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ON THE CONTROLLABILITY OF DIFFUSION PROCESSES
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Abstract. The main goal of this article is to study computationally the controllability of a diffusion
process on the surface of a sphere in R

3. To achieve this goal, we employ a methodology combining finite
differences for the time discretization, finite elements for the space approximation, and a conjugate gra-
dient algorithm for the iterative solution of the discrete control problems. The results of numerical exper-
iments, obtained using the above methodology, will be presented. Furthermore, the null-controllability
properties of the diffusion model under consideration will be also studied computationally.

Mathematics Subject Classification. 49K20, 58E25, 65K10, 65M60,93M05, 93C20.

Received June 6, 2016. Accepted June 7, 2016.

1. Introduction

Many physico–chemical phenomena modeled by partial differential equations take place on the surface of
planet Earth; it makes sense therefore to attempt controlling some of them (pollution for example). This evidence
leads naturally to control and controllability problems for surfaces of R

3, spheres in particular. Looking at the
literature shows that, for example, the control of diffusion processes on surfaces of R

3 has not attracted much
attention, yet, despite the fact that such problems have potentially many applications, notable exceptions being,
among few others, [4,11,14,15]. Actually, the origin of this article is the null-controllability results for the heat
equation proved in [11], not only for bounded domains of R

d, but also for Riemannian manifolds, the usual
Laplace operator being replaced then by the Beltrami Laplacian. One of our goals in this article is to compute
the control of minimal L2-norm realizing the null-controllability at a given time T . This problem being more
complicated than what it looks like (as shown in [16] for example), we decided to approximate it via a sequence
of penalized problems, which are relatively easy to solve numerically, by variants of the methods discussed
in [3] for the usual heat equation. Albeit computational null-controllability was our driver, we decided to take
advantage of the developed methodology to, first, investigate computationally the solution of controllability
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Figure 1. Surface of a sphere.

problems where the target function is different from zero, a much more demanding situation since, in general,
diffusion processes are not exactly controllable. In a recent work [12], we considered the same problem but on
the surface of a torus, which is easier to parameterize and triangulate than spherical ones. Here we extend the
methods discussed in [12] to the solution of controllability problems for diffusion phenomena on spheres in R

3.

2. The model problem

2.1. Generalities

As mentioned in Section 1, our goal in this article is to discuss the numerical solution of a controllability
problem associated with a diffusion process taking place on the surface of a sphere in R

3. We will consider
cartesian coordinates to represent this surface in order to avoid the singularities that the usual parameterization
(spherical coordinates) introduces. The sphere is visualized in Figure 1 and we denote by Σ the surface given
by x2 + y2 + z2 = R2, where R is the sphere radius.

Let ω be an open subset of Σ (not necessarily connected). The first problem to be considered is an exact
controllability one, namely (with 0 < T < ∞).

Find υ ∈ L2(ω × (0, T )) such that the solution y of the following parabolic initial value problem⎧⎨⎩
∫

Σ

∂y

∂t
(t)z dΣ + μ

∫
Σ

∇
Σ
y(t) · ∇

Σ
z dΣ =

∫
ω

υ(t)z dΣ, ∀z ∈ H1(Σ), a.e. on (0, T ),

y(0) = y0,
(2.1)

verifies
y(T ) = y

T
, (2.2)

where:

(i) ∇
Σ

is the tangential gradient on Σ;
(ii) dΣ is the infinitesimal surface measure;
(iii) H1(Σ) =

{
z | z ∈ L2(Σ),

∫
Σ |∇

Σ
z|2 dΣ < +∞

}
;

(iv) a · b =
∑3

i=1 ai bi, ∀ a = (ai)3i=1
, b = (bi)3i=1

;
(v) y0 and y

T
are given in L2(Σ), and μ(> 0) is a diffusion coefficient;

(vi) ϕ(t) denotes the function x −→ ϕ(x, t) from Σ (or ω) into R.
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The above exact controllability problem has no solution, in general. However, we have approximate control-
lability since the set {y(T ; υ)}υ∈L2(ω×(0, T )) is dense in L2(Σ) (see the Chap. 1 of [10] for related results). We
will take advantage of the above density results to define, below, an approximately controllable variant of the
above exact controllability problem.

Remark 2.1. Suppose that y
T

= 0; it follows then from [11] that, ∀ y0 ∈ L2(Σ), there exists a control υ ∈
L2(ω× (0, T )), such that the solution of the initial value problem (2.1) verifies y(T ) = 0. This property is known
as the null-controllability property and holds for sufficiently smooth surfaces of R

d (and bounded Cartesian
domains). We will return on the null-controllability property in Section 6.4.

Remark 2.2. The elliptic operator associated with equation (2.1) is clearly (−1)μ times the Laplace−Beltrami
operator (as discussed for example in [1, 2]).

2.2. Formulation of an approximate controllability problem

Taking advantage of the density results mentioned in Section 2.1, we approximate the exact controllability
problem introduced above by the following one (of the approximation by penalty type):{

Find uk ∈ U , such that
Jk(uk) ≤ Jk(υ), ∀υ ∈ U ,

(2.3)

where U = L2(ω × (0, T )), and the cost functional Jk : U → R is defined by

Jk(υ) =
1
2

∫
ω×(0, T )

|υ|2 dΣ dt +
k

2

∫
Σ

|y(T ) − yT |2 dΣ, (2.4)

with k a fixed positive number, and the function y obtained from the control υ via the solution of the initial
value problem (2.1). It follows from, e.g., [10] that the approximate controllability problem (2.3) has a unique
solution, characterized by

DJk(uk) = 0, (2.5)

where DJk(uk) is the differential of Jk at uk. The solution of (2.5) by a conjugate gradient algorithm operating
in U will be discussed in Section 4, but before we will address the computation of DJk(υ), ∀υ ∈ U , a most
important issue, indeed.

