic integral (see [4]), and
fk(t, s) =

∫ t

s

σ(t, τ)fk−1(τ, s)dW (τ) +

∫ t

s

b(t, τ)fk−1(τ, s)dτ, f := b, σ,

b̂(t, s) =

∞∑
k=1

bk(t, s), σ̂(t, s) =

∞∑
k=1

σk(t, s), b1(t, s) := b(t, s), σ1(t, s) := σ(t, s).

(4.3)

We point out that the replacement of Itô stochastic integral by Skorohod anticipated stochastic integral is
unavoidable, even in the following three special cases.

Case 1. For deterministic b(·, ·) and σ(·, ·),

σ2(t, s) =

∫ t

s

b(t, τ)σ(τ, s)dτ +

∫ t

s

σ(t, τ)σ(τ, s)dW (τ),

which is of course Ft-measurable. Therefore the corresponding stochastic integral does not make sense in the
Itô integral framework. �

Case 2. If b(·, ·) is deterministic, σ(t, ·) does not rely on t, then

σ2(t, s) =

[∫ t

s

b(t, τ)dτ +

∫ t

s

σ(τ)dW (τ)

]
σ(s).

Like b(·, ·), here σ2(·, ·) is also Ft-measurable. �

Case 3. For random b(·, ·), σ(·, ·) = 0, we apply (4.2) to SVIE (1.1) with b(·, ·) ≡ A1(·, ·) and σ(·, ·) ≡ A2(·, ·) = 0.
To do so, we use Fubini arguments to the following expression,∫ t

0

b̂(t, s)

∫ s

0

B2(s, r)u(r)dW (r)ds, t ∈ [0, T ].

However, for random b(·, ·), the Ft-measurability of b̂(t, ·) makes this procedure by no means meaningful in Itô

integral framework unless b̂(·, ·) is deterministic. �
To sum up, we keep our attention in the Itô integral setting by supposing A2 ≡ 0 and deterministic A1, since

the general anticipated stochastic integral reflects almost another different picture. In this case, we observe that
by (4.2), we can rewrite (4.1) as,

X(t) = ϕ̃(t) +

∫ t

0

B̃1(t, s)u(s)ds+

∫ t

0

B̃2(t, s)u(s)dW (s),

with bounded ϕ̃(·), B̃1(·, ·), B̃2(·, ·). Therefore, without loss of generality, we can furthermore assume A1 = 0.



1864 T. WANG

On the other hand, for random Q(·) and G, using martingale representation arguments we introduce two
pairs of processes (PQ(·, ·), ΛQ(·, ·)), (PG(·), ΛG(·)) as follows,

PQ(t, s) = Q(t)−
∫ t

s

ΛQ(t, r)dW (r), ∀s ∈ [0, t], PG(s) = G−
∫ T

s

ΛG(r)dW (r), ∀s ∈ [0, T ]. (4.4)

At this moment, we impose the following assumption through out the whole section,

(H2) Suppose (H1) holds true with A1 = A2 = 0, and deterministic ϕ(·). Moreover, ΛQ(·, ·), ΛG(·) are
bounded.

Under (H2) the state equation then becomes,

X(t) = ϕ(t) +

∫ t

0

B1(t, s)u(s)ds+

∫ t

0

B2(t, s)u(s)dW (s), t ∈ [0, T ], (4.5)

and the following two processes are bounded,

M1(·, ·) := PQ(·, ·)B1(·, ·) + ΛQ(·, ·)B2(·, ·), N1(·) := PG(·)B1(T, ·) + ΛG(·)B2(T, ·). (4.6)

For later usefulness, we define KM1,u(t, s, ·) and Kf,u(t, ·) by martingale representation theorem as follows,
M1(t, s)u(s) = E

[
M1(t, s)u(s)

]
+

∫ t

0

KM1,u(t, s, r)dW (r), t, s ∈ [0, T ], a.e.

f(t)u(t) = E
[
f(t)u(t)

]
+

∫ t

0

Kf,u(t, r)dW (r), f := N1(·), S(·)>, t ∈ [0, T ]. a.e.

(4.7)

Remark 4.1. Observe that the general discussion with random ϕ(·) can be treated without involving additional
essential difficulties. On the other hand, we give some special cases with bounded ΛQ and ΛG. For example, for
any t ∈ [0, T ], let Q(t) := f(W (t)) where function f(·), fx(·) are bounded. In this case, from Malliavin calculus
we know that ΛQ(t, r) = Erfx(W (t)) with r ∈ [0, t]. Obviously, ΛQ(·, ·) is bounded. Similarly, let G = g(W (T ))
where function g(·), gx(·) are bounded. We can see the boundedness of ΛG(·) = E·gx(W (T )) by Malliavin
calculus as well.

4.1. New characterizations of optimal controls

In this part, we adjust the previous ideas on SDEs into our SVIEs framework and give new equivalent
conditions for the existence of optimal controls. Before it, let us point out two more theoretical motivations.

4.1.1. Some motivations

Firstly let us look at the conventional routine. By supposing R−1(·) to be well-defined and bounded, according
to Lemma 2.2, optimal control û(·) can be shown as (see [8, 27]),

û(t) = −R−1(t)
[
S(t)X̂(t) + χ̂(t) +B1(T, t)>Et[GX̂(T )] +B2(T, t)>θ̂(t)

]
, t ∈ [0, T ], a.e. (4.8)
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where the related forward-backward system is,

X̂(t) = ϕ(t)−
∫ t

0

[
B1(t, s)R−1(s)S(s))X̂(s) +B1(t, s)R−1(s)χ̂(s)

]
ds

−
∫ t

0

B1(t, s)R−1(s)
[
B1(T, s)>Es[GX̂(T )] +B2(T, s)>θ̂(s)

]
ds

−
∫ t

0

[
B2(t, s)R−1(s)S(s))X̂(s) +B2(t, s)R−1(s)χ̂(s)

]
dW (s)

−
∫ t

0

B2(t, s)R−1(s)
[
B1(T, s)>Es[GX̂(T )] +B2(T, s)>θ̂(s)

]
dW (s),

Ŷ (t) =
[
Q(t)− S(t)R−1(t)S(t)

]
X̂(t)− S(t)R−1(t)χ̂(t)

−S(t)R−1(t)
[
B1(T, t)>Et[GX̂(T )] +B2(T, t)>θ̂(t)

]
−
∫ T

t

Ẑ(t, s)dW (s),

χ̂(t) = Et
∫ T

t

[
B1(s, t)>Ŷ (s) +B2(s, t)>Ẑ(s, t)

]
ds, t ∈ [0, T ],

Ŷ (t) = EŶ (t) +

∫ t

0

Ẑ(t, s)dW (s), GX̂(T ) = E
[
GX̂(T )

]
+

∫ T

0

θ̂(s)dW (s).

