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HOMOGENIZATION OF A VISCOELASTIC MODEL FOR PLANT CELL WALL
BIOMECHANICS ∗
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2

Abstract. The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in
a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic
deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic
deformations of the cell wall microfibrils and viscoelastic Kelvin–Voigt type deformations of the cell
wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding methods)
we derive macroscopic equations from the microscopic model for cell wall biomechanics consisting of
strongly coupled equations of linear viscoelasticity and a system of reaction-diffusion and ordinary
differential equations. As is typical for microscopic viscoelastic problems, the macroscopic equations
governing the viscoelastic deformations of plant cell walls contain memory terms. The derivation of
the macroscopic problem for the degenerate viscoelastic equations is conducted using a perturbation
argument.
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1. Introduction

To obtain a better understanding of the mechanical properties and development of plant tissues it is important
to model and analyse the interactions between the chemical processes and mechanical deformations of plant
cells. The main feature of plant cells are their walls, which must be strong to resist high internal hydrostatic
pressure (turgor pressure) and flexible to permit growth. The biomechanics of plant cell walls is determined
by the cell wall microstructure, given by microfibrils, and the physical properties of the cell wall matrix. The
orientation of microfibrils, their length, high tensile strength, and interactions with wall matrix macromolecules
strongly influence the wall’s stiffness. It is also supposed that calcium-pectin cross-linking chemistry is one of
the main regulators of cell wall elasticity and extension [30]. Pectin can be modified by the enzyme pectin
methylesterase (PME), which removes methyl groups by breaking ester bonds. The de-esterified pectin is able
to form calcium-pectin cross-links, and so stiffen the cell wall and reduce its expansion, see e.g. [29]. It has
been shown that the modification of pectin by PME and the control of the amount of calcium-pectin cross-links
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greatly influence the mechanical deformations of plant cell walls [23,24], and the interference with PME activity
causes dramatic changes in growth behavior of plant cells and tissues [31].

To address the interactions between microstructure, chemistry and mechanics, in the microscopic model for
plant cell wall biomechanics we consider the influence of the microscopic structure, associated with the cellulose
microfibrils, and the calcium-pectin cross-links on the mechanical properties of plant cell walls. We model the
cell wall as a three-dimensional continuum consisting of a polysaccharide matrix and cellulose microfibrils. It was
observed experimentally that plant cell wall microfibrils are anisotropic, see e.g. [10], and the cell wall matrix, in
addition to elastic deformations, exhibits viscous behaviour, see e.g. [14]. Hence we model the cell wall matrix
as a linearly viscoelastic Kelvin–Voigt material, whereas microfibrils are modelled as an anisotropic linearly
elastic material. Within the matrix, we consider the dynamics of the enzyme PME, methylesterfied pectin,
demethylesterfied pectin, calcium ions, and calcium-pectin cross-links. A model for plant cell wall biomechanics
in which the cell wall matrix was assumed to be linearly elastic was derived and analysed in [26]. The interplay
between the mechanics and the cross-link dynamics comes in by assuming that the elastic and viscous properties
of the cell wall matrix depend on the density of the cross-links and that stress within the cell wall can break
calcium-pectin cross-links. The stress-dependent opening of calcium channels in the cell plasma membrane
is addressed in the flux boundary conditions for calcium ions. The resulting microscopic model is a system of
strongly coupled four diffusion-reaction equations, one ordinary differential equation, and the equations of linear
viscoelasticity. Since only the cell wall matrix is viscoelastic we obtain degenerate elastic-viscoelastic equations.
In our model we focus on the interactions between the chemical reactions within the cell wall and its deformation
and, hence, do not consider the growth of the cell wall.

To analyse the macroscopic mechanical properties of the plant cell wall we rigorously derive macroscopic equa-
tions from the microscopic description of plant cell wall biomechanics. The two-scale convergence, e.g. [4, 21],
and the periodic unfolding method, e.g. [7,8], are applied to obtain the macroscopic equations. For the viscoelas-
tic equations the macroscopic momentum balance equation contains a term that depends on the history of the
strain represented by an integral term (fading memory effect). Due to the coupling between the viscoelastic
properties and the biochemistry of a plant cell wall, the elastic and viscous tensors depend on space and time
variables. This fact introduces additional complexity in the derivation and in the structure of the macroscopic
equations, compered to classical viscoelastic equations.

The main novelty of this paper is the multiscale analysis and derivation of the macroscopic problem from a
microscopic description of the mechanical and chemical processes. This approach allows us to take into account
the complex microscopic structure of a plant cell wall and to analyse the impact of the heterogeneous distribution
of cell wall structural elements on the mechanical properties of plants. The main mathematical difficulty arises
from the strong coupling between the equations of linear viscoelasticity for cell wall mechanics and the system
of reaction-diffusion and ordinary differential equations for the chemical processes in the wall matrix. Also
the degeneracy of the viscoelastic equations, due to the fact that only the cell wall matrix is assumed to be
viscoelastic and microfibrils are assumed to be elastic, induces additional technical difficulties in the multiscale
analysis of the microscopic model. To derive the macroscopic equations for the viscoelastic model for cell wall
biomechanics we consider perturbed equations by introducing an inertial term. Once the macroscopic problem
of the perturbed equations is derived, the perturbation parameter is sent to zero. By showing that the limit
problem (as the perturbation parameter tends to zero) of the two-scale macroscopic problem for the perturbed
microscopic equations is the same as the two-scale macroscopic problem for the original microscopic equations, we
obtain the effective homogenized equations for the original viscoelastic problem coupled with reaction-diffusion
and ordinary differential equations. A perturbation approach, by considering a viscosity term multiplied by a
small perturbation parameter in the elastic inclusions, was also used in [11] to derive a macroscopic model for
an elastic-viscoelastic problem.

A multiscale analysis of the viscoelastic equations with time-independent coefficients was considered previ-
ously in [12,13,18,27]. Macroscopic equations for scalar elastic-viscoelastic equations with time-independent coef-
ficients were derived in [11] by applying the H-convergence method [19]. A microscopic viscoelastic Kelvin–Voigt
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model with time-dependent coefficients in the context of thermo-viscoelasticity was analysed in [1] and macro-
scopic equations were derived by applying the method of asymptotic expansion.

The paper is organised as follows. In Section 2 we formulate a mathematical model for plant cell wall
biomechanics in which the cell wall matrix is assumed to be viscoelastic. In Section 3 we summarise the main
results of the paper. The well-possedness of the microscopic model is shown in Section 4. The multiscale analysis
of the microscopic model is conducted in Section 5.

2. Microscopic model for viscoelastic deformations of plant cell walls

The main feature of plant cells are their walls, which must be strong to resist high internal hydrostatic
pressure and flexible to permit the growth. To better understand the interplay between these in some sense
conflicting functions, we consider a mathematical model describing the interactions between the mechanical
properties and the chemical processes in cell walls, surrounding plant cells. Plant cell walls are separated from
the inside of the cell by the plasma membrane, modelled as an internal boundary of the cell wall (see Fig. 1a).
Individual cells in plant tissues are joined together by a pectin network of middle lamella. The primary wall of a
plant cell consists mainly of oriented cellulose microfibrils imbedded in the cell wall matrix, which is composed of
pectin, hemicellulose, structural proteins, and water. It was observed experimentally that in addition to elastic
deformations the plant cell wall matrix exhibits viscoelastic behaviour [14]. Hence, in contrast to the model
considered in [26], here we assume that the deformations of the plant cell wall matrix are determined by the
equations of linear viscoelasticity.

To model mechanical deformations of plant cell walls, we consider a domain Ω = (0, a1) × (0, a2) × (0, a3)
representing a flat section of a cell wall, where ai, with i = 1, 2, 3, are positive numbers. We assume that the
microfibrils are oriented in the x3-direction (see Fig. 1b). We shall distinguish between six disjoint parts of the
boundary ∂Ω of the domain Ω. The interior boundary ΓI = {0} × (0, a2) × (0, a3) represents the cell plasma
membrane, the exterior boundary ΓE = {a1} × (0, a2) × (0, a3) denotes the side of the cell wall which is in
contact with the middle lamella, on the top and bottom boundaries ΓU = (0, a1) × {0} × (0, a3) ∪ (0, a1) ×
{a2}× (0, a3) we will prescribe traction boundary conditions, reflecting the turgor pressure. On the boundaries
ΓP = (0, a1) × (0, a2) × {0} ∪ (0, a1) × (0, a2) × {a3} we consider periodic boundary conditions.

To determine the microscopic structure of the cell wall given by cell wall microfibrils, we consider Y =
(0, 1)2 × (0, a3) and define Ŷ = (0, 1)2, together with the subdomain ŶF , with ŶF ⊂ Ŷ , and ŶM = Ŷ \ ŶF . Then
YF = ŶF × (0, a3) and YM = ŶM × (0, a3) represent the cell wall microfibrils and cell wall matrix, rescaled to
the ‘unit cell’ Y (see Fig. 1c). We also define Γ̂ = ∂ŶF ∩ ∂ŶM and Γ = ∂YF ∩ ∂YM .

We assume that the microfibrils in the cell wall are distributed periodically and have a diameter on the order
of ε, where the small parameter ε characterise the size of the microstructure, i.e. the ratio between the diameter
of the microfibrils and the thickness of the cell wall. The domains

Ωε
F =

⋃
ξ∈Z2

{
ε(ŶF + ξ) × (0, a3) | ε(Ŷ + ξ) ⊂ (0, a1) × (0, a2)

}
and Ωε

M = Ω \Ωε
F

denote the parts of Ω occupied by the microfibrils and by the cell wall matrix, respectively. The boundary
between the cell wall matrix and the microfibrils is denoted by

Γ ε = ∂Ωε
M ∩ ∂Ωε

F .

We adopt the following notation: ΩT = (0, T )×Ω, Ωε
M,T = (0, T )×Ωε

M , ΓI,T = (0, T )×ΓI, Γ ε
T = (0, T )×Γ ε,

ΓU ,T = (0, T )× ΓU , ΓE,T = (0, T ) × ΓE , and ΓEU ,T = (0, T ) × (ΓE ∪ ΓU ), and define

W(Ω) = {u ∈ H1(Ω; R3)
∣∣ ∫

Ω

u dx = 0,
∫

Ω

[(∇u)12 − (∇u)21] dx = 0 and u is a3-periodic in x3},

V(Ωε
M ) = {n ∈ H1(Ωε

M )
∣∣ n is a3-periodic in x3}.
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Figure 1. (a) A schematic of a plant cell with an indication of the domain Ω as a part of the
cell wall. (b) A depiction of the domain Ω with the subsets representing the cell wall matrix
Ωε

M and the microfibrils Ωε
F . The (hidden) surface ΓI corresponds to the plasma membrane

and is in contact with the interior of the cell, the surface ΓE is facing the outside of the cell
and is in contact with the middle lamella, and ΓU is the union of the surfaces on the top and
bottom of Ω. (c) A depiction of the ‘unit cell’ Y .

By Korn’s second inequality, the L2-norm of the strain defines a norm on W(Ω)

‖u‖W(Ω) = ‖e(u)‖L2(Ω) for all u ∈ W(Ω),

see e.g. [6, 17, 22]. For more details see also [26].

The microscopic model for elastic-viscoelastic deformations uε of plant cell walls and for the densities of
esterified pectin pε

1, PME enzyme pε
2, de-esterified pectin nε

1, calcium ions nε
2, and calcium-pectin cross-links bε

reads

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div (Eε(bε, x)e(uε) + V
ε(bε, x)∂te(uε)) = 0 in ΩT ,

(Eε(bε, x)e(uε) + V
ε(bε, x)∂te(uε))ν = −pIν on ΓI,T ,

(Eε(bε, x)e(uε) + V
ε(bε, x)∂te(uε))ν = f on ΓEU ,T ,

uε a3-periodic in x3,

uε(0, x) = u0(x) in Ω,

(2.1)

and

∂tpε = div(Dp∇pε) − Fp(pε) in Ωε
M,T ,

∂tnε = div(Dn∇nε) + Fn(pε,nε) + Rn(nε, bε,Nδ(e(uε))) in Ωε
M,T ,

∂tb
ε = Rb(nε, bε,Nδ(e(uε))) in Ωε

M,T ,

(2.2)
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where pε = (pε
1, p

ε
2)T , nε = (nε

1, n
ε
2)T , and div(Dp∇pε) = (div(D1

p∇pε
1), div(D2

p∇pε
2))T , and div(Dn∇nε) =

(div(D1
n∇nε

1), div(D2
n∇nε

2))T , together with the initial and boundary conditions

Dp∇pε ν = Jp(pε) on ΓI,T ,

Dp∇pε ν = −γppε on ΓE,T ,

Dn∇nε ν = Nδ(e(uε))G(nε) on ΓI,T ,

Dn∇nε ν = Jn(nε) on ΓE,T ,

Dp∇pε ν = 0, Dn∇nε ν = 0 on Γ ε
T and ΓU ,T ,

pε, nε a3-periodic in x3,

pε(0, x) = p0(x), nε(0, x) = n0(x), bε(0, x) = b0(x) in Ωε
M .

(2.3)

Here Nδ(e(uε)), defined as

Nδ(e(uε)) =

(
−
∫

Bδ(x)∩Ω

tr (Eε(bε, x̃)e(uε)) dx̃

)+

in (0, T )×Ω, for δ > 0, (2.4)

represents the nonlocal impact of mechanical stresses on the calcium-pectin cross-links chemistry, where Bδ(x)
is a ball of a fixed radius δ > 0 at x ∈ Ω. From a biological point of view the nonlocal dependence of the
chemical reactions on the displacement gradient is motivated by the fact that pectins are long molecules and
hence cell wall mechanics has a nonlocal impact on the chemical processes. The positive part in the definition
of Nδ(e(uε)) reflects the fact that extension rather than compression causes the breakage of cross-links. The
boundary condition (2.3)3 reflects the fact that the flow of calcium ions between the interior of the cell and the
cell wall depends on the displacement gradient, which corresponds to the stress-dependent opening of calcium
channels in the plasma membrane [28].

