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CONTROLLABILITY OF A 2 x 2 PARABOLIC SYSTEM BY ONE FORCE
WITH SPACE-DEPENDENT COUPLING TERM OF ORDER ONE*

MiCHEL DUPREZ!

Abstract. This paper is devoted to the controllability of linear systems of two coupled parabolic
equations when the coupling involves a space dependent first order term. This system is set on an
bounded interval I CC R, and the first equation is controlled by a force supported in a subinterval
of I or on the boundary. In the case where the intersection of the coupling and control domains is
nonempty, we prove null controllability at any time. Otherwise, we provide a minimal time for null
controllability. Finally we give a necessary and sufficient condition for the approximate controllability.
The main technical tool for obtaining these results is the moment method.
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1. INTRODUCTION AND MAIN RESULTS

Let T > 0, w := (a,b) C (0,7) and Q7 := (0,7) x (0,7). We consider in the present paper the following
distributed control system

8tyl - 83:3:y1 = ﬂwv in QTa
Ory2 — Ozay2 + p()0py1 + q(x)y1 =0 in  Qr,

1.1
51(0.) =11 (m ) = 12(0,) = ya(m ) =0 on  (0.T), (L)
yl('vo) = y?a y2(70) = yg in (Oaﬂ-)

and boundary control system
atZl - azzzl =0 in QT?
Orzo — Ogaza + p(x)0p21 + q(x)21 = 0 in  Qr,
20(0,-) = u, z1(m,-) = 2(0,-) = 2(m,) =0 on  (0,T), (12)
Zl(',O) = Z(l)a Z2('a 0) = Zg in (Oa 7‘-)7
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where 30 = (y?,y9) € L*(0,7)? and 20 := (29,29) € H=1(0,7)? are the initial conditions, v € L?(Qr) and
u € L?(0,T) are the controls, p € WL (0,7), ¢ € L>(0, 7).

It is known (see [20], p. 102 (resp. [16], Prop. 2.2)) that for given initial data y° € L?(0,7)? (resp. 2° €
H=1(0,7)?) and a control v € L?(Q7) (resp. u € L?(0,T)) system (1.1) (resp. (1.2)) has a unique solution
y = (y1, 1) (1esp. 2 = (21,72)) in

L0, T Hy(0,m)%) N C([0,T]; L*(0,m)?) (resp. L*(Qr)* N C([0,T]; H*(0,m)%)),
which depends continuously on the initial data and the control, that is
191l 220,751 (0,7)2) + 19lleo, 11522 0,m2) < Cr(19°]l 220,02 + 0]l L2(r))
(resp. ||zl L2(@r)2 + zlleqo, -1 0,m2) < CT(12° -1 (0,m)2 + lull2(0,m)));

where C7 does not depend on 3%, v, 2° and w.
Let us introduce the notion of null and approximate controllability for this kind of systems.

e System (1.1) (resp. system (1.2)) is null controllable at time T if for every initial condition y° € L?(0,7)?
(resp. 2° € H~1(0,7)?) there exists a control v € L?(Qr) (resp. u € L?(0,T)) such that the solution to
system (1.1) (resp. system (1.2)) satisfies

y(T)=0 (resp. 2(T)=0) in (0,7).

e System (1.1) (resp. system (1.2)) is approzimately controllable at time T if for all ¢ > 0 and all 3°, y! €
L2(0,7)? (resp. 2°, 21 € H71(0,7)?) there exists a control v € L?*(Qr) (resp. u € L?*(0,T)) such that the
solution to system (1.1) (resp. system (1.2)) satisfies

1Y(T) =y lL20.mp2 <& (vesp. 2(T) = 2| 510, <€)

We recall that null-controllability at some time T implies approximate controllability at the same time T for
linear parabolic systems. This follows from the backward uniqueness result of ([17], Thm. 1.1) for first order
perturbations and Propositions 2.5 and 2.6. Moreover the approximate controllability does not depend on the
time of control T since we consider autonomous systems. It is a consequence of the analyticity in time of the
adjoint semigroup.

The main goal of this article is to provide a complete answer to the null and approximate controllability
issues for system (1.1) and (1.2). For a survey and some applications in physics, chemistry or biology concerning
the controllability of this kind of systems, we refer to [6]. In the last decade, many papers studied this problem,
however most of them are related to some parabolic systems with zero order coupling terms. Without first order
coupling terms, some Kalman coupling conditions are made explicit in ([3], Thm. 1.4, [4], Thm. 1.1 and [16],
Thm. 1.1) for distributed null controllability of systems of more than two equations with constant matrices
and in higher space dimension and in the case of time dependent matrices, some Silverman—Meadows coupling
conditions are given in ([3], Thm. 1.2).

Concerning the null and approximate controllability of systems (1.1) and (1.2) in the case p = 0 and ¢ Z 0
in (0,7), a partial answer is given in [1,2,13,23] under the sign condition ¢ < 0 or ¢ > 0 in (0, 7). These results
are obtained as a consequence of controllability results of a hyperbolic system using the transmutation method
(see [21]). One can find a necessary and sufficient condition in [7] when [ g(z)dz # 0. Finally, in [11], the
authors gives a complete characterization of the approximate controllability and, in the recent work [8,9], we
can find a complete study of the null controllability.

When p # 0, the approximate controllability of systems (1.1) and (1.2) in any dimension is studied in [22].
The author gives a sufficient condition for the approximate controllability on the boundary and, in the case
of analytic coupling coefficients p and ¢, a necessary and sufficient condition for the internal approximate
controllability.
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Let us now remind known results concerning null controllability for systems of the following more general
form. Let 2 be a bounded domain in RY (N € N*) of class C? and wp an arbitrary nonempty subset of 2. We
denote by 92 the boundary of (2. Consider the system of two coupled linear parabolic equations

Oy1 = Ayr + 911 - V1 + g1z - Vya + an1ys + arzye + 1o in - 2 x (0,7),

Oty2 = Ayz + g21 - Vy1 + g22 - Vo + az1y1 + a2y in  2x(0,T), (13)
y=0 on 902 x(0,T), '
y(-,0) =9° in £,

where y° € L?(02)%, g;; € L*°(£2 x (0,T))" and a;; € L>=(£2 x (0,T)) for all 4,5 € {1,2}.
As a particular case of the result in Section 4 of [18] (see also [5]), system (1.3) is null controllable whenever

g21 =0 1in wy and (a2; > C in wy or ag; < —C'in wy), (1.4)

for a positive constant C' and wy a non-empty open subset of wy.
In ([19], Thm. 4), the author supposes that a11, g11, @22, goo are constant and the first order coupling
operator go1 - V + ag1 can be written as

921~V+a21:P1 oein()x(O,T), (15)

where 0 € C%(12) satisfies |§] > C in w; C wy for a positive constant C' and P; is given by Py := mq - V + my,
for some mg, m; € R. Moreover the operator P; has to satisfy

lull ) < CllPIullLze) Yu € Hy(£2).

Under these assumptions, the author proves the null controllability of system (1.3) at any time.

In ([10], Thm. 2.1), the authors prove that the same property holds true for system (1.3) if we assume
that a;; € C*(2 x (0,7)), gij € C1(2 x (0,T))N for all i,j € {1,2}, go1 € C3(£2 x (0,T)) and the geometrical
condition

{ Ow N OS2 contains an open subset 7 for which the interior 7 is non-empty, (1.6)

dxg € v 8.t g21(t,m0) - v(wp) # 0 for all t € [0,T],

where v represents the exterior normal unit vector to the boundary 9f2.
Lastly, for constant coefficients, it is proved in ([14], Thm. 1) that system (1.3) is null/approximately con-
trollable at any time 7T if and only if
g21 #0 or az #0.