Remark 2.3. Using results from [10], one can show that if one denotes by yk the solution of (2.1) associated
with uk, then

lim
k→+∞

yk(T ) = y
T

in L2(Σ),

justifying thus taking (2.3) as approximate controllability problem. On the other hand, unless the exact con-
trollability property holds for the target function yT under consideration, we have

lim
k→+∞

||uk||L2(ω×(0, T )) = +∞.

A related result is provided by the following: suppose that the exact controllability property holds for the target
function y

T
. We have then

lim
k→+∞

uk = u in L2(ω × (0, T )), (2.6)

where, in (2.6), u is the control of minimal norm in L2(ω× (0, T )), realizing the exact controllability. The proof
of this last result is included in [12].

Assuming that yT = 0, the above result justifies using the penalty approach to approximate the control
function of minimal norm in U realizing null-controllability.
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3. Computation of DJk(υ). Optimality conditions

Let υ ∈ U , proceeding as in [12], we can easily show that

DJk(υ) = υ + p|ω×(0, T ), (3.1)

where p is the solution of the backward (in time) initial value problem⎧⎨⎩−
∫

Σ

∂p

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
p(t) · ∇

Σ
z dΣ = 0, ∀z ∈ H1(Σ), a.e. on (0, T ),

p(T ) = k (y(T ) − y
T
).

(3.2)

This equation is the adjoint (or co-state) equation of the state equation:⎧⎨⎩
∫

Σ

∂y

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
y(t) · ∇

Σ
z dΣ =

∫
ω

v(t)z dΣ, ∀z ∈ H1(Σ), a.e. on (0, T ),

y(0) = y0,
(3.3)

Of course, this last equation must be solved first in order to compute y(T ) in equation (3.2).
Let uk be the unique solution of the control problem (2.3), and denote by yk and pk the associated solution

of (2.1) and (3.2), respectively. It follows from the previous discussion that uk is characterized by the following
relations (the optimality system):

uk + pk|ω×(0, T ) = 0, (3.4)

with ⎧⎨⎩
∫

Σ

∂yk

∂t
(t) z dΣ + μ

∫
Σ

∇Σ yk(t) · ∇Σ z dΣ =
∫

ω

uk(t)z dΣ, ∀z ∈ H1(Σ), a.e. on (0, T ),

yk(0) = y0,
(3.5)

and ⎧⎨⎩−
∫

Σ

∂pk

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
pk(t) · ∇

Σ
z dΣ = 0, ∀z ∈ H1(Σ), a.e. on (0, T ),

pk(T ) = k(yk(T ) − y
T
).

(3.6)

Relations (3.4)–(3.6) clearly suggest the following approach (of the fixed point type) to solve the control prob-
lem (2.3):

(i) Let u0 be a guess of uk.
(ii) Denote by y0 the solution of (2.1) associated with u0.
(iii) Denote by p0 the solution of (3.2) associated with y0.
(iv) If u0 + p0|ω×(0, T ) is small enough in U take uk = −p0|ω×(0, T ); otherwise use appropriately the residual

u0 + p0|ω×(0, T ) to correct u0, and repeat the process.

In Section 4 we will show that the above program can be achieved using a conjugate gradient algorithm operating
in the space U .

Remark 3.1. An alternative to the above approach (a dual of it in some sense, as shown in the Chapter 1
of [10]) can be defined as follows:

(i) Let e0 be a guess of pk(T ).
(ii) Denote by p0 the solution of (3.2) verifying p0(T ) = e0.
(iii) Denote by y0 the solution of (2.1) associated with u0 = −p0|ω×(0, T ).
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(iv) If e0 − k(y0(T ) − y
T ) is small enough in L2(Σ) take uk = u0; otherwise use appropriately the residual

e0 − k(y0(T ) − y
T
) to correct e0, and repeat the process.

This alternative approach can be implemented via a conjugate gradient algorithm operating in L2(Σ). Variants
of it have been tested in [3,10] to solve numerically approximate controllability problems for the heat equation
in bounded domains of R

2. In this article, we will solve directly problem (2.3) (the primal problem) using a
conjugate gradient algorithm operating in the control space U . The main reasons for preferring the direct
approach to the dual one are that (a) it is conceptually simpler, and (b) it can be easily extended to nonlinear
diffusion models, unlike the dual approach.