(4.9)

However, it seems that the effectiveness of these ideas is questioning due to the following aspects, even when all
the coefficients are deterministic. First of all, if optimal control exists, (4.9) and (4.8) may fail to work as long
as R(·) = 0. In other words, above approach only works with well-defined R−1(·). Second of all, the appearing
of G not only makes (4.8) and (4.9) complicated, but also brings additional difficulties in solving (4.9) with
fixed point argument. Third of all, (4.9) can be considerably simplified when G = 0 and S(·) = 0. Even so, to
guarantee its well-posedness by contraction method, Q(·) or T is required to be small enough. In conclusion,
new ideas are demanded to be inject into this topic.

Our second motivation is concerned with the coefficients in the cost functional. As we know, by stochastic
Riccati equations and the method of completion of square, the existence of optimal control can be ensured
even when the control weight costs R(·) is indefinite. Nevertheless, as mentioned in the Introduction, the tricks
involving Riccati equations do not work here. How to demonstrate the similar indefinite property of R(·) under
SVIEs setting becomes an interesting problem. In the second place, it seems that the choice on the coefficients
is important for condition (2.7) in Lemma 2.2. For example, this condition holds true if R(·), Q(·), G are
nonnegative, S(·) = 0. However, it becomes complicated to check if one of R(·), Q(·), G is negative, or S(·) 6= 0.
How to go further along this line is another important problem to work on.

4.1.2. The general case with random coefficients

To begin with, we make proper change to X(·) by introducing X (·, ·) as,

X (t, s) = ϕ(t) +

∫ s

0

B1(t, r)u(r)dr +

∫ s

0

B2(t, r)u(r)dW (r), ∀s ∈ [0, t], ∀t ∈ [0, T ], (4.10)

where X (t, t) = X(t) for t ∈ [0, T ]. Similarly one can introduce X0(·, ·) with ϕ = 0.

Lemma 4.1. Suppose G, Q(·) are bounded, X(·) ∈ CF ([0, T ];L2(Ω;Rn)) satisfies (4.5), (PQ, ΛQ), (PG, ΛG),
and KM1,u(·, ·), KN1,u(·, ·) are in (4.4) and (4.7) respectively. Then we have,

Q(t)X(t) = E
[
Q(t)X(t)

]
+

∫ t

0

KQ,X(t, s)dW (s), t ∈ [0, T ], a.e.

GX(T ) = E
[
GX(T )

]
+

∫ T

0

KG,X(s)dW (s),
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where KQ,X , KG,X are defined by
KQ,X(t, s) :=

∫ t

s

KM1,u(t, r, s)dr +
[
PQ(t, s)B2(t, s)u(s) + ΛQ(t, s)X (t, s)

]
, t ≥ s, a.e.

KG,X(s) :=

∫ T

s

KN1,u(r, s)dr +
[
PG(s)B2(T, s)u(s) + ΛG(s)X (T, s)

]
, s ∈ [0, T ]. a.e.

(4.11)

Proof. Given t ∈ [0, T ], let us use Itô formula to PQ(t, ·)X (t, ·) on [0, t],

Q(t)X(t)− PQ(t, 0)ϕ(t) =

∫ t

0

[
PQ(t, s)B1(t, s) + ΛQ(t, s)B2(t, s)

]
u(s)ds

+

∫ t

0

[
PQ(t, s)B2(t, s)u(s) + ΛQ(t, s)X (t, s)

]
dW (s). (4.12)

Due to notation (4.6) and Lemma 3.2, the first term on the right hand of (4.12) can be rewritten as,

∫ t

0

M1(t, s)u(s)ds = E
∫ t

0

M1(t, s)u(s)ds+

∫ t

0

∫ t

r

KM1,u(t, s, r)dsdW (r). (4.13)

Then the result of Q(·)X(·) in (4.11) follows from (4.12) and (4.13). The case of KG,X(·) can be obtained in a
similar way. �

Given t, r ∈ [0, T ], X (·, ·) in (4.10) and the notations in (4.4), (4.6), (4.7), we introduce

R(t) :=

∫ T

t

B2(s, t)>PQ(s, t)B2(s, t)ds+B2(T, t)>PG(t)B2(T, t) +R(t),

L(r, t) :=

∫ T

r

B1(s, t)>M1(s, r)ds+B1(r, t)>S(r)> +B1(T, t)>N1(r),

K(r, t;u(·)) :=

∫ T

r

B2(s, t)>KM1,u(s, r, t)ds+B2(r, t)>KST ,u(r, t) +B2(T, t)>KN1,u(r, t),

G1(t,X (·, t)) := Et
∫ T

t

M1(s, t)>X (s, t)ds+N1(t)>X (T, t) + S(t)X (t, t).

(4.14)

Note that R(t) is Ft-measurable, R(·), L(·, ·) only depends on given coefficients. We introduce the following
forward-backward system,

X̂ (t, s) = ϕ(t) +

∫ s

0

B1(t, r)û(r)dr +

∫ s

0

B2(t, r)û(r)dW (r), s ∈ [0, t],

ξ̂(t) =

∫ T

t

[
L(r, t)û(r) +K(r, t; û(·))

]
dr −

∫ T

t

ζ̂(t, s)dW (s),

R(t)û(t) + ξ̂(t) + G1(t, X̂ (·, t)) = 0, t ∈ [0, T ].

(4.15)

Theorem 4.1. Suppose (H2) holds true. Then the linear quadratic problem is solvable with optimal û(·) ∈
L2
F (0, T ;Rm) if and only if the following hold,

(i) system (4.15), admits a triple of (X̂ (·, ·), ξ̂(·), ζ̂(·, ·));
(ii) for any u(·) ∈ L2

F (0, T ;Rm),
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2E
∫ T

0

u(s)>G1(s,X0(·, s))ds+ E
∫ T

0

u(s)>R(s)u(s)ds ≥ 0, (4.16)

where X0(·, ·) is in (4.10) with ϕ = 0. In this case,

û(t) = −R†(t)
[
ξ̂(t) + G1(t, X̂ (·, t))

]
+
[
I −R†(t)R(t)

]
u′(t), t ∈ [0, T ], a.e. (4.17)

for some u′(·) ∈ L2
F (0, T ;Rm).

Proof. We point out that the third equality in (4.15) implies directly expression (4.17). As to the rest, we shall
separate the proof into two parts.