In ([14], Thm. 2), the authors give also a condition of null/approximate controllability in dimension one which
can be written for system (1.1) as: p € C?(wp), q € C3(wp) and

—40,:(q) 02 (P)P + O22(0)D* + 2¢02(q)p — 3pqrap + 6¢(9ep)? — 2¢°Oup
_8xxx(p)p2 + 58$(p)8333’: (p)p - 4(83:]7)3 7é 0 in wo

for a subinterval wg of w.
Now let us go back to systems (1.1) and (1.2) for which we will provide a complete description of the null
and approximate controllability. Our first and main result is the following

Theorem 1.1. Let us suppose that p € WL (0,7) N W2 (w), ¢ € L=(0,7) N WL (w) and

(Supp pU Supp q) Nw # 2. (1.7)

Then system (1.1) is null controllable at any time T.
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Let us compare this result with the previously described results to highlight our main contribution:

(1) Even though system (1.1) is considered in one space dimension, we remark first that our coupling operator
has a more general form than the one in (1.5) assumed in [19]. Moreover unlike [14], its coefficients are
non-constant with respect to the space variable.

(2) We do not have the geometrical restriction (1.6) assumed in [10]. More precisely we do not require the
control support to be a neighbourhood of a part of the boundary.

(3) As said before, in ([22], Thm. 4.1), the author gives a necessary and sufficient condition for the approximate
controllability of system (1.1) when p and ¢ are analytic. We deduce that the condition of [22] is satisfied
in dimension one as soon as p or ¢ is not equal to zero.

For all k € N*, we denote by ¢ : © — \/gsin(kx) the normalized eigenvector of the Laplacian operator, with

Dirichlet boundary condition, and consider the two following quantities

a 1 & 1
Iok(p,q) := / (q - 5(%1)) ¢p and  Ii(p,q) = / (q - 583:17) © (1.8)
0 0

for all kK € N*. Combined with the criterion of Fattorini (see [15], Cor. 3.3 or Thm. 6.1 in the present paper),
Theorem 1.1 leads to the following characterization:

Theorem 1.2. Let us suppose that p € WL(0,7) N W2 (w) and ¢ € L*>®(0,7) N WL (w). System (1.1) is
approzimately controllable at any time T > 0 if and only if

(Supp pUSupp ¢) Nw # @ (1.9)
or
[ Ik(p, Q)| + [Lak(p, q)| # O for all k € N*. (1.10)

This last result recovers the case p = 0 studied in [11] for Supp ¢ N w = &, where the authors also use the
criterion of Fattorini.

Remark 1.3. We will see in the proof of Theorems 1.1 and 1.2 that only the following regularity are needed
for p and ¢

p €W (0,m) N WL (@),
q € L=(0,m) N W, (@),

for an open subinterval @ of w. These hypotheses are used in Definition (1.8) of I;(p,q) and I, 1(p, ¢) and the
change of unknown described in Section 3.2. For more general coupling terms, these control problems are open.

When the supports of the control and the coupling terms are disjoint in system (1.1), following the ideas in
([9], Thm. 1.3) where the authors studied the case p = 0, we obtain a minimal time of null controllability:

Theorem 1.4. Let p € WL (0,7), g € L>(0, 7). Suppose that condition (1.10) holds and
(Supp pU Supp ¢q) Nw = . (1.11)

Let Ty(p, q) be given by

in(— log |1, —log |1,
To(p, q) — hmbup Hlln( Og| k(pa Q)|v Og‘ a,k(pvq)‘)_

1.12
b oo k2 ( )
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One has

(1) If T > To(p, q), then system (1.1) is null controllable at time T.
(2) If T < To(p,q), then system (1.1) is not null controllable at time T

Concerning the boundary controllability, in ([22], Thm. 3.3), using the criterion of Fattorini, the author proves
that system (1.2) is approximately controllable at time 7' if and only if

Ix(p,q) # 0 for all k € N*. (1.13)

About null controllability of system (1.2), we can again generalize the results given in ([9], Thm. 1.1) to obtain
a minimal time:

Theorem 1.5. Let p € WL (0,7), g € L>(0,7) and suppose that condition (1.13) is satisfied. Let us define
. —log |1 (p, q
T1(p, q) := limsup % (1.14)
k—o0
One has

(1) If T > Ti(p,q), then system (1.2) is null controllable at time T.
(2) If T < Ti(p,q), then system (1.2) is not null controllable at time T.

Remark 1.6. Using Riemann—Lebesgue Lemma, sequences (Ix(p, ¢))ren+ and (I x(p, q))ken= are convergent,
more precisely

) 1 [7 1 ) 1 [ 1
klir&Ik(p,q) =1(p,q) = ;/O (q— 5(%19) and klir&Ia,k(p,q) = I.(p,q) = ;/O (q— 5&&))-

Thus, if one of the two limits I(p,q) and I,(p,q) (resp. the first limit) is not equal to zero, then the minimal
time To(p, q) (resp. Thi(p, q)) is equal to zero.

This article is organized as follows. In the second section, we present some preliminary results useful to
reduce the null controllability issues to the moment problem. In the third and fourth sections, we study the null
controllability issue of system (1.1) in the two cases when the intersection of the coupling and control supports
is empty or not. Then we give the proof of Theorems 1.2 and 1.5 in Sections 5 and 6, respectively. We finish
with some comments and open problems in Section 7.

2. PRELIMINARY RESULTS

Consider the differential operator

L : D(L) - L2(0,7T)2 — L2(0,7T)2
[ =0Opf+ AO(paxf + Qf)v

00
A°::(1o>’

the domain of L and its adjoint L* is given by D(L) = D(L*) = H?(0,7)? N H(0,7)%. In Section 2.1, we will
first establish some properties of the operator L that will be useful for the moment method and, in Section 2.2,
we will recall some characterizations of the approximate and null controllability of system (1.1).

where the matrix Ag is given by



1478 M. DUPREZ

2.1. Biorthogonal basis
Let us first analyze the spectrum of the operators L and L*.

Proposition 2.1. For all k € N* consider the two vectors

- %’i « . [ Pk
(Pl,k T <§0k 7¢2,k T 0 )

where ;. is defined for all x € (0,7) by
i) = afn(o) = ¢ [ sinlh(e ~ )1 n(©) + 0 er(6)) - A nlO)lds
ai=1 [ [ sinlke = DU 01O + 2u (OO ~ a(On(E (ol

One has

(1) The spectrum of L* is given by o(L*) = {k® : k € N*}.

(2) For k > 1, the eigenvalue k* of L* is simple (algebraic multiplicity 1) if and only if Ix(p,q) # 0. In this
case, 5, and D7 . are respectively an eigenfunction and a generalized eigenfunction of the operator L*
associated with the eigenvalue k?, more precisely

L* — E2Id)®% , = I, D ,
{( ) 1,k LEON (2_1)

(L* — K21d)®; ,, = 0.

(3) For k > 1, the eigenvalue k* of L* is double (algebraic multiplicity 2) if and only if I(p,q) = 0. In this
case, 7 ;. and B3 ;. are two eigenfunctions of the operator L* associated with the eigenvalue k2, that is for
i=1,2

(L* — kK*1d)®} ), = 0.