4. Conjugate gradient solution of the minimization problem (2.3)

Problem (2.3) is a well-posed minimization problem in the control space U (= L2(ω × (0, T )), a real Hilbert
space for the inner-product {v, w} →

∫
ω×(0, T )

v w dΣ dt. It is therefore a particular case of those minimization
problems in Hilbert spaces whose conjugate gradient solution is discussed in, e.g., the Chapter 1 of [10] and
the Chapter 3 of [8] (see also the many references therein). Taking into account the results of Section 3,
relation (3.1) in particular, the solution of problem (2.3) can be achieved by the following conjugate gradient
algorithm (for notation convenience we denote by Y0 the initial value we denoted by y0 in the previous sections):

Step 1. Initialization: Given
u0 in U , (4.1)

solve the following two problems:⎧⎨⎩
∫

Σ

∂y0

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
y0(t) · ∇Σ

z dΣ =
∫

ω

u0(t) z dΣ, ∀z ∈ H1(Σ), a.e. on (0, T ),

y0(0) = Y0,
(4.2)

⎧⎨⎩−
∫

Σ

∂p0

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
p0(t) · ∇Σ

z dΣ = 0, ∀z ∈ H1(Σ), a.e. on (0, T ),

p0(T ) = k(y0(T ) − y
T
).

(4.3)

and set g0 = u0 + p0|ω×(0,T ).

If
∫

ω×(0,T )

|g0|2dΣdt
/

max

{
1,

∫
ω×(0,T )

|u0|2dΣdt

}
≤ tol, take uk =u0 and stop; otherwise set

d0 = g0. (4.4)

Step 2. Descent: Then for q ≥ 0, assuming that uq, gq, and dq are known, the last two different from 0, we
compute uq+1, gq+1, and if necessary, dq+1 as follows:
Solve⎧⎨⎩

∫
Σ

∂yq

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
yq(t) · ∇Σ

z dΣ =
∫

ω

dq(t)z dΣ, ∀z ∈ H1(Σ), a.e. on (0, T ),

yq(0) = 0,
(4.5)

⎧⎨⎩−
∫

Σ

∂pq

∂t
(t) z dΣ + μ

∫
Σ

∇
Σ
pq(t) · ∇Σ

z dΣ = 0, ∀z ∈ H1(Σ), a.e. on (0, T ),

pq(T ) = kyq(T ),
(4.6)

and set
gq = dq + pq|ω×(0, T ). (4.7)
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Compute αq =
∫

ω×(0, T )

|gq|2 dΣ dt
/∫

ω×(0, T )

dq gq dΣ dt, and then

uq+1 = uq − αqdq, (4.8)

gq+1 = gq − αqgq. (4.9)

Step 3. Testing the convergence. Construction of the new descent direction:

If
∫

ω×(0, T )

| gq+1|2 dΣ dt
/

max

{∫
ω×(0, T )

|g0|2 dΣ dt,

∫
ω×(0, T )

|uq+1|2 dΣ dt

}
≤ tol take uk = uq+1; otherwise,

compute

βq =
∫

ω×(0, T )

|gq+1|2 dΣ dt
/∫

ω×(0, T )

|gq|2 dΣ dt, (4.10)

and

dq+1 = gq+1 + βq dq. (4.11)

Do q + 1 −→ q and return to Step 2. �

Concerning the choice of tol, following the Chapter 3 of [8], we advocate to take tol = 10−d where d is the
number of digits used for the floating point representation of the real numbers in the computer platform we use
for our computations.

By a slight variant of the analysis done in the Chapter 1 of [10] for the “ordinary heat equation”, one can
prove that, for a given value of tol, the number of iterations, necessary to achieve the convergence of the above
algorithm, varies like

√
k.

5. Discretization of the control problem. Iterative solution of the fully

discrete problem

5.1. Time discretization of the control problem (2.3)

Let N be a positive integer. We define the time discretization step Δt as Δt = T/N . Next, we approximate
the control problem (2.3) by {

uΔt
k ∈ U Δt,

JΔt
k (uΔt

k ) ≤ JΔt
k (v), ∀v ∈ U Δt,

(5.1)

where U Δt =
(
L2(ω)

)N , uΔt
k = {un

k}
N
n=1, v = {υn}N

n=1, and the cost functional JΔt
k is defined by

JΔt
k (v) =

Δt

2

N∑
n=1

∫
ω

|υn|2 dΣ +
k

2

∫
Σ

|yN − y
T
|2 dΣ, (5.2)

with {yn}N
n=1 obtained from v and y0 by the solution of:

y0 = y0, (5.3)

for n = 1, . . . , N ⎧⎨⎩yn ∈ H1(Σ),∫
Σ

yn − yn−1

Δt
z dΣ + μ

∫
Σ

∇Σyn · ∇Σ z dΣ =
∫

ω

υnz dΣ, ∀z ∈ H1(Σ),
(5.4)
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where yn approximates y(nΔt). Problems (5.4) are well-posed elliptic problems; strictly speaking they are not
associated with any boundary condition since Σ is a surface without boundary.

Using classical convexity arguments, one can easily show that the discrete problem (5.1) has a unique solution,
characterized by

DJΔt
k (uΔt

k ) = 0, (5.5)

where DJΔt
k denotes the differential of JΔt

k . Taking {v, w} → Δt
∑N

n=1 vnwv (= (v, w)Δt) as inner-product
over U Δt, we can show that

(
DJΔt

k (v), w
)
Δt

= Δt

N∑
n=1

∫
ω

(vn + pn)wn dΣ, (5.6)

where {pn}N
n=1 is obtained from v via the solution of (5.3), (5.4) and of the following backward in time discrete

initial value problem (the associated adjoint system):

pN+1 = k(yN − y
T
), (5.7)

for n = N, . . . , 1 ⎧⎨⎩pn ∈ H1(Σ),∫
Σ

pn − pn+1

Δt
z dΣ + μ

∫
Σ

∇
Σ
pn · ∇

Σ
z dΣ = 0, ∀z ∈ H1(Σ),

(5.8)

where pn approximates p(nΔt). There is no basic difficulty at deriving a time-discrete analogue of the conju-
gate gradient algorithm (4.1)–(4.11), in order to solve the discrete control problem (5.1), via the optimality
condition (5.5). In order to avoid being repetitious we will not describe this algorithm in this article. Instead,
we will describe a fully-discrete analogue of the two above algorithms in Section 5.2, after discussing the space
discretization of problem (5.1).