Step 1. The equivalent link between (2.8) and (4.15).
Under (H2), the first backward equation in (2.6) associated with û(·) becomes,

Ŷ (t) = Q(t)X̂(t) + S(t)>û(t), Ẑ(t, s) = 0, 0 ≤ t ≤ s ≤ T. (4.18)

From (4.12) in Lemma 4.1, for almost all s ∈ [0, T ],

Q(s)X̂(s) = PQ(s, t)X̂ (s, t) +

∫ s

t

M1(s, r)û(r)dr

+

∫ s

t

[
PQ(s, r)B2(s, r)û(r) + ΛQ(s, r)X̂ (s, r)

]
dW (r), t ∈ [0, s],

where M1(·, ·) is defined in (4.6). Hence by (4.18) and Fubini theorem,

Et
∫ T

t

B1(s, t)>Ŷ (s)ds = Et
∫ T

t

B1(s, t)>PQ(s, t)X̂ (s, t)ds

+Et
∫ T

t

[∫ T

r

B1(s, t)>M1(s, r)ds+B1(r, t)>S(r)>

]
û(r)dr. (4.19)

Due to Lemma 4.1 and Ŷ (·) in (4.18), we also have

Et
∫ T

t

B2(s, t)>Ẑ(s, t)ds = Et
∫ T

t

B2(s, t)>
[
KQ,X̂(s, t) +KS>,û(s, t)

]
ds

= Et
∫ T

t

∫ T

r

B2(s, t)>KM1,û(s, r, t)dsdr + Et
∫ T

t

B2(s, t)>KS>,û(s, t)ds

+

[
Et
∫ T

t

B2(s, t)>PQ(s, t)B2(s, t)ds

]
· û(t) + Et

∫ T

t

B2(s, t)>ΛQ(s, t)X̂ (s, t)ds, (4.20)

where KS>,û(·, ·) is defined in (4.7). Therefore it follows from (4.19) and (4.20) that

χ̂(t) = Et
∫ T

t

[
B1(s, t)>PQ(s, t) +B2(s, t)>ΛQ(s, t)

]
X̂ (s, t)ds

+Et
∫ T

t

[∫ T

r

B1(s, t)>M1(s, r)ds+B1(r, t)>S(r)>

]
û(r)dr + Et

∫ T

t

∫ T

r

B2(s, t)>KM1,û(s, r, t)dsdr

+

[
Et
∫ T

t

B2(s, t)>PQ(s, t)B2(s, t)ds

]
û(t) + Et

∫ T

t

B2(s, t)>KS>,û(s, t)ds. (4.21)
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As to B1(T, t)>EtGX̂(T ) + B2(T, t)>θ̂(t), t ∈ [0, T ], a.e. recalling X (T, ·) in (4.10), we obtain the following by
Itô formula

GX̂(T ) = PG(0)X̂ (T, 0) +

∫ T

0

N1(r)û(r)dr +

∫ T

0

[
PG(r)B2(T, r) + ΛG(r)X̂ (T, r)

]
dW (r),

where N1(·) is defined in (4.7). Then for t ∈ [0, T ], a.e.

B1(T, t)>Et
[
GX̂(T )

]
= B1(T, t)>PG(t)X̂ (T, t) +B1(T, t)>Et

∫ T

t

N1(r)û(r)dr. (4.22)

Thanks to Lemma 4.1, for t ∈ [0, T ], a.e.

B2(T, t)>θ̂(t) = B2(T, t)>
∫ T

t

KN1,û(r, t)dr +
[
B2(T, t)>PG(t)B2(T, t)

]
û(t) +B2(T, t)>ΛG(t)X̂ (T, t). (4.23)

Therefore from (4.22) and (4.23) we can deduce that

B1(T, t)>Et
[
GX̂(T )

]
+B2(T, t)>θ̂(t) = Et

∫ T

t

B1(T, t)>N1(r)û(r)dr +
[
B2(T, t)>PG(t)B2(T, t)

]
û(t)

+

∫ T

t

B2(T, t)>KN1,û(r, t)dr

+
[
B1(T, t)>PG(t) +B2(T, t)>ΛG(t)

]
X̂ (T, t). (4.24)

To sum up, recalling (4.14), we obtain the desired conclusion from (4.21), (4.24) and

χ̂(t) + S(t)X̂(t) +R(t)û(t) +B1(T, t)>Et
[
GX̂(T )

]
+B2(T, t)>θ̂(t) = G1(t, X̂ (·, t)) + ξ̂(t) +R(t)û(t).

Step 2. The equivalent relation between (2.7) and (4.16).
Following above arguments, one can also derive

χ0(t) + S(t)X0(t) +R(t)u(t) +B1(T, t)Et
[
GX0(T )

]
+B2(T, t)θ0(t) = G1(t,X0(·, t)) + ξ(t) +R(t)u(t), (4.25)

where

ξ(t) = Et
∫ T

t

[
L(r, t)u(r) +K(r, t;u(·))

]
dr. (4.26)

Next we claim that

E
∫ T

0

u(t)>G1(t,X0(·, t))dt = E
∫ T

0

u(t)>
∫ T

t

[
L(r, t)u(r) +K(r, t;u(·))

]
drdt. (4.27)

Then by combining (2.7), (4.27) and (4.25), one can finish the procedures in this step. To prove (4.27), let us
look at the following equalities,

E
∫ T

0

〈∫ T

s

M1(t, s)>
[∫ s

0

B1(t, r)u(r)dr

]
dt, u(s)

〉
ds

= E
∫ T

0

∫ T

s

∫ s

0

〈B1(t, r)u(r),M1(t, s)u(s)〉drdtds

= E
∫ T

0

∫ s

0

∫ T

s

〈
u(r), B1(t, r)>M1(t, s)u(s)

〉
dtdrds

= E
∫ T

0

〈
u(r),

∫ T

r

∫ T

s

B1(t, r)>M1(t, s)u(s)dtds

〉
dr,

(4.28)
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which is derived by classical Fubini theorem. Moreover, by applying Lemma 2.2, we also have,

E
∫ T

0

〈
u(s),

∫ T

s

M1(t, s)>
∫ s

0

B2(t, r)u(r)dW (r)dt

〉
ds

= E
∫ T

0

∫ T

s

〈
M1(t, s)u(s),

∫ s

0

B2(t, r)u(r)dW (r)

〉
dtds

= E
∫ T

0

∫ T

s

∫ s

0

〈B2(t, r)>KM1,u(t, s, r), u(r) 〉drdtds

= E
∫ T

0

〈
u(r),

∫ T

r

∫ T

s

B
(
2t, r)

>KM1,u(t, s, r)dtds

〉
dr.

(4.29)

As a result, by (4.28) and (4.29),

E
∫ T

0

〈
u(s),

∫ T

s

M1(t, s)>X0(t, s)dt

〉
ds

= E
∫ T

0

〈
u(s),

∫ T

s

M1(t, s)>
[∫ s

0

B1(t, r)u(r)dr

]
dt

〉
ds

+E
∫ T

0

〈
u(s),

∫ T

s

M1(t, s)>
[∫ s

0

B2(t, r)u(r)dW (r)

]
dt

〉
ds

= E
∫ T

0

〈
u(r),

∫ T

r

∫ T

s

B1(t, r)>M1(t, s)u(s)dtds

〉
dr

+E
∫ T

0

〈
u(r),

∫ T

r

∫ T

s

B2(t, r)>KM1,u(t, s, r)dtds

〉
dr.