Proof. The adjoint operator L* of L is given by D(L*) = D(L) and L*f = —0p. [ + A{(—02(pf) + qf). We can
remark first that the resolvent of L* is compact. Thus the spectrum of L* reduces to its point spectrum. The
eigenvalue problem associated with the operator L* is

— Ozt — 81(;0(3:)90) + q(x)@ =\ in (0’ W)a
—Ozz® = >\S0 in (0,7T), (22)
¢(0) = (0) = p(m) = ¥(m) =0,

where (¢, ) € D(L*) and A € C. For ¢ =0 in (0,7) and 1 = ¢} in (0,7), A = k? is an eigenvalue of L* and
the vector &5, := (k,0) is an associated eigenfunction. If now ¢ # 0 in (0,7), then X = k? is an eigenvalue
and ¢ = ko, with £ € R*. We remark that system (2.2) has a solution if and only if I} (p, q) = 0. If I} (p,q) = 0,
Dy = (¥5, ¢x) is a second eigenfunction of L* linearly independent of D3 1, where, applying the Fredholm
alternative, ¢} is the unique solution to the non-homogeneous Sturm—Liouville problem

_azz¢ - k2¢ = f in (Oa 77)7
{w<0> — U(m) = 0, J7 Yla)pn(e) dz = 0. (23)

with f = 0y(p(x)pr) — q(x)pr. We recall that foﬂ for = 0, since I, = 0. Solving system (2.3) leads to the
expression of v} given in Proposition 2.1. The expression of oy, is given by the equality foﬂ Yi(x)pr(r)de =0
and the identity foﬂ for = 0 leads to 1y (m) = 0. Thus, in the case Iy(p,q) = 0, A = k? is a double eigenvalue
of L*. Items 1 and 3 are now proved.
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Let us now suppose that I (p,q) # 0. The eigenvalue A\ = k? is simple, ?3 ;. = (pk,0) is an eigenfunction
and a solution @7 ; := (¥, p) to (L™ — k%d)@ik = Iy(p, q)P3 ., that is

022t — 02 (p(x)0) + q(x)p = k2 + Ii(p, @) in (0,7),
—Opatp = k% in  (0,7), (2.4)
©(0) = 9(0) = () = () =0,

is a generalized eigenfunction of L*. We deduce that ¢ = ¢y in (0,7) and 1) is solution to the Sturm—Liouville
problem (2.3) with f = Ii(p,q)or + Ox(p(x)er) — q(x)pr. We obtain the expression of ; given in
Proposition 2.1. O

The function 1} given in Proposition 2.1 will play an important role in this paper. Since ¢y, ¢} and I}, are
bounded, we have the following lemma

Lemma 2.2. There exists a positive constant C' such that

o c . ,
log| < T 1Ykl Lo 0,7) < T 1005l Loe0,n) < C, Vk € N™. (2.5)

Since the eigenvalues of the operator L* are real, we deduce that L and L* have the same spectrum and the

associated eigenspaces have the same dimension. The eigenfunctions and the generalized eigenfunctions of L
can be found as previously.

Proposition 2.3. For all k € N* consider the two vectors

& 0 Pk
= b =
1,k ( Dk) y £2,k (wk) )

where Yy, is defined for all x € (0,7) by
i () = appr(r) — % /Ox sin(k(z — )Tk (p, 9)pr (€) — p(§)0u(0r(§)) — a(§)pr(§)]dE,
o = %/Oﬂ /Ow sin(k(z — §))[Ik (p, 9)px (&) — p(§)0x (01 (§)) — a(§)pr (§)]pr (x)déd,

One has

(1) The spectrum of L is given by o(L) = o(L*) = {k? : k € N*}.

(2) For k > 1, the eigenvalue k? of L is simple (algebraic multiplicity 1) if and only if I.(p, q) # 0. In this case,
b1 and Py are an eigenfunction and a generalized eigenfunction of the operator L associated with the
eigenvalue k%, more precisely

{ (L — k*Id)®, }, =0, 26)

(L — k21d)®y i, = Iy .

(3) For k > 1, the eigenvalue k? of L is double (algebraic multiplicity 2) if and only if I.(p, q) = 0. In this case,
&1 i and Py . are two eigenfunctions of the operator L associated with the eigenvalue k2, that is fori = 1,2

(L — k*Id)®; ), = 0.
Lemma 2.3 and Corollary 2.6 in [9] can be adapted easily to prove the following proposition.

Proposition 2.4. Consider the families

Bi= @120 k€N and B i={@], 05, keN},



1480 M. DUPREZ

Then:

(1) The sequences B and B* are biorthogonal Riesz bases of L?(0,)2.
(2) The sequence B* is a Schauder basis of H}(0,7)% and B is its biorthogonal basis in H=1(0, 7).

We recall that B and B* are biorthogonal in L?(0,7)? if @i’k,éj’l)m@,ﬂ)z = 0;,0k, for all k,I € N* and
1,7 €{1,2}.

2.2. Duality

As it is well known, the controllability has a dual concept called observability (see for instance ([6],
Thm. 2.1, [12], Thm. 2.44, p. 5657)). Consider the dual system associated with system (1.1)

0(0,-) =0(m,-) =0 on (0,7), (2.7)
0(-,T) = ¢° o (0,),

where §° € L?(0,7)2. Let B the matrix given by B = (1 0)*. The approximate controllability is equivalent to a
unique continuation property:

Proposition 2.5.

(1) System (1.1) is approzimately controllable at time T if and only if for all initial condition 0° € L%(0,r)?
the solution to system (2.7) satisfies the unique continuation property

1,B*0=0 in Qr = 6=0 in Q. (2.8)

(2) System (1.2) is approzimately controllable at time T if and only if for all initial condition 0° € HZ(0,7)?
the solution to system (2.7) satisfies the unique conlinuation property

B*0,60(0,t) =0 in (0,7) = 6=0 in Qr. (2.9)
The null controllability is characterized by an observability inequality:

Proposition 2.6.

(1) System (1.1) is null controllable at time T if and only if there exists a constant Cops such that for all initial
condition 0° € L?(0,7)? the solution to system (2.7) satisfies the observability inequality

16(0 )||L2 0,72 < Cobs // x)B*0(z, t)[*dxdt. (2.10)

(2) System (1.1) is null controllable at time T if and only if there exists a constant Cops such that for all initial
condition 0° € H3(0,m)? the solution to system (2.7) satisfies the observability inequality

T
1000)12s(0.ryz < Cobs / |B*0,6(0,)dt. (2.11)

3. RESOLUTION OF THE MOMENT PROBLEM

In this section, we first establish the moment problem related to the null controllability for system (1.1) and
then we will solve it in Section 3.2 (Thm. 1.1). The strategy involves finding an equivalent system (see Def. 3.1)
to system (1.1), which has an associated quantity Ij satisfying “some good properties”.
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3.1. Reduction to a moment problem

Let y° := (y7,93) € L*(0,m)*. For i € {1,2} and k € N*, if we consider §° := &}, in the dual system (2.7),
we get after an integration by parts

// SL’ t B*Q(:r,t)dxdt = <y(T)>(P;k>L2(O,7r)2 — <y030(0)>L2(0,7r)2~

Since B* is a Riesz basis of L?(0,m)?, system (1.1) is null controllable if and only if for all y° € L?(0, )2, there
exists a control v € L?(Qr) such that for all K € N* and i € {1,2} the solution y to system (1.1) satisfies the
following equality

// 1‘ t B QZ k(l‘ t) daedt = <y0,9i7k(0)>[l2(0’ﬂ)2, (3.1)

where 6, ;. is the solution to the dual system (2.7) with the initial condition §° := D7 .-
In the moment problem (3.1), we will look for a control v of the form

v(z,t) = fO @) —t) + FP(2) 0P (T —t) for all (z,t) € Qr, (3.2)

with v, v € L2(0,T) and M), f*) € L2(0,r) satisfying Supp f) C w and Supp f©
The solutions 61, and 2,5, to the dual System (2.7) with the initial condition @7 ; and @5 , are given for all

(x,t) € Qr by
O1,x(z,t) = e H 0 (@, () = (T = ) I1(p, )05 ()

2 (3.3)
O (z,t) = e (T*t)di;k(x).

