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CONTROLLABILITY OF ISOTROPIC VISCOELASTIC BODIES
OF MAXWELL–BOLTZMANN TYPE ∗

L. Pandolfi1

Abstract. In this paper we consider a viscoelastic three dimensional body (of Maxwell–Boltzmann
type) controlled on (part of) the boundary. We assume that the material is isotropic and homogeneous.
If the body is elastic (i.e. no dissipation due to past memory), controllability has been studied by several
authors. We prove that the viscoelastic body inherits the controllability properties of the corresponding
purely elastic system. The proof relays on cosine operator methods combined with moment theory.
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1. Introduction

We consider a linear viscoelastic body occupying a bounded region Ω ⊆ R3. We assume that the body is
isotropic and homogeneous so that the dynamics of the body is described by the operator L:

Lu = μΔu + (λ+ μ)∇ (∇ · u) , u = u(x) x ∈ Ω.

Here u ∈ R3 and λ > 0, μ > 0 are the Lamé coefficients. We assume that λ and μ are constant (i.e. that the
body is homogeneous).

Boldface denotes vectors. Note that also the space variable (i.e. x) is a vector, with dimx = dimu, but we
don’t use boldface for the space variable (and not for the vector 0).

If the body is elastic, the evolution in time of the displacement is described by the Navier equation

u′′ = Lu + F,

{
u(0) = u0

u′(0) = u1

(1.1)

(u = u(x, t), F = F(x, t), x ∈ Ω ⊆ R3 and the prime denotes time derivative) while if the body is viscoelastic
(of the Maxwell–Boltzmann type) the evolution in time of the displacement (denoted w = w(x, t) ∈ R

3) is
described by

w′′ = Lw +
∫ t

0

M(t− s)Lw(s) ds + F,

{
w(0) = w0

w′(0) = w1

(1.2)
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(see [13], p. 112 and 113). In fact, the integral should extend from −∞ but in the study of reachability for
linear systems, the control being applied after a time t0, say t0 = 0, it is not restrictive to assume w = 0 for
t < t0 = 0.

We apply a displacement on a part Γ of the boundary of Ω (Γ = ∂Ω is not excluded), both to the elastic
and the viscoelastic body, and we are going to study whether is it possible to control the pair ((velocity of
displacement)/(displacement)) to hit a prescribed target at a certain time T . I.e. we impose the following
boundary condition for t > 0:

u(x, t) = f(x, t) x ∈ Γ u(x, t) = 0 x ∈ ∂Ω \ Γ (1.3)
w(x, t) = f(x, t) x ∈ Γ w(x, t) = 0 x ∈ ∂Ω \ Γ (1.4)

(if Γ = ∂Ω then disregard the condition on ∂Ω \ Γ ).
When the initial condition and the affine term F are zero and we want to stress dependence on the control f ,

we write uf , wf .
Under the assumptions we shall state below, it turns out that (u′(t),u(t)) and (w′(t),w(t)) are

[
H−1(Ω)

]3 ×[
L2(Ω)

]3-valued continuous functions of time so that their values at a fixed time T make sense in this space.
If the initial conditions are zero and also F = 0, the reachable sets at time T are the sets

RE(T ) =
{((

uf
)′

(T ),uf (T )
)
, f ∈ L2

(
0, T ;

[
L2(Γ )

]3)}
,

RV (T ) =
{((

wf
)′

(T ),wf (T )
)
, f ∈ L2

(
0, T ;

[
L2(Γ )

]3)}
.

Note that (both in the purely elastic and in the viscoelastic case) the reachable set increases with time.
Controllability at time T is the property RV (T ) =

[
H−1(Ω)

]3 ×
[
L2(Ω)

]3 for the viscoelastic system, and
RE(T ) =

[
H−1(Ω)

]3 × [
L2(Ω)

]3 in the elastic case.
Under the assumptions we describe below, controllability in the purely elastic case, i.e. for the system (1.1)–

(1.3), has been studied by several authors (see the references in Sect. 1.2). We are going to prove that the
controllability property which holds in the purely elastic case is inherited by the viscoelastic system.

1.1. Notations, assumptions and the main results of this paper

In this section we state the assumptions, we describe preliminary results on the controllability of the elastic
system and we state our main results, which will be proved in the next sections.
Assumption A) We assume:

• The kernel M(t) is of class H2(0, T ) for every T > 0.
• The region Ω ⊆ R3 is bounded and ∂Ω is of class C2.
• We assume that both the Lamé constants λ and μ are positive and constant (i.e. the body is homogeneous).
• The subset Γ of ∂Ω will be called the active part of the boundary. The first assumption on Γ is that it is

relatively open in ∂Ω.

Known facts for the elastic system (1.1) with boundary conditions (1.3), proved in the references cited in
Sect. 1.2:

• Let T > 0 and f = 0. Let F ∈ L1
(
0, T ;

[
L2(Ω)

]3), u0 ∈ [H1
0(Ω)]3, u1 ∈ [L2(Ω)]3. Then

t �→ u(t) ∈ C
(
[0, T ]; [H1

0(Ω)]3
)
∩ C1

(
[0, T ]; [L2(Ω)]3

)
.

• Let T > 0. Let F ∈ L1
(
0, T ; [L2(Ω)]3

)
, f ∈ L2

(
0, T ; [L2(Γ )]3

)
and u0 ∈ [L2(Ω)]3, u1 ∈ [H−1(Ω)]3. Then

t �→ u(t) ∈ C
(
[0, T ]; [L2(Ω)]3

)
∩ C1

(
[0, T ]; [H−1(Ω)]3

)
.
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• There exist relatively open subsets Γ of ∂Ω and times T such that the purely elastic system is controllable
at time T , i.e.

RE(T ) =
[
H−1(Ω)

]3 × [
L2(Ω)

]3
. (1.5)

Assumption B) The active part Γ of ∂Ω and T > 0 are chosen in such a way that the purely elastic system (1.1)
with boundary control (1.3) is controllable in time T , i.e. equality (1.5) holds.

Remark 1.1 (On the notations). From now on, for the sake of readability, we drop the exponent 3 and we
write simply L2(Ω), H1

0(Ω), H−1(Ω) instead of
[
L2(Ω)

]3, [H1
0(Ω)

]3, [H−1(Ω)
]3.