(4.30)

Similarly we have,

E
∫ T

0

〈
u(s),N1(s)>X0(T, s)

〉
ds = E

∫ T

0

〈
u(s),

∫ T

s

B1(T, s)>N1(r)u(r)dr

〉
ds

+E
∫ T

0

〈
u(r),

∫ T

r

B2(T, r)>KN1,u(s, r)ds

〉
dr,

E
∫ T

0

〈u(s), S(s)X0(s, s)〉ds = E
∫ T

0

〈
u(s),

∫ T

s

B1(r, s)>S(r)>u(r)dr

〉
ds

+E
∫ T

0

〈
u(r),

∫ T

r

B2(s, r)>KS>,u(s, r)ds

〉
dr.

(4.31)

As a result, (4.27) follows from (4.30) and (4.31). �

Remark 4.2. In the above arguments we proposed two new ideas which fits the SVIEs framework well. Firstly,
we introduce (PQ(·, ·), ΛQ(·, ·)) and (PG(·, ·), ΛG(·, ·)). Their connections with (P(·),Q(·)) of (3.33) can be found
in next Remark 4.4. Secondly, instead of using X(·) as above, we prefer to slight different X (·, ·) which makes Itô
formula useful again. Also it is worthy mentioning that these two points helps us derive new pointwise necessary
optimality conditions in the Section 4.2 next. �
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Remark 4.3. In contrast with conventional results (4.8) and (4.9), ours here have advantages in several as-
pects. The first one is concerned with the replacement of R(·) by R(·), which considerably relaxes the existing
condition on R(·). Related details can be found in Remark 3.5. The second one lies in the simplicity of opti-

mal controls. Notice that in (4.8), û(·) depends on X̂(·), X̂(T ), χ̂(·) and θ̂(·), while χ̂(·) furthermore relies on

(X̂(·), Ŷ (·), Ẑ(·, ·)). In some sense these indexes are a little bit of scattered and superficial. How to find a proper
way to reorganize and incorporate the coefficients becomes important. Here using some essential terms X (·, ·)
of (4.10) and (PQ, ΛQ), (PG, ΛG) of (4.4), we only require û(·) to depend on X̂ (·, t) and ξ̂, see (4.17). At last,
when applying the ideas to deterministic coefficients case, one can obtain clearer pictures of optimal controls
and related equations, see the arguments in the next Section 4.1.3. �

Remark 4.4. In Theorem 4.1 there are three crucial terms, R(·), ξ(·) and G1(·,X (·, ·)). We will look into their
counterparts in the SDEs setting, and show some connections between Theorem 4.1 and Theorem 3.1. With
A1 = A2 = 0, we rewrite above (3.33) as follows,

P(t) = G+

∫ T

t

Q(s)ds−
∫ T

t

Q(s)dW (s), t ∈ [0, T ]. (4.32)

By Lemma 3.2, for almost t ∈ [0, T ], we can express (P(·),Q(·)) as,

P(t) = Et

[
G+

∫ T

t

Q(s)ds

]
= PG(t) +

∫ T

t

PQ(s, t)ds, Q(t) = ΛG(t) +

∫ T

t

ΛQ(s, t)ds, (4.33)

where (PQ, ΛQ), (PG, ΛG) are defined in (4.4).

(1) Let us look at R(·) with B2(t, ·) independent of t. In this setting, for t ∈ [0, T ],

R(t) = B2(t)>
∫ T

t

PQ(s, t)dsB2(t) +B2(t)>PG(t)B2(t) +R(t) = B2(t)>P(t)B2(t) +R(t). (4.34)

Thanks to the dependence of B2(t, ·) on t, the role of (P(·),Q(·)) is replaced by that of (PQ, ΛQ), (PG, ΛG).
On the other hand, (4.34) also inspires us the following study in Section 4.2 since R + B>2 PB2 ≥ 0 is a
necessary optimality condition under SDEs framework.

(2) If B1(t, ·), B2(t, ·) do not rely on t, then for almost t ∈ [0, T ], and s ∈ [0, t],

X (t, s) = X(s), M1(t, s) = PQ(t, s)B1(s) + ΛQ(t, s)B2(s), N1(t) = PG(t)B1(t) + ΛG(t)B2(t),

and G1(·,X (·, ·)) becomes,

G1(t,X (·, t)) =

[∫ T

t

[
B1(t)>PQ(s, t) +B2(t)>ΛQ(s, t)

]
ds+B1(t)>PG(t) +B2(t)>ΛG(t) + S(t)

]
X(t)

=
[
B1(t)>P(t) +B2(t)>Q(t) + S(t)

]
X(t) = S(t)X(t),

where S(·) is defined in (3.34) of Remark 3.2. Hence the following term (G1(·,X (·, ·)) resp.) can be seen an
extension of S(·) (S(·)X(·) reps.) into SVIEs framework,

S̄(t) :=

∫ T

t

M1(s, t)>ds+N1(t)> + S(t), t ∈ [0, T ]. a.e. (4.35)
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(3) If Bi(t, ·) is independent of t, then

L(r, t) = B1(t)>

[∫ T

r

[
PQ(s, r)B1(r) + ΛQ(s, r)B2(r)

]
ds+ S(r)> + PG(r)B1(r) + ΛG(r)B2(r)

]
= B1(t)>

[
P(r)B1(r) +Q(r)B2(r) + S(r)>

]
= B1(t)>S(r)>,

K(r, t;u(·)) = B2(t)>

[∫ T

r

KM1,u(s, r, t)ds+KN ,u(r, t) +KS>,u(r, t)

]
. (4.36)

According to (4.35),

S(r)>u(r) =

∫ T

r

M1(s, r)u(r)ds+N1(r)u(r) + S(r)>u(r)

= E
∫ T

r

M1(s, r)u(r)ds+

∫ r

0

∫ T

r

KM1,u(s, r, t)dsdW (t)

+E
[
N1(r)u(r)

]
+

∫ r

0

KN ,u(r, t)dW (t) + E
[
S(r)>u(r)

]
+

∫ r

0

KS>,u(r, t)dW (t)

= E
[
S(r)>u(r)

]
+

∫ r

0

[∫ T

r

KM1,u(s, r, t)ds+KN ,u(r, t) +KS>,u(r, t)

]
dW (t).