Remark 5.1. To time-discretize the parabolic problems (2.1) and (3.2), we have used the backward Euler
scheme, obtaining thus (5.3), (5.4) and (5.7), (5.8). This implicit scheme is only first order accurate, but is
stiff A-stable, robust and preserves the maximum principle if combined with appropriate space approximations.
In [3] a second order accurate two step backward implicit scheme has been used to solve related controllability
problems for the classical heat equation; this scheme could have been used here also. The main reasons we did
not do it are: (a) this second order scheme does not preserve the maximum principle, (b) it requires a starting
procedure, (c) deriving the associated discrete adjoint system is significantly more complicated than when
using the backward Euler’s scheme, (d) if υ = 0, as for the continuous model with backward Euler’s scheme,
the damping of the spectral modes of the solution increases monotonically with the value of the associated
eigenvalues of the opposite of the Laplace−Beltrami operator, and (e) (last but not least) a collaboration with
NASA engineers working on the real time control of sub-systems of the Space Shuttle and International Space
Station has shown us that most often the time-discretization method of choice for these engineers is the forward
Euler’s scheme with a fixed time-discretization step, chosen small enough to avoid numerical instabilities.

5.2. Full discretization of the control problem (2.3)

The time–discretization of problem (2.3) has been addressed in Section 5.1. In order to obtain a space–
discretization, we can approximate Σ by a polyhedral surface and proceed as in [1] to approximate the various
elliptic problems encountered in (5.4) and (5.8). However, here we shall proceed in a slightly different manner,
mainly when computing the surface gradient.

Let Σh be the polyhedral surface that approximates Σ, as shown in Figure 2. The elements of Σh are assumed
to be triangular facets, and we denote by Th the set they form. Each triangular facet K ∈ Th, is described by
the isoparametric parametrization

xh(ε, η) =
3∑

i=1

xi ϕi(ε, η) (5.9)
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Figure 2. A polyhedral approximation of the sphere of radius 1.

where, (ε, η) are the coordinates that define the usual reference element K̂ ∈ R
2, and xi = (xi

1, x
i
2, x

i
3), with i =

1, 2, 3, are the physical coordinates of the triangular facet K. The linear functions ϕi(ξ, η) are the corresponding
reference shape functions.

Denote by h the maximum diameter of the elements in Σh, we approximate then H1(Σ) by

Vh =
{
z | z ∈ H1(Σh), z|K ∈ P1, ∀K ∈ Th

}
, (5.10)

where P1 is the space of polynomials of degree ≤ 1.
Now, we can obtain the discret counterparts of problems (5.4) and (5.8). For instance, the discrete version

of (5.4) can be written as follows.
Let y0h

an approximation of y0 belonging to Vh.
For n = 1, . . . , N⎧⎪⎨⎪⎩

yn
h ∈ Vh,∑

K∈Th

∫
K

yn
h − yn−1

h

Δt
z dK + μ

∑
K∈Th

∫
K

∇K yn
h · ∇K z dK =

∑
K∈T ω

h

∫
K

υn
h z dK, ∀z ∈ Vh. (5.11)

In the last integral we are assuming that ω is also the union of triangles of Th, and we denote this set of triangles
as T ω

h . The tangential gradient ∇
K

yn
h can be computed by projecting the usual gradient ∇yn

h on the surface
of K, that is

∇
K

yn
h = (I − PK)∇yn

h (5.12)

where I is the identity matrix in R
3 and PK = n

K
nt

K
is the orthogonal projection matrix to the normal direction

of K. This quantity is well defined, since ∇yn
h is a constant vector on every K ∈ Th and n

K
is the unique unitary

vector normal to K. Of course, the integral in (5.11) can be computed either in the physical element K or in the
reference element K̂ using the parametrization (5.9). Integrals in equation (5.8) are approximated in a similar
way.
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To simplify the notation, instead of (5.11) we will write:
For n = 1, . . . , N⎧⎨⎩

yn
h ∈ H1(Σh),∫
Σh

yn
h − yn−1

h

Δt
z dΣh + μ

∫
Σh

∇
Σh

yn
h · ∇

Σh
z dΣh =

∫
ωh

υn
h z dΣh, ∀z ∈ Vh.