We recall the following integration by parts formula, which we shall repeatedly use:∫
Ω

(Lu) · φdx =
∫

Γ

(T u) · φdΓ −
∫

Γ

(T φ) · u dΓ +
∫

Ω

u · (Lφ) dx. (1.6)

The boundary operator T , the boundary traction, is:

T φ = μ (n · ∇)φ+ (λ+ μ) (∇ · u)n

where n is the exterior normal to ∂Ω.
The following property, known as (output) admissibility or direct inequality is proved for example in ([11],

Chap. IV):

Lemma 1.2. Let u solve (1.1) and (1.3) with f = 0. For every T > 0 there exists a number M such that

|T u|2L2(0,T ;L2(Γ )) ≤M
(
|u0|2H1

0(Ω)
+ |u1|2L2(Ω) + |F|2L1(0,T ;L2(Ω))

)
. (1.7)

Note that the inequality usually proved is

|γ1u|2L2(0,T ;L2(Γ )) ≤M
(
|u0|2H1

0(Ω) + |u1|2L2(Ω) + |F|2L1(0,T ;L2(Ω))

)
(γ1 is the normal derivative on ∂Ω) from which (1.7) follows because u = 0 on ∂Ω implies ∇uk = γ1uk for
every component uk of u.

Our first, ancillary, result is as follows.

Theorem 1.3. Let Assumption A) hold. Then:

(1) Let F ∈ L1(0, T ; L2(Ω)) and f = 0. System (1.2) with initial conditions w(0) = w0 ∈ H1
0(Ω), w′(0) = w1 ∈

L2(Ω) admits a unique solution w ∈ C
(
[0, T ]; H1

0(Ω)
)
∩ C1

(
[0, T ]; L2(Ω)

)
for every T > 0.

(2) Let F ∈ L1(0, T ; L2(Ω)). System (1.2) with initial conditions w(0) = w0 ∈ L2(Ω), w′(0) = w1 ∈
H−1(Ω) and boundary control f ∈ L2(0, T ; L2(Γ )) admits a unique solution w ∈ C

(
[0, T ]; L2(Ω)

)
∩

C1
(
[0, T ]; H−1(Ω)

)
for every T > 0.

(3) Let f = 0, w0 ∈ H1
0(Ω), w1 ∈ L2(Ω) and let w solve (1.2) and (1.3). Then, for every T > 0 and every

Γ ⊆ ∂Ω there exists M such that

|T w|2L2(0,T ;L2(Γ )) ≤M
(
|w0|2H1

0(Ω) + |w1|2L2(Ω) + |F|2L1(0,T ;L2(Ω))

)
. (1.8)

This inequality is the direct inequalities of equation (1.2).

We noted already that the statement of Theorem 1.3 holds when M = 0.
The control result which we intend to prove is:

Theorem 1.4. Let Assumptions A) and B) hold so that RE(T ) = H−1(Ω) × L2(Ω) and let T1 > T . Then,
system (1.2), (1.4) is controllable at time T1, i.e. RV (T1) = H−1(Ω) × L2(Ω).
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The proof is based on two main steps. Step 1) proves that if the purely elastic system (1.1) is controllable at
time T then the reachable set RV (T ) of the viscoelastic system is closed with finite codimension in H−1(Ω) ×
L2(Ω). Thanks to the fact that the reachable set is increasing, this holds at every T1 ≥ T . Step 2) proves that
if the purely elastic system is controllable at time T and T1 > T then we have

RV (T1) = H−1(Ω) × L2(Ω).

The organization of the paper is as follows: the next subsection recalls previous results while Section 2 presents
preliminaries on the cosine operator theory and the proof of Theorem 1.3.

The two steps of the proof of Theorem 1.4 are in Section 1.4.

1.2. References to previous work and preliminaries

Controllability of the Navier equation (1.1) has been studied in several papers, of which we cite [7, 8, 11, 22].
The proofs in these papers are based on the inverse inequality, obtained using multiplier methods, i.e. it is
proved that if Γ and T are suitably chosen then there exists m > 0 such that

m
(
|u0|2H1

0(Ω) + |u1|2L2(Ω)

)
≤
∫ T

0

∫
Γ

[
μ|γ1u|2 + (λ+ μ)|∇ · u|2

]
dΓ dt. (1.9)

Here it is assumed f = 0, F = 0 and of course u0 ∈ H1
0(Ω), u1 ∈ L2(Ω). As noted in ([11], p. 228), this inequality

implies

m
(
|u0|2H1

0(Ω) + |u1|2L2(Ω)

)
≤
∫ T

0

∫
Γ

|T u|2 dΓ dt (1.10)

(for a different m > 0) and this is the “dual” formulation of the definition of controllability.
We mention that the inverse inequality in the paper [8] is proved also if the Lamé coefficients are (slowly)

space varying and that isotropy is not assumed in [22].
In this paper, systems (1.1) and (1.2) are studied using a cosine operator approach and also moment methods.

Let us define the following operators in L2(Ω):

domA = H2(Ω) ∩ H1
0(Ω) , Aφ = Lφ, A = i(−A)1/2 . (1.11)

The operator A is selfadjoint with compact resolvent. Hence, L2(Ω) admits an orthonormal basis of eigenvectors
of A. Let it be denoted {φn} and let −λ2

n be the eigenvalue of φn (it is known that the eigenvalues are negative
and we assume that they are ordered in such a way that λn ≤ λn+1). The operator A generates a C0-group of
operators on L2(Ω) so that we can define the operators

R+(t) =
1
2
[
eAt + e−At

]
, R−(t) =

1
2
[
eAt − e−At

]
(the operator R+(t) is called the cosine operator generated by A). Note that t �→ R+(t)u and t �→ R−(t)u belong
to L

(
L2(Ω),C

(
[0, T ],L2(Ω)

))
and also to L

(
H1

0(Ω),C
(
[0, T ],H1

0(Ω)
))

.
The operators R+(t) and R−(t) have the following expansions in series of {φn}

R+(t)

(
+∞∑
n=1

αnφn

)
=

+∞∑
n=1

(αn cosλnt)φn(x),

R−(t)

(
+∞∑
n=1

αnφn

)
= i

(
+∞∑
n=1

(αn sinλnt)φn(x)

)
. (1.12)
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The solutions of problem (1.1)–(1.3) are given by (see [4])

u(t) = R+(t)u0 + A−1R−(t)u1 + A−1

∫ t

0

R−(t− s)F(s) ds−A
∫ t

0

R−(t− s)Df(s) ds. (1.13)

The operator D in this formula is the operator f �→ u = Df where u solves

Lu = 0,

{
u(x, t) = f(x, t) x ∈ Γ,

u(x, t) = 0 x ∈ ∂Ω \ Γ.