Hence if we denote by

M(t) := Et
∫ T

t

S(s)>u(s)ds, N (t) :=

∫ T

t

[∫ T

r

KM1,u(s, r, t)ds+KN ,u(r, t) +KS>,u(r, t)

]
dr,

similar as (4.32)−(4.33), one can easily obtain that (M(·),N (·)) satisfies BSDE of

M(t) =

∫ T

t

S(s)>u(s)ds−
∫ T

t

N (s)dW (s), t ∈ [0, T ]. (4.37)

Recall ξ̂(·) in (4.15), as well as (4.36), we then derive,

ξ(t) = B1(t)>M(t) +B2(t)>N (t), t ∈ [0, T ]. a.e.

We emphasize that (M(·),N (·)) in (4.37) is just the pair of processes in the proof of Theorem 3.1 with A1 =
A2 = 0 and deterministic coefficients. �

4.1.3. The deterministic coefficients case

In this part, we give detailed study with deterministic coefficients. To this end, one can simplify the afore-
mentioned coefficients in (4.6), (4.14) as,

M1(t, r) = Q(t)B1(t, r), N1(t) = GB1(T, t), K(r, t;u(·)) := B(r, t)Ku(r, t),

L(r, t) :=

∫ T

r

B1(s, t)>Q(s)B1(s, r)ds+B1(r, t)>S(r) +B1(T, t)>GB1(T, r),

B(r, t) :=

∫ T

r

B2(s, t)>Q(s)B1(s, r)ds+B2(r, t)>S(r) +B2(T, t)>GB1(T, r).

(4.38)

In the following, with L(·, ·) in (4.38), we define H(·, ·) as

H(r, t) := L(r, t)I[r≥t] + L(t, r)>I[t>r], t, r ∈ [0, T ]. (4.39)
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When either n = m = 1 or S(·) = 0, we have L(t, r) = L(r, t)>, and H(r, t) = L(r ∨ t, r ∧ t). For given
v̂(·) ∈ L2

F (0, T ;Rm), we define ϕ̂(·) and Kv̂(·, ·) as,

ϕ̂(t) :=

∫ T

t

M1(s, t)>ϕ(s)ds+N1(t)>ϕ(T ) + S(t)ϕ(t) +

∫ t

0

B(t, r)>
[
I −R†(r)R(r)

]
v̂(r)dW (r)

+Et
∫ T

0

H(r, t)
[
I −R†(r)R(r)

]
v̂(r)dr +

∫ T

t

B(r, t)
[
I −R†(r)R(r)

]
Kv̂(r, t)dr,

v̂(t) = Ev̂(t) +

∫ t

0

Kv̂(t, s)dW (s), t ∈ [0, T ].

(4.40)

Then we consider the following equation,

λ̂(t) = −ϕ̂(t)−
∫ t

0

B(t, r)>R†(r)λ̂(r)dW (r)− Et
∫ T

0

H(r, t)R†(r)λ̂(r)dr −
∫ T

t

B(r, t)R†(r)Kλ̂(r, t)dr, (4.41)

where Kλ̂(·, ·) is defined in a similar manner as Kv̂(·, ·) in (4.40).

Theorem 4.2. Suppose (H2) holds true with deterministic coefficients. Then the linear quadratic problem is

solvable with optimal pair (X̂(·), û(·)) if and only if the following hold,

(i) (4.41) admits a solution λ̂(·) ∈ L2
F (0, T ;Rm) for some v̂(·) ∈ L2

F (0, T ;Rm),
(ii) for any u(·) ∈ L2

F (0, T ;Rm),

E
∫ T

0

〈
u(t),R(t)u(t) 〉dt+ 2E

∫ T

0

〈u(t),

∫ T

t

[
L(r, t)u(r) + B(r, t)Ku(r, t)

]
dr

〉
dt ≥ 0. (4.42)

In this case,

û(t) = R†(t)λ̂(t) +
[
I −R†(t)R(t)

]
v̂(t), t ∈ [0, T ]. a.e. (4.43)

Proof. As to G1(·, ·) in (4.14), it follows by some calculations that,

G1(t, X̂ (·, t)) = Et
∫ T

t

M1(s, t)>X̂ (s, t)ds+N1(t)>X̂ (T, t) + S(t)X̂ (t, t)

= C(t) +

∫ t

0

L(t, r)>û(r)dr +

∫ t

0

B(t, r)>û(r)dW (r), a.e. (4.44)

where

C(t) :=

∫ T

t

M1(s, t)>ϕ(s)ds+N1(t)>ϕ(T ) + S(t)ϕ(t), t ∈ [0, T ]. a.e.

On the other hand, from (4.38) and ξ̂(·) in (4.15), we can present ξ̂(·) as,

ξ̂(t) = Et
∫ T

t

B(r, t)Kû(r, t)dr + Et
∫ T

t

L(r, t)û(r)dr, t ∈ [0, T ]. a.e. (4.45)

Plugging (4.44) and (4.45) into the third equality in (4.15), for t ∈ [0, T ], a.e., we then obtain

R(t)û(t) + C(t) +

∫ t

0

B(t, r)>û(r)dW (r) + Et
∫ T

0

H(r, t)û(r)dr +

∫ T

t

B(r, t)Kû(r, t)dr = 0,
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where H(·, ·) is defined in (4.39). As a result, we have (4.41) and (4.43) by letting λ̂(·) := R(·)û(·). If we replace
(û(·), x) by (u(·), 0), and recall χ0(·), X0(·), θ0(·) in Lemma 2.2, we know in a similar manner that

χ0(t) + S(t)X0(t) +R(t)u(t) +B1(T, t)>Et
[
GX0(T )

]
+B2(T, t)>θ0(t)

= R(t)u(t) +

∫ t

0

B(t, r)>u(r)dW (r) + Et
∫ T

0

H(r, t)u(r)dr +

∫ T

t

B(r, t)Ku(r, t)dr.

Observe that

E
∫ T

0

〈
u(t),

∫ t

0

B(t, r)>u(r)dW (r) 〉dt = E
∫ T

0

〈u(t),

∫ T

t

B(r, t)Ku(r, t)dr

〉
dt,

E
∫ T

0

〈
u(t),Et

∫ T

0

H(r, t)u(r)dr 〉dt = 2E
∫ T

0

〈u(t),

∫ T

t

L(r, t)u(r)dr

〉
dt,

the equivalent relation between (4.16) and (4.42) follows obviously. �
It is worthy mentioning that (4.41) is a linear stochastic Fredholm−Volterra integral equation, see also (3.36).

In the rest of this part, to avoid the complexity and difficulties in forward-backward system approach, we will
give some investigations on (4.41) instead. Given H(·, ·), B(·, ·) in (4.39), (4.38) respectively, define

L1 :=

[∫ T

0

∫ T

0

|H(t, s)|2dsdt

] 1
2

, L2 := sup
t∈[0,T ]

[∫ T

t

|B(s, t)|2ds

] 1
2

. (4.46)

Theorem 4.3. Suppose (H2) holds true with deterministic coefficients, and

R(t)>R(t) ≥ kL := k[L1 + 2L2]2I[m×m], t ∈ [0, T ], a.e. k > 3. (4.47)

Then the linear quadratic problem admits an optimal control represented by (4.43).