The elasticity and viscosity tensors are defined as E
ε(ξ, x) = E(ξ, x̂/ε) and V

ε(ξ, x) = V(ξ, x̂/ε), where the
Ŷ -periodic in y functions E and V are given by E(ξ, y) = EM (ξ)χŶM

(y)+EFχŶF
(y) and V(ξ, y) = VM (ξ)χŶM

(y).
For a given measurable set A we use the notation 〈φ1, φ2〉A =

∫
A φ1φ2 dx, where the product of φ1 and

φ2 is the scalar-product if they are vector valued. By 〈ψ1, ψ2〉V,V′ we denote the dual product between ψ1 ∈
L2(0, T ;V(Ωε

M )) and ψ2 ∈ L2(0, T ;V(Ωε
M)′). We also denote Ik

μ = (−μ,+∞)k, for an arbitrary fixed μ > 0 and
k ∈ N.

Throughout the text we shall use boldface letters, either upper or lower case, to denote vectors. However,
matrices are not denoted with bold letters. Blackboard bold characters, with the exception of the standard
symbols for the real numbers and the integers, denote fourth-order tensors.

Assumption 2.1.

1. Dj
α ∈ R

3×3 is symmetric, with (Dj
αξ, ξ) ≥ dα|ξ|2 for all ξ ∈ R

3 and some dα > 0, where α = p, n, j = 1, 2,
and γp ≥ 0.

2. Fp : R
2 → R

2 is continuously differentiable in I2
μ, with Fp,1(0, η) = 0, Fp,2(ξ, 0) = 0, Fp,1(ξ, η) ≥ 0, and

|Fp,2(ξ, η)| ≤ g1(ξ)(1 + η) for all ξ, η ∈ R+ and some g1 ∈ C1(R+; R+).
3. Jp : R

2 → R
2 is continuously differentiable in I2

μ, with Jp,1(0, η) ≥ 0, Jp,2(ξ, 0) ≥ 0, |Jp,1(ξ, η)| ≤ γJ(1 + ξ),
and |Jp,2(ξ, η)| ≤ g(ξ)(1 + η) for all ξ, η ∈ R+ and some γJ > 0 and g ∈ C1(R+; R+).

4. Fn : R
4 → R

2 is continuously differentiable in I4
μ, with Fn,1(ξ, 0, η2) ≥ 0, Fn,2(ξ, η1, 0) ≥ 0, and

|Fn,1(ξ,η)| ≤ γ1
F (1 + g2(ξ) + |η|), |Fn,2(ξ,η)| ≤ γ2

F (1 + g2(ξ) + |η|),

for all ξ = (ξ1, ξ2)T , η = (η1, η2)T ∈ R
2
+ and some γ1

F , γ
2
F > 0, and g2 ∈ C1(R2

+; R+).
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5. Rn : R
3 × R+ → R

2 and Rb : R
3 × R+ → R are continuously differentiable in I3

μ × R+ and satisfy

Rn,1(0, ξ2, η, ζ) ≥ 0, |Rn,1(ξ, η, ζ)| ≤ β1(1 + |ξ| + η)(1 + ζ),
Rn,2(ξ1, 0, η, ζ) ≥ 0, |Rn,2(ξ, η, ζ)| ≤ β2(1 + |ξ| + η)(1 + ζ),
Rb(ξ, 0, ζ) ≥ 0, |Rb(ξ, η, ζ)| ≤ β3(1 + |ξ| + η)(1 + ζ), (Rb(ξ, η, ζ))+ ≤ β4

for some βj > 0, j = 1, . . . , 4, and all ξ = (ξ1, ξ2)T ∈ R
2
+, η, ζ ∈ R+.

6. Jn : R
2 → R

2 is continuously differentiable in I2
μ, with Jn,1(0, η) ≥ 0, Jn,2(ξ, 0) ≥ 0, |Jn,1(ξ, η)| ≤ γ1

n(1 + ξ),
and |Jn,2(ξ, η)| ≤ γ2

n(1 + ξ + η) for all ξ, η ∈ R+ and some γ1
n, γ

2
n > 0.

7. G(ξ, η) : R
2 → R

2, with G(ξ, η) = (0, γ1 − γ2η)T for η ∈ R and some γ1, γ2 ≥ 0.
8. VM ∈ C1(R) possesses major and minor symmetries, i.e. VM,ijkl = VM,klij = VM,jikl = VM,ijlk , and there

exists ωV > 0 such that VM (ξ)A · A ≥ ωV |A|2 for all symmetric A ∈ R
3×3 and ξ ∈ R+.

9. EM ∈ C1(R), EF , EM possess major and minor symmetries, i.e. EL,ijkl = EL,klij = EL,jikl = EL,ijlk, for
L = F,M , and there exists ωE > 0 such that EFA ·A ≥ ωE|A|2, EM (ξ)A ·A ≥ ωE |A|2, and E

′
M (ξ)A ·A ≥ 0

for all symmetric A ∈ R
3×3 and ξ ∈ R+. There exists γM > 0 such that |EM (ξ)| ≤ γM for all ξ ∈ R+.

10. The initial conditions p0 = (p0,1, p0,2)T ,n0 = (n0,1, n0,2)T ∈ L∞(Ω)2, b0 ∈ H1(Ω) ∩ L∞(Ω) are non-
negative, and u0 ∈ W(Ω).

11. f ∈ H1(0, T ;L2(ΓE ∪ ΓU))3 and pI ∈ H1(0, T ;L2(ΓI)).

Remark 2.2. Notice that Assumption 2.1.9 is not restrictive from a physical point of view, since every biolog-
ical material will have a maximal possible stiffness. Also, in contrast to [26], we assume that (Rb(ξ, η, ζ))+ is
bounded, see Assumption 2.1.5. This assumption is used to derive a priori estimates for solutions of the equa-
tions of linear viscoelasticity, independent of bε, and to prove the global in time existence of a weak solution of
(2.1) and (2.3) for arbitrary initial data and boundary conditions satisfying Assumptions 2.1.10 and 2.1.11. The
local in time existence of a weak solution or the existence of a weak solution for small data can be shown by
considering the same assumptions as in [26], i.e. without the assumption of the boundedness of (Rb(ξ, η, ζ))+.
Notice that possible biologically relevant forms for reaction terms in (2.2) are given by Fp(p) = (ReE(p), 0)T ,
Fn(p,n) = (ReE(p) − 2Rdc(n) −Rdn1,−Rdc(n))T , Rn(n, b,Nδ(e(u))) = (2Rbb(b)Nδ(e(u)), Rbb(b)Nδ(e(u)))T ,
and Rb(n, b,Nδ(e(u))) = Rdc(n) − Rbb(b)Nδ(e(u)). Then the boundedness of (Rb(ξ, η, ζ))+, assumed in As-
sumption 2.1.5, is ensured if (Rdc(ξ))+ is bounded for nonnegative ξ1 and ξ2, e.g. Rdc is a Hill function.

A weak solution of (2.1)–(2.3) is defined in the following way.

Definition 2.3. A weak solution of the microscopic model (2.1)–(2.3) is a tuple (pε,nε, bε,uε), such that
bε ∈ H1(0, T ;L2(Ωε

M )), pε,nε ∈ L2(0, T ;V(Ωε
M ))2, ∂tpε, ∂tnε ∈ L2(0, T ;V(Ωε

M)′)2 and satisfy the equations

〈∂tpε,φp〉V,V′ + 〈Dp∇pε,∇φp〉Ωε
M,T

= −〈Fp(pε),φp〉Ωε
M,T

+ 〈Jp(pε),φp〉ΓI,T − 〈γppε,φp〉ΓE,T ,

〈∂tnε,φn〉V,V′ + 〈Dn∇nε,∇φn〉Ωε
M,T

=
〈
Fn(pε,nε) + Rn(nε, bε,Nδ(e(uε))),φn

〉
Ωε

M,T

+
〈
Nδ(e(uε))G(nε),φn

〉
ΓI,T

+ 〈Jn(nε),φn〉ΓE,T

(2.5)

for all φp,φn ∈ L2(0, T ;V(Ωε
M))2,

∂tb
ε = Rb(nε, bε,Nδ(e(uε))) a.e. in Ωε

M,T , (2.6)

and uε ∈ L2(0, T ;W(Ω)), with ∂te(uε) ∈ L2((0, T )×Ωε
M )3, satisfies〈

E
ε(bε, x)e(uε) + V

ε(bε, x)∂te(uε), e(ψ)
〉

ΩT
= 〈f ,ψ〉ΓEU,T − 〈pIν,ψ〉ΓI,T (2.7)

for all ψ ∈ L2(0, T ;W(Ω)). Furthermore, pε, nε, bε satisfy the initial conditions in L2(Ωε
M ) and uε satisfies the

initial condition in W(Ω), i.e. uε(t, ·) → u0 in W(Ω), pε(t, ·) → p0, nε(t, ·) → n0 in L2(Ωε
M )2, and bε(t, ·) → b0

in L2(Ωε
M ) as t→ 0.
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3. Main results

The main result of this paper is the derivation of the macroscopic equations for the microscopic viscoelastic
model for plant cell wall biomechanics. The main difference between the homogenization results presented here
and those in [26] is due to the presence of a degenerate viscous term in the equations for the mechanical
deformations of a cell wall. The fact that only the cell wall matrix is viscoelastic and the dependence of the
viscosity tensor on the time variable, via the dependence on the cross-links density bε, make the multiscale
analysis nonclassical and complex.

First we formulate the well-posedness result for the model (2.1)–(2.3).

Theorem 3.1. Under Assumption 2.1 there exists a unique weak solution of (2.1)–(2.3) satisfying the a priori
estimates

‖bε‖L∞(0,T ;L∞(Ωε
M )) + ‖(∂tb

ε)+‖L∞(0,T ;L∞(Ωε
M )) ≤ C1, (3.1)

where the constant C1 is independent of ε and δ,

‖uε‖L∞(0,T ;W(Ω)) + ‖∂te(uε)‖L2((0,T )×Ωε
M) ≤ C2, (3.2)

where the constant C2 is independent of ε, and

‖pε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇pε‖L2(Ωε

M,T ) + ‖nε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇nε‖L2(Ωε

M,T ) ≤ C3,

‖∂tb
ε‖L∞(0,T ;L∞(Ωε

M )) ≤ C3,

‖θhpε − pε‖L2(Ωε
M,T−h) + ‖θhnε − nε‖L2(Ωε

M,T−h) ≤ C3h
1/4

(3.3)

for any h > 0, where θhv(t, x) = v(t + h, x) for (t, x) ∈ Ωε
M,T−h, with h ∈ (0, T ), and the constant C3 is

independent of ε and h.

The proof of Theorem 3.1 is similar to the proof of the corresponding existence and uniqueness results in [26].
Thus here we will only sketch the main ideas of the proof and emphasise the steps that are different from those
of the proof in [26].

To formulate the macroscopic equations for the microscopic model (2.1)–(2.3), first we define the macroscopic
coefficients which will be obtained in the derivation of the limit equations. The macroscopic coefficients coming
from the elasticity tensor are given by

Ẽhom,ijkl(b) = −
∫

Ŷ

[
Eijkl(b, y) +

(
E(b, y) êy(wij)

)
kl

]
dy,

K̃ijkl(t, s, b) = −
∫

Ŷ

(
E(b(t+ s), y) êy(vij(t, s))

)
kl

dy,
(3.4)

and the macroscopic elasticity and viscosity tensors and the memory kernel read:

Ehom,ijkl(b) = Ẽhom,ijkl(b) +
1
|Ŷ |

∫
ŶM

(
VM (b) ∂têy(wij)

)
kl

dy,

Vhom,ijkl(b) =
1
|Ŷ |

∫
ŶM

[
VM,ijkl(b) +

(
VM (b) êy(χ

ij
V

)
)

kl

]
dy,

Kijkl(t, s, b) = K̃ijkl(t, s, b) +
1
|Ŷ |

∫
ŶM

(
VM (b(t+ s)) ∂têy(vij(t, s))

)
kl

dy,

(3.5)
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where wij , χij
V

, and vij , with i, j = 1, 2, 3, are solutions of the ‘unit cell’ problems

d̂ivy

(
E(b, y)(êy(wij) + bij) + V(b, y)∂têy(wij)

)
= 0 in ŶT ,

wij(0, x, y) = 0 in Ŷ ,

d̂ivy

(
VM (b)(êy(χij

V
) + bij)

)
= 0 in ŶM ,

VM (b)(êy(χij
V

) + bij)ν = 0 on Γ̂ ,∫
Ŷ

wijdy = 0,
∫

ŶM

χij
V

dy = 0, wij , χij
V

Ŷ -periodic,

(3.6)

where bjk = 1
2 (bj ⊗ bk + bk ⊗ bj), with {bj}1≤j≤3 being the canonical basis of R

3, and

d̂ivy

(
E(b(t+ s, x), y)êy(vij) + V(b(t+ s, x), y)∂têy(vij)

)
= 0 in ŶT−s,

vij(0, s, x, y) = χij
V

(s, x, y) − wij(s, x, y) in Ŷ ,∫
Ŷ

vijdy =
∫

Ŷ

χij
V

dy, vij Ŷ -periodic,

(3.7)

for x ∈ Ω and s ∈ [0, T ], where χij
V

is an extension of χij
V

from ŶM into Ŷ . Here for a vector function
v = (v1, v2, v3)T we denote d̂ivyv = ∂y1v1 + ∂y2v2 and êy(v) is defined in the following way: êy(v)33 = 0,
êy(v)3j = êy(v)j3 = 1

2∂yjv3 for j = 1, 2, and êy(v)ij = 1
2 (∂yivj + ∂yjvi) for i, j = 1, 2.