(5.13)

The previous isoparametric finite element approximation allows us to fully approximate the control prob-
lem (2.3) by {

uΔt
kh

∈ U Δt
h ,

JΔt
kh

(uΔt
kh

) ≤ JΔt
kh

(v), ∀v ∈ U Δt
h ,

(5.14)

where in (5.14) the fully discrete control space U Δt
h is defined by

U Δt
h =

{
v |v = {υn

h}
N
n=1 , υn

h ∈ Vh|ωh

}
, (5.15)

and is equipped with the inner-product

(v, w)Δt
h = Δt

N∑
n=1

∫
ωh

vn
h wn

h dΣh. (5.16)

The cost functional JΔt
kh is now defined by

JΔt
kh (v) =

Δt

2

N∑
n=1

∫
ωh

|υn
h |2dΣh +

k

2

∫
Σh

|yN
h − y

T
|2dΣh, (5.17)

with {yn
h}

N
n=1 obtained from y0 and v via the solution of

y0
h = y0h

(∈ Vh). (5.18)

For n = 1, . . . , N solve⎧⎨⎩
yn

h ∈ Vh,∫
Σh

yn
h − yn−1

h

Δt
z dΣh + μ

∫
Σh

∇
Σh

yn
h · ∇

Σh
z dΣh =

∫
ωh

υn
hz dΣh, ∀z ∈ Vh.

(5.19)

Remark 5.2. For the computations whose results will be presented in Section 6, we have employed the trape-
zoidal rule on each triangle of Th and T ω

h to approximate the integrals encountered in (5.16), (5.17) and (5.19),
taking advantage of ∫

Σh

=
∑

K∈Th

∫
K

, and
∫

ωh

=
∑

K∈T ω
h

∫
K

.

Proceeding as in Section 3, we can show that the differential DJΔt
kh

(v) of JΔt
kh

at v is defined by

(
DJΔt

h (v), w
)Δt

h
= Δt

N∑
n=1

∫
ωh

(vn
h + pn

h) wn
h dΣh, ∀w ∈ U Δt

h , (5.20)

with {pn
h}

N
n=1 obtained from the solution of the fully discrete adjoint problem:

pN+1
h = k(yN

h − y
Th

). (5.21)
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For n = N, . . . , 1, solve⎧⎨⎩
pn

h ∈ Vh,∫
Σh

pn
h − pn+1

h

Δt
z dΣh + μ

∫
Σh

∇
Σh

pn
h · ∇

Σh
z dΣh = 0, ∀z ∈ Vh.

(5.22)

In (5.21), y
T h

is an approximation of y
T

belonging to Vh. It follows from (5.20) that

DJΔt
h (v) = {vn

h + pn
h|ωh

}N
n=1 . (5.23)

The solution uΔt
kh

of problem (5.17) is characterized by

DJΔt
kh

(uΔt
kh

) = 0. (5.24)

Remark 5.2 applies also to the integrals in (5.20) and (5.22).
Taking advantage of (5.20) and (5.23), it makes sense to solve the fully discrete control problem (5.14) via

the solution of (5.24). This solution can be achieved by a conjugate gradient algorithm, which is nothing but the
fully discrete version of algorithm (4.1)–(4.11) discussed in Section 4. This new conjugate gradient algorithm
reads as follows:

Given u0 = {un
0}N

n=1 belonging to U Δt
h , (5.25)

solve ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y0
0 = y0h;

for n = 1, . . . , N, solve⎧⎨⎩
yn
0 ∈ Vh,∫
Σh

yn
0 − yn−1

0

Δt
z dΣh + μ

∫
Σh

∇
Σh

yn
0 · ∇

Σh
z dΣh =

∫
ωh

un
0 z dΣh, ∀z ∈ Vh,

(5.26)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pN+1
0 = k(yN

0 − y
T h

);
for n = N, . . . , 1, solve⎧⎨⎩

pn
0 ∈ Vh,∫
Σh

pn
0 − pn+1

0

Δt
z dΣh + μ

∫
Σh

∇
Σh

pn
0 · ∇

Σh
z dΣh = 0, ∀z ∈ Vh.

(5.27)

Define g0 = {gn
0 }N

n=1 by
gn
0 = un

0 + pn
0 |ωh

, ∀n = 1, . . . , N. (5.28)

If Δt

N∑
n=1

∫
ωh

|gn
0 |2dΣh

/
max

{
1, Δt

N∑
n=1

∫
ωh

|un
0 |2dΣh

}
≤ tol, take uΔt

kh = u0; otherwise set

d0 = g0. (5.29)

For q ≥ 0, assuming that uq, gq, and dq are known, the last two different from 0, we compute uq+1, gq+1, and,
if necessary, dq+1 as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y0
q = 0;

for n = 1, . . . , N, solve⎧⎨⎩
yn

q ∈ Vh,∫
Σh

yn
q − yn−1

q

Δt
z dΣh + μ

∫
Σh

∇
Σh

yn
q · ∇

Σh
z dΣh =

∫
ωh

dn
q z dΣh, ∀ z ∈ Vh,

(5.30)
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pN+1
q = kyN

q ;
for n = N, . . . , 1, solve⎧⎨⎩

pn
q ∈ Vh,∫
Σh

pn
q − pn+1

q

Δt
z dΣh + μ

∫
Σh

∇
Σh

pn
q · ∇

Σh
z dΣh = 0, ∀ z ∈ Vh.