Proof. If L1 = L2 = 0, then λ̂(·) = −ϕ̂(·) and for any u(·) ∈ L2
F (0, T ;Rm),

E
∫ T

0

〈u(t),

∫ T

t

[
L(r, t)u(r) + B(r, t)Ku(r, t)

]
dr 〉dt = 0.

Since R(·) ≥ 0, inequality (4.42) can be fulfilled, and the conclusion follows from Theorem 4.2. Next suppose

that at least one of Li is positive. In this case R−1(·) exists, and the equation for λ̂(·) becomes,

λ̂(t) = −ϕ̂(t)−
∫ t

0

B(t, r)>R−1(r)λ̂(r)dW (r)− Et
∫ T

0

H(r, t)R−1(r)λ̂(r)dr −
∫ T

t

B(r, t)R−1(r)Kλ̂(r, t)dr,

(4.48)
with v̂(·) = 0 a.s. in (4.40). As a result, the conclusion is lead by the following two steps.

Step 1. We discuss the existence and uniqueness of (4.48), the proof of which is based on fixed point arguments.

For later convenience, let us define κ(·) := R−1(·)λ̂(·), and rewrite (4.48) as,

R(t)κ(t) = −ϕ̂(t)−
∫ t

0

B(t, r)>κ(r)dW (r)− Et
∫ T

0

H(r, t)κ(r)dr −
∫ T

t

B(r, t)Kκ(r, t)dr. (4.49)
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For any αi(·) ∈ L2
F (0, T ;R), and βi(·, ·) determined by αi(s) = Eαi(s) +

∫ t
0
βi(t, s)dW (s) with t ∈ [0, T ],

(i = 1, 2), define

R(t)κi(t) = ϕ̂(t)− Et
∫ T

0

H(t, s)αi(s)ds−
∫ t

0

B(t, s)>αi(s)dW (s)− Et
∫ T

t

B(s, t)βi(s, t)ds,

from which one can deduce that,

R(t)
[
κ1(t)− κ2(t)

]
= −Et

∫ T

0

H(t, s)[α1(s)− α2(s)]ds−
∫ t

0

B(t, s)>[α1(s)− α2(s)]dW (s)

−Et
∫ T

t

B(s, t)[β1(s, t)− β2(s, t)]ds. (4.50)

As to the right hand of (4.50),

E
∫ T

0

∣∣∣∣∣Et
∫ T

0

L(t, s)[α1(s)− α2(s)]ds

∣∣∣∣∣
2

dt ≤ L2
1E
∫ T

0

|α1(s)− α2(s)|2ds,

E
∫ T

0

∣∣∣∣∫ t

0

B(t, s)>[α1(s)− α2(s)]dW (s)

∣∣∣∣2 dt ≤ L2
2E
∫ T

0

|α1(s)− α2(s)|2ds,

E
∫ T

0

∣∣∣∣∣Et
∫ T

t

B(s, t)[β1(s, t)− β2(s, t)]ds

∣∣∣∣∣
2

dt ≤ L2
2E
∫ T

0

|α1(s)− α2(s)|2ds.

(4.51)

Consequently one has,

E
∫ T

0

∣∣R(t)[κ1(t)− κ2(t)]
∣∣2dt ≤ 3(L2

1 + 2L2
2)E

∫ T

0

|α1(t)− α2(t)|2dt.

Eventually by the requirement of R(·) one can obtain the well-posedness of (4.48).

Step 2. We prove the inequality (4.42) with u(·) ∈ L2
F (0, T ;Rm). Recalling (4.39), we can finish this step as

long as,

E
∫ T

0

〈u(t),R(t)u(t) 〉dt+ E
∫ T

0

〈u(t),

∫ T

0

H(r, t)u(r)dr + 2

∫ T

t

B(r, t)Ku(r, t)dr 〉dt ≥ 0. (4.52)

To do this let us look at the following results implied by Hölder inequality and Fubini theorem,
E
∫ T

0

〈
u(t),

∫ T

0

H(r, t)u(r)dr

〉
dt ≤ L1E

∫ T

0

|u(t)|2dt,

E
∫ T

0

〈
u(t),

∫ T

t

B(r, t)Ku(r, t)dr

〉
dt ≤ L2E

∫ T

0

|u(t)|2dt.

(4.53)

Plugging (4.53) back to (4.52), it follows from the requirement on R(·) that (4.52) is true. �
To conclude this part, let us make a few points. First of all, if B1(·, ·) = 0, then Li = 0 (i = 1, 2), and

condition (4.47) becomes R(t) ≥ 0. As we will prove in Section 4.2, this condition is also necessary. Second of
all, it seems that the limitations of treating FBSVIE (4.9) aforementioned do not happen here. Actually, with
our method the term G doesn’t bring additional troubles in solving the SFVIE (4.41), and neither coefficients
nor time duration [0, T ] are required to be small enough. Third of all, to ensure condition (4.42), a common
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assumption is S(·) = 0 and non-negative G, Q(·), R(·). However, here we provide a more general criteria which
allows S(·) 6= 0 or G, Q(·), R(·) to be indefinite. The appearance of negative definite R(·) in our stochastic
setting is a distinctive feature from that of deterministic VIEs. To see this, let us look at the following example,

Example 4.1. Suppose m = n = 1, T > 2π, S(·) = Q(·) = 0, B2(t, s) = sin(t− s) + a with constant a > 1. We

define M := [
∫ T
0
|B1(T, s)|2ds]

1
2 . Under this framework we have

inf
t∈[0,T ]

B2(T, t) = a− 1, sup
t∈[0,T ]

B2(T, t) = a+ 1, L(s, t) = B(s, t) = B1(T, t)GB1(T, s).

Suppose R(·) satisfies that,

R(t) +G|B2(T, t)|2 ≥ 2|G|

M2 + 2 sup
t∈[0,T ]

[
|B2(T, t)|2

∫ T

t

|B1(T, s)|2ds

] 1
2

, t ∈ [0, T ]. (4.54)

Hence (4.47) holds true, and the linear quadratic problem admits an optimal control by Theorem 4.3. To keep

R(·) not larger than zero, suppose G is non-negative and M ∈ (0, −a−1+
√
2a2+2

2 ), since in this case

|B2(T, t)|2 > G(a− 1)2 > 4
[
M2 + (a+ 1)M

]
> 2

M2 + 2 sup
t∈[0,T ]

[
|B2(T, t)|2

∫ T

t

|B1(T, s)|2ds

] 1
2

. (4.55)

Moreover, to keep (4.54) true, G is also allowed to be negative with proper requirement on R(·).

4.2. New pointwise necessary conditions of optimal controls

In this part, we give new necessary optimality conditions under SVIEs setting. Before it, we point out two
motivations.