The macroscopic diffusion coefficients are defined by

Dl
α,ij = −

∫
ŶM

[
Dl

α,ij + (Dl
α∇̂yv

j
α,l)i

]
dy for i, j = 1, 2, 3, α = p, n, l = 1, 2, (3.8)

where ∇̂yv
j
α,l = (∂y1v

j
α,l, ∂y2v

j
α,l, 0)T and the functions vj

α,l are solutions of the ‘unit cell’ problems

divŷ(D̂l
α∇ŷv

j
α,l) = 0 in ŶM , j = 1, 2, 3,

(D̂l
α∇ŷv

j
α,l + D̃l

αbj) · ν = 0 on Γ̂ , vj
α,l Ŷ − periodic,

∫
ŶM

vj
α,l dy = 0,

(3.9)

where ∇ŷ = (∂y1 , ∂y2)T , D̂l
α = (Dl

α,ik)i,k=1,2 and D̃l
α = (Dl

α,ik)i=1,2,k=1,2,3, with l = 1, 2 and α = p, n.
Applying techniques of periodic homogenization we obtain the macroscopic equations for plant cell wall

biomechanics.

Theorem 3.2. A sequence of solutions of the microscopic model (2.1)–(2.3) converges to a solution of the
macroscopic equations

∂tp = div(Dp∇p) − Fp(p) in ΩT ,

∂tn = div(Dn∇n) + Fn(p,n) + Rn(n, b,N eff
δ (e(u))) in ΩT ,

∂tb = Rb(n, b,N eff
δ (e(u))) in ΩT ,

(3.10)

together with the initial and boundary conditions

Dp∇pν = θ−1
M Jp(p), Dn∇nν = θ−1

M G(n)N eff
δ (e(u)) on ΓI,T ,

Dp∇pν = −θ−1
M γp p, Dn∇nν = θ−1

M Jn(n) on ΓE,T ,

Dp∇pν = 0, Dn∇nν = 0 on ΓU ,T ,

p, n a3-periodic in x3,

p(0) = p0, n(0) = n0, b(0) = b0 in Ω,

(3.11)
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where θM = |ŶM |/|Ŷ |, and the macroscopic equations of linear viscoelasticity

div
(

Ehom(b)e(u) + Vhom(b)∂te(u) +
∫ t

0

K(t− s, s, b)∂se(u) ds
)

= 0 in ΩT ,(
Ehom(b)e(u) + Vhom(b)∂te(u) +

∫ t

0

K(t− s, s, b)∂se(u) ds
)
ν = f on ΓEU ,T ,(

Ehom(b)e(u) + Vhom(b)∂te(u) +
∫ t

0

K(t− s, s, b)∂se(u) ds
)
ν = −pIν on ΓI,T ,

u a3-periodic in x3,

u(0) = u0 in Ω.

(3.12)

Here

N eff
δ (e(u)) =

(
−
∫

Bδ(x)∩Ω

tr
[
Ẽhom(b)e(u) +

∫ t

0

K̃(t− s, s, b)∂se(u)ds
]
dx̃

)+

for (t, x) ∈ (0, T ) ×Ω. (3.13)

4. Existence of a unique weak solution of the microscopic problem (2.1)–(2.3).
a priori estimates

In the derivation of a priori estimates for solutions of the microscopic problem (2.1)–(2.3) we shall use
an extension of a function defined on a connected perforated domain Ωε

M to Ω. Applying classical extension
results [2, 9, 15, 22], we obtain the following lemma.

Lemma 4.1. There exists an extension vε of vε from W 1,p(Ωε
M ) into W 1,p(Ω), with 1 ≤ p <∞, such that

‖vε‖Lp(Ω) ≤ μ1‖vε‖Lp(Ωε
M ) and ‖∇vε‖Lp(Ω) ≤ μ1‖∇vε‖Lp(Ωε

M ),

where the constant μ1 depends only on Y and YM , and YM ⊂ Y is connected.
There exists an extension wε of wε from H1(Ωε

M )3 into H1(Ω)3 such that

‖wε‖Lp(Ω) ≤ μ2‖wε‖Lp(Ωε
M ), ‖∇wε‖Lp(Ω) ≤ μ2‖∇wε‖Lp(Ωε

M ), ‖e(wε)‖Lp(Ω) ≤ μ2‖e(wε)‖Lp(Ωε
M ),

where the constant μ2 does not depend on wε and ε.

Remark 4.2. Notice that the microfibrils do not intersect the boundaries ΓI , ΓU , and ΓE , and near the bound-
aries ΓP = ∂Ω \ (ΓI ∪ΓE ∪ ΓU) it is sufficient to extend vε and wε by reflection in the directions normal to the
microfibrils and parallel to the boundary. Thus, classical extension results [2, 9, 15, 22, 25] apply to Ωε

M .
In the sequel, we identify pε and nε with their extensions.

First we show the well-posedness and a priori estimates for equations (2.2) and (2.3) for a given uε ∈
L∞(0, T ;W(Ω)). Next for a given bε we show the existence of a unique solution of the viscoelastic problem (2.1).
Then using the fact that the estimates for bε can be obtained independently of uε and applying a fixed point
argument we show the well-posedness of the coupled system.

Lemma 4.3. Under Assumption 2.1 and for uε ∈ L∞(0, T ;W(Ω)) such that

‖uε‖L∞(0,T ;W(Ω)) ≤ C, (4.1)

where the constant C is independent of ε, there exists a unique weak solution (pε,nε, bε) of the microscopic
problem (2.2) and (2.3), with pε = (pε

1, p
ε
2)

T and nε = (nε
1, n

ε
2)

T , satisfying

pε
j(t, x) ≥ 0, nε

j(t, x) ≥ 0, bε(t, x) ≥ 0 for (t, x) ∈ (0, T )×Ωε
M , j = 1, 2,

and the a priori estimates (3.1) and (3.3).



1456 M. PTASHNYK AND B. SEGUIN

Proof. The proof of this lemma follows along the same lines as the proof of Theorem 3.1 in [26]. The only
difference is in the derivation of the estimates for bε. Using the non-negativity of nε

1, n
ε
2, b

ε, and Assumption 2.1.5
we obtain from the equation for bε

0 ≤ bε(t, x) ≤ ‖b0‖L∞(Ω) + T ‖(Rb(nε, bε,Nδ(e(uε))))+‖L∞(0,T ;L∞(Ωε
M )) ≤ C for (t, x) ∈ Ωε

M,T ,

(∂tb
ε(t, x))+ ≤ ‖(Rb(nε, bε,Nδ(e(uε))))+‖L∞(0,T ;L∞(Ωε

M )) ≤ β4 for (t, x) ∈ Ωε
M,T .

(4.2)

Hence, the bounds for bε and (∂tb
ε)+ are independent of the bound for ‖uε‖L∞(0,T ;W(Ω)). This fact is important

for the derivation of a priori estimates for uε and for the fixed point argument in the proof of the existence of
a global weak solution for the coupled system.

Using the equation for bε, the definition of Nδ, and the estimates for ‖nε‖L∞(0,T ;L∞(Ωε
M )), ‖bε‖L∞(0,T ;L∞(Ωε

M )),
and ‖uε‖L∞(0,T ;W(Ω)) we obtain the estimate for ‖∂tb

ε‖L∞(0,T ;L∞(Ωε
M )) uniformly in ε.

Similar to [26], integrating the equations for pε and nε over (t, t + h), with h ∈ (0, T ), and considering
φp = θhpε − pε and φn = θhnε − nε as test functions, respectively, we obtain the last estimate in (3.3). �

Next we prove the existence, uniqueness and a priori estimates for a solution of the viscoelastic equations for
a given bε ∈ L∞(0, T ;L∞(Ωε

M )).

Lemma 4.4. Under Assumption 2.1 for a given bε ∈ L∞(0, T ;L∞(Ωε
M )), satisfying

‖bε‖L∞(0,T ;L∞(Ωε
M )) + ‖(∂tb

ε)+‖L∞(0,T ;L∞(Ωε
M )) ≤ B, (4.3)

where the constant B is independent of ε, there exists a weak solution of the degenerate viscoelastic equa-
tions (2.1) satisfying the a priori estimate (3.2).

Proof. Using the estimates for uε and ∂tuε, similar to those in (4.5), along with the positive definiteness of E

and V, and applying the Galerkin method, yield the existence of a weak solution of the problem (2.1).
Since ∂te(uε) is only defined in Ωε

M , to derive a priori estimates we first consider an approximation of ∂tuε

∂tuε,ζ(t, x) =
1
ζ

∫ t

t−ζ

∂s
1
ζ

∫ s+ζ

s

uε(σ, x) dσ ds (4.4)

as a test function in (2.7), then integrate by parts in the elastic term and take the limit as ζ → 0. Using the
assumptions on E and V, together with the non-negativity of bε, the boundedness of bε and (∂tb

ε)+, independent
of ε and uε, and the trace and Korn inequalities, we obtain

ωE

2
‖e(uε)(τ)‖2

L2(Ω) + ωV ‖∂te(uε)‖2
L2(Ωε

M,τ ) ≤
1
2
〈(∂tb

ε)+E
′
M (bε)e(uε), e(uε)〉Ωε

M,τ
+ C1‖e(u0)‖2

L2(Ω)

+〈f , ∂tuε〉ΓEU,τ − 〈pIν, ∂tuε〉ΓI,τ ≤ C2‖e(uε)‖2
L2(Ωτ ) + σ‖e(uε)(τ)‖2

L2(Ω) + Cσ

[
‖∂tf‖2

L2(ΓEU,τ )

+‖∂tpI‖2
L2(ΓI,τ ) + ‖f(τ)‖2

L2(ΓEU ) + ‖pI(τ)‖2
L2(ΓI) + ‖f(0)‖2

L2(ΓEU ) + ‖pI(0)‖2
L2(ΓI)

]
+ C3

for τ ∈ (0, T ]. Choosing σ sufficiently small and applying the Gronwall inequality imply

‖e(uε)‖L∞(0,T ;L2(Ω)) + ‖∂te(uε)‖L2(Ωε
M,T ) ≤ C, (4.5)

with a constant C independent of ε. Then the second Korn inequality yields (3.2). �

Now applying a fixed point argument and using the results in Lemmas 4.3 and 4.4 we obtain the well-posedness
of the coupled system (2.1)–(2.3).
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Proof of Theorem 3.1. For a given ũε ∈ L∞(0, T ;W(Ω)), with ‖ũε‖L∞(0,T ;W(Ω)) ≤ C, Lemma 4.3 implies the
existence of a non-negative weak solution (pε,nε, bε) of the problem (2.2) and (2.3), where the estimates for
‖bε‖L∞(0,T ;L∞(Ωε

M )) and ‖(∂tb
ε)+‖L∞(0,T ;L∞(Ωε

M )) are independent of ũε and ε. Thus bε satisfies (4.3) from
Lemma 4.4 and we have a solution uε of (2.1).

We define K : L∞(0, T ;W(Ω)) → L∞(0, T ;W(Ω)) by K(ũε) = uε, where uε is a solution of (2.1) for bε

given as a solution of (2.2) and (2.3) with ũε instead of uε, and show that for sufficiently small T̃ ∈ (0, T ], the
operator K : L∞(0, T̃ ;W(Ω)) → L∞(0, T̃ ;W(Ω)) is a contraction, i.e. there is a γ ∈ (0, 1) such that

‖K(ũε,1) −K(ũε,2)‖L∞(0,T̃ ;W(Ω)) ≤ γ‖ũε,1 − ũε,2‖L∞(0,T̃ ;W(Ω)) for ũε,1, ũε,2 ∈ L∞(0, T̃ ;W(Ω)).

Considering the difference of equation (2.7) for (uε,1, bε,1) and (uε,2, bε,2), and taking the approximation of
∂t(uε,1 − uε,2), defined as in (4.4), as a test function, in the same way as in the proof of Lemma 4.4, yield

1
2
〈Eε(bε,1, x)e(uε,1(τ) − uε,2(τ)), e(uε,1(τ) − uε,2(τ))〉Ω + 〈Vε(bε,1, x)∂te(uε,1 − uε,2), ∂te(uε,1 − uε,2)〉Ωτ

−1
2
〈∂tb

ε,1
E
′
M (bε,1)e(uε,1 − uε,2), e(uε,1 − uε,2)〉Ωε

M,τ
= 〈(EM (bε,2) − EM (bε,1))e(uε,2), ∂te(uε,1 − uε,2)〉Ωε

M,τ

+〈(VM (bε,2) − VM (bε,1))∂te(uε,2), ∂te(uε,1 − uε,2)〉Ωε
M,τ

for τ ∈ (0, T ]. By the assumptions on E
ε and V

ε and the boundedness of bε,1 and bε,2, we have

‖e(uε,1(τ)) − e(uε,2(τ))‖2
L2(Ω) ≤ C1‖(∂tb

ε,1)+‖L∞(0,T ;L∞(Ωε
M ))

∫ τ

0

‖e(uε,1 − uε,2)‖2
L2(Ωε

M )dτ

+ C2‖e(uε,2)‖2
H1(0,T ;L2(Ωε

M ))‖bε,1 − bε,2‖2
L∞(0,τ ;L∞(Ωε

M )).