It is known (see [6], Thm. 3.6) that D ∈ L
(
L2(∂Ω),L2(Ω)

)
and, as noted in ([6], p. 796), it takes values in

H1/2(Ω) = dom(−A)(1/4)−ε (ε > 0), hence it is a compact operator.
We use repeatedly the fact that when u ∈ domA we have

T u = −D∗Au (1.14)

(a fact that can be proved using the integration by parts (1.6) as in [10], p. 181).
The cosine operator approach to controllability of systems with persistent memory, when u = u ∈ R,

w = w ∈ R and L = Δ, was first used in [14] where the existence of the control time was proved, but the
control time itself was not identified. The control time was identified in dimension d = 1 in subsequent papers
and using moment methods, see for example [2, 12, 15, 16] and for the scalar valued wave equation in Ω ⊆ R3

in [17]. In this paper we combine the cosine operator method and the moment method in order to get a proof of
controllability for equation (1.2). This is based on the use of the following known estimates for the eigenvalues
of the operator A (see [5, 21]): there exist m > 0 and M such that

m
(
n2/3

)
≤ λ2

n ≤M
(
n2/3

)
. (1.15)

2. Cosine operators and the proof of Theorem 1.3

Now we prove Theorem 1.3 in the case M �= 0. The proof of the items (1) and (2) is similar to that in ([18],
Chap. 2) and it is only sketched. The first step is a definition of the solutions of problem (1.2)–(1.4). We first
apply formally the MacCamy trick. Let R(t) be the resolvent kernel of M(t), given by

R(t) +
∫ t

0

M(t− s)R(s) ds = M(t). (2.1)

We “solve” the Volterra integral equation (1.2) in the “unknown” Lw. We get

Lw(t) = w′′(t) − F(t) −
∫ t

0

R(t− s)[w′′(s) − F(s)] ds.

We integrate by parts and we get (we recall M ∈ H2)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w′′ = Lw + aw′(t) + bw(t) +
∫ t

0

K(t− s)w(s) ds+ F1(t),

F1(t) = F(t) +
∫ t

0

R(t− s)F(s) ds−R(t)w1 −R′(t)w0,

a = R(0), b = R′(0), K(t) = R′′(t)

(2.2)

(no unbounded operator in the memory kernel) and the initial and boundary conditions (1.4). I.e. MacCamy
trick removes the differential operator from the memory term.



1654 L. PANDOLFI

Remark 2.1. The term aw′(t) can be removed from the right hand side if we perform the transformation
v(t) = e−(a/2)tw(t). The effect on the initial conditions is that v(0) = v0 = w0 while v′(0) = v1 = w1−(a/2)w0

and the control is replaced by e−(a/2)tf(t). Of course this has no influence on controllability and so with obvious
modifications of the definitions of f(t), F1(t), b and K(t) we shall work with (2.2) but with a = 0 (we shall use
the expression v′(0) = w1 − (a/2)w0 when needed for clarity). Moreover note that the kernel K(t) is square
integrable.

We explicitly note that if (w0,w1) ∈ H1
0(Ω) × L2(Ω) (respectively (w0,w1) ∈ L2(Ω) × H−1(Ω)) then F1(t)

belongs to L1(0, T ; L2(Ω)) (respectively to L1(0, T ; H−1(Ω))) and it depends continuously on (w0,w1) in the
specified spaces. So, the direct inequality hold for (2.2) when f = 0.

Using formula (1.13) we get the following Volterra integral equation of the second kind for w(t):

w(t) = u(t) + A−1

∫ t

0

R−(t− s)F1(s) ds+ A−1L ∗ w (2.3)

where

L(t)w = bR−(t)w +
∫ t

0

K(t− r)R−(r)w dr (2.4)

and ∗ denotes the convolution:

(L ∗ w) (t) =
∫ t

0

L(t− s)w(s) ds.

The function u(t) in (2.3) is the solution of (1.1) when u0 = w0 and u1 = w1 − (a/2)w0 and F(t) = 0 (recall
a = 0, see Rem. 2.1):

u(t) = −A
∫ t

0

R−(t− s)Df(s) ds+R+(t)u0 + A−1R−(t)u1.

Now we observe that the function

t �→ A−1

∫ t

0

R−(t− s)F1(s) ds

belongs to C
(
[0, T ]; H1

0(Ω)
)
∩C1

(
[0, T ]; L2(Ω)

)
if (w0,w1) ∈ H1

0(Ω)×L2(Ω) and it belongs to C
(
[0, T ]; L2(Ω)

)
∩

C1
(
[0, T ]; H−1(Ω)

)
if (w0,w1) ∈ L2(Ω) × H−1(Ω) and this is precisely the regularity of u(t). The fact that

the solution of a Volterra integral equation retains the regularity of the affine term proves items (1) and (2) in
Theorem 1.3. Now we prove the direct inequality, i.e. the statement (3). In this proof, T > 0 is fixed and we
use M to denote constants (possibly depending on T ) which are not the same at every occurrence.

Remark 2.2. We shall use the following observation: the initial conditions enters into the affine term (and w1

is transformed to w1 − (a/2)w0) when we used MacCamy trick. If the original equation to be studied is

ψ′′ = Lψ + bψ(t) +
∫ t

0

K(t− s)ψ(s) ds,

⎧⎪⎨
⎪⎩
ψ(0) = ξ

ψ′(0) = η

ψ = 0 on ∂Ω

Then ψ solves the Volterra integral equation (2.3) with F1 = 0 and u(t) = R+(t)ξ + A−1R−(t)η.

In the proof of the statement (3) of Theorem 1.3 we assume f = 0, w0 ∈ H1
0(Ω), w1 ∈ L2(Ω) and F ∈

L1(0, T ; L2(Ω)). Let

ũ(t) = u(t) + A−1

∫ t

0

R−(t− s)F1(s) ds

= R+(t)u0 + A−1R−(t)u1 + A−1

∫ t

0

R−(t− s)F1(s) ds,

ũ(0) = u0 = w0 ∈ H1
0(Ω), ũ′(0) = u1 = w1 −

a

2
w0 ∈ L2(Ω).
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Picard iteration applied to (2.3) gives

w(t) = ũ(t) + A−1

∫ t

0

L(t− s)ũ(s) ds+A−1

[
+∞∑
n=2

A−n+2
(
L(∗n)

)
∗ ũ

]
(t) (2.5)

where L(∗n) denotes iterated convolution.
We prove the direct inequality in the case w0 ∈ D(Ω), w1 ∈ D(Ω) and F ∈ D(Ω × (0, T )). In this case,

w ∈ C
(
[0, T ]; H1

0(Ω) ∩ H2(Ω)
)

= C ([0, T ]; domA). The inequality is then extended to w0 ∈ H1
0(Ω), w1 ∈ L2(Ω),

F ∈ L1(0, T ; L2(Ω)) by continuity and density.
Using (1.14) we see that there exists M = M(T ) such that

|T w|2L2((0,T );L2(Γ )) ≤M

(
|T ũ|2L2((0,T );L2(Γ ))

+
∣∣∣∣T

(
A−1

∫ t

0

L(t− s)ũ(s) ds
)∣∣∣∣

2

L2(0,T ;L2(Γ ))

+

∣∣∣∣∣D∗
(

+∞∑
n=2

A−n+2
(
L(∗n)

)
∗ ũ

)∣∣∣∣∣
2

L2(0,T ;L2(Γ ))

⎞
⎠ .