If we consider linear quadratic problem associated with SDE (3.1) and cost functional (1.2), one can obtain
necessary conditions (3.11) and R(·) ≥ 0 with the help of spike variation, or only (3.11) by means of convex
variation. In other words, spike variation can provide more information on the coefficients than the later. We
return back to SVIEs case with optimal û(·). Using convex variation method (see [27]) one can derive

Hu(t, X̂(T ), Ŷ (·), Ẑ(·, t), X̂(t), û(t)) = 0, t ∈ [0, T ], a.s. (4.56)

where H(·) is called the Hamiltonian defined as,

H(t, X̂(T ), Ŷ (·), Ẑ(·, t), X(t), u) := 〈B1(T, t)>Et
[
GX̂(T )

]
+B2(T, t)>θ̂(t) + Et

∫ T

t

B1(s, t)>Ŷ (s)ds

+

∫ T

t

B2(s, t)>Ẑ(s, t)ds, u 〉+ 〈S(t)X(t), u 〉+1

2
〈R(t)u, u 〉+1

2
〈Q(t)X(t), X(t) 〉,

Ŷ (t) = Q(t)X̂(t) + S(t)û(t), Ŷ (t) = EŶ (t) +

∫ t

0

Ẑ(t, s)dW (s), t ∈ [0, T ].

(4.57)
Consequently, a natural question is how to deduce more optimality conditions for linear quadratic problem of
SVIEs via spike variational method.

Our second motivation is about R(·) in (4.14). From Remark 4.4, its counterpart in the SDEs situation is
B2(·)>P(·)B2(·) +R(·), the definiteness of which is necessary for the existence of û(·). As a result, whether this
necessity still holds true for the involved SVIEs here is an interesting problem to explore.
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Motivated by above arguments, we are aim to derive some new necessary conditions in linear quadratic
problem of SVIEs. To this end, suppose that

(H3) The conditions in (H1) hold true with A1(·, ·) = A2(·, ·) = 0, ϕ(·) = x.

We point out that the assumption of ϕ(·) = x is imposed for simplicity. Suppose û(·) is an optimal control,
define

uε(·) := u · I[τ,τ+ε](·) + û(·), τ ∈ [0, T ], ε > 0,

where u is Fτ -measurable random variable such that E|u|2 < ∞. We need the following variational equation
for X1(·),

X1(t) =

∫ t

0

B1(t, s)
[
uε(s)− û(s)

]
ds+

∫ t

0

B2(t, s)
[
uε(s)− û(s)

]
dW (s), t ∈ [0, T ], (4.58)

and the following-up equation for X1(·, ·), that is, for t ∈ [0, T ] and s ∈ [0, t],

X1(t, s) =

∫ s

0

B1(t, r)
[
uε(r)− û(r)

]
dr +

∫ s

0

B2(t, r)
[
uε(r)− û(r)

]
dW (r). (4.59)

It is a direct calculation that,

Lemma 4.2. Given X1(·) and X1(·, ·) in (4.58) and (4.59), suppose (H3) is imposed. Then[
sup
t∈[0,T ]

E|X1(t)|2 + sup
t∈[0,T ]

E sup
s∈[0,T ]

|X1(t, s)|2
]
≤ Cε. (4.60)

By means of Lemma 4.2, as well as Taylor expansion, we immediately have,

Lemma 4.3. Suppose (H3) holds true, (X̂(·), û(·)) is an optimal pair. Then

o(ε) ≤ E
∫ T

0

〈Q(s)X̂(s) + S(s)û(s), X1(s) 〉ds+ E 〈GX̂(T ), X1(T ) 〉+1

2
E 〈GX1(T ), X1(T ) 〉

+
1

2
E
∫ T

0

〈Q(s)X1(s), X1(s) 〉ds+ E
∫ T

0

[
〈S(s)X̂(s), uε(s)− û(s) 〉

+
1

2
〈R(s)uε(s), uε(s) 〉−1

2
〈R(s)û(s), û(s) 〉

]
ds.

(4.61)

We give the main result of this part,

Theorem 4.4. Suppose (H3) holds true, and that (X̂(·), û(·)) is an optimal pair of the linear quadratic problem.
Then condition (4.56) holds and R(·) ≥ 0, where R(·) is defined by (4.14).

Proof. Since Ai(·, ·) = 0, it follows from (2.6) in Section 2 that,

Ŷ (t) =
[
Q(s)X̂(s) + S(s)û(s)

]
−
∫ T

t

Ẑ(t, s)dW (s), t ∈ [0, T ]. a.e.

Hence by the definition of X1(·) in (4.58), as well as Fubini theorem, one has,

E
∫ T

0

〈Q(s)X̂(s) + S(s)û(s), X1(s) 〉ds+ E 〈GX̂(T ), X1(T ) 〉

= E
∫ T

0

〈B1(T, s)>GX̂(T ),
[
uε(s)− û(s)

]
〉ds+ E

∫ T

0

〈B2(T, s)>θ̂(s),
[
uε(s)− û(s)

]
〉ds

+E
∫ T

0

∫ T

s

〈
[
B1(t, s)>Ŷ (t) +B2(t, s)>Ẑ(t, s)

]
,
[
uε(s)− û(s)

]
〉dtds. (4.62)
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Given PQ(·, ·), PG(·) in (4.4), M1(·, ·), N1(·) in (4.6), we use Itô formula to X1(t, ·)>PQ(t, ·)X1(t, ·) on [0, t].
Recalling uε(s)− û(s) = uI[τ,τ+ε](s) with s ∈ [0, T ], we have

X1(t, r)>PQ(t, r)X1(t, r)=

∫ r

0

[
2u>I[τ,τ+ε](s)M1(t, s)>X1(t, s) + u>B2(t, s)>PQ(t, s)B2(t, s)uI[τ,τ+ε](s)

]
ds

+

∫ r

0

[
u>I[τ,τ+ε](s)B2(t, s)>PQ(t, s)X1(t, s)+X1(t, s)>ΛQ(t, s)X1(t, s)

]
dW (s).(4.63)

For given t ∈ [0, T ] and n ≥ 0, we define a sequence of stopping time δn,t as

δn,t := inf
{
r ≥ 0,

∫ r

0

[
u>I[τ,τ+ε](s)B2(t, s)>PQ(t, s)X1(t, s) + X1(t, s)>ΛQ(t, s)X1(t, s)

]2
ds ≥ n

}
∧ t,

from which δn,t → t. a.s. As a result, by taking expectation on both sides of (4.63) we know that

EX1(t, δn,t)
>PQ(t, δn,t)X1(t, δn,t) = E

∫ δn,t

0

[
2u>M1(t, s)>X1(t, s)+u>B2(t, s)>PQ(t, s)B2(t, s)u

]
I[τ,τ+ε](s)ds.