Applying the Gronwall inequality and the estimates for (∂tb
ε,1)+ and e(uε,2) implies

‖e(uε,1) − e(uε,2)‖2
L∞(0,T̃ ;L2(Ω))

≤ C3‖bε,1 − bε,2‖2
L∞(0,T̃ ;L∞(Ωε

M ))
(4.6)

for T̃ ∈ (0, T ].
Now we shall estimate ‖bε,1 − bε,2‖2

L∞(0,T̃ ;L∞(Ωε
M ))

in terms of T̃‖e(ũε,1) − e(ũε,2)‖2
L∞(0,T̃ ;L2(Ω))

for any

T̃ ∈ (0, T ]. Following the same calculations as in [26], we first consider equation (2.5)2 for nε,1 and nε,2, take
φn = (|nε

1|q−2nε
1, |nε

2|q−2nε
2)

T , where nε
j = nε,1

j − nε,2
j with j = 1, 2 and q ≥ 2, and subtract the resulting

equations. Using the definition of Nδ, the assumptions on G and Jn, and the trace inequality, the boundary
terms are estimated in the following way〈

Nδ(e(ũε,1))
[
G(nε,1) − G(nε,2)

]
, (|nε

1|q−2nε
1, |nε

2|q−2nε
2)

T
〉

ΓI
≤ 0,〈

Jn(nε,1) − Jn(nε,2), (|nε
1|q−2nε

1, |nε
2|q−2nε

2)
T
〉

ΓE
≤ Cσq ‖nε,1 − nε,2‖q

Lq(Ωε
M )

+ σ(q − 1)/q2 ‖∇|nε,1 − nε,2|
q
2 ‖2

L2(Ωε
M )

and ∣∣∣〈G(nε,2)
[
Nδ(e(ũε,1)) −Nδ(e(ũε,2))

]
, (|nε

1|q−2nε
1, |nε

2|q−2nε
2)

T
〉

ΓI

∣∣∣ ≤ Cσ(q − 1)‖nε,1
2 − nε,2

2 ‖q
Lq(Ωε

M )

+σ(q − 1)/q2‖∇|nε,1
2 − nε,2

2 |
q
2 ‖2

L2(Ωε
M ) + (C/q)‖Nδ(e(ũε,1)) −Nδ(e(ũε,2))‖q

Lq(Ω),

with an arbitrary σ > 0. Using the assumptions on Fn and Rn and the uniform boundedness of pε, nε,j , and
bε,j , with j = 1, 2, we obtain

〈Fn(pε,nε,1) − Fn(pε,nε,2), (|nε
1|q−2nε

1, |nε
2|q−2nε

2)
T 〉Ωε

M
≤ C1‖nε,1 − nε,2‖q

Lq(Ωε
M ),

〈Rn(nε,1, bε,1,Nδ(e(ũε,1))) − Rn(nε,2, bε,2,Nδ(e(ũε,2))), (|nε
1|q−2nε

1, |nε
2|q−2nε

2)
T 〉Ωε

M
≤ C2

[
‖Nδ(e(ũε,1))‖L∞(Ω)

+ ‖Nδ(e(ũε,2))‖L∞(Ω) + 1
][
‖nε,1 − nε,2‖q

Lq(Ωε
M ) +

1
q
‖bε,1 − bε,2‖q

Lq(Ωε
M ) +

1
q
‖Nδ(e(ũε,1)) −Nδ(e(ũε,2))‖q

Lq(Ω)

]
.
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Then, the Gagliardo–Nirenberg inequality applied to |nε,1 − nε,2|q/2, the definition of Nδ(e(ũε,j)), the a priori
estimates for ũε,1 and ũε,2, together with the estimate

‖Nδ(e(ũε,1)) −Nδ(e(ũε,2))‖q
Lq(Ω) ≤ Cqδ−

3q
2
[
‖e(ũε,1) − e(ũε,2)‖q

L2(Ω) + ‖bε,1 − bε,2‖q
Lq(Ωε

M )

]
,

ensure
∂t‖nε,1 − nε,2‖q

Lq(Ωε
M ) + 2

q − 1
q

‖∇|nε,1 − nε,2|
q
2 ‖2

L2(Ωε
M ) ≤ C

[
q5‖nε,1 − nε,2‖q

Lq/2(Ωε
M )

+(Cq
δ + 1)

[
‖bε,1 − bε,2‖q

Lq(Ωε
M ) + ‖e(ũε,1) − e(ũε,2)‖q

L2(Ω)

]]
.

Here we use the notation |nε,1 − nε,2|α = |nε,1
1 − nε,2

1 |α + |nε,1
2 − nε,2

2 |α. Considering iterations in q as in ([3],
Lem. 3.2) with q = 2κ and κ = 2, 3, . . . , we obtain

‖nε,1(τ) − nε,2(τ)‖q
Lq(Ωε

M ) ≤ Cq
δ 210q22(q−1)

[
‖e(ũε,1) − e(ũε,2)‖q

L∞(0,τ ;L2(Ω)) + ‖bε,1 − bε,2‖q
L∞(0,τ ;Lq(Ωε

M ))

]
for τ ∈ (0, T ] and Cδ ≥ 1. Taking the qth root, and considering q → ∞ yield

‖nε,1 − nε,2‖L∞(0,τ ;L∞(Ωε
M )) ≤ Cδ

[
‖e(ũε,1) − e(ũε,2)‖L∞(0,τ ;L2(Ω)) + ‖bε,1 − bε,2‖L∞(0,τ ;L∞(Ωε

M ))

]
. (4.7)

Considering the difference of equations (2.6) for bε,1 and bε,2, multiplying by bε,1−bε,2, and using the assumptions
on Rb and estimate (4.7) we obtain the following estimate for bε,1 − bε,2

‖bε,1 − bε,2‖2
L∞(0,τ ;L∞(Ωε

M )) ≤ Cδτ
[
‖e(ũε,1) − e(ũε,2)‖2

L∞(0,τ ;L2(Ω)) + ‖bε,1 − bε,2‖2
L∞(0,τ ;L∞(Ωε

M ))

]
for τ ∈ (0, T ]. Then, the iteration over time intervals of length 1/(2Cδ) ensures

‖bε,1 − bε,2‖2
L∞(0,T̃ ;L∞(Ωε

M ))
≤ CT̃‖e(ũε,1 − ũε,2)‖2

L∞(0,T̃ ;L2(Ω))
(4.8)

for T̃ ∈ (0, T ]. Thus, combining (4.6) and (4.8) we have that the operator K : L∞(0, T̃ ;W(Ω)) →
L∞(0, T̃ ;W(Ω)), defined by K(ũε) = uε, where uε is a weak solution of (2.1), is a contraction for sufficiently
small T̃ , where T̃ depends on the coefficients in the microscopic equations and is independent of (pε,nε, bε,uε)
and ũε. Hence, using the Banach fixed point theorem and iterating over time intervals, we obtain the existence
of a unique weak solution of the microscopic problem (2.1)–(2.3). �

Remark 4.5. Without the assumption that (Rb(nε, bε,Nδ(e(uε))))+ is bounded we can prove a local in time
existence of a weak solution of the microscopic problem using a cut-off method. First we assume that

(Rb(nε, bε,Nδ(e(uε))))+ ≤ β3(1 + ‖nε‖L∞(0,T ;L∞(Ωε
M )) + ‖bε‖L∞(0,T ;L∞(Ωε

M )))(1 + Cδ‖uε‖L∞(0,T ;W(Ω))) ≤ β̃.

Then we have that bε satisfies (4.3) and obtain ‖uε‖L∞(0,T ;W(Ω)) ≤ C1eT (B(β̃)+C2). The derivation of the
estimates for nε and bε yields

‖bε‖L∞(0,T ;L∞(Ωε
M )) + ‖nε‖L∞(0,T ;L∞(Ωε

M )) ≤ C(2C1T (1+‖uε‖L∞(0,T ;W(Ω))) + 1) ≤ C(2C2T (eT(B(β̃)+C3)+1) + 1).

Then for sufficient small T and an appropriate choice of β̃ we obtain that (Rb(nε, bε,Nδ(e(uε))))+ ≤ β̃.

5. Derivation of the macroscopic equations of the problem (2.1)–(2.3): Proof

of Theorem 3.2

Due to the fact that the viscous term is positive definite in the cell wall matrix and is zero for the cell wall
microfibrils, to derive macroscopic equations for the microscopic problem (2.1)–(2.3) we consider a perturbed
problem by adding the inertial term ϑ∂2

t u
ε,ϑχΩε

M
, where ϑ > 0 is a small perturbation parameter,

ϑχΩε
M
∂2

t u
ε,ϑ = div

(
E

ε(bε,ϑ, x) e(uε,ϑ) + V
ε(bε,ϑ, x) ∂te(uε,ϑ)

)
in ΩT , (5.1)
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and the additional initial condition
∂tuε,ϑ(0, x) = 0 in Ω. (5.2)

We split the proof of Theorem 3.2 into three steps. First we derive the macroscopic equations for the perturbed
system. Then letting the perturbation parameter ϑ go to zero we obtain the macroscopic equations (3.10)–(3.12).
To verify that (3.10)–(3.12) are the macroscopic equations for the microscopic problem (2.1)–(2.3), we show
that the macroscopic two-scale problem is the same for the original microscopic model and for the perturbed
microscopic model when the perturbation parameter ϑ→ 0.

Lemma 5.1. There exists a unique weak solution (pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ) of the perturbed microscopic problem
(2.2), (2.3) and (5.1), together with the initial and boundary conditions in (2.1) and (5.2), satisfying the a priori
estimates

ϑ
1
2 ‖∂tuε,ϑ‖L∞(0,T ;L2(Ωε

M )) + ‖uε,ϑ‖L∞(0,T ;W(Ω)) + ‖∂te(uε,ϑ)‖L2(Ωε
M,T ) ≤ C, (5.3)

and
‖pε,ϑ‖L∞(0,T ;L∞(Ωε

M )) + ‖∇pε,ϑ‖L2(Ωε
M,T ) + ‖nε,ϑ‖L∞(0,T ;L∞(Ωε

M )) + ‖∇nε,ϑ‖L2(Ωε
M,T ) ≤ C,

‖bε,ϑ‖L∞(0,T ;L∞(Ωε
M )) + ‖∂tb

ε,ϑ‖L∞(0,T ;L∞(Ωε
M )) ≤ C,

‖θhpε,ϑ − pε,ϑ‖L2(Ωε
M,T−h) + ‖θhnε,ϑ − nε,ϑ‖L2(Ωε

M,T−h) ≤ Ch1/4,

(5.4)

where θhv(t, x) = v(t+h, x) for (t, x) ∈ Ωε
M,T−h and h ∈ (0, T ), and the constant C is independent of ε, ϑ, and

h.

Proof. For a given uε,ϑ ∈ L∞(0, T ;W(Ω)), with ‖uε,ϑ‖L∞(0,T ;W(Ω)) ≤ C, in the same way as in Lemma 4.3 we
obtain the existence of a unique solution of the problem (2.2) and (2.3), satisfying the a priori estimates (5.4).
Notice that the estimates for bε,ϑ and (∂tb

ε,ϑ)+ are independent of uε,ϑ, ε, and ϑ.
Then for bε,ϑ ∈ L∞(0, T ;L∞(Ωε

M )), with ‖bε,ϑ‖L∞(0,T ;L∞(Ωε
M )) ≤ C and ‖(∂tb

ε,ϑ)+‖L∞(0,T ;L∞(Ωε
M )) ≤ C,

similar to Lemma 4.4, we obtain the existence of a weak solution of the perturbed equations (5.1) with initial
and boundary conditions in (2.1) and (5.2), satisfying estimate (5.3).

Similar to the proof of Theorem 3.1, considering the difference of equation (5.1) for (uε,ϑ,j , bε,ϑ,j), with
j = 1, 2, and taking the approximation of ∂t(uε,ϑ,1 − uε,ϑ,2), as in (4.4), as a test function yield

1
2
ϑ‖∂tuε,ϑ,1(τ) − ∂tuε,ϑ,2(τ)‖2

L2(Ωε
M ) +

1
2
〈
E

ε(bε,ϑ,1, x)e(uε,ϑ,1 − uε,ϑ,2)(τ), e(uε,ϑ,1 − uε,ϑ,2)(τ)
〉

Ω

−1
2
〈
∂tb

ε
E
′
M (bε,ϑ,1)e(uε,ϑ,1 − uε,ϑ,2), e(uε,ϑ,1 − uε,ϑ,2)

〉
Ωε

M,τ

+
〈
V

ε(bε,ϑ,1, x)∂te(uε,ϑ,1 − uε,ϑ,2), ∂te(uε,ϑ,1 − uε,ϑ,2)
〉

Ωτ

=
〈
(EM (bε,ϑ,2) − EM (bε,ϑ,1))e(uε,ϑ,2) + (VM (bε,ϑ,2) − VM (bε,ϑ,1))∂te(uε,ϑ,2), ∂te(uε,ϑ,1 − uε,ϑ,2)

〉
Ωε

M,τ

for τ ∈ (0, T ]. By the assumptions on E
ε and V

ε, using the estimates for (∂tb
ε,ϑ,1)+, e(uε,ϑ,2), and ∂te(uε,ϑ,2),

together with the boundedness of bε,ϑ,1 and bε,ϑ,2, and applying the Gronwall inequality we obtain

‖e(uε,ϑ,1) − e(uε,ϑ,2)‖2
L∞(0,T̃ ;L2(Ω))

≤ C‖bε,ϑ,1 − bε,ϑ,2‖2
L∞(0,T̃ ;L∞(Ωε

M ))
(5.5)

for all T̃ ∈ (0, T ]. Then, using the estimates (4.8) and (5.5), together with the a priori estimates for uε,ϑ, pε,ϑ,
nε,ϑ, and bε,ϑ, in the same way as in the proof of Theorem 3.1 we obtain the existence of a unique weak solution
of the perturbed problem (2.2) and (5.1), with the initial and boundary conditions in (2.1), (2.3), and (5.2).
�

To verify a relation between the perturbed and original microscopic problems, we show that a sequence of
weak solutions of the perturbed problem (2.2), (2.3), and (5.1), with initial and boundary conditions in (2.1)
and (5.2), converges as ϑ→ 0 to a weak solution of the original problem (2.1)–(2.3).
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Lemma 5.2. A sequence of solutions {pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ} of the problem (2.2), (2.3) and (5.1), together with
the initial and boundary conditions in (2.1) and (5.2), converges as ϑ → 0 to a unique solution (pε,nε, bε,uε)
of the microscopic problem (2.1)–(2.3).