Plugging (3.2) and (3.3) in the moment problem (3.1), we get for all £ > 1

T T
f,gl) / v(l)(t)e*krz'5 dt + f,EZ) / @ (t)e*k% dt
0

0

T T
Lu(p ) / o (1)t F 1 dt — Tu(p, ) f? / @ (1)tet dt

0 0
_ .2
=—e FT {y(fk — TIy(p, Q)yg,k} )

T T
Y [ e @e s 12 [ o e ar = —e Ty
0 0

where f,gi), f,gi) and ygk are given for all 7 € {1,2} and k € N* by

/f(” o)pr(@)dz, [ = /f” (3.4)

w0 = (W, Bl ) 120m)- (3.5)

In ([16], Prop. 4.1), the authors proved that the family {e; ;, := e_kzt, eg ) 1= te_kzt}kzl admits a biorthogonal
family {q1 x, g2,k }k>1 in the space L2(0,T), i.e. a family satisfying

and

T
| et =560, vkiz1 1<ij<e (3.6)
0
Moreover for all € > 0 there exists a constant C. 7 > 0 such that

2 .
lgikllz2or) < Cere™, VE>1, i=1,2. (3.7)
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We will look for v(1) and v of the form

RIOESY {v§f2q17k(t) n v;f;qw(t)} L i=1,2 (3.8)
k>1

and prove that the series converges. The moment problem (3.1) can be written as

Al,kvl,k + AgJCVng =F), forallk>1, (39)
with for all £ € N*
7(1) 7(2)
P P (LY L) £
Lk = W L@ | A2k ; (3.10)
fk fk 0 0
(1) (1)
U1k Vs k
Vi = v Vo= (3.11)
(2) (2)
U1k Vs
and
—k2T (,0 0
—e — T (p,
Fp = (leg 2 k(P Q)yz,k) (3.12)
e T,

3.2. Solving the moment problem

In this section, we will prove the null controllability of system (1.1) at any time 7" when the supports of p or ¢
intersects the control domain w (Thm. 1.1). In [18], the authors obtain the null controllability of system (1.1) at
any time under condition (1.4), so we will not consider this case and we will always suppose that Supp pNw # &.
This implies that there exists x¢p € w such that p(zp) # 0. By continuity of p, we deduce that |p| > C in w for
a positive constant C' and an open subinterval @ of w.

Definition 3.1. Let p1, p2 € W1 (0,7) and q1, g2 € L>°(0, 7). Consider the systems given for i € {1,2} by
For given y° € L?(0,7)?, v € L*(Qr),

Find y := (y1,92) € L?(0,T; H}(0,7)?) N C([0,T]; L*(0,m)?) such that:

Ory1 — Ozt = Ly in  Qr, )
Ory2 — Opay2 + pi(2)0xy1 + qi(x)y1 =0 in  Qr,

y(0,)) =y(m,-) =0 on (0,7),

y(-,0) =y° in (0, 7).

We say that System (S1) is equivalent to System (Sz) if System (Sp) is null controllable at time T if and only
if System (Sz) is null controllable at time T

Let us present the main technique used all along this section. Suppose that system (1.1) is null controllable
at time T'. Let v a control such that the solution y to system (1.1) verifies y(T) = 0 in (0, 7) and wg := (o, 5) a
subinterval of w = (a,b). Consider a function § € W2 (0, ) satisfying

f=r1 in (0,a),
0=ky in (B,7), (3.13)
0>r3 in (0,m),
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with k1, k2, k3 € R7. Thus if we consider the change of unknown
@\ = (ﬂl,yg) with @\1 = gilyl, (314)

then 7 is solution in L2(0,T; H(0,m)?) NC([0,T]; L*(0,7)?) to the system

at:l/J\l - am:vgl = ]]-u)a in QT?

Ory2 — Oxaya + pOzy1 + qy1 = 0 in  Qr,

) R (3.15)
y(07 ) = y(ﬂ-a ) =0 o1 (07 T)7

@\(,0) :@\0 in (0771-)’

where the initial condition is 7° := (074, v8) € L?(0,7)?, the control is ¥ := —0,(0~ )y1 — 20, (07 1)0,y1 +
1,0 € L?*(Qr) and the coupling terms are given by p := pf and § := pd,0 + ¢f. Since 6 is constant
in (0,7)\wp, we have Supp © C w x (0,7). Since y is controlled, then gy also. The converse is clearly true:
starting from the controlled system (3.15) the same process leads to the construction of a controlled solution
of system (1.1). Thus through the change of unknown (3.14), following Definition 3.1, systems (1.1) and (3.15)
are equivalent.

The next main result of this section is Proposition 3.6 that will be introduced after some lemmas. The first
of them is the following.

Lemma 3.2. Let p € WL (0,7) N W2 (w) and ¢ € L>=(0,7) N WL (w) with |p| > C in an open subinterval
@ of w for a positive constant C. There exists a subinterval wy := (o, 3) C @ and a function § € W2 (0, )
satisfying (3.13) such that system (1.1) is equivalent to system (3.15) with ¢ = 0 in wy. Moreover, for all € > 0,
the interval wi can be chosen in order to obtain for all k € N*

[x(pq) — Ie(p,@)| < e. (3.16)

Consequently, taking the limit, we deduce that |I(p,q) — I(p,q)| < €.

Proof. Let wy := (a, 3) be an interval strictly included in @ := (@, b) and § € W2 (0, ) satisfying

P00 +qf =0 in w1,
=1 in (0, m)\@, (3.17)
0| > C in (0,7),

for a positive constant C.. In the intervals (a, o] and [3, b), we can take 6 of class C° in order to have § € W2,(0, 7).
Thus the function 6 verifies (3.13) and, following the change of unknown described in (3.14), system (1.1) is
equivalent to system (3.15) with ¢ = 0 in w;. The estimates in (3.16) are obtained taking the interval w; small
enough, so 8 will be close to 1. O

Let us first study system (1.1) in a particular case.

Lemma 3.3. Consider p € WL (0,7) N W2 (w) and q € L>(0,7) N WL (w). Let us suppose that p = C € R*
and ¢ = 0 in an open subinterval @ of w. Then system (1.1) is equivalent to a system of the form (3.15) with
coupling terms p, q satisfying

| (P, q)| > C/kS, Vk € N*.
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To prove this result we will need this lemma:
Lemma 3.4. Let (uy)ren+ be a real sequence. Then there exists € R such that for all k € N*
lup + K| > 1/k2.
Proof of Lemma 3.4. By contradiction let us suppose that for all & € R there exists k € N* such that |ug+£| <

1/k2. Then

Ry € (—uk — 1/F, —up + 1/E). (3.18)
keN*

The convergence of the series ), . 1/k? implies that the measure of the set in the right-hand side in (3.18) is
finite and leads to the conclusion. O

Proof of Lemma 3.3. Let (a,3) an open subinterval of & with o and 3 to be determined later, x € R* and

6 € W2 (0, 7) satisfying
f=1 in (0, m)\(, B),
{ =1+ k& in (o, ), (3:19)

where

€(z) = {sin <%>} " forall 2 ¢ (e, B). (3.20)

o~

In particular, we have § > 1 in (0, 7). Let k € N*, 4, := 0~ 1y; and 4 := (1, y2) the solution to system (3.15).
For system (3.15) the quantity I; defined in the introduction is given by

P (. 1.
Ik(p,q)=/ {q_iazp}@i
0
= Ix(p, q) + kJx,

with p, ¢ given by p:=pf and q := p0.0 + qf and Jj defined by

8
hoi=y [ ouet.