(5.31)

Compute
gq = {gn

q }N
n=1 = {dn

q + pn
q |ωh

}N
n=1, (5.32)

αq =

N∑
n=1

∫
ωh

|gn
q |2 dΣh

N∑
n=1

∫
ωh

gn
q dn

q dΣh

, (5.33)

uq+1 = uq − αqdq, (5.34)

gq+1 = gq − αqgq. (5.35)

If
N∑

n=1

∫
ωh

|gn
q+1|2 dΣh

/
max

{
N∑

n=1

∫
ωh

|gn
0 |2 dΣh ,

N∑
n=1

∫
ωh

|un
q+1|2dΣh

}
≤ tol, take uΔt

kh
= uq+1; otherwise

compute

βq =

N∑
n=1

∫
ωh

|gn
q+1|2 dΣh

N∑
n=1

∫
ωh

|gn
q |2 dΣh

, (5.36)

and
dq+1 = gq+1 + βqdq. (5.37)

Do q + 1 −→ q and return to (5.30).
Remark 5.2 still applies for the various integrals encountered in algorithm (5.25)–(5.37). Futher remarks are:

Remark 5.3. The various discrete linear elliptic problems occurring in (5.26), (5.27) and (5.30), (5.31) are all
associated with the same matrix, differing only by their right-hand sides. Since the above matrix is symmetric,
positive definite and sparse, the associated linear systems can be solved by a sparse Cholesky solver, like the one
available in MATLAB r©. An alternative to Cholesky is to use a conjugate gradient algorithm initialized by the
solution at the previous time step. The backward Euler time discretization scheme that we employ being only
first order accurate, using a small Δt is recommended, implying that the matrix associated with the backward
Euler scheme is not too badly conditioned, authorizing thus the solution of these discrete elliptic problems by a
conjugate gradient algorithm preconditioned by the diagonal of the above matrix. In this article we have solved
these linear systems using one of those user friendly MATLAB r© routines which decide ‘by themselves’ of the
solver which is the most appropriate for the linear system under consideration.

Remark 5.4. The conjugate gradient algorithm (5.25)–(5.37) is a solver for (5.24), a linear problem in U Δt
h .

For large values of the penalization parameter k the condition number of the linear operator associated with
DJΔt

kh is of the order of k, implying that the linear problem (5.24) is poorly conditioned making its solution
by algorithm (5.25)–(5.37) sensitive to round-off errors. This explains that if we take the stopping criterion tol
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Table 1. Summary of convergence results (target function (6.1) and ω = {(x1, x2, x3) ∈ Σ |
−0.3 < x3 < 0.3}).

h 0.0787 0.0201 0.0051 0.0013 0.0201 0.0051
Δt 1/100 1/100 1/100 1/100 1/200 1/200

No. iters 16 20 19 18 20 18
Norm uc 10.3845 12.9920 14.3885 14.5753 13.0010 14.1877
Rel. error 0.0531 0.0504 0.0504 0.0522 0.0502 0.0520

in (5.25)–(5.37) too small, the convergence properties of the above conjugate gradient algorithm will deteriorate.
To avoid this situation we have taken tol significantly larger than the value advocated in Section 4 (we took tol
of the order of 10−5 for our computations).

Remark 5.5. The convergence, as {h, Δt} → {0, 0}, of space/time approximations of controllability prob-
lems for the heat equations modeling diffusion phenomena in bounded domains of R

d has been addressed in,
e.g., [16, 19] (see also [10]). Extending the convergence results proved in the three above references to the solu-
tions of the discrete controllability problem (5.14) (and of similar ones associated with other smooth bounded
surfaces of R

3), still has to be done (to the best of our knowledge). We strongly believe that the methods
developed in the above references can be (slightly) modified in order to prove the convergence of the solutions
of fully discrete controllability problems such as (5.14).

6. Numerical examples

In this section we present the results of numerical experiments, obtained by applying the methodology dis-
cussed in the preceding sections to the solution of selected test problems. We consider two types of controllability
problems, namely: (i) Approximate controllability problems where the target function y

T
is different from 0,

and (ii) Null controllability problems (implying thus that y
T

= 0).

6.1. Results for a non-zero smooth target function

The surface Σ under consideration is the sphere of radius 1 centered at (0, 0, 0). The first target function y
T

to be considered is the smooth function defined by

y
T
(x1, x2, x3) = sin(2 x1 x2) + cos(2 x2 x3), ∀(x1, x2, x3) ∈ Σ. (6.1)

The numerical results reported in Table 1 have been obtained taking y0 = 0, μ = 1/2, and T = 2 in equa-
tion (2.1), the domain ω being the strip defined by ω = {(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3}. Several values of
the discretization parameters h and Δt have been employed to approximate the control problem (2.3), h being
the length of the largest edge(s) of the triangulation Th. We took tol = 10−5 for the stopping criterion of the
conjugate gradient algorithm (5.25)–(5.37), using u0 = 0 as initial guess and k = 108 as penalty parameter.
Related numerical results have been reported in Table 1, where uc (resp., yc) denotes the computed optimal con-
trol (resp., the associated solution of (5.3)–(5.4)), No. iters denotes the number of conjugate gradient iterations
necessary to achieve convergence, Norm uc = ||uc||L2(ω×(0, T )) and Rel. error = ||y

T
− yc(T )||L2(Σ)/||yT

||L2(Σ).
Table 1 shows that for h small enough the solution does not vary much with Δt, suggesting convergence with

respect to space–time discretization. In particular, in all cases we investigated, yc(T ) differs from y
T

by 5%
approximately.