Proof. Estimates (5.3) and (5.4) ensure that there exist functions pε,nε ∈ L2(0, T ;V(Ωε
M))2 ∩

L∞(0, T ;L∞(Ωε
M ))2, bε ∈ W 1,∞(0, T ;L∞(Ωε

M )), uε ∈ L2(0, T ;W(Ω)), Λε ∈ L2(Ωε
M,T )3×3, and ηε ∈

L∞(0, T ;L2(Ωε
M ))3 such that, up to a subsequence,

pε,ϑ ⇀ pε, nε,ϑ ⇀ nε weakly in L2(0, T ;H1(Ωε
M ))2,

pε,ϑ → pε, nε,ϑ → nε strongly in L2(Ωε
M,T )2,

bε,ϑ ⇀ bε, ∂tb
ε,ϑ ⇀ ∂tb

ε weakly in Lp(Ωε
M,T ), p ∈ [2,∞),

uε,ϑ ⇀ uε weakly in L2(0, T ;W(Ω)),

∂te(uε,ϑ) ⇀ Λε weakly in L2(Ωε
M,T )3×3,

ϑ1/2∂tuε,ϑ ⇀ ηε weakly in L2(Ωε
M,T )3,

(5.6)

as ϑ → 0. Using the weak convergence of e(uε,ϑ) we obtain that Λε = ∂te(uε) a.e. in L2(Ωε
M,T ). Considering

the equation for bε,ϑ at (t, x) and (t, x+ hj) and using the assumptions on Rb yield

‖bε,ϑ(τ, · + hj) − bε,ϑ(τ, ·)‖2
L2(Ωε

M,h) ≤ ‖b0(· + hj) − b0(·)‖2
L2(Ωε

M,h) + C1

∫ τ

0

‖bε,ϑ(t, · + hj) − bε,ϑ(t, ·)‖2
L2(Ωε

M,h)dt

+ C2

∫ τ

0

[
‖nε,ϑ(t, · + hj) − nε,ϑ(t, ·)‖2

L2(Ωε
M,h) + δ−6

∥∥∥∫
Bδ,h(x)∩Ω

tr
(
E

ε(bε,ϑ, x̃) e(uε,ϑ(t, x̃))
)

dx̃
∥∥∥2

L2(Ωε
M,h)

]
dt

for τ ∈ (0, T ], where hj = hbj , with {bj}j=1,2,3 being the canonical basis in R
3 and h > 0, Ωε

M,h = {x ∈
Ωε

M | dist(x, ∂Ωε
M ) > 2h}, Bδ,h(x) =

[
Bδ(x + hj) \ Bδ(x)

]
∪
[
Bδ(x) \ Bδ(x + hj)

]
, and the constants C1, C2

are independent of ϑ and h. Using the regularity of b0, the estimates for ∇nε,ϑ and e(uε,ϑ), the boundedness
of bε,ϑ, and the fact that |Bδ,h(x) ∩Ω| ≤ Cδ2h for all x ∈ Ω, and applying the Gronwall inequality we obtain

sup
t∈(0,T )

‖bε,ϑ(t, · + hj) − bε,ϑ(t, ·)‖2
L2(Ωε

M,h) ≤ Ch. (5.7)

The estimate for ∂tb
ε,ϑ ensures

‖bε,ϑ(· + h, ·) − bε,ϑ(·, ·)‖2
L2((0,T−h)×Ωε

M ) ≤ C1h
2‖∂tb

ε,ϑ‖2
L2(Ωε

M,T ) ≤ C2h
2, (5.8)

where C2 is independent of ϑ and h. Combining (5.7) and (5.8), using the uniform boundedness of bε,ϑ, and
applying the Kolmogorov compactness theorem, see e.g. [5,20], yield the strong convergence of bε,ϑ in L2(Ωε

M,T )
as ϑ → 0. Using arguments similar to those in the proof of Theorem 5.4 we obtain

‖θhe(uε,ϑ) − e(uε,ϑ)‖2
L2((0,T−h)×Ω) ≤ Ch1/2,

‖e(uε,ϑ)‖2
L2((T−h,T )×Ω) ≤ Ch,

(5.9)

with a constant C independent of ϑ and h. The last estimates, together with the strong convergence of bε,ϑ, the
continuity of EM , and Lebesgue’s dominated convergence theorem, ensure the following strong convergences∫

Ω

E(bε,ϑ, x/ε)e(uε,ϑ)dx→
∫

Ω

E(bε, x/ε)e(uε)dx in L2(0, T ),∫
Bδ(x)∩Ω

E(bε,ϑ, x̃/ε)e(uε,ϑ)dx̃→
∫

Bδ(x)∩Ω

E(bε, x̃/ε)e(uε)dx̃ in L2(ΩT ) and L2(ΓI,T ),
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as ϑ → 0. Hence we can pass to the limit as ϑ → 0 in the weak formulation of equations (2.2) and (5.1), with
the initial and boundary conditions in (2.1), (2.3), and (5.2), and obtain that the limit functions (pε,nε, bε,uε)
satisfy the microscopic problem (2.1)–(2.3). The uniqueness of a weak solution of (2.1)–(2.3) ensures the con-
vergence of the whole sequence of weak solutions of the perturbed microscopic problem. �

Next we consider the convergence of a sequence of solutions {pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ} of the perturbed microscopic
problem as ε→ 0.

Lemma 5.3. There exist functions pϑ,nϑ ∈ L2(0, T ;V(Ω))2 ∩ L∞(0, T ;L∞(Ω))2, p̂ϑ, n̂ϑ ∈
L2(ΩT ;H1

per(Ŷ )/R)2 and bϑ ∈ W 1,∞(0, T ;L∞(Ω)), uϑ ∈ H1(0, T ;W(Ω)), ûϑ ∈ L2(ΩT ;H1
per(Ŷ )/R)3,

∂tûϑ ∈ L2(ΩT ;H1
per(ŶM )/R)3 such that for a subsequence of solutions (pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ) of the perturbed

microscopic problem (2.2) and (5.1), with initial and boundary conditions in (2.1), (2.3) and (5.2), (denoted
again by (pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ)) we have the following convergence results:

pε,ϑ ⇀ pϑ, nε,ϑ ⇀ nϑ weakly in L2(0, T ;H1(Ω))2,

pε,ϑ → pϑ, nε,ϑ → nϑ strongly in L2(ΩT )2,

∇pε,ϑ ⇀ ∇pϑ + ∇̂yp̂ϑ, ∇nε,ϑ ⇀ ∇nϑ + ∇̂yn̂ϑ two-scale,

bε,ϑ ⇀ bϑ, ∂tb
ε,ϑ ⇀ ∂tb

ϑ two-scale,

T ∗
ε (bε,ϑ) → bϑ strongly in L2(ΩT × ŶM ),

uε,ϑ ⇀ uϑ weakly in L2(0, T ;W(Ω)),

∇uε,ϑ ⇀ ∇uϑ + ∇̂yûϑ two-scale,

∂tuε,ϑ ⇀ ∂tuϑ weakly in L2(ΩT )3 and two-scale,

χΩε
M
∇∂tuε,ϑ ⇀ χŶM

(∇∂tuϑ + ∇̂y∂tûϑ) two-scale,

(5.10)

as ε→ 0, where ∂tuε,ϑ and ∇∂tuε,ϑ are extended by zero from Ωε
M into Ω and ∇̂y∂tûϑ is extended by zero from

ŶM into Ŷ .

Here T ∗
ε : Lp(Ωε

M,T ) → Lp(ΩT × ŶM ) is the unfolding operator defined as T ∗
ε (φ)(t, x, y) = φ(t, ε[x̂/ε]ŶM

+
εy, x3) for (t, x) ∈ ΩT and y ∈ ŶM , where x̂ = (x1, x2) and [x̂/ε]ŶM

is the unique integer combination of the
periods such that x̂/ε− [x̂/ε]ŶM

∈ ŶM , see e.g. [8].

Proof. The a priori estimates in (5.4) imply the weak and two-scale convergences of pε,ϑ, nε,ϑ, bε,ϑ, and ∂tb
ε,ϑ.

Using the estimates for θhpε,ϑ − pε,ϑ, θhnε,ϑ − nε,ϑ, ∇nε,ϑ, and ∇pε,ϑ in (5.4), together with the properties
of the extension of nε,ϑ and pε,ϑ from Ωε

M into Ω, see Lemma 4.1, and applying the Kolmogorov theorem, see
e.g. [5, 20], we obtain the strong convergence of nε,ϑ and pε,ϑ in L2(ΩT ).

In the same way as in [26] we show the strong convergence T ∗
ε (bε,ϑ) → bϑ in L2(ΩT × ŶM ) as ε → 0. Here

we present only a sketch of the calculations. Using the extension of nε,ϑ from Ωε
M into Ω, see Lemma 4.1, we

define the extension of bε,ϑ from Ωε
M into Ω as a solution of the ordinary differential equation

∂tb
ε,ϑ = Rb(nε,ϑ, bε,ϑ,Nδ(e(uε,ϑ))) in (0, T )×Ω,

bε,ϑ(0) = b0 in Ω.
(5.11)

The construction of the extension for nε,ϑ and the uniform boundedness of nε,ϑ
1 and nε,ϑ

2 in Ωε
M,T , see (5.4),

ensure
‖nε,ϑ‖L∞(0,T ;L∞(Ω)) ≤ C1‖nε,ϑ‖L∞(0,T ;L∞(Ωε

M )) ≤ C,

with the constant C independent of ε and ϑ. Notice that we identify nε,ϑ with its extension. Hence from (5.11),
using estimate (5.3) for uε,ϑ, we obtain the boundedness of bε,ϑ and ∂tb

ε,ϑ. We show the strong convergence of bε,ϑ
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using arguments similar to those found in the proof of Lemma 5.2 by applying the Kolmogorov theorem [5,20].
Considering equation (5.11) at (t, x + hj) and (t, x), for j = 1, 2, 3, taking bε,ϑ(t, x + hj) − bε,ϑ(t, x) as a test
function and using the Lipschitz continuity of Rb yield

‖bε,ϑ(τ, · + hj) − bε,ϑ(τ, ·)‖2
L2(Ω2h) ≤ ‖b0(· + hj) − b0(·)‖2

L2(Ω2h) + C1

∫ τ

0

‖bε,ϑ(t, · + hj) − bε,ϑ(t, ·)‖2
L2(Ω2h)dt

+ C2

∫ τ

0

(
‖nε,ϑ(t, · + hj) − nε,ϑ(t, ·)‖2

L2(Ω2h) + δ−6
∥∥∥∫

Bδ,h(x)∩Ω

tr E
ε(bε,ϑ, x̃)e(uε,ϑ(t, x̃))dx̃

∥∥∥2

L2(Ω2h)

)
dt

for τ ∈ (0, T ], where Ω2h = {x ∈ Ω | dist(x, ∂Ω) > 2h}, Bδ,h(x) is defined as in Lemma 5.2 with |Bδ,h(x)∩Ω| ≤
Cδ2h for all x ∈ Ω, and the constants C1, C2 are independent of ε, ϑ, and h. Using the regularity of the initial
condition b0 ∈ H1(Ω) and the a priori estimates for e(uε,ϑ) and ∇nε,ϑ, and applying the Gronwall inequality
we obtain

sup
t∈(0,T )

‖bε,ϑ(t, · + hj) − bε,ϑ(t, ·)‖2
L2(Ω2h) ≤ Cδh. (5.12)

Extending bε,ϑ by zero from ΩT into R+ × R
3 and using the uniform boundedness of bε,ϑ imply

‖bε,ϑ‖2
L∞(0,T ;L2(Ω̃3h))

+ ‖bε,ϑ‖2
L2((T−2h,T+2h)×Ω) ≤ Ch, (5.13)

where Ω̃3h = {x ∈ R
3 | dist(x, ∂Ω) < 3h} and the constant C is independent of ε, ϑ, and h. The estimate for

∂tb
ε,ϑ ensures that

‖bε,ϑ(· + h, ·) − bε,ϑ(·, ·)‖2
L2((0,T−h)×Ω) ≤ C1h

2‖∂tb
ε,ϑ‖2

L2(ΩT ) ≤ C2h
2, (5.14)

where C1 and C2 are independent of ε, ϑ, and h. Combining (5.12)–(5.14) and applying the Kolmogorov theorem
yield the strong convergence of bε,ϑ to b̃ϑ in L2(ΩT ) as ε → 0. The definition of two-scale convergence implies
that b̃ϑ = bϑ and, hence, the two-scale limit of bε,ϑ is independent of y. Then using the properties of the
unfolding operator, see e.g. [7, 8], we obtain the strong convergence of T ∗

ε (bε,ϑ).
Considering an extension ∂tuε,ϑ of ∂tuε,ϑ from Ωε

M into Ω, see Lemma 4.1, and applying the Korn inequality,
see e.g. [22], yield

‖∂tuε,ϑ‖L2(0,T ;H1(Ωε
M )) ≤ ‖∂tuε,ϑ‖L2(0,T ;H1(Ω)) ≤ C1

[
‖∂tuε,ϑ‖L2(ΩT ) + ‖e(∂tuε,ϑ)‖L2(ΩT )

]
≤ C2

[
‖∂tuε,ϑ‖L2(Ωε

M,T ) + ‖e(∂tuε,ϑ)‖L2(Ωε
M,T )

]
≤ C3(1 + ϑ−

1
2 ),

(5.15)

where the constant C3 is independent of ε and ϑ.
The estimates (5.3) and (5.15) ensure the existence of functions uϑ ∈ L2(0, T ;W(Ω)), ûϑ ∈

L2(ΩT ;H1
per(Ŷ )/R)3, ξϑ ∈ L2(0, T ;H1(Ω))3, and ξ̂

ϑ ∈ L2(ΩT ;H1
per(ŶM )/R)3 such that

uε,ϑ ⇀ uϑ, ∇uε,ϑ ⇀ ∇uϑ + ∇̂yûϑ two-scale,

χΩε
M
∂tuε,ϑ ⇀ χŶM

ξϑ, χΩε
M
∇∂tuε,ϑ ⇀ χŶM

(∇ξϑ + ∇̂y ξ̂
ϑ
) two-scale,

as ε→ 0, see e.g. [4]. Considering the two-scale convergence of uε,ϑ and ∂tuε,ϑ, we obtain

|ŶM |
|Ŷ |

〈ξϑ, φ〉ΩT = lim
ε→0

〈∂tuε,ϑ, φ〉Ωε
M,T

= − lim
ε→0

〈uε,ϑ, ∂tφ〉Ωε
M,T

= −|ŶM |
|Ŷ |

〈uϑ, ∂tφ〉ΩT
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for all φ ∈ C∞
0 (ΩT ). Hence, ∂tuϑ ∈ L2(ΩT )3 and ξϑ = ∂tuϑ a.e. in ΩT . Thus ∂tuϑ ∈ L2(0, T ;W(Ω)). The

two-scale convergence of ∇uε,ϑ and ∂t∇uε,ϑ implies

|Ŷ |−1〈∂t∇uϑ + ∇̂y ξ̂
ϑ
, φ〉ΩT ×ŶM

= lim
ε→0

〈∂t∇uε,ϑ, φ〉Ωε
M,T

= − lim
ε→0

〈∇uε,ϑ, ∂tφ〉Ωε
M,T

= −|Ŷ |−1〈∇uϑ + ∇̂yûϑ, ∂tφ〉ΩT ×ŶM

for all φ ∈ C∞
0 (ΩT ;C∞

per(Ŷ )). Thus, ∂t∇̂yûϑ ∈ L2(ΩT ×ŶM )3×3 and ∇̂y ξ̂
ϑ

= ∂t∇̂yûϑ a.e. in ΩT ×ŶM . Therefore,
uϑ ∈ H1(0, T ;W(Ω)), ∂tûϑ ∈ L2(ΩT ;H1

per(ŶM )/R)3 and χΩε
M
∂te(uε,ϑ) ⇀ χŶM

(
∂te(uϑ) + ∂têy(ûϑ)

)
two-scale.