Then, after a simple calculation, we obtain

2w
o (3 —ap

o 2T 2
<2k+ﬁ—a) (Qk_ﬁ—a)

Let n € N* large enough such that = < nLH. There exists £ an algebraic number of order two, i.e. a root of a
polynomial of degree 2 with integer coefficients, satisfying

sin(k(8 + «)) sin(k(8 — @)). (3.21)

b
Sct<—— and K#E for all j € N*,
n n+1 J

since the set of such numbers is dense in R. Let us take o := nf and §:= (n + 1)¢. Thus «, 5 € (a,b),
E(B+a)=k(2n+1){ and k(38— a)=kL. (3.22)

Moreover ) )
T T

2k + ——— 2k;——<RI<;2,

’ +5—a‘x’ 5-a




CONTROLLABILITY OF A 2 x 2 PARABOLIC SYSTEM 1485

with R > 0. Since ¢ is an algebraic number of order two, using diophantine approximations it can be proved
that

inf (j| sin(j0)|) = v, (3.23)
Jjz1
for a positive constant v (see [9], Eq. (5.13)). The expressions (3.21)—(3.23) give

2 ~2

| k| = o) REn 1 D (3.24)
for all k € N*. Using Lemma 3.4, there exists x € R satisfying
Lp:9) + /1’ > 1/k2
Jk
Combining the last inequality with estimate (3.24),
(5, @)| = [k (p, @) + wJi| = [Jel /K> = C/K°. 0

The next lemma is proved in ([9], Lem. 5.1).

Lemma 3.5. There exist functions f, f2) e L(0,7) satisfying Supp f), Supp f* C w and such that for
all k € N*

. C C
min {|f0L 140} = 55 and 1Bl = [FVR0 - TP 0| 2 (3.25)
where for i € {1,2} the terms f,gi) and f,gi) are given by
,gi) = /0 fD(2)prp(x)dz  and f,gi) = /0 9D (x) cos(kx)dz. (3.26)

With the help of Lemma 3.5, we deduce the following proposition:

Proposition 3.6. Consider p € WL (0,7) N W2 (w) and q € L>(0,7) N WL (w). Let us suppose that |p| > C
in an open subinterval @ of w for a positive constant C. Then system (1.1) is equivalent to a system of the
form (3.15) with coupling terms p, q satisfying condition (1.10), To(p,q) = 0 and

C A~ AN C AN AN *
|det Ay ;| > k—; [ La(P, Q)| — 72 \1k(P,q)| Vk € N7, (3.27)
where C1 and Cy are two positive constants independent on k (the notion of equivalent systems is defined at the
beginning of Sect. 3.2).

Proof. Using Lemma 3.2, without loss of generality, we can suppose that ¢ = 0 and |p| > C' in a subinterval &
of @ for a positive constant C. If 9,p = 0 in &, Lemma 3.3 leads to

e (p, q)| = C/K®, Vk € N*,

which implies that condition (1.10) is satisfied and the right-hand side of inequality (3.27) is negative for some
appropriate constants Cq and Cy. Otherwise, let (o, 5) C & such that d,p > C in (e, 3) or 9,p < —C in («, )
for a positive constant C. The rest of the proof is divided into three steps:

Step 1. If I(p,q) := foﬂ{q — %(‘%p} = 0, we will prove in this step that system (1.1) is equivalent to a system
with coupling terms p, g satisfying I(p,q) # 0. Assume that I(p,q) = 0 and consider § € W2 (0,7) defined
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n (3.19), with x := 1. We remark that || > 1. If we consider the change of unknown described in (3.14), then
for all k € N* using the definition of I}, we obtain

B
83D = .0+ [ {000 60,00 otas

= Ix(p,q) + Jx(p, q),

where

1 163
Tpg) = — / {04(E)p — €0, () H1 — cos(2ka)}da
k~>oo __/ ga ( 7Q)

Using the definition of £ given in (3.20), we get

1 Bz —a)
|J(p,q)| > ;(mf |8xp\/ sin <ﬁ—7a> dz

= 5. it Iamp\/ {1 oo (%ﬁ(x _aa)> } o

(5— ) .
= " inf |9,p| # 0.
. (g}m\ p| #

We recall that I(p,q) — I(p,q) = 0. Thus, we obtain I;(p,q) — I1(p,q) = J(p,q) # 0.

Step 2. We will show in this second step that system (1.1) is equivalent to a system with coupling terms p, ¢
such that |I;(p,q)| > C > 0 for all k € N* satisfying ppj non-constant. In view of Step 1, we can assume that
I(p,q) # 0. Using Lemma 3.2, up to the change of unknown (3.14) we can also suppose that ¢ = 0 in an open
subinterval @ of w. Moreover, by (3.16), the function € and & can be chosen in order to keep the quantity I
different of zero. Let (o, 3) C @ such that |p| > C > 0 in (a, 3). Since I(p,q) # 0 and Ix(p,q) — I(p,q), there
exists kg € N* such that |I;(p, q)| > C for a constant C' > 0 and all k > ko. Let us define the set

So:={keN*":I;(p,g) =0 and ppj non — constant in («, )}
and M = #Sp < co. Let § € W2 (0, ) satisfying

f=1+" €., 16 >C>0,
Em € W2(0,7), Supp & C (a,B), for all m € {1,..., M},

where &1, ..., &y are to be determined. Again, if we consider the change of unknown (3.14), then for all k£ € N*
using the definition of I}, we obtain

B
80D = i)+ 3 [ {50600 3600u0 | s

M
=: I (p,q) + 21 T, (P: Q).
i

The goal is to choose the functions &;,...,&y such that for a constant C' > 0 we have |Ix(p,q)| > C for all

k € N* satisfying pyy non-constant in («, 3). We will construct &;,...,&y from & until £py.
Let k € Sp and consider (f1,&1) € W (o, 3) x W2 (a, 8) a solution to
1 1 .
S0:(E0p — 5610:(0) = in (a, 9),

§i1(a) = &1(B) = 0:61(a) = 0:61(B) =
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This system is equivalent to

&i(x) = p(o) /I 21)];1((88)) ds, forall z € (a, ),

P2h(s) o
/a 2(s) 8 = 0 i) = f1(6) =0.

We remark that we need that p € W2 («, 8). Finding a function f; satisfying

f S
file) = fio) =o. [ 208

is equivalent to finding a function g := 2f; /p? satisfying

B
ds=0 and Jix(p,q) = / f1(s)pi(s)ds # 0, (3.28)

8 B
(@) =0(0) =0, [ go)ds=0 ad [ a@rEekeds £0.
[e% «
Let k1 € R and define for all j € N* and all z € («a, )

g1,(x) == K1 sin (W) )

Using the fact that ppy, is non-constant in («, 3), without loss of generality, we can suppose that

o 52) o ) o 2222),

otherwise we adapt the interval (, 3) at the beginning of Step 2. We deduce that the function hy of L?(a, o +
(6 — «)/2) defined by
hi(s) = p*(s)pi(s) = P*(B+ o — s)pE (B + a — s)

is not equal to zero in (o, + (3 — ) /2). Since (g1,;)jen is a Riesz basis of L?(a, v + (3 — «)/2), there exists
J1 € N* such that

+(B—a)/2
/ 915, (5) [P (5)6R(5) — $(B+ @ — )R (B + a — )] ds £ 0.

Moreover, using the fact that g1 j, (s) = g1,;,(8+ a—s) Vs € (o, + (6 — ) /2), we have

+(B—a)/2 ) ) &) ) )
/ 91,5, (P (5)R()ds # — 91,5 (5)9*(5) 2 () ds.
e at(B—a)/2
Thus
b 2 2
| o161k s)ds 2o,
(03
91,5 102
Plugging g1 := g1, and f := % in (3.28), we obtain
w [P (2mji(s — @) 2 2
Turtpea) = [ sin (FLEZ) o sras 2o
@ ﬁ -«

We have also for all j € N*

Do) =" [ sin (FERED) 0
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We fix 1 in order to have

1 .
sup |[J1i(p,q)| < 5 inf |Li(p,q)|.

ieN* 2 ieN*\ Sy
Let m € {2,..., M} and let us assume that &, ...,&,—1 are already constructed. Consider the set
m—1
Sm—1: =< keN":I(p,q) + Z J;k(p,q) =0 and ppy non — constant in («, 3)
j=1

If Sy—1 = &, then we take &,, = 0 in (0, 7). Otherwise, let k € S,,—1 and consider (fi,&m) € Wi (o, 3) x
W2 (a, 3) a solution to

%az(gm)p - %gmaz(p) = fm in (Ol,ﬁ),
Em(a) = En(B) = 02&m(a) = 0:6m(5) = 0.