The known properties of the solution u of the elastic system (1.1) implies that (for a possibly different constant
M = MT )

|T ũ|2L2((0,T );L2(Γ )) +

∣∣∣∣∣D∗
(

+∞∑
n=2

A−n+2
(
L(∗n)

)
∗ ũ

)∣∣∣∣∣
2

L2(0,T ;L2(Γ ))

≤

M
(
|w0|2H1

0(Ω) + |w1|2L2(Ω) + |F|2L1(0,T ;L2(Ω))

)
.

In order to complete the proof we show that we have also∣∣∣∣T
(
A−1

∫ t

0

L(t− s)ũ(s) ds
)∣∣∣∣

2

L2(0,T ;L2(Γ ))

≤M
(
|w0|2H1

0(Ω) + |w1|2L2(Ω) + |F|2L1(0,T ;L2(Ω))

)
.

We note that

A−1

∫ t

0

L(t− s)ũ(s) ds = A−1

∫ t

0

L(t− s)u(s) ds+A−1

∫ t

0

L(t− s)
∫ s

0

R−(s− r)F1(r) dr ds

and the required inequality holds for the second addendum. The first addendum is

A−1

∫ t

0

L(t− s)u(s) ds = A−1

[∫ t

0

bR−(t− s)R+(s)u0 ds+
∫ t

0

K(r)
∫ t−r

0

R−(t− r − s)R+(s)u0 dr ds
]

+A−1

[∫ t

0

bR−(t− s)R−(s)u1 ds+
∫ t

0

K(r)
∫ t−r

0

R−(t− r − s)R−(s)u1 dr ds
]
.

Using (1.14), we see that:∣∣∣∣T A−1

[∫ t

0

bR−(t− s)R−(s)u1 ds+
∫ t

0

K(r)
∫ t−r

0

R−(t− r − s)R−(s)u1 dr ds
]∣∣∣∣ ≤

M |u1|L2(Ω) ≤M
(
|w0|L2(Ω) + |w1|L2(Ω)

)
≤M

(
|w0|H1

0(Ω) + |w1|L2(Ω)

)
(recall u1 = w1 − (a/2)w0).
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We consider the term containing w0 using

R−(s)R+(r) =
1
2

(R−(s+ r) +R−(s− r)) .

So we have

T A−1

∫ t

0

R−(t− s)R+(s)w0 ds =
t

2
T A−1R−(t)w0 +

1
2
D∗R−(t)w0.

The second addendum, as an element of C
(
[0, T ]; L2(Γ )

)
, depends continuously on w0 ∈ H1

0(Ω).
The function A−1R−(t)w0 is the solution of (1.1) with f = 0, F = 0 and initial data u0 = 0, u1 = w0 ∈

H1
0(Ω) ⊆ L2(Ω) so that

|T A−1R−(t)w0|2L2(0,T ;L2(Γ )) ≤M |w0|2L2(Ω) ≤M |w0|2H1
0(Ω).

The remaining iterated integral is treated analogously.
See [19, 20] for similar arguments and [14] for a different proof (in the case of the wave equation).

3. The proof of controllability

In this section we prove the controllability result in Theorem 1.4. As noted, the proof is in two steps. Let
RE(T ) = H−1(Ω) × L2(Ω). Then we prove

• RV (T ), at the same time T (and so also at larger times), is closed with finite codimension.
• if ε > 0 and φ ⊥ RV (T + ε) then φ = 0 and so RV (T + ε) = H−1(Ω) × L2(Ω).

3.1. The first step

The first step is simple and it is based on the Picard formula (2.5). Let w0 = 0, w1 = 0 and F = 0 so that
ũ = u. We consider the operator f �→ wf (T ) which, according to (2.5), is the sum of three terms, which are
linear and continuous as functions of f ∈ L2(0, T ; L2(Γ )). The first one is

f �→ u(T ) = uf (T ) :

this operator is surjective by assumptions (in fact, even more: f �→
(

d
dtu

f (T ),uf (T )
)

is surjective). The third
operator

f �→ A−1

[
+∞∑
n=2

A−n+2
(
L(∗n)

)
∗ u

]
(T )

takes values in domA = H1
0(Ω) ∩ H2(Ω), and so it is a compact operator from L2(0, T ; L2(Γ )) to L2(Ω).

The operator D takes values in H1/2(Ω) and this subspace is invariant under eAt. So the operators of
f ∈ L2(0, T ; L2(Γ ))

f �→ A−1

∫ T

0

L(T − s)uf (s) ds = −
∫ T

0

L(T − s)
∫ s

0

R−(s− r)Df(r) dr ds

with values in L2(Ω) is compact.
The function f �→ w′(T ), with values in H−1(Ω) is treated analogously. Note that

d
dt

A−1L(t)u = bR+(t)u +
∫ t

0

K(r)R+(t− r)u dr
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belongs to C
(
[0, T ]; L2(Ω)

)
and L2(Ω) is compactly embedded in H−1(Ω) and so the transformation

f �→
[

d
dt

A−1

∫ t

0

L(t− s)u(s) ds
]

t=T

from L2(0, T ; L2(Γ )) to H−1(Ω) is compact. The same holds for the derivative of the last term in (2.5) computed
for t = T , which is

A−1

∫ t

0

R+(t− r)
[
bg(r) +

∫ r

0

K(t− r − s)g(s) ds
]

dr,

g = u +
+∞∑
n=3

A−n+2L(∗(n−1)) ∗ u.

In conclusion, the reachable set RV (T ) is the image of the operator f �→
(

d
dtu

f (T ),uf (T )
)
, which is surjective

in H−1(Ω) × L2(Ω) since we assumed that system (1.1) is controllable at time T , perturbed by the addition of
a compact operator. This implies that RV (T ) is closed with finite codimension.

3.2. The second step

The second step is more involved and requires several substeps.

3.2.1. Step 2-1: The elements of [RV (T )]⊥

We elaborate on formula (2.5) which can be written as:

w(t) = ũ(t) +
∫ t

0

H(s)ũ(t− s) ds, H(t)v =
+∞∑
n=1

A−nL(∗n)v. (3.1)

We study the reachable set, hence we assume F = 0 and null initial conditions, so that

ũ(t) = u(t) = Av(t), v(t) =
∫ t

0

R−(t− s)D (−f(s)) ds.