�

To derive macroscopic equations for the microscopic problem (2.1)–(2.3), we first derive the macroscopic
equations for the perturbed system (2.2) and (5.1), with the initial and boundary conditions in (2.1), (2.3) and
(5.2). Then letting the perturbation parameter go to zero we derive the macroscopic equations (3.10)–(3.12). By
showing that the macroscopic two-scale problem is the same for the original microscopic equations (2.1)–(2.3)
and for the perturbed microscopic problem as the perturbation parameter ϑ goes to zero, we conclude that
(3.10)–(3.12) are the macroscopic equations for (2.1)–(2.3).

Theorem 5.4. A sequence of solutions (pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ), of the perturbed microscopic equations (2.2) and
(5.1), with the initial and boundary conditions in (2.1), (2.3) and (5.2), converges, as ε → 0, to a solution
(pϑ,nϑ, bϑ,uϑ) of the perturbed macroscopic problem

ϑ∂2
t u

ϑ − div
(

E
ϑ
hom(bϑ) e(uϑ) + V

ϑ
hom(bϑ) ∂te(uϑ) +

∫ t

0

K
ϑ(t− s, s, bϑ) ∂se(uϑ) ds

)
= 0 in ΩT ,(

E
ϑ
hom(bϑ) e(uϑ) + V

ϑ
hom(bϑ) ∂te(uϑ) +

∫ t

0

K
ϑ(t− s, s, bϑ) ∂se(uϑ) ds

)
ν = f on ΓEU ,T ,(

E
ϑ
hom(bϑ) e(uϑ) + V

ϑ
hom(bϑ) ∂te(uϑ) +

∫ t

0

K
ϑ(t− s, s, bϑ) ∂se(uϑ) ds

)
ν = −pIν on ΓI,T ,

uϑ a3-periodic in x3,

uϑ(0) = u0, ∂tuϑ(0) = 0 in Ω,

(5.16)

and
∂tpϑ = div(Dp∇pϑ) − Fp(pϑ) in ΩT ,

∂tnϑ = div(Dn∇nϑ) + Fn(pϑ,nϑ) + Rn(nϑ, bϑ,N eff
δ (e(uϑ))) in ΩT ,

∂tb
ϑ = Rb(nϑ, bϑ,N eff

δ (e(uϑ))) in ΩT ,

(5.17)

together with the initial and boundary conditions

Dp∇pϑ ν = θ−1
M Jp(pϑ), Dn∇nϑ ν = θ−1

M G(nϑ)N eff
δ (e(uϑ)) on ΓI,T ,

Dp∇pϑ ν = −θ−1
M γp pϑ, Dn∇nϑ ν = θ−1

M Jn(nϑ) on ΓE,T ,

Dp∇pϑ ν = 0, Dn∇nϑ ν = 0 on ΓU ,T ,

pϑ, nϑ a3-periodic in x3,

pϑ(0) = p0, nϑ(0) = n0, b(0) = b0 in Ω,

(5.18)

where E
ϑ
hom, V

ϑ
hom, and K

ϑ are defined as in (3.4) and (3.5), with bϑ, wij
ϑ , χij

V,ϑ, and vij
ϑ instead of b, wij , χij

V
,

and vij , where wij
ϑ , χij

V,ϑ, and vij
ϑ are solutions of the ‘unit cell’ problems (3.6) and (3.7) with bϑ instead of b,

for i, j = 1, 2, 3. The macroscopic diffusion matrices Dl
α, with α = n, p and l = 1, 2, are defined as in (3.8) and

N eff
δ is defined as in (3.13) with bϑ and uϑ instead of b and u.
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Proof. To pass to the limit in the equations for nε,ϑ and bε,ϑ, we shall first prove the strong convergence of∫
Ω E(bϑ, x/ε) e(uε,ϑ)dx in L2(0, T ), as ε→ 0.
Considering the difference of (5.1) for t and t + h and taking δhuε,ϑ(t, x) = uε,ϑ(t + h, x) − uε,ϑ(t, x) as a

test function yield∫ T−h

0

[〈
E

ε(bε,ϑ(t+ h), x)e(uε,ϑ(t+ h)) − E
ε(bε,ϑ(t), x)e(uε,ϑ(t)), e(δhuε,ϑ)

〉
Ω

+
〈
VM (bε,ϑ(t+ h))∂te(uε,ϑ(t+ h)) − VM (bε,ϑ(t))∂te(uε,ϑ(t)), e(δhuε,ϑ)

〉
Ωε

M

]
dt

+ ϑ
〈
δh∂tuε,ϑ(T − h), δhuε,ϑ(T − h)

〉
Ωε

M

− ϑ
〈
δh∂tuε,ϑ(0), δhuε,ϑ(0)

〉
Ωε

M

=
∫ T−h

0

[
ϑ‖δh∂tuε,ϑ‖2

L2(Ωε
M ) +

〈
δhf , δhuε,ϑ

〉
L2(ΓEU )

−
〈
δhpIν, δhuε,ϑ

〉
L2(ΓI)

]
dt.

(5.19)

To estimate the first term on the right-hand side we integrate (5.1) over (t, t + h) and take ∂tuε,ϑ(t + h, x) −
∂tuε,ϑ(t, x) as a test function, with ∂tuε,ϑ being an extension of ∂tuε,ϑ from Ωε

M into Ω as in Lemma 4.1, to
obtain

ϑ‖δh∂tuε,ϑ‖2
L2((0,T−h)×Ωε

M) ≤ hC1

[
‖pI‖2

H1(0,T ;L2(ΓI)) + ‖f‖2
H1(0,T ;L2(ΓEU ))

]
+ h

1
2C2

[
‖e(uε,ϑ)‖2

L∞(0,T ;L2(Ω)) + ‖e(∂tuε,ϑ)‖2
L2(ΩT ) + ‖e(∂tuε,ϑ)‖2

L2(Ωε
M,T )

]
≤ C(h1/2 + h),

(5.20)

where the constant C is independent of ε, ϑ, and h, and h ∈ (0, T ). Here we used estimate (5.3), the equality
δh∂tuε,ϑ(t, x) = ∂tuε,ϑ(t+h, x)−∂tuε,ϑ(t, x) =

∫ t+h

t ∂2
τu

ε,ϑ(τ, x)dτ , and the property of the extension of ∂tuε,ϑ

from Ωε
M into Ω, i.e. ‖e(∂tuε,ϑ)‖L2(ΩT ) ≤ C‖e(∂tuε,ϑ)‖L2(Ωε

M,T ), with a constant C independent of ε and ϑ, see
e.g. [22] or Lemma 4.1.

Using the estimate for ϑ1/2‖∂tuε,ϑ‖L∞(0,T ;L2(Ωε
M )) in (5.3) we obtain

ϑ〈δh∂tuε,ϑ(T − h), δhuε,ϑ(T − h)〉Ωε
M

≤ 2ϑ‖∂tuε,ϑ‖L∞(0,T ;L2(Ωε
M ))‖δhuε,ϑ(T − h)‖L2(Ωε

M )

≤ C1ϑ
1/2
∥∥∫ T

T−h

∂tuε,ϑdt
∥∥

L2(Ωε
M )

≤ C2hϑ
1/2‖∂tuε,ϑ‖L∞(0,T ;L2(Ωε

M )) ≤ Ch.
(5.21)

In the same way we also have
ϑ〈δh∂tuε,ϑ(0), δhuε,ϑ(0)〉Ωε

M
≤ Ch, (5.22)

where C is independent of ε, ϑ, and h. To estimate the first two terms on the left-hand side of (5.19) we
use the uniform boundedness of bε,ϑ and ∂tb

ε,ϑ, the equality δhe(uε,ϑ(t, x)) = h
∫ 1

0 ∂te(uε,ϑ(t + hs, x))ds, and
estimate (5.3):∫ T−h

0

〈(Eε(bε,ϑ(t+ h), x) − E
ε(bε,ϑ(t), x))e(uε,ϑ(t)), e(δhuε,ϑ(t))〉Ωdt

≤ hC1‖∂tb
ε,ϑ‖L∞(0,T ;L∞(Ωε

M ))‖e(uε,ϑ)‖2
L2(ΩT ) ≤ C2h,∫ T−h

0

〈VM (bε,ϑ(t+ h))∂te(uε,ϑ(t+ h)) − VM (bε,ϑ(t))∂te(uε,ϑ(t)), e(δhuε,ϑ(t))〉Ωε
M

dt

≤ hC3‖bε,ϑ‖L∞(0,T ;L∞(Ωε
M ))‖∂te(uε,ϑ)‖2

L2(Ωε
M,T ) ≤ C4h,

(5.23)

with the constants Cj , for j = 1, 2, 3, 4, independent of ε, ϑ, and h. Then, the assumptions on E, f , and pI , the
boundedness of bε,ϑ, and estimates (5.3) and (5.20)–(5.23) ensure

‖e(uε,ϑ(t+ h)) − e(uε,ϑ(t))‖2
L2((0,T−h)×Ω) ≤ C(h1/2 + h),

‖e(uε,ϑ)‖2
L2((T−h,T )×Ω) ≤ h‖e(uε,ϑ)‖2

L∞(0,T ;L2(Ω)) ≤ Ch,
(5.24)



HOMOGENIZATION OF A VISCOELASTIC MODEL FOR PLANT CELL WALL BIOMECHANICS 1465

with a constant C independent of ε, ϑ, and h. Thus, estimates (5.24), the Kolmogorov theorem, and the two-scale
convergence of uε,ϑ, yield the strong convergences, up to a subsequence,∫

Ω

e(uε,ϑ)dx→
∫

Ω

−
∫

Ŷ

[e(uϑ) + êy(ûϑ)]dydx in L2(0, T ),∫
Ω

E(bϑ, x/ε)e(uε,ϑ)dx→
∫

Ω

−
∫

Ŷ

E(bϑ, y)(e(uϑ) + êy(ûϑ))dydx in L2(0, T ), as ε→ 0.

Then the Lebesgue dominated convergence theorem ensures the strong convergence in L2(ΩT ) and L2(ΓI,T ) of∫
Bδ(x)∩Ω

e(uε,ϑ)dx̃ and
∫

Bδ(x)∩Ω
E(bϑ, x̃/ε)e(uε,ϑ)dx̃, as ε→ 0.

Now we can pass to the limit as ε→ 0 in the microscopic equations (2.2) and (5.1), with initial and boundary
conditions in (2.1), (2.3), and (5.2). Considering φα(t, x) = ϕα(t, x) + εψα(t, x, x̂/ε) as a test function in (2.5),
where ϕα ∈ C1

0 (0, T ;C1(Ω))2 and a3-periodic in x3, and ψα ∈ C1
0 (ΩT ;C1

per(Ŷ ))2, for α = p, n, applying the
two-scale convergence and using the strong convergence of T ∗

ε (bε,ϑ) and pε,ϑ, nε,ϑ, see Lemma 5.3, along with
the strong convergence of

∫
Bδ(x)∩Ω E(bϑ, x̃/ε)e(uε,ϑ)dx̃, we obtain the macroscopic equations (5.17) and (5.18)

for pϑ, nϑ, and bϑ in the same way as in [26].
The strong convergence of T ∗

ε (bε,ϑ), along with the two-scale convergence of uε,ϑ, e(uε,ϑ), ∂tuε,ϑ, and
∂te(uε,ϑ), as ε→ 0, yields the macroscopic equation

〈E(bϑ, y)(e(uϑ) + êy(ûϑ)) + V(bϑ, y)∂t(e(uϑ) + êy(ûϑ)), e(ψ) + êy(ψ1)〉ΩT ×Ŷ

−ϑ|ŶM |〈∂tuϑ, ∂tψ〉ΩT = |Ŷ |
[
〈f ,ψ〉ΓEU,T − 〈pIν,ψ〉ΓI,T

] (5.25)

for ψ ∈ C1
0 (0, T ;C1(Ω))3, with ψ being a3-periodic in x3, and ψ1 ∈ C1

0 (ΩT ;C1
per(Ŷ ))3.