This system is equivalent to

gm(x) :p(l') /I Qfm(S) dS, for all » € (aaﬁ)a

o P*(s)

ﬁQfm(s) B B B
| S = 0. gl = £(5) =0

Let K., > 0. Again, there exists j,, € N* such that the function f,, given for all z € (a, 8) by

fm(@) = %ﬂ sin <72ﬂjg(_x; a)> p(z)?

is solution to this system. Then, we obtain

Im,i(p,q) = %n /j sin (W) p(s)%p;(s)%ds.

The last quantity is different of zero for j = k. Let us fix k,, in order to have

m—1

1
sup |Jm.i < = inf I; + Jii(p,q)l.
sup [ Tm,i(P:a)] < 5 et i(p,q) ; 5.i(p,q)
Thus, after constructing the functions &, ..., &y, the obtained functions p and ¢ are such that

|1k (p,q)| > C for all k € N* satisfying pyy, non-constant in (o, 3),

where C'is a positive constant which does not depend on k.

Step 3. Finally, in this third step, we will prove that system (1.1) is equivalent to a system satisfying To(p, ) = 0
and conditions (1.10) and (3.27). In view of Step 2, we can assume that

[Tk (p,q)| > C for all k € N* satisfying pyy non-constant in (o, 3),

where C' is a positive constant which does not depend on k. If |I;(p,q)| > Cp for all & € N* and a constant
Cy > 0, then condition (1.10) is satisfied and the right-hand side of inequality (3.27) is negative for some
appropriate constants C7 and Cs. Let us now suppose that, for a m € N*| we have

I,(p,q) = 0 and py,, constant in (a, ). (3.29)
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Again, using Lemma 3.2, up to the change of unknown (3.14) described at the beginning of the section we can
also suppose that ¢ = 0 in a subinterval (a, 3) of ©. Moreover, using (3.16), this change of unknown can be
chosen in order to keep the property: |Ix(p,q)| > C > 0 for all k € N*\{m}. Let m € N* such that I,,,(p,q) =0
and pp,, is constant in (o, 3), otherwise we argue as in Step 2. Let § € W2 (0, ) satisfying

f=1+¢ in  (0,7),
Ee W2 (0,7),|0] > C >0,
E=& eRT in (0,0),
£=0 in (B,m),

Again, if we consider the change of unknown described in (3.14), then for all £ € N*

. P 1 )
I.(p,q) = Ik(p,q)+/0 {gaz(é)erfq— 5§5x(p)}90kdw

=: I(p, q) + Jk(p, q).

We will distinguish the cases In n(p,q) = 0 and I (p,q) # 0 (see (1.8) for the definition of this quantity) for
the new control domain w := (o, 3).

Case 1. Assume that I, ., (p,q) = 0. Let (£, h) € W2 (a, B) x WL (a, 3) be a solution to the system

50O — 50u(p) = in (o, 9),

g(ﬁ) = azg(a) = amg(ﬁ) = 0, §(a) = fa c R*.

This system is equivalent to

€lo) = ~p(o) [} 25as, forall € (0, 0),
B Qh(s) . —£a Q) = _gaaxp(o‘) _
o o =y MU= MO =0

Taking into account that I . (p,q) =0, ¢ =0 in (o, ) and pp,, = v in (a, B) for a v € R*, one gets

o ey, 2
Jm(p7q)_§a/0 (q—iax(p)) @%ldl‘-l-?/a Oy (1_9) dl‘——2p(a)?§0

Let &, and h be such that

1
sup |Jk(p,q)| < = inf  [Ix(p,q)l|-
keI\II)*| rp @)l < 5 keN*\{m}\ k(P;q)|

Then |Ix(p, q)| > C for all k € N* and a positive constant C. Thus condition (1.10) is satisfied and the right-hand
side of inequality (3.27) is negative for some appropriate constants Cq and Cs.

Case 2. Let us now assume that I ,,(p, ) # 0. Then condition (1.10) is verified. We recall that, in the moment
problem described in the last section, we have

det Ay = fVF2 — f12fD,
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where f(l), fy(,f), f},%) and f},f) are given in (3.4). Since pp,, is constant in («, 8), the function 7, of Proposi-
tion 2.1 reads for all x € (o, )

i) = o = e [ sintm = DI O (€)) - (o1
w1

= o \F T (> 0) co8(ma),

- \f / (1) [02 (p(E)om (€)) — alE)om (E)]dE.

We deduce that
T

1
detAl,m = - Eala,m(pv Q) (f/:s})fg) - ﬁgf)fg)) ’

where ﬁ(nl) and ﬁ(,f) are given in Lemma 3.5. Using Lemma 3.5, we obtain detA; , # 0. Thus, for C; small
enough (3.27) is true for k = m and, for all k # m, the right-hand side of (3.27) is negative for Cy be enough.

We conclude this proof remarking that, in each case, there exists C' > 0 and kg € N* such that, for all k£ > ko,
we have |I.(p,q)| = C/kS, which implies that To(p, q) = 0. O

We recall that Ty (p, ¢) is given by (1.12). Before proving Theorem 1.1, we will establish the following propo-
sition which is true even in the case where the coupling region and the control domain are disjoint.

Proposition 3.7. Assume that conditions (1.10) and (3.27) hold and T > Ty(p, q).
Then system (1.1) is null controllable at time T .

Proof. We will use the same strategy than [9]. Let & > 0. Using the definition of the minimal time To(p, q)
n (1.12), there exists a positive integer k. for which

min {1og (v, @) ™", log | T (p, q)|_1} < KX(To(p,q) +¢), Yk > k.. (3.30)

The goal is to solve the moment problem described in Section 3.1. We recall that we look for a control v of
the form (3.2) and (3.8) with f(!) and f(® defined in Lemma 3.5. We will solve the moment problem (3.9)
depending on whether k& belongs to Ay, Ay or A3, where

Ay i={k e N*: Ii(p,q) # 0, Lo x(p,q) # 0},
Ay :i={k e N*: It(p,q) # 0, I, x(p,q) = 0},
As = {k € N*: I(p,q) = 0, Lox(p,q) # 0}.

Case 1. Consider the case k € Ay with k < k..
Let us take vﬁz = ”5212 = 0. The moment problem (3.9) becomes

1 1 1 _ L2

Vo) — I(p, ) f{P0) = —e ¥ T (y?,k — TIi(p, q)yS,k) ,
1 1 _
( )vi,l K2 Tyok

Since It (p, q) # 0 and using the estimate of f(l) and f(2) in Lemma 3.5, the last system has a unique solution

M _ 2T Yok
Vi = —

s
—K2T
(1) e 0 1) Yok
Vo g = Y1k — TIx(p, ) — fp )
I(p,9) fy = ( f(l)

(3.31)
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Moreover, since the set of the k considered in this case is finite, we get the inequality

< Cee ™M TNy 20wy 00 = 1,2 (3.32)

o2

Case 2. Let k € Ay such that k > k. and |I(p,q)| " < et (To(p.a)+2¢)
As in the previous case, we take 1)52,1 = ”5212 = 0 and the moment problem (3.9) has a unique solution, given

by (3.31). Thanks to the property of vy (see (2.5)) and Lem. 3.5, we get for i = 1,2 the following estimates

i c
A= O, 1R < o Tk

< CY°llL2(0,m)2, Yk € N*. (3.33)
Thus, using the assumptions on k, we obtain

1 3 L2 Nz 2
[vi] < Ok ™ TP 2(o.m2 < Ceo™ TR 4P| 2 mpe,
2
W < Cee”T7W
BT Tk(p, )
where C. is a constant which is independent on & and 3.