Of course, in the study of the reachable set, −f can be renamed f .
We characterize the elements (ξ,η) ∈ H1

0(Ω)×L2(Ω) which annihilates RV (T ) (here T > 0 is arbitrary). I.e.
we characterize those elements (ξ,η) ∈ H1

0(Ω) × L2(Ω) such that

〈〈
(
wf

)′
(T ), ξ〉〉 +

∫
Ω

wf (x, T )η(x) dx = 0

for every f ∈ L2(0, T ; L2(Γ )). The crochet denotes the pairing of H−1(Ω) and H1
0(Ω). This set of annihilators is

shortly denoted [RV (T )]⊥ and we write (ξ,η) ⊥ RV (T ).
Note that if it happens that w′(T ) ∈ L2(Ω) then

〈〈w′(T ), ξ〉〉 =
∫

Ω

w′(x, T )ξ(x) dx.

Of course we can study RV (T )⊥ by assuming f ∈ D(Γ × (0, T )) so that the following computations are
justified. First we note that when f ∈ D(Γ × (0, T )) we have w(t) ∈ L2(Ω) since

w′(t) = A
∫ t

0

R−(s)Df ′(t− s) ds+ A
∫ t

0

H(s)
∫ t−s

0

R−(r)Df ′(t− s− r) dr ds.
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Hence (in the last step we integrate by parts in time and we note that R−(t) and H(t) commute),

〈〈w′(T ), ξ〉〉 =
∫

Ω

ξ(x)A
∫ T

0

R−(T − s)Df ′(s) ds dx (3.2)

+
∫

Ω

ξ(x)A
∫ T

0

H(s)
∫ T−s

0

R−(T − s− r)Df ′(r) dr ds dx

=
∫

Γ

∫ T

0

f ′(s) [D∗AR−(T − s)ξ] ds dΓ

+
∫

Γ

∫ T

0

f ′(r)

[
D∗A

∫ T−r

0

H(s)R−(T − r − s)ξ ds

]
dr dΓ

=
∫

Γ

∫ T

0

f(r)

{
D∗A

[
R+(T − r)ξ +

∫ T−r

0

H(s)R+(T − r − s)ξ ds

]}
dr dΓ. (3.3)

Note that the last integral makes sense thanks to the direct inequality, because (3.1) shows that the bracket is
the solution of (2.2) with f = 0, F = 0 and initial condition w(0) = ξ ∈ H1

0(Ω), w′(0) = 0.
Analogously,

∫
Ω

η(x)

[
A
∫ T

0

R−(T − r)Df(r) dr + A
∫ T

0

H(s)
∫ T−s

0

R−(r)Df(T − s− r) dr ds

]
dx

=
∫ T

0

∫
Γ

f(r)D∗AR−(T − r)η dr dΓ +
∫ T

0

∫
Γ

f(r)D∗A
∫ T−r

0

H(T − r − s)R−(s)η ds dΓ dr

=
∫ T

0

∫
Γ

f(r)

{
D∗A

[
A−1R−(T − r)η +

∫ T−r

0

H(T − r − s)A−1R−(s)η ds

]}
dΓ dr. (3.4)

The bracket is the solution of (1.2) with f = 0, F = 0 and initial condition w(0) = 0, w′(0) = η ∈ L2(Ω) so
that the brace belongs to L2(0, T ; L2(Γ )) thanks to the direct inequality.

We have (ξ,η) ⊥ RV (T ) when (3.3) and (3.4) sum to zero. Taking into account that the previous computation
holds for every f ∈ D(Γ × (0, T )) (which is dense in L2(0, T ; L2(Γ )) we get

D∗A
{
u(t) +

∫ t

0

H(t− r)u(r) dr
}

= 0, u(t) = R+(t)ξ + A−1R−(t)η.

Let

ψ(t) = u(t) +
∫ t

0

H(t− r)u(r) dr.

The function ψ(t) is the solution of the Volterra integral equation

ψ(t) = u(t) + A−1

∫ t

0

L(t− s)ψ(s) ds.

We compare with Remark 2.2 and we see that ψ(t) solves

ψ′′ = Lψ + bψ(t) +
∫ t

0

K(t− s)ψ(s) ds,

⎧⎪⎨
⎪⎩
ψ(0) = ξ

ψ′(0) = η

ψ = 0 on ∂Ω.

(3.5)

Note that the operator L is not in the memory term and that K(t) is square integrable.
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In conclusion, we can state:

Theorem 3.1. We have (ξ,η) ⊥ RV (T ) if and only if the solution ψ(x, t) of the problem (3.5) satisfy the
condition

D∗Aψ = 0. (3.6)

As we noted, D∗A = −T when applied to the elements of domA, in particular when ξ ∈ D(Ω) and η ∈ D(Ω).
The direct inequality implies that T ψ(·) ∈ L

(
H1

0(Ω) × L2(Ω),L2(0, T ; L2(Γ )
)

and so T ψ(·) is the continuous
extension of D∗Aψ(·) to every initial condition in H1

0(Ω) × L2(Ω). Hence we can also state:

Corollary 3.2. We have (ξ,η) ⊥ RV (T ) if and only if the solution ψ(x, t) of the problem (3.5) satisfies

T ψ = 0 in L2(0, T ; L2(Γ )).

3.2.2. Step 2-2: Fourier expansion and regularity of the elements of [RV(T + ε)]⊥

We recall that A is a selfadjoint operator with compact resolvent so that its spectrum is a sequence of
eigenvalues and there exists an orthonormal basis {φn} whose elements are eigenvectors of A. We denoted −λ2

n

the eigenvalue of φn (eigenvalues can be repeated, each one a finite number of times) and we assumed that the
order has been chosen so to have λn ≤ λn+1. The bases of respectively H1

0(Ω) and H−1(Ω) which correspond
to the orthonormal basis {φn} of the eigenvectors of A in L2(Ω) are respectively {φn/λn} and {λnφn}.

Let (ξ,η) ∈ [RV (T + ε)]⊥, (ξ,η) ∈ H1
0(Ω) × L2(Ω). We can expand in series of the eigenvectors and we get

ξ(x) =
+∞∑
n=1

φn(x)ξn, η(x) =
+∞∑
n=1

φn(x)ηn, {λnξn} ∈ l2, {ηn} ∈ l2. (3.7)

First we prove the following result (which holds also with ε = 0):

Lemma 3.3. Assume RE(T ) = H−1(Ω)×L2(Ω) and ε ≥ 0. Let (ξ,η) ∈ [RV (T + ε)]⊥ and (ξ,η) �= 0. Then at
least one of the series in (3.7) is not a finite sum.