Taking ψ ≡ 0 we obtain

〈E(bϑ, y)(e(uϑ) + êy(ûϑ)) + V(bϑ, y)∂t(e(uϑ) + êy(ûϑ)), êy(ψ1)〉ΩT ×Ŷ = 0. (5.26)

Considering the structure of (5.26) and taking into account the fact that E(bϑ, ·) and V(bϑ, ·) depend on t, we
seek ûϑ in the form

ûϑ(t, x, y) =
3∑

i,j=1

[
e(uϑ(t, x))ijw

ij
ϑ (t, x, y) +

∫ t

0

∂se(uϑ(s, x))ijv
ij
ϑ (t− s, s, x, y)ds

]
and rewrite equation (5.26) as

〈
E(bϑ, y)

(
e(uϑ) +

3∑
i,j=1

[
e(uϑ)ij êy(wij

ϑ ) +
∫ t

0

∂se(uϑ)ij êy(vij
ϑ )ds

])
, êy(ψ1)

〉
ΩT ×Ŷ

+
〈

VM (bϑ)
(
∂te(uϑ) +

3∑
i,j=1

[
∂te(uϑ)ij êy(wij

ϑ ) + e(uϑ)ij∂têy(w
ij
ϑ )

+ ∂te(uϑ)ij êy(vij
ϑ (0, t, x, y)) +

∫ t

0

∂se(uϑ)ij∂têy(v
ij
ϑ )ds

])
, êy(ψ1)

〉
ΩT ×ŶM

= 0.

(5.27)

Considering the terms with e(uϑ) and ∂te(uϑ), respectively, we obtain that vij
ϑ (0, t, x, y) = χij

V,ϑ(t, x, y) −
wij

ϑ (t, x, y) a.e. in ΩT × ŶM , where wij
ϑ and χij

V,ϑ are solutions of the ‘unit cell’ problems (3.6) with bϑ instead of
b. Using this in (5.27) implies that vij

ϑ satisfies (3.7) with bϑ instead of b. Then, taking ψ1 ≡ 0 in (5.25) yields
the macroscopic equations (5.16) for uϑ.
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Notice that the assumptions on E and V and the boundedness of bϑ and ∂tb
ϑ ensure the existence of weak

solutions wij
ϑ , χij

V,ϑ, and vij
ϑ , with i, j = 1, 2, 3, of the ‘unit cell’ problems (3.6) and (3.7), with bϑ instead of b.

In the same way as for the macroscopic elasticity tensor for the equations of linear elasticity, see e.g. [16,22],
we obtain that V

ϑ
hom is positive-definite and possesses major and minor symmetries, as in Assumption 2.1.8.

The assumptions on E and V and the uniform boundedness of bϑ ensure Ẽ
ϑ
hom ∈ L∞(0, T ;L∞(Ω))3

4
,

E
ϑ
hom ∈ L2(0, T ;L∞(Ω))3

4
, V

ϑ
hom ∈ L∞(0, T ;L∞(Ω))3

4
, K̃

ϑ(t − s, s) ∈ L∞(0, T ;L∞(0, t;L∞(Ω)))3
4
, and

K
ϑ(t − s, s) ∈ L2(0, T ;L∞(0, t;L∞(Ω)))3

4
. Notice that the positive-definiteness and symmetry properties of

V
ϑ
hom, together with the boundedness of E

ϑ
hom, V

ϑ
hom, and K

ϑ, ensure the well-posedness of the viscoelastic
equations (5.16). �

Now we can complete the proof of the main result of the paper.

Proof of Theorem 3.2. To complete the proof of Theorem 3.2, we have to prove that the sequence {pϑ,nϑ, bϑ,uϑ}
converges to a solution of the macroscopic problem (3.10)–(3.13) and to show that the limit problem as ϑ→ 0
of (5.25), together with the corresponding equations for (pϑ,nϑ, bϑ) in (5.17) and (5.18), is the same as the
two-scale macroscopic problem for the original microscopic equations (2.1)–(2.3).

Using the fact that estimates (5.3) and (5.24) for uε,ϑ are independent of ϑ and ε and applying the weak and
two-scale convergence of uε,ϑ, together with the lower semicontinuity of a norm, yield

‖uϑ‖2
L∞(0,T ;W(Ω)) + ‖e(uϑ) + êy(ûϑ)‖2

L∞(0,T ;L2(Ω×Ŷ ))
≤ C,

‖e(uϑ(· + h, ·)) − e(uϑ)‖2
L2((0,T−h)×Ω) + ‖e(uϑ)‖2

L2((T−h,T )×Ω) ≤ C(h+ h1/2),
(5.28)

with a constant C independent of ϑ and h.
Similar to the proof of Lemma 4.3, using (5.28) we obtain the estimates for pϑ and nϑ in L2(0, T ;V(Ω))2 ∩

L∞(0, T ;L∞(Ω))2 and bϑ in W 1,∞(0, T ;L∞(Ω)), uniformly in ϑ. In a similar way as in the proof of Lemma 5.2,
we obtain

‖bϑ(·, · + hk) − bϑ‖2
L∞(0,T ;L2(Ω)) + ‖bϑ(· + h, ·) − bϑ‖2

L2(ΩT ) + ‖bϑ(· + h, ·) − bϑ‖L∞(0,T−h;L∞(Ω)) ≤ Ch, (5.29)

where bϑ is extended by zero from ΩT into R+ × R
3 and hk = hbk, with h ∈ (0, T ) and k = 1, 2, 3. Then,

applying the Kolmogorov theorem we obtain the strong convergence in Lr(0, T ;L2(Ω)), for 2 ≤ r ≤ ∞ of a
subsequence of bϑ, as ϑ→ 0.

In a similar way as in the proof of Lemma 4.4, considering the assumptions on E and V, together with the
boundedness of bϑ and ∂tb

ϑ, uniformly in ϑ, we obtain that the weak solutions of the ‘unit cell’ problems (3.6),
with bϑ instead of b, satisfy

‖wij
ϑ ‖L∞(0,T ;H1

per(Ŷ )) + ‖∂têy(wij
ϑ )‖L2(0,T ;L2(ŶM)) ≤ C for x ∈ Ω,

‖χij
V,ϑ‖H1

per(ŶM ) ≤ C for (t, x) ∈ ΩT ,
(5.30)

where the constant C is independent of ϑ. The estimates (5.30) and boundedness of bϑ and ∂tb
ϑ ensure the

uniform in ϑ estimate for the weak solutions of the ‘unit cell’ problems (3.7), with bϑ instead of b, i.e.

‖vij
ϑ ‖L∞(0,T−s;H1

per(Ŷ )) + ‖∂têy(vij
ϑ )‖L2(0,T−s;L2(ŶM )) ≤ C (5.31)

for x ∈ Ω and s ∈ [0, T ].
Using the assumptions on VM , we obtain the symmetry properties and strong ellipticity of V

ϑ
hom, see

e.g. [22, 27], with an ellipticity constant independent of ϑ. The assumptions on E and VM , the uniform bound-
edness of bϑ, and the estimates (5.30) and (5.31) ensure

‖E
ϑ
hom(bϑ)‖L2(0,T ;L∞(Ω)) + ‖V

ϑ
hom(bϑ)‖L∞(0,T ;L∞(Ω)) + ‖K

ϑ(t− s, s, bϑ)‖L2(0,T ;L∞(0,t;L∞(Ω))) ≤ C, (5.32)
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with a constant C independent of ϑ.
Taking ∂tuϑ as a test function in the weak formulation of (5.16), using the strong ellipticity of V

ϑ
hom, together

with estimates (5.28) and (5.32), and applying the second Korn inequality for uϑ(t) ∈ W(Ω) yield

ϑ‖∂tuϑ‖2
L∞(0,T ;L2(Ω)) + ‖uϑ‖2

H1(0,T ;W(Ω)) ≤ C, (5.33)

with a constant C independent of ϑ. Hence we have the weak convergence, up to a subsequence, of uϑ in
H1(0, T ;W(Ω)) and weak-∗ convergence of ϑ1/2∂tuϑ in L∞(0, T ;L2(Ω)), as ϑ→ 0.

To pass to the limit as ϑ→ 0 in the macroscopic equations (5.16) we have to show the strong convergence of
E

ϑ
hom, V

ϑ
hom, and K

ϑ.
Considering the first equation in (3.6) for t+h and t, with h ∈ (0, T ) and bϑ instead of b, taking δhwij

ϑ (t, x, y) =
wij

ϑ (t+ h, x, y) − wij
ϑ (t, x, y) as a test function, and using δhêy(wij

ϑ (t)) = h
∫ 1

0
∂têy(wij

ϑ (t+ hτ))dτ , we obtain

‖δhêy(wij
ϑ )‖2

L2((0,T−h)×Ŷ )
≤C1h

[
‖bϑ‖L∞(0,T ;L∞(Ω))‖∂têy(wij

ϑ )‖2
L2(ŶM,T )

+ ‖∂tb
ϑ‖L2(0,T ;L∞(Ω))(‖êy(w

ij
ϑ )‖2

L∞(0,T ;L2(Ŷ ))
+ ‖êy(w

ij
ϑ )‖L2(ŶT ))

]
≤ C2h

(5.34)

for x ∈ Ω and the constants C1 and C2 are independent of ϑ and h. Taking an extension δh∂tw
ij
ϑ of δh∂tw

ij
ϑ

from ŶM into Ŷ as a test function in the weak formulation of (3.6)1, with bϑ instead of b, yields

‖δhêy(∂tw
ij
ϑ )‖2

L2((0,T−h)×ŶM)
≤ C1‖bϑ‖L∞(0,T ;L∞(Ω))‖δhêy(wij

ϑ )‖L2(ŶT−h)‖êy(δh∂tw
ij
ϑ )‖L2((0,T−h)×Ŷ )

+C2

[
1 + ‖êy(w

ij
ϑ )‖2

L2(ŶT )
+ ‖êy(∂tw

ij
ϑ )‖2

L2(ŶM,T )

]
‖δhbϑ‖2

L∞(0,T−h;L∞(Ω)) ≤ C3(h1/2 + h)
(5.35)

for x ∈ Ω and the constants C1, C2, and C3 are independent of ϑ and h. Here, we used estimate (5.34) and the
fact that due to the periodicity of wij

ϑ and the second Korn inequality we have

‖δh∂tw
ij
ϑ ‖L2(0,T−h;H1(ŶM )) ≤ C‖δhêy(∂tw

ij
ϑ )‖L2((0,T−h)×ŶM),

for x ∈ Ω, and the property of the extension, i.e. ‖êy(δh∂tw
ij
ϑ )‖L2((0,T−h)×Ŷ ) ≤ C‖êy(δh∂tw

ij
ϑ )‖L2((0,T−h)×ŶM),

where the constant C is independent of ∂tw
ij
ϑ , ϑ, and h. Estimates (5.30) ensure

‖êy(w
ij
ϑ )‖2

L2((T−h,T )×Ŷ )
≤ Ch and ‖êy(∂tw

ij
ϑ )‖q

Lq(T−h,T ;L2(ŶM ))
≤ Ch

2−q
2 for 1 < q < 2.

Considering (3.6)1, with bϑ instead of b, for x + hk and x, where hk = hbk, for k = 1, 2, 3, and using (5.29)
imply

‖δhk êy(wij
ϑ )‖2

L2(ΩT ×Ŷ )
+ ‖δhk∂têy(wij

ϑ )‖2
L2(ΩT ×ŶM )

≤ Ch, (5.36)

where δhkwij
ϑ (t, x, y) = wij

ϑ (t, x+hk, y)−wij
ϑ (t, x, y), the function bϑ is extended by zero from ΩT into R+×R

3,
wij

ϑ is extended by zero from Ω into R
3, and C is independent of ϑ and h. In the same manner we obtain

‖δhêy(χij
V,ϑ)‖2

L2(ΩT ×ŶM)
+ ‖δhk êy(χ

ij
V,ϑ)‖2

L2(ΩT ×ŶM )
≤ Ch, (5.37)

where bϑ and χij
V,ϑ are extended by zero from ΩT into R+ × R

3, and

‖êy(v
ij
ϑ (t−s+h, s))− êy(vij

ϑ (t−s, s))‖2
L2(0,T−h;L2(Ωt×Ŷ ))

+‖êy(v
ij
ϑ (t−s, s))‖2

L2(T−h,T ;L2(Ωt×Ŷ ))
≤ Ch. (5.38)

Considering the difference of the equations in (3.7), with bϑ instead of b, for s + h and s and for x + hk and
x, taking vij

ϑ (t, s + h, x, y) − vij
ϑ (t, s, x, y), δhkvij

ϑ , and extensions of ∂t

(
vij

ϑ (t, s+ h, x, y) − vij
ϑ (t, s, x, y)

)
and
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δhk∂tv
ij
ϑ from ŶM into Ŷ , as test functions, respectively, and using estimates (5.34)–(5.37) yield

‖êy(v
ij
ϑ (t− s, s+ h)) − êy(vij

ϑ (t− s, s))‖2
L2(0,T−h;L2(Ωt×Ŷ ))

≤ Ch,

‖δhk êy(vij
ϑ (t− s, s))‖2

L2(0,T ;L2(Ωt×Ŷ ))
≤ Ch,

‖∂têy(vij
ϑ (t− s, s+ h)) − ∂têy(vij

ϑ (t− s, s))‖2
L2(0,T−h;L2(Ωt×ŶM ))

≤ C(h1/2 + h),

‖δhk∂têy(vij
ϑ (t− s, s))‖2

L2(0,T ;L2(Ωt×ŶM ))
≤ C(h1/2 + h),∥∥∥∫ T−s

0

∫
ŶM

∂têy(vij
ϑ (t, ·, ·, y))dydt

∥∥∥2

L2((T−h,T )×Ω)
≤ Ch,

(5.39)

for k = 1, 2, 3 and the constant C is independent of h and ϑ. Thus, (5.34)–(5.39) along with the Kolmogorov
theorem and the strong convergence and boundedness of bϑ ensure the following strong convergences∫

Ŷ

êy(wij
ϑ )dy →

∫
Ŷ

êy(wij)dy, Ẽ
ϑ
hom(bϑ) → Ẽhom(b) in L2(ΩT ),∫

ŶM

∂têy(wij
ϑ )dy →

∫
ŶM

∂têy(wij)dy, E
ϑ
hom(bϑ) → Ehom(b) in Lq(0, T ;L2(Ω)), 1 < q < 2,∫

ŶM

êy(χ
ij
V,ϑ)dy →

∫
ŶM

êy(χ
ij
V

)dy, V
ϑ
hom(bϑ) → Vhom(b) in L2(ΩT ),∫

Ŷ

êy(vij
ϑ (t− s, s))dy →

∫
Ŷ

êy(vij(t− s, s))dy in L2(0, T ;L2(Ωt)),

K̃
ϑ(t− s, s, bϑ) → K̃(t− s, s, b) in L2(0, T ;L2(Ωt)),∫ T−s

0

∫
ŶM

∂têy(v
ij
ϑ (t, s))dydt→

∫ T−s

0

∫
ŶM

∂têy(vij(t, s))dydt in L2(ΩT ),∫ T−s

0

K
ϑ(t, s, bϑ)dt→

∫ T−s

0

K(t, s, b)dt in L2(ΩT ),

as ϑ → 0. The strong convergence of Ẽ
ϑ
hom and K̃

ϑ and estimate (5.33) ensure the strong convergence

N eff
δ (e(uϑ)) → N eff

δ (e(u)) in L2(ΩT ) as ϑ→ 0.