We used h = 0.0051 and Δt = 1/100, to investigate the influence of the penalty parameter k on the con-
vergence, for four sub-domains ω (including the above one), the other parameters and data being as above
(here |ω| and |Σ| denotes, respectively, the measures of ω and Σ; we have thus |Σ| = 4π). The results have
been reported on Table 2 and show, among other things, that ||uc||L2(ω×(0, T )) increases with 1/|ω|. Actually,
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Table 2. Numerical results for different sub-domains ω (target function (6.1)).

ω |ω|/|Σ| k No. Iters Norm uc Rel. error

Σ 1

104 4 6.8156 0.0010

106 4 6.8253 7.5202×10−4

108 4 5.0279 7.3486×10−4

1010 4 5.0279 7.3486×10−4

{(x1, x2, x3) ∈ Σ |x3 > 0} 0.5

104 28 16.5423 0.0684

106 34 19.3445 0.0567

108 34 19.3586 0.0566

{(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3} 0.3

104 17 13.5167 0.0537

106 19 14.3812 0.0505

108 19 14.3885 0.0504

{(x1, x2, x3) ∈ Σ | − 0.05 < x3 < 0.05} 0.05

104 13 21.4641 0.0768

106 14 23.6017 0.0705

108 14 23.6288 0.0704

Figure 3. Norm of the computed control vs. time for k = 104, 106, 108 and ω =
{(x1, x2, x3) ∈ Σ |x3 > 0}

comparing the results in Tables 1 and 2 with those to be shown in Section 6.2 strongly suggests that the exact
controllability property holds for y

T
defined by (6.1) (or, at least, that y

T
is very close to a function for which

the exact controllability property holds).
Figure 3 shows the behavior of the L2-norm of uc(t) versus t for several values of k, assuming that

{(x1, x2, x3) ∈ Σ |x3 > 0}; the oscillations of the control function as t is nearing T (a well-known phenomenon
for the usual heat equation as shown in, e.g., [10, 12, 16]) appear clearly on this figure. On Figure 4, we have
visualized yc(T ) and |y

T
− yc(T )|, assuming that k = 108 and ω = {(x1, x2, x3) ∈ Σ |x3 > 0}: not surprisingly,

the matching between yc(T ) and yT is better on ω than on Σ \ ω.
An important issue that we are going to address now (with y

T
still defined by (6.1)) is the influence of the

diffusion coefficient μ: Qualitatively speaking, increasing μ will enhance the ‘natural’ tendency of the system
which is (if left uncontrolled) to have y(t) → ȳ0(=

∫
Σ y0 dΣ/|Σ|) as t → ∞, an effect that one has to ‘fight’ when

trying to control the system (unless y
T

= ȳ0); on the other hand, if μ = 0, the absence of diffusion will prevent
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Figure 4. Visualization of yc(T ) (left) and |y
T
−yc(T )| (right) (k = 108 and ω = {(x1, x2, x3) ∈

Σ |x3 > 0}).

Table 3. Influence of μ.

μ No. Iters Norm uc Rel. error
1 44 24.3525 0.0634

1/2 34 19.3586 0.0566
1/4 46 17.8515 0.0635
1/8 100 36.8160 0.0833

the control to act in Σ\ω. From these obvious considerations we anticipate controllability to be a non–monotone
function of μ, everything else being the same. The results reported in Table 3 validate the above prediction; they
have been obtained using y0 = 0, h = 0.0051, Δt = 1/100, k = 108, T = 2, and ω = {(x1, x2, x3) ∈ Σ |x3 > 0}.

6.2. Results for non-zero Lipschitz continuous target functions

For the second series of numerical experiments, we take for y
T

the Lipschitz continuous target function
defined by

yT (x) = | sin(2x1x2)| + cos(2x2x3), ∀(x1, x2, x3) ∈ Σ. (6.2)

We choose again R = 1 and y0 = 0. Concerning the other parameters we take T = 2 as final time, u0 = 0,
k = 108, μ = 1/2, and tol = 10−5. The first numerical results we present have been obtained with ω =
{(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3} and several values of h and Δt; these results have been reported in Table 4.
As with y

T
defined by (6.1), these results show convergence when h and Δt −→ 0.

Next, we are going to investigate the influence of ω on the controllability. For the related experiments, we
took h = 0.0051 (4098 grid points) and Δt = 1/100, the other parameter and data staying as above. The
results of the corresponding numerical experiments have been reported in Table 5. We observe with interest
that although the target function defined by (6.2) is less smooth than the one defined by (6.1), it has comparable
controllability properties.

We have visualized on Figure 5, for ω = {(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3}, the computed final solution
yc(T ) (left) and the matching error |y

T
− yc(T )| (right).
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Table 4. Summary of convergence results (target function (6.2) and ω = {(x1, x2, x3) ∈ Σ |
−0.3 < x3 < 0.3}).

h 0.0787 0.0201 0.0051 0.0013 0.0201 0.0051
Δt 1/100 1/100 1/100 1/100 1/200 1/200

No. iters 6 12 10 9 12 10
Norm uc 6.6679 8.8285 9.2332 9.6992 8.7940 9.1684
Rel. error 0.0671 0.0638 0.0674 0.0678 0.0635 0.0676

Table 5. Numerical results for different sub-domains ω (target function (6.2)).