(4.64)
Thanks to (PQ(·, ·), ΛQ(·, ·)), M1(·, ·) in (4.4), (4.6) respectively, we can derive that

Es
∫ t

s

|ΛQ(t, r)|2dr + |PQ(t, s)|2 = Es|Q(t)|2, Es
∫ t

s

|M1(t, r)|2dr ≤ KEs|Q(t)|2, a.s. (4.65)

where K may depend on T and the upper bound of Bi(·, ·). Using estimate (4.60) in Lemma 4.2, the Fτ -
measurability of u, and the second result in (4.65),

E
∫ t

0

|u>M1(t, s)>X1(t, s)I[τ,τ+ε](s)|ds

≤ E sup
s∈[0,T ]

|X1(t, s)|2 + E
∫ t

0

|uTM1(t, s)>|2I[τ,τ+ε](s)ds

= E sup
s∈[0,T ]

|X1(t, s)|2 +KE
[
|u>|2Eτ

∫ t

τ

|M1(t, s)>|2dsI[τ,T ](t)
]

≤ E sup
s∈[0,T ]

|X1(t, s)|2 +KE
[
|u>|2Eτ |Q(t)|2I[τ,T ](t)

]
<∞.

Consequently the following result is derived by applying dominated convergence theorem to (4.64),

E
[
X1(t)>Q(t)X1(t)

]
= E

∫ t

0

[
2uTM1(t, s)>X1(t, s) + u>B2(t, s)>PQ(t, s)B2(t, s)u

]
I[τ,τ+ε](s)ds. (4.66)

Similarly one can obtain

E
[
X1(T )>GX1(T )

]
= E

∫ T

0

[
2u>N1(s)>X1(T, s) + u>B2(T, s)>PG(s)B2(T, s)u

]
I[τ,τ+ε](s)ds. (4.67)

Combining (4.66) and (4.67) together, and recalling R(·) in (4.14), we deduce that

1

2
E
[
X1(T )>GX1(T )

]
+

1

2
E
∫ T

0

X1(s)>Q(s)X1(s)ds

= E
∫ T

0

u>I[τ,τ+ε](s)

∫ T

s

M1(t, s)>X1(t, s)dtds+ E
∫ T

0

u>I[τ,τ+ε](s)N1(s)>X1(T, s)ds

+
1

2
E
∫ T

0

u>
[
R(s)−R(s)

]
uI[τ,τ+ε](s)ds.

(4.68)
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As to the first term on the right hand of (4.68), we claim that,

E
∫ T

0

u>I[τ,τ+ε](s)

∫ T

s

M1(t, s)>X1(t, s)dtds = E
∫ T

0

∫ t

0

u>I[τ,τ+ε](s)M1(t, s)>X1(t, s)dsdt = o(ε). (4.69)

Actually, as to the term in (4.69), one has,

E
∫ T

0

∫ t

0

u>I[τ,τ+ε](s)M1(t, s)>X1(t, s)dsdt

≤ ε 1
2

[
E
∫ T

0

sup
s∈[0,T ]

|X1(t, s)|2dt

] 1
2
[
E
∫ T

0

|u|2
∫ t

0

|M1(t, s)>|2I[τ,τ+ε](s)dsdt

] 1
2

. (4.70)

We observe that the following equalities hold true with the help of estimates in (4.65) and dominated convergence
theorem,

lim
ε→0

E
∫ T

0

|u|2
∫ t

0

|M1(t, s)>|2I[τ,τ+ε](s)dsdt = E
∫ T

τ

|u|2
[

lim
ε→0

Eτ
∫ t

τ

|M1(t, s)>|2I[τ,τ+ε](s)ds
]

dt = 0. (4.71)

Hence estimate (4.69) then follows from (4.60), (4.70) and (4.71). Similarly one can obtain that,

E
∫ T

0

u>I[τ,τ+ε](s)N1(s)>X1(T, s)ds = o(ε). (4.72)

Consequently due to (4.69) and (4.72),

1

2
E
[
X1(T )>GX1(T )

]
+

1

2
E
∫ T

0

X1(s)>Q(s)X1(s)ds =
1

2
E
∫ T

0

u>
[
R(s)−R(s)

]
uI[τ,τ+ε](s)ds+ o(ε). (4.73)

As a result, we have the following results by (4.62), (4.73) and Lemma 4.3,

o(ε) ≤ E
∫ T

0

u>B1(T, s)>GX̂(T )I[τ,τ+ε](s)ds+ E
∫ T

0

u>B2(T, s)>θ̂(s)I[τ,τ+ε](s)ds

+E
∫ T

0

∫ T

s

u>
[
B1(t, s)>Ŷ (t) +B2(t, s)>Ẑ(t, s)

]
I[τ,τ+ε](s)dtds

+E
∫ T

0

[
u>S(s)X̂(s)I[τ,τ+ε](s) +

1

2

[
uε(s)

]>
R(s)uε(s)− 1

2

[
û(s)

]>
R(s)û(s)

]
ds

+
1

2
E
∫ T

0

u>
[
R(s)−R(s)

]
uI[τ,τ+ε](s)ds

= E
∫ T

0

[
H(s, X̂(T ), Ŷ (·), Ẑ(·, s), X̂(s), uε(s))−H(s, X̂(T ), Ŷ (·), Ẑ(·, s), X̂(s), û(s))

]
ds

+
1

2
E
∫ T

0

u>
[
R(s)−R(s)

]
uI[τ,τ+ε](s)ds.

By the definition of uε(·) we eventually obtain that,

0 ≤ u>
[
B1(T, τ)>Eτ [GX̂(T )] +B2(T, τ)>θ̂(τ) + Eτ

∫ T

τ

[
B1(t, τ)>Ŷ (t) +B2(t, τ)>Ẑ(t, τ)

]
dt

]
+u>S(τ)X̂(τ) +

1

2
[u+ û(τ)]>R(τ)[u+ û(τ)]− 1

2

[
û(τ)

]>
R(τ)û(τ) +

1

2
u>
[
R(τ)−R(τ)

]
u,
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which leads to the desired conclusion. �
To conclude this part, we make some observations to the previous arguments. In contrast with the classical

convex variation method in [27], there is one additional necessary condition R(·) ≥ 0 appearing here which
shows the powerfulness of spike variation tricks. Moreover, our result also covers the corresponding SDEs
case. Second of all, the previous procedures rely on the introducing of X1(·, ·) and the use of Itô formula to
X1(·, ·)>PQ(·, ·)X1(·, ·), X1(T, ·)>PG(·)X1(T, ·), the tricks of which are new in the literature to our best. Third
of all, the method above can be extended to nonlinear cases with non-convex control domain. However, the
corresponding diffusion and drift term are required to be state independent. The more general case are still
under consideration and we will show more related results in our future publications.
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