Proof. Let us denote ψ(t) the solution of equation (3.5) with ψ(0) = ξ and ψ′(0) = η and let us assume that
both the expansions (3.7) are finite sums, of N terms at most. We expand also the solution ψ(t),

ψ(t) =
N∑

n=1

φn(x)
[
ψ0

n(t)ξn + ψ1
n(t)ηn

]

where both ψ0
n(t) and ψ1

n(t) solve the scalar equation

ψ′′
n(t) = −λ2

nψn(t) + bψn(t) +
∫ t

0

K(t− s)ψn(s) ds

with initial conditions respectively

ψ0
n(0) = 1, (ψ0

n)′(0) = 0, ψ1
n = 0, (ψ1

n)′(0) = 1.

The orthogonality condition is

0 = T ψ(t) =
N∑

n=1

(T φn(x))
[
ψ0

n(t)ξn + ψ1
n(t)ηn

]
. (3.8)

This sum cannot have only one nonzero addendum. To see this, let ξn = 0 and ηn = 0 for n �= n0 and either
ξn0 �= 0 or ηn0 �= 0 (or both). Computing either (3.8) or its derivative with t = 0 we get(

T φn0
(x)

)
= 0. (3.9)
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It is a fact that the equality (3.9) cannot hold if Γ has been chosen in such a way that the elastic system (1.1)
is controllable at some time T . The proof, based on the inverse inequality of equation (1.1), is the same as that
with d = 1 and can be found in [9] (see also [18], Lem. 4.3).

Even more: the nonzero elements of (3.8) must correspond to at least two different eigenvalues. In fact,
equation (3.8) computed with t = 0 gives

T
(

N∑
n=1

ξnφn(x)

)
= 0

and if every φn correspond to the same eigenvalue −λ2 then
∑N

n=1 ξnφn(x) is an eigenvector of A. As we noted,
the equality is impossible unless the sum is zero.

Analogous argument if the derivative of both the sides of (3.8) is computed with t = 0.
Now we prove that if the sum is finite then we can reduce ourselves to have a sum of terms which correspond

to only one eigenvalue, and we proved that this is not possible. In fact, computing the second derivatives of (3.8)
we get

N∑
n=1

λ2
n (T φn(x))

[
ψ0

n(t)ξn + ψ1
n(t)ηn

]
= 0 (3.10)

since the other terms appearing in the computation of the derivative sum to zero thanks to (3.8).
We subtract (3.8), multiplied with λ2

N , and (3.10) (as in [19]) so to obtain a new sum like (3.8) but with at
most N − 1 terms:

N−1∑
n=1

(T φn(x))
{
ψ0

n(t)
[
λ2

n − λ2
N

]
ξn + ψ1

n(t)
[
λ2

n − λ2
N

]
ηn

}
= 0.

After a finite number of iteration we remain with terms which correspond to the same eigenvalue (possibly,
only one term) and we have seen that this is impossible. �

Now we have this information, that at least one of the series (3.7) is not a finite sum. So, the orthogonality
condition (3.8) has to be replaced with

0 = T ψ(t) =
+∞∑
n=1

(T φn(x))
[
ψ0

n(t)ξn + ψ1
n(t)ηn

]
(3.11)

(the exchange of T and the series is justified by the direct inequality). We are going to prove that also this
case is impossible and so it must be ξ = 0 and η = 0, but now we need the assumption that the purely elastic
system (1.1) is controllable at time T and that (ξ,η) ∈ [RV (T + ε)]⊥ with ε > 0; i.e. that the equality (3.11)
holds in L2(0, T + ε; L2(Γ )). The condition ε > 0 is used in the proof of the following lemma:

Lemma 3.4. Let RE(T ) = H−1(Ω) × L2(Ω) and let ε > 0. If (ξ,η) ∈ [RV (T + ε)]⊥ then

ξn =
ξ̃n
λ3

n

, ηn =
η̃n

λ2
n

, {ξ̃n} ∈ l2, {η̃n} ∈ l2. (3.12)

Proof. We expand in series of the eigenfunctions φn the solution u(t) of the purely elastic problem (1.1)–(1.3)
when F = 0, u0 = 0 and u1 = 0. Using (1.1) and (1.6) (recall that −f was renamed f) we get:

u(t) =
+∞∑
n=1

φn(x)un(t), u′′n = −λ2
nun +

∫
Γ

(T φn) · f(t) dΓ.
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Hence,

un(t) =
1
λn

∫ t

0

sinλn(t− s)
[∫

Γ

(T φn) · f(s) dΓ
]

ds

and we have the following expansions of u(t) and u′(t) (we compute with u0 = 0, u1 = 0 and F = 0):

u(t) = −
+∞∑
n=1

φn(x)
∫ t

0

∫
Γ

(
T φn

λn
sinλn(t− s)

)
· f(s) dΓ ds,

u′(t) = −
+∞∑
n=1

(λnφn(x))
∫ t

0

∫
Γ

(
T φn

λn
cosλn(t− s)

)
· f(s) dΓ ds.

So, controllability is equivalent to the surjectivity of the map

f �→
{[∫ T

0

∫
Γ

(
T φn

λn
cosλns

)
· f(T − s) dΓ ds

]
,

[∫ T

0

∫
Γ

(
T φn

λn
sinλns

)
· f(T − s) dΓ ds

]}
∈ l2 × l2.

Here l2 = l2(N), N = 1, 2, . . . This transformation is continuous since f �→ (u′(T ),u(T )) is continuous from
L2(0, T ; L2(Γ )) to H−1(Ω) × L2(Ω).

As usual with Fourier series, it is convenient to introduce

λ2
−n = −λ2

n, φ−n = φn

and we see that controllability of the purely elastic system is equivalent to surjectivity of the following operator
M (here Z

′ = Z \ {0} and l2 = l2(Z′) = l2(Z′; C)):

M ∈ L
(
L2

(
0, T ; L2(Γ )

)
, l2

)
: Mf =

{∫ T

0

∫
Γ

(
T φn

λn
eiλns

)
· f(T − s) dΓ ds

}
(3.13)

(see Lems. 4.6 and 5.1 in [18]): controllability of problem (1.1) and (1.3) is equivalent to the surjectivity of the
bounded operator M in (3.13) from L2(0, T ; L2(Γ )) to l2(Z′; C). In turn, this is equivalent to the fact that the
sequence {(

Ψne
iλnt

)}
n∈Z′ where Ψn =

1
λn

T φn

is a Riesz sequence in L2(0, T ; L2(Γ )) i.e. it can be transformed to an orthonormal sequence using a linear
bounded and boundedly invertible transformation.