Case 3. Consider now k € Ay such that k > k. and |Ix(p, q)r1 > ek (To(p.a)+2¢)
This implies with (3.30) that

2
Hy0||L2(0,7r)2 < C.e(T-To=3e)k HZUOHL2(0,7T)27

s (pq)| " < & (Toa)te), (3.34)

The two last inequalities lead to
Tk(ps )| < e | Lok (p, q) -
Combined with inequality (3.27), taking k. large enough, we get

[det Ay x| > Cee™ Lo i(p, )|, (3.35)

with C. independent on k. To solve the moment problem (3.9), we take here 1)51,1 = ”5212 = 0. Then the moment

problem (3.9) reads Ay Vi, = F). Since detA; ; # 0 and using (3.35), the inverse of Ay is given by

f(2) _]“c’(2)
(Ap ) = (det Ay )t | 7" k

(1) 7)
=
We deduce that the solution to the moment problem (3.9) is
ay _ e 2,0 ), 72)y,0
Vg = m {— r Yig T (T'I(p,q) f” + £ )yz,k},
o _ e (M, 7,0
Uik T Jet Arn {fk vi — (Th(p,a) fy + £y )y2,k}'
The last expression together with (3.34) and (3.35) gives
i (T —Ty—2¢)k? .
i} < Coe™ T2 0 oo s, i = 1,2, (3.36)

Case 4. Let us consider k € As.
If k < k., we can argue as in Case 1. Let us suppose that k > k.. In this case, I, 1(p,q) = 0, Ir(p,q) # 0 and
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inequality (3.30) reads |I(p, q)| " < e# (To(p.9)+2)  We take here vﬁi = vgzll = 0 and the solution of moment

problem (3.9) is given by (3.31). We get

i —k*(T—To(p,q)—2¢) |

Ik |yOHL2(0,w)27 i,j=1,2.

Case 5. Let us now deal with the case k € As.
We recall that Ii.(p,q) =0, I1 1 (p, ¢) # 0 and inequality (3.30) reads
Lag(p,q)| " < ' (Toa+e), (3.37)

The moment problem (3.9) is now A; Vi = Fj with Ay, and Fj given in (3.10) and (3.12), respectively.
From (3.27), the matrix A; ;, is invertible and

2
am _ e’ @) 2)
vlk_detALk ky1k+ kka
k2T

@ _ _°© (1) (1)
Yk T et det Ay {fk We—fo vl k}
Using inequalities (3.27) and (3.37), we obtain estimate (3.36).

4. CONCLUSION

We have constructed a control v of the form (3.2) and (3.8), which satisfies

o

7

5 _kz(T_TO(pﬂ)_sE)||y0||L2(O,7T)2a ’Lv.] = 172a k c N*

The last inequality, the estimate (3.7) of ¢; » and the expression (3.8) of v(?) (i = 1,2) lead to

o < CeqeMOToma—1) =1 9

L2(0,T)

Thus, taking € € (0, (T — To(p, q))/4), we have the absolute convergence of the series defining v(*) and v in
L?(0,T). This ends the proof. O

Proof of Theorem 1.1. Using Proposition 3.6, system (1.1) is equivalent to a system with coupling terms p and
q satisfying condition (1.10) and (3.27). Proposition 3.7 leads to the null controllability of system (1.1) when
T > To(p, q). We end the proof of Theorems 1.1 remarking that Ty (p, ¢) = 0. O

5. PROOF OF THEOREM 1.4

5.1. Positive null controllability result

Before studying the case where the intersection of the coupling and control domains is empty, we will first
rewrite the function %)} given in Proposition 2.1.

Lemma 5.1. Let k € N*. Consider the function 1}, defined in Proposition 2.1. If we suppose that condi-
tion (1.11) holds, then for all v € w

Yi(x) = ek (z) + gr(x) for all z € w,
where

nimai =57 [ cosbO0E () - al€on Ol
gr(x) ::—@/0 sin(k(z — &))er(€)dE — \/7 I, 1 (p, q) cos(kzx).
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Proof. Since p=¢ =0 in w, we get for all z € w,

vile) = ajinle) = 0D [ sin(hte - () de - 1 [ sinhte - )LL) - 4Ol O

Proof of Theorem 1.4. We will follow the strategy of [9]. More precisely, we will prove Theorem 1.3 with the
help of Proposition 3.7. Assume that conditions (1.10) and (1.11) hold. Consider the functions f™) and f(*)
defined in Lemma 3.5 and the matrix A; j given in (3.10). Let k& € N*. We recall that

det Ay = fRV 2 — f2 D)

where, for i = 1,2, f(z) and f;(j) are defined in (3.4). Since Supp % C w, using the expression of P}, given in
Lemma 5.1, we obtain

B =+ / (@) gu(w) da,

where for all z € w

1) = = LD [ 050 )€€ [ 1 Toslp.) costh).
We deduce that
det Ay = 2)/ FO (@) gi(x (1)/ f@ () g (@
SR (e [° / FO(@)sin(k(x - €)pr(€)dé da

o / | wsinthie - )outacas ) <[5 L atooa) (R4 - 50 A)

where f,(:) are defined in (3.26). Since the integrals

/ / £ (@) sin(k(z — €))pr(€) dé da

and the sequence (fzgi))keN*,z‘e{m} are uniformly bounded with respect to k and i, we conclude with the help
of Lemma 3.5.

We deduce that condition (3.27) holds. Thus, using Proposition 3.7, system (1.1) is null controllable at
time 7. O

5.2. Negative null controllability result

Let us now prove the negative part of Theorem 1.3 with the strategy used in [9]. Let T' < To(p, q). We will
argue by contradiction: assume that system (1.1) is null controllable at time T'. Using Proposition 2.6, there
exists a constant Cpps > 0 such that for all §° € L2(0, )2, the solution to system (2.7) satisfies the observability
inequality

10(0)1172(0,xy2 < Cons // 2)B*0(x, t)|*dadt. (5.1)

Using the Definition of Ty(p, ¢) (see (1.12)) there exists a strictly increasing sequence (k;,)nen+ C N satisfying:

min (log ’Ia e, (D,q) 7t

0] -
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Let us fix n > 1 and 6°" := a,®; ; + buPs . with (an,b,) € R? to be determined later and &, , &7, the
eigenfunction and generalized eigenfunction associated with k2 given in Proposition 2.1. If we denote by 6" the
solution to the dual system (2.7) for initial data °", then

2
0" (x,t) = e T {an @]+ (bn — (T = Ok, (p. @)an)P3 ., }

thus, using the orthogonality (v , ¢k, )r2(0,n) = 0, we have

2
Dy = 10O e = & 257 {lan165, 12+ (b — Tl (p,@)n)* + e}

T
Do i= [, u()B0" () Pdndt = [ [ e a0, (0) + (b — the, (@) )i, &) dodt
0 w

The observability inequality (5.1) reads
Dl,n < CobsD2,n~ (53)

By choosing a,, :=1 and b,, := —7,,, we get
Dy > e 2k0T (5.4)

and the expression of ¢ () given in Lemma 5.1 leads to

T
fm 1
Dy, :/ /efﬂcit - Z_Ia kn(paq) COS(/Cn{E)
b O w an il
2

i 0) / "sin (ka2 — €)) o, (6) A€ — tTi, (0. )pn, ()| dedt

< C(Lak, (P, 9) + I, (p. 0)%).

Let € > 0. Equality (5.2) implies that there is k. € N* such that for all k,, > k.

max (Lo, (0. @) |, (9, ) < 0”20 To0)=2),
We deduce that for € := (To(p,q) — T)/2, we get
Dy, < Ce™2kn(T+e), (5.5)
Thus, since k,, goes to oo, estimates (5.4) and (5.5) are in contradiction with inequality (5.3) for n large enough.