Hence, taking the limit as ϑ→ 0 in the weak formulation of (5.16)–(5.18) we obtain the macroscopic equations
(3.10)–(3.12). Notice that for the integral-term in (5.16) we have〈∫ t

0

K
ϑ(t− s, s, bϑ)∂se(uϑ(s, x))ds,ψ(t, x)

〉
ΩT

=
∫ T

0

∫
Ω

∂se(uϑ(s, x))
∫ T−s

0

K
ϑ(τ, s, bϑ)ψ(τ + s, x)dτdxds

for all ψ ∈ C1(ΩT )3, ψ being a3-periodic in x3. Thus, using the weak convergence of ∂se(uϑ) and the strong
convergence of

∫ T−s

0
K

ϑ(t, s, bϑ)dt we can pass to the limit in the last term in (5.16).
The assumptions on the elastic E and viscous V tensors together with the regularity and boundedness of b

ensure the existence of solutions of the ‘unit cell’ problems (3.6) and (3.7). As before, the assumptions on E and
V, the boundedness of b, and the estimates (5.30) and (5.31) yield the symmetry properties and strong ellipticity
of Vhom, see e.g. [22], as well as the boundedness of the macroscopic tensors, i.e. Ẽhom ∈ L∞(0, T ;L∞(Ω))3

4
,

Ehom ∈ L2(0, T ;L∞(Ω))3
4
, Vhom ∈ L∞(0, T ;L∞(Ω))3

4
, K̃(t − s, s) ∈ L∞(0, T ;L∞(0, t;L∞(Ω)))3

4
, and

K(t − s, s) ∈ L2(0, T ;L∞(0, t;L∞(Ω)))3
4
. This together with the assumptions on the coefficients and non-

linear functions in the equations for p,n, and b, see Assumption 2.1, ensures the existence of a unique weak
solution of the macroscopic problem (3.10)–(3.12). Thus the whole sequence {pϑ,nϑ, bϑ,uϑ} converges to a
weak solution of (3.10)–(3.12). Estimate (5.33) implies that u ∈ H1(0, T ;W(Ω)). Hence, u ∈ C([0, T ];W(Ω))
and u satisfies the initial condition u(0, x) = u0(x) for x ∈ Ω. �
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To complete the proof of Theorem 3.2 we have to show that a sequence of solutions of the microscopic
model (2.1)–(2.3) converges as ε → 0 to a solution of the macroscopic equations (3.10)–(3.12). For this, using
the result of Lemma 5.2, we show that the two-scale macroscopic problem for (2.1)–(2.3) is the same as the
limit problem, as ϑ → 0, of the two-scale macroscopic problem for the perturbed microscopic equations (2.2)
and (5.1), with initial and boundary conditions in (2.1), (2.3), and (5.2).

Lemma 5.5. A sequence of solutions {pε,nε, bε,uε} of the microscopic problem (2.1)–(2.3) and a sequence of
solutions {pε,ϑ,nε,ϑ, bε,ϑ,uε,ϑ} of the perturbed microscopic equations (2.2) and (5.1), with initial and boundary
conditions in (2.1), (2.3), and (5.2), converge as ε→ 0 and ϑ→ 0 to a solution (p,n, b,u, û) of the macroscopic
equations (3.10), (3.11), and

〈E(b, y)(e(u) + êy(û)) + V(b, y)∂t(e(u) + êy(û)), e(ψ) + êy(ψ1)〉ΩT ×Ŷ

= |Ŷ |
[
〈f ,ψ〉ΓEU,T − 〈pIν,ψ〉ΓI,T

]
(5.40)

together with u(0) = u0 in Ω, u is a3-periodic in x3, and

N eff
δ (e(u)) =

(
−
∫

Bδ(x)∩Ω

−
∫

Ŷ

tr (E(b, y)(e(u) + êy(û))) dy dx̃

)+

for (t, x) ∈ (0, T )×Ω. (5.41)

Proof. The a priori estimate (3.2), together with the second Korn inequality, ensures the weak and two-scale
convergence of uε and ∂te(uε), i.e. there exist ũ ∈ L2(0, T ;W(Ω)), u1 ∈ L2(ΩT ;H1

per(Ŷ )/R)3, Λ ∈ L2(ΩT )3×3,
and Λ1 ∈ L2(ΩT × ŶM )3×3 such that

uε ⇀ ũ weakly in L2(0, T ;W(Ω)), ∇uε ⇀ ∇ũ + ∇̂yu1 two-scale,
∂te(uε) ⇀ Λ weakly in L2(ΩT )3×3, χΩε

M
∂te(uε) ⇀ χŶM

Λ1 two-scale,
(5.42)

as ε → 0, where ∂te(uε) is extended by zero from Ωε
M,T to ΩT . Using the two-scale convergence of e(uε) we

obtain that Λ1 = ∂t(e(ũ) + êy(u1)) in ΩT × ŶM .
The estimates for pε, nε, and bε in (3.1) and (3.3) imply the existence of p̃, ñ ∈ L2(0, T ;V(Ω))2 ∩

L∞(0, T ;L∞(Ω))2, b̃ ∈W 1,∞(0, T ;L∞(Ω × ŶM )), and p1,n1 ∈ L2(ΩT ;H1
per(ŶM )/R)2 such that

pε ⇀ p̃, nε ⇀ ñ weakly in L2(0, T ;H1(Ω))2,
pε → p̃, nε → ñ strongly in L2(ΩT )2,

∇pε ⇀ ∇p̃ + ∇̂yp1, ∇nε ⇀ ∇ñ + ∇̂yn1 two-scale,

bε ⇀ b̃, ∂tb
ε ⇀ ∂tb̃ two-scale.

(5.43)

The strong convergence of pε and nε is ensured by the estimates in (3.3) and the Kolmogorov compactness
theorem. Using the a priori estimates and the convergence results for uε, pε, and nε, in the same way as in
Lemma 5.3 (see also [26], Lem. 5.3), we show that b̃ is independent of ŷ = (y1, y2) and

T ∗
ε (bε) → b̃ strongly in L2(Ω × ŶM ). (5.44)

Using similar arguments as in the proof of Theorem 5.4, we obtain the strong convergence∫
Bδ(x)∩Ω

E(b̃, x̃/ε)e(uε)dx̃→
∫

Bδ(x)∩Ω

−
∫

Ŷ

E(b̃, y)(e(ũ) + êy(u1))dydx̃ in L2(ΩT ) and L2(ΓI,T ).

Then the strong convergence of T ∗
ε (bε), together with the two-scale convergence of uε, e(uε) and ∂te(uε), as

ε→ 0, yields the macroscopic viscoelastic equation

〈E(b̃, y)(e(ũ) + êy(u1)) + V(b̃, y)∂t(e(ũ) + êy(u1)), e(ψ) + êy(ψ1)〉ΩT ×Ŷ = |Ŷ |
[
〈f ,ψ〉ΓEU,T

− 〈pIν,ψ〉ΓI,T

]
(5.45)
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for ψ ∈ C1
0 (0, T ;C1(Ω))3, with ψ being a3-periodic in x3, and ψ1 ∈ C1

0 (ΩT ;C1
per(Ŷ ))3. Using the two-scale and

strong convergence of pε, nε, and bε we obtain that p̃, ñ, and b̃ satisfy the macroscopic equations (3.10) and
(3.11), where N eff

δ (e(ũ)) is defined as in (5.41) with b̃, ũ, and u1 instead of b, u, and û.
Now we consider equation (5.25). Using the fact that estimates (5.3) and (5.24) are independent of ϑ and ε

and applying the weak and two-scale convergence of uε,ϑ, e(uε,ϑ) and ∂te(uε,ϑ), as ε → 0, together with the
lower semicontinuity of a norm yield

‖uϑ‖L∞(0,T ;W(Ω)) + ‖e(uϑ) + êy(ûϑ)‖L∞(0,T ;L2(Ω×Ŷ )) + ‖∂t(e(uϑ) + êy(ûϑ))‖L2(ΩT ×ŶM ) ≤ C,

ϑ1/2‖∂tuϑ‖L2(ΩT ×ŶM ) ≤ C,

‖(e(uϑ(· + h, ·)) − e(uϑ)) + (êy(ûϑ(· + h, ·)) − êy(ûϑ))‖L2((0,T−h)×Ω×Ŷ ) ≤ Ch1/4,

‖e(uϑ) + êy(ûϑ)‖L2((T−h,T )×Ω×Ŷ ) ≤ Ch1/2,

(5.46)

with a constant C independent of ϑ and h. Using the second Korn inequality and assuming
∫

Ŷ
ûϑdy = 0 we

obtain that
‖ûϑ‖L∞(0,T ;L2(Ω;H1

per(Ŷ ))) ≤ C1‖êy(ûϑ)‖L∞(0,T ;L2(Ω×Ŷ )) ≤ C2.

Hence, there exist u ∈ L∞(0, T ;W(Ω)), û ∈ L∞(0, T ;L2(Ω;H1
per(Ŷ )/R))3, Λ2 ∈ L2(ΩT × ŶM )3×3, and ξ ∈

L2(ΩT × ŶM )3, such that uϑ ⇀ u in L2(0, T ;W(Ω)), ûϑ ⇀ û in L2(ΩT ;H1(Ŷ ))3, ∂t(e(uϑ) + êy(ûϑ)) ⇀ Λ2 in
L2(ΩT × ŶM )3×3, and ϑ1/2∂tuϑ ⇀ ξ in L2(ΩT × ŶM )3, as ϑ → 0. The convergence of uϑ and ûϑ implies that
Λ2 = ∂t(e(u) + êy(û)) a.e. in ΩT × ŶM .

Using the strong convergence of bϑ, shown in the proof of Theorem 3.2, together with the convergence of uϑ,
ûϑ, ∂t(e(uϑ) + êy(ûϑ)), and ϑ1/2∂tuϑ, and taking in (5.25) the limit as ϑ→ 0 we obtain

〈E(b, y)(e(u)+ êy(û))+V(b, y)∂t(e(u)+ êy(û)), e(ψ)+ êy(ψ1)〉ΩT ×Ŷ = |Ŷ |
[
〈f ,ψ〉ΓEU,T −〈pIν,ψ〉ΓI,T

]
(5.47)

for ψ ∈ C1
0 (0, T ;C1(Ω))3, with ψ being a3-periodic in x3, and ψ1 ∈ C1

0 (ΩT ;C1
per(Ŷ ))3.

Also using the two-scale and strong convergences of pϑ, nϑ, bϑ, and
∫

Bδ(x)∩Ω
−
∫

Ŷ
E(b, y)(e(uϑ)+ êy(ûϑ))dydx̃

we obtain that p, n, and b satisfy the macroscopic equations (3.10) and (3.11) with N eff
δ (e(u)) defined in (5.41).

To show uniqueness of a solution of (5.40) with the corresponding equations for (p,n, b) in (3.10) and (3.11),
we first consider the equation for the difference of two solutions (u1 −u2, û1 − û2) and take the approximations
of ∂t(u1 − u2) and ∂t(û1 − û2), similar as in the proof of Lemma 4.4, as test functions to obtain∥∥e(u1 − u2) + êy(û1 − û2)

∥∥2

L∞(0,T̃ ;L2(Ω×Ŷ ))
+
∥∥∂t

[
e(u1 − u2) + êy(û1 − û2)

]∥∥2

L2((0,T̃ )×Ω×ŶM )

≤ C1‖b1 − b2‖2
L∞(0,T̃ ;L∞(Ω))

for T̃ ∈ (0, T ]. In the same way as for the microscopic problem we can show that

‖b1 − b2‖2
L∞(0,T̃ ;L∞(Ω))

≤ C1T̃‖e(u1 − u2) + êy(û1 − û2)‖2
L∞(0,T̃ ;L2(Ω×Ŷ ))

,

‖p1 − p2‖2
L∞(0,T̃ ;L2(Ω))

+ ‖n1 − n2‖2
L∞(0,T̃ ;L2(Ω))

≤ C2‖e(u1 − u2) + êy(û1 − û2)‖2
L∞(0,T̃ ;L2(Ω×Ŷ ))

for T̃ ∈ (0, T ]. Considering T̃ sufficiently small and iterating over time intervals we obtain the uniqueness result
for (5.40) with the corresponding equations for (p,n, b). Hence ũ = u, u1 = û, p̃ = p, ñ = n, and b̃ = b and
the whole sequences {pε,nε, bε,uε} and {pϑ,nϑ, bϑ,uϑ}, respectively, converge to a solution of the macroscopic
two-scale problem (3.10), (3.11), and (5.40).

Using the derivation of the macroscopic equations in the proof of Theorem 5.4 and convergence results in
the proof of Theorem 3.2 and Lemma 5.2 we obtain that (3.10)–(3.12) are the macroscopic equations for the
original microscopic problem (2.1)–(2.3). �
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