We need the following pieces of information (see [18], Chap. 3, for details on the Riesz sequences):

Lemma 3.5. The following properties hold:

(1) if {en} is a Riesz sequence in a Hilbert space H then
∑
αnen converges in H if and only if {αn} ∈ l2;

(2) if
{
kne

iλnt
}

is a Riesz sequence in L2(0, T ;H) (H is a Hilbert space and kn ∈ H) and if
∑
αnkne

iλnt

converges in L2(0, T + ε;H) to an H1 function then αn = δn/λn and {δn} ∈ l2. This result requires ε > 0.

We continue the proof of Lemma 3.4: we go back to examine the orthogonality condition T ψ(t) = 0 which
can be written as:

+∞∑
n=1

ΨnZn(t) = 0, Zn(t) = λn

[
ψ0

n(t)ξn + ψ1
n(t)ηn

]
. (3.14)
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Hence Zn(t) solves

Z ′′
n = −λ2

nZn + bZn +
∫ t

0

K(t− s)Zn(s) ds, Zn(0) = λnξn, Z ′
n(0) = λnηn. (3.15)

So we have

Zn(t) = (λnξn) cosλnt+ ηn sinλnt+
b

λn

∫ t

0

sinλn(t− s)Zn(s) ds

+
1
λn

∫ t

0

sinλn(t− s)
∫ s

0

K(s− r)Zn(r) dr ds (3.16)

(note that ξn and ηn are real numbers and that {λnξn} ∈ l2 because ξ ∈ H1
0(Ω)).

Gronwall inequality shows that the sequence of continuous functions {Zn(t)} is uniformly bounded on compact
intervals.

We have
(λnξn) cosλnt+ ηn sinλnt = eiλntcn + e−iλntc̄n, cn =

1
2

[λnξn − iηn] .

We introduce the notations

Un = eiλntcn + e−iλntc̄n, Sn = sinλnt, Cn = cosλnt, Hn = bSn + Sn ∗K.

Three steps of Picard iteration applied to (3.16) give

Zn = Un +
1
λn
Un ∗

[
4∑

ν=1

1
λν−1

n

H(∗ν)
n

]
+

1
λ5

n

Mn

where Mn = Mn(t) are continuous functions, and the sequences {Mn(t)}, {(1/λn)M ′
n(t)} are bounded on

bounded intervals. In fact,

Mn = Un ∗
[

7∑
ν=5

1
λν−5

n

H(∗ν)

]
+

1
λ3

n

H(∗8)
n ∗ Zn.

The orthogonality condition (3.14) takes the form

−
+∞∑
n=1

ΨnUn =
+∞∑
n=1

Ψn
1
λn
Un ∗

[
4∑

ν=1

1
λν−1

n

H(∗ν)
n

]
+

+∞∑
n=1

Ψn
1
λ5

n

Mn. (3.17)

In fact, we can distribute the series since every one of the obtained series converges since 1) the last series
converges because the estimate (1.15) implies that

+∞∑
n=1

1
λ4

n

< +∞.

2) the previous series converge since Sn ∗ Un is a linear combination of exponentials eiλnt multiplied with a
polynomial of degree at most 1 and our assumption on the time T implies that Ψne

iλnt is a Riesz sequence.
The right hand side of (3.17) is an H1 function on every interval. In fact, computing the derivative of the

right hand side termwise we get the following sum of L2-convergent series, where Vn = U ′
n = eiλnt (iλncn) −

e−iλnt (iλnc̄n):

+∞∑
n=1

Ψn
1
λn

(cn + c̄n)

[
4∑

ν=1

1
λν−1

n

H(∗ν)
n

]
+

+∞∑
n=1

Ψn

(
1
λn
Vn

)
∗
[

4∑
ν=1

1
λν−1

n

H(∗ν)

]
+

+∞∑
n=1

Ψn
1
λ5

n

M ′
n. (3.18)
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Convergence of the series is seen by an argument similar to the one used above, thanks to (1.15) and to the
fact that {(1/λn)M ′

n(t)} is a bounded sequence. So, we can apply Lemma 3.5 and we conclude

cn =
1
λn
c̃n, {c̃n} ∈ l2 hence λnξn =

1
λn
δn, ηn =

1
λn
σn, {δn} ∈ l2, {σn} ∈ l2. (3.19)

We equate the derivative of the left hand side of (3.17) and (3.18) and we find the equality

−
+∞∑
n=1

ΨnVn =
+∞∑
n=1

Ψn
1
λn

(c̃n + ¯̃cn)

[
4∑

ν=1

1
λν−1

n

H(∗ν)
n

]
(3.20)

+
+∞∑
n=1

Ψn

(
1
λn
Vn

)
∗
[

4∑
ν=1

1
λν−1

n

H(∗ν)

]
+

+∞∑
n=1

Ψn
1
λ5

n

M ′
n. (3.21)

Using

cn + c̄n =
1
λn

(c̃n + ¯̃cn) ,
1
λn
Vn(t) =

i

λn

[
eiλntc̃n − e−iλntc̃n

]
we see differentiability of the first and second series on the right hand side. Using again the estimate (1.15) we
see that also the last series is differentiable, since the explicit expression of M ′

n(t) is

1
λ5

n

M ′
n(t) =

1
λ5

n

[
(cn + c̄n)

7∑
μ=5

1
λμ−5

n

H(∗μ)
n + V ′

n ∗
(

7∑
μ=5

1
λμ−5

n

H(∗μ)
n

)]

+
1
λ7

n

(Cn + Cn ∗K) ∗H(∗7)
n ∗ Zn.

In conclusion, the left hand side of (3.21) is an H1 function on every interval [0, T ]. Applying again Lemma 3.5
we get

c̃n =
1
λn
ĉn, {ĉn} ∈ l2 so that λnξn =

1
λ2

n

(
ĉn + ¯̂cn

)
, ηn =

−i
λ2

n

(¯̂cn − ĉn,
)

as we wanted. �

Note that we proved also this result:

Theorem 3.6. The first and the second derivatives of the series in (3.14) can be computed termwise.