6. PROOF OF THEOREM 1.2
We will proved Theorem 1.2 using the criterion of Fattorini, as in the pioneer work [22].

Theorem 6.1 (See [15], Cor. 3.3). System (1.1) is approzimatively controllable at time T if and only if for any
s € C and for any u € D(L*) we have

L*u = su in  (0,m) o
B*u=0 in w “=
Proof of Theorem 1.2.

Necessary condition: Let us suppose that conditions (1.9)—(1.10) do not hold i.e. there exists kg € N* such
that
Ty (P, @) = a ko (P, ) = 0 and (Supp p U Supp q) Nw = @.
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We remark that the function ¢ of Lemma 5.1 satisfy ¢} = 7k, ¢k, in w, then
él,ko — Tko(pz,ko = o in w.

We deduce that 97 ; — 74, D3 ;, is an non-trivial eigenfunction associated with the eigenvalue k& of the operator
L* satisfying

B*(®7 g — ThoP5 k) =0 in  w.
Thus, using Theorem 6.1, system (1.1) is not approximately controllable at time 7.

Sufficient condition: Let us suppose that conditions (1.9)—(1.10) hold. If (Supp p U Supp ¢) Nw # &, then
we conclude using Theorem 1.1. Let us now suppose that

(Supp pUSupp ¢) Nw =@ and  [Ix(p,q)| + [Lak(p,q)| # 0 for all k € N*.

If I1:(p,q) # 0, the set of the eigenvectors associated with the eigenvalue k% of L* is generated by D3 1 (see
Prop. 2.1). In this case, we remark that for all £ € N*

B*®5 . = ¢ 0 in w. (6.1)

If I;:(p,q) = 0, the eigenvectors associated with the eigenvalue k? of L* are linear combinations of 97, and
P; - Let a, 0 € R and &* := ad] | + /97 | satislying

B*®* =0 in  w. (6.2)

Using Lemma 5.1, it is equivalent to

1
(o + Bri)pr(z) — 5\/§Eja’k(p’ q) cos(kx) =0 for all x € w.
Since I, 1 (p, q) # 0, we deduce that 5 = 0. Then a = 0. We conclude with the help of Theorem 6.1. O

7. PROOF OF THEOREM 1.5

As in Section 3.1, system (1.2) is null controllable at time 7' if and only if for all y* € H~1(0,7)?, k € N*
and i € {1,2} the solution ¢;  to the dual system (2.7) for the initial data &}, satisfies

T
/ u(t)B* 0,0, 1(0,t)dt = —<y0,9i’k(‘,0)>H71,Hé. (7.1)
0
We recall that, for all k € N*, 0; ;, and 63, are given for all (z,t) € Qr by

O1,5(x,t) = ek (T—t) (@’fk(ac) — (T — ) I (p, q)aﬁ;’k(aj)) and 0y (x,t) = e_kz(T_t)éak(x).

Proof of Theorem 1.5. Again, we will follow the strategy used in [9]. Assume that T > T3 and I(p,q) # 0 for
all k € N*. We will look for the control v under the form

u(t) == Z {ur kqr (T —t) + w2 kg2, (T — 1)}, (7.2)
keN*
for all ¢ € (0,T), where ¢1 5 and g2 5 are defined in Section 3.1. Plugging the expressions of u, 6  and 62 5 in

equality (7.1), we obtain the moment problem

_k2T<y(1)a<pk>H*1,Hé

92 ¢3:(0)

{(y?v¢Z>H—1,H3 + (y3, <Pk>H—1,H5 - (IkT + m) (49, 9016>H—1,H3} :

U,k = —
2
e~ kT

Y2k T 9 on(0)
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Let € > 0. Using the definition of T} (see (1.14)), we have I;(p,q) > C.e ¥ (Ti+9) for all k € N*. Then, using
the estimates (2.5) and (3.33), we get

+ |ug,k| < C’e_kQ(T_Tl_QE)||Z/0||H—1(o,7r)2~

w1,

Thus for ¢ < (T — T})/2, the control u defined in (7.2) is an element of L2(0,T).
Assume now that T' < Ty and Ix(p, q) # 0 for all k£ € N*. By contradiction let us suppose that there exists a
constant Cyps such that for all ° € HZ (0, 7)? the solution to the dual system (2.7) satisfies

T
10(0) 1% (0.rye < Cos /0 1B*8,6(0, 1)), (7.3)
Let ¢ = (T1 — T)/2. Using the definition of T}, there exists a sequence (k;,)nen+ such that
I, (p,q) < e~ kn(T+e) (7.4)
Let 60 := an®y )., + 0,95 with (@n,by) € R%. We recall that
0" (z,t) = e_kz/(T_t){anéikn + (bn — (T = ) Ix(p, @)an)P5 ., }-
Then, after calculation, we get
2
10002 0.my2 = €247 (@21, 135 + 022 + (b — TLip, g)an)?2)

and

T T
> 2
/ |B*9,0(0,t)*dt = / e%"(Tt>|anazwkn<0>+\/;wn—(T—t)Ikn(p, q)an)kn|?dt.
0 0

For a, := 1 and b, := —/F 0,9, (0)/ky, taking into account inequality (7.4) and using the estimate (2.5), we
obtain

T
1000) 33 (0.0 = e >+ and / |B*0,0(0,1)dt < ChZe™2n(T+2),
Thus for n large enough we get a contradiction with observability inequality (7.3). g

8. COMMENTS AND OPEN PROBLEMS

When the control domain and the support of the coupling coefficients p and ¢ is disjoint in the system

Owy1 — Oz = v in  Qr,

Ory2 — Ozay2 + p(x)0pyn + q(x)y1 = 0 in  Qr,

D10, = a(m, ) = 120, = a(m ) =0 on (0,T), =
y1(-,0) =y, v2(-,0) = y3 in (0,7)

(resp. system (1.2)), it is legitimate to ask if the minimal time T} (resp. Tp) given in Theorem 1.3 (resp. Thm. 1.4)
can be different of zero and finite. For p = 0 in (0, 7), it is proved in ([9], Lem. 7.1) that for any 79 € [0, 00]
there exists a function ¢ € L°(0, ) such that the minimal time of null controllability Ty (p, ¢) associated with
system (1.1) is given by To(p, q) = 70. The authors give explicit functions and one can easily adapt them to the
case p # 0 in (0, 7). In the other hand, the null controllability in the cases T'= T in Theorem 1.4 and T' =T}
in Theorem 1.5 are open problems.
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In higher space dimension, even for this simplified system (8.1) (resp. system (1.2)), distributed and boundary
controllability are also open problems. Considering the different results described in the introduction of the
present paper, we can conjecture that the system of two coupled linear parabolic equations

Oyr = Ay1 + 911 - Vy1 + 912 - Vyo + aniyr + aeye + Lov in 2 x(0,7),

Oryo = Aya + g21 - Vy1 + 922 - Vyo + az1y1 + a2y in  02x(0,7T),
y=20 on 002 x(0,T), ®.2)
y(-,0) =1° in £,
is null controllable at time T" > 0 if there exists an open nonempty subset wgy of w such that
lagi| > Cinwo x (0,T) or |gh|>C in wx(0,7), (8.3)

forake{l,...,N}.

It seems that the main difficulty is to prove a Carleman estimate for the adjoint problem of system (8.2)
under condition (8.3) when the coupling term is a differential operator (see for instance [10,19] and also [14]
for a different approach). In the one-dimensional case, we were not able to adapt the strategy developed in this
paper in this general setting.

Acknowledgements. The author thanks Assia Benabdallah, Manuel Gonzlez—Burgos and Farid Ammar Khodja for their
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