3.2.3. Step 2-3: End of the proof

We use Theorem 3.6: the second derivative of (3.14) computed termwise gives the equality

+∞∑
n=1

ΨnZ
′′
n(t) = −

+∞∑
n=1

Ψn

(
λ2

nZn(t)
)
−
∫ t

0

M(t− s)

[
+∞∑
n=1

Ψn

(
λ2

nZn(s)
)]

ds = 0

so that we have also
+∞∑
n=1

Ψnλ
2
nZn(t) =

+∞∑
n=1

(T φn(x))

[
ψ0

n(t)
ξ̃n
λn

+ ψ1
n(t)η̃n

]
= 0. (3.22)

Let N1 be the first index such that ξ2N1
+ η2

N1
�= 0. Combining (3.14) and (3.22) we get the new equality

+∞∑
n=N1

Ψn

(
λ2

N1
− λ2

n

)
Zn(t) =

+∞∑
n=N2

Ψn

(
λ2

N1
− λ2

n

)
Zn(t)

=
+∞∑

n=N2

(T φn(x))

[(
λ2

N1

λ2
n

− 1
)
ξ̃n
λn
ψ0

n(t) +
(
λ2

N1

λ2
n

− 1
)
η̃nψ

1
n(t)

]
= 0
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and N2 > N1. So, the element (ξ1,η1) ∈ H1
0(Ω) × L2(Ω) whose Fourier coefficients are

ξ1n =
(
λ2

N1

λ2
n

− 1
)
ξ̃n
λn
, η1

n =
(
λ2

N1

λ2
n

− 1
)
η̃n, {λnξ̃n} ∈ l2, {η̃n} ∈ l2

is a second element in [RV (T + ε)]⊥.
The elements (ξ,η) and (ξ1,η1) are not colinear, since the Fourier coefficient of index N1 is nonzero for the

first pair, while it is zero for the second one.
Now we use the fact that (ξ1,η1) ∈ H1

0(Ω)×L2(Ω) and we iterate the procedure. We remove the first nonzero
Fourier coefficient of (ξ1,η1) and so we get an element (ξ2,η2) ∈ H1

0(Ω)×L2(Ω) which belongs to [RV (T + ε)]⊥

and which is linearly independent from the previous ones. If the series of (ξ,η) is not a finite sum then the
procedure can be repeated and we get the contradictory statement that [RV (T + ε)]⊥ has infinite codimension.

We combine this fact with Lemma 3.3 and we get ξ = 0, η = 0 as we wanted to prove.

4. An abstract setup

Although every concrete case has its specific features, it makes sense to extract an abstract setup from the
previous arguments. So doing, we shall see the role of the assumptions and possible extensions.

The first assumptions are regularity of M(t) and of the boundary of the bounded region Ω. Controllability
under weaker regularity assumptions has not been studied in the viscoelastic case (in view of the application
of control methods to inverse problems as in [3], also the study of the reachable set on (parts of) unbounded
regions Ω would have its interest).

System (1.2)–(1.4) can be written as

w′′ = A(w −Df) +
∫ t

0

M(t− s)A (w(s) −Df(s)) ds+ F (t)

where w takes values in a Hilbert space H and the control f takes values in a Hilbert space U (in this abstract
setup the use of boldface is not needed).

After the MacCamy trick (and multiplication with an the exponential) we get

w′′(t) = Aw(t) + bw(t) +
∫ t

0

K(t− s)w(s) ds +Bf(t) + F1(t), B = −AD. (4.1)

When f = 0 the solution of this equation will be denoted ψ.
We assumed −A selfadjoint positive with compact resolvent and the existence of σ ∈ (0, 1) such that imB ⊆

(dom(−A)σ), so that A−1B is compact.
Equation (4.1) makes sense in (domA)′ and it turned out that w ∈ C([0, T ], H) ∩ C1

(
[0, T ]

(
dom(−A)1/2

)′)
for every f ∈ L2(0, T ;U). This is a consequence of the corresponding property when M = 0, and it is used to
give a sense to the definition of the reachable set at every time T ≥ 0.

Note that in several applications it will be A = A0 +A1 where A0 has the properties above while A1 will be
A0 bounded (or compact). This case is still to be studied, under suitable assumptions on the perturbation A1.

The previous assumptions and admissibility, i.e. continuity of B∗φ(·) from
((

dom(−A)1/2
)
×H

)
to

L2(0, T ;U) for every T > 0 (when f , F are zero) are what we need to characterize [RV (T )]⊥ (in H ×
dom

(
(−A)1/2

)′
), as in Theorem 3.1 and to prove that dim [RV (T )]⊥ < +∞ if the system with M(t) ≡ 0

is controllable at time T .
In order to conclude controllability of the system with memory, we need the analogous of Step 2-2, hence

of the regularity property in Lemma 3.4. This depends on a new assumption, that the eigenvalues −λ2
n of the

operator A verify
+∞∑
n=1

1
λ2d

n

< +∞. (4.2)
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In the case studied in this paper, condition (4.2) holds with d = 2 and the condition d = 2 has been used
in the proof of Lemma 3.4 when we used tree iteration of Picard method. In general, for elliptic operators,
property (4.2) holds with a suitably large value of d, which depends on dimΩ (see [1], Sects. 13–14). If d > 2,
Lemma 3.4 can still be proved, using more iterations of the Picard method to represent the solution of (3.16).
After that, we can proceed with steps similar to those in Section 3.2 to prove controllability, since B∗φ(t) ≡ 0
in L2(0, T ;U) implies φ(t) ≡ 0 when the system with M(t) ≡ 0 is controllable at time T , thanks to the inverse
inequality.

Note that in this abstract setting the condition that the Lamé coefficients are constant (i.e. the material is
homogeneous) has no role and existing controllability results for nonhomogeneous elastic materials (as in [8]) are
simply lifted to the corresponding viscoelastic case. Even more, if the material is not homogeneous the operator
A is the restriction to H1

0(Ω) ∩ H2(Ω) of the operator ∇ · (aijkl (ui,j + uj,i) (where ,k denotes the kth partial
derivative and aijkl is a tensor with suitable symmetry and positivity properties). Controllability of classes
of purely elastic nonisotropic bodies has been studied (the paper [22] studies controllability of homogeneous
orthotropic materials) and also these results can be extended to viscoelastic materials, using the abstract setting
outlined here.

Finally, we consider again the assumptions on the memory kernel M(t). We assumed that M(t) does not
depend on the space variable x. If the system is not homogeneous then M might depend upon x. It is easy to
conjecture that this case can be handled without much difficulty. A more delicate point is the assumption that
M(t) is real valued. If the material is not isotropic then M(t) might be tensor valued. The extension of the
results in [22] when M(t) is a tensor will require annoying computations.

Acknowledgements. The author thanks the referee and the associated editor for suggesting the introduction of the final
Section 4.
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Astron. Fysik 26 (1939) 19.

[22] J.J Telega and W.R. Bielski, Exact controllability of anisotropic elastic bodies, in Modelling and optimization of distributed
parameter systems, Warsaw, 1995. Chapman & Hall, New York (1996) 254–262.

http://arxiv.org/abs/1407.3706
http://arxiv.org/abs/1604.02240

	Introduction
	Notations, assumptions and the main results of this paper
	References to previous work and preliminaries

	Cosine operators and the proof of Theorem 1.3
	The proof of controllability
	The first step
	The second step
	Step 2-1: The elements of [RV(T)]
	Step 2-2: Fourier expansion and regularity of the elements of [RV(T+)]
	Step 2-3: End of the proof


	An abstract setup
	References