ω |ω|/|Σ| No. Iters Norm uc Rel. error
Σ 1 14 6.0928 0.0022

{(x1, x2, x3) ∈ Σ | − 0.9 < x3 < 0.9} 0.90 8 5.5072 0.0146
{(x1, x2, x3) ∈ Σ | − 0.8 < x3 < 0.8} 0.80 8 5.5881 0.0222
{(x1, x2, x3) ∈ Σ | − 0.7 < x3 < 0.7} 0.70 10 5.7698 0.0341

{(x1, x2, x3) ∈ Σ | − 0.55 < x3 < 0.55} 0.55 13 7.0761 0.0414
{(x1, x2, x3) ∈ Σ | − 0.5 < x3 < 0.5} 0.50 9 7.1176 0.0497
{(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3} 0.30 10 9.2332 0.0674
{(x1, x2, x3) ∈ Σ | − 0.2 < x3 < 0.2} 0.20 12 12.6560 0.0645

{(x1, x2, x3) ∈ Σ | − 0.05 < x3 < 0.05} 0.05 13 22.4331 0.0679

Figure 5. Case ω = {(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3} Visualization of yc(T ) (left) and
|y

T
− yc(T )| (right).

The next investigation, with the target function defined by (6.2), concerns the influence of μ, for various
control domains ω, the other parameters and data being the same as above.

The results reported in Table 6 show that if μ increases beyond some critical value, controllability deteriorates,
a property we have been expecting. Similarly, controllability deteriorates if μ decreases below some critical value.

The influence of T on the controllability has been investigated, using different values for μ, h = 0.0051,
Δt = 1/100, k = 108, and ω = {(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3}, the other data being like in the previous
experiment. The results presented in Table 7, show that, as expected, increasing T enhances controllability.
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Table 6. Influence of μ on the controllability (target function (6.2)).

ω |ω|/|Σ| μ No. Iters Norm uc Rel. error

{(x1, x2, x3) ∈ Σ |x3 > 0} 0.5

1 20 12.5932 0.0779

1/2 22 11.7713 0.0682

1/4 26 12.2879 0.0723

1/8 55 24.4898 0.0865

1/10 99 45.1834 0.0883

{(x1, x2, x3) ∈ Σ | − 0.5 < x3 < 0.5} 0.5

1 13 9.7446 0.0468

1/2 9 7.1176 0.0497

1/4 11 6.4009 0.0511

1/8 20 9.0149 0.0537

1/10 23 11.1241 0.0572

{(x1, x2, x3) ∈ Σ | − 0.3 < x3 < 0.3} 0.3

1 11 11.9749 0.0684

1/2 10 9.2332 0.0674

1/4 11 8.7718 0.0690

1/8 20 24.4898 0.0812

1/10 30 45.1834 0.0832

Table 7. Influence of T and μ on the controllability (ω = {(x1, x2, x3) ∈ Σ | − 0. < x3 < 0.3}).

μ T |ω|/|Σ| No. Iters Norm uc Rel. error

1

2 0.3 11 11.9749 0.0684

1.5 0.3 10 12.2146 0.0688

1 0.3 10 13.3376 0.0676

1/2 0.3 11 17.7431 0.0699

1/4 0.3 18 43.5057 0.0843

1/8 0.3 65 143.4465 0.1696

1/2

4 0.3 7 7.0106 0.0793

3 0.3 7 7.2707 0.0790

2 0.3 10 9.2332 0.0674

1 0.3 11 12.3766 0.0693

1/2 0.3 16 29.0787 0.0843

1/4 0.3 50 116.5275 0.1352

1/4

8 0.3 7 4.9572 0.0793

6 0.3 7 5.1332 0.0791

4 0.3 10 6.4831 0.0674

2 0.3 11 8.7718 0.0690

1 0.3 24 22.1714 0.0784

1/2 0.3 51 73.9656 0.1398

1/8

16 0.3 7 3.4923 0.0795

12 0.3 7 3.6297 0.0791

8 0.3 10 4.5842 0.0674

4 0.3 11 8.7718 0.0690

2 0.3 20 24.4898 0.0812

1 0.3 50 49.6053 0.1431
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Table 8. Numerical result for T = 1/5, μ = 1/2, and ω = {(x1, x2, x3) ∈ Σ | − 0.65 < x3 < 0.65}.

μ T |ω|/|Ω| No. Iters Norm uc Rel. error
1/2 1/5 0.65 32 36.0589 0.0688

Figure 6. Case: μ = 1/2, T = 1/5, and ω = {(x1, x2, x3) ∈ Σ | − 0.65 < x3 < 0.65}. Visual-
ization of yc(T ) (left) and |y

T
− yc(T )| (right).

Table 9. Numerical results for different control domains of equal area.

Supporting set ω |ω|/|Ω| No. Iters Norm uc Rel. error
ω1 = {(x1, x2, x3) ∈ Σ |x3 > 0} 0.5 22 11.7713 0.0682

ω2 = {(x1, x2, x3) ∈ Σ | − 0.5 < x3 < 0.5} 0.5 9 7.1176 0.0497
ω3 = {(x1, x2, x3) ∈ Σ | − 0.5 < x1 < 0.5} 0.5 14 9.9366 0.0598

ω4 = {(x1, x2, x3) ∈ Σ | 0.6 < x3 < 1} 0.2 24 17.2843 0.1358
ω5 = {(x1, x2, x3) ∈ Σ | − 0.2 < x3 < 0.2} 0.2 12 12.6560 0.0645
ω6 = {(x1, x2, x3) ∈ Σ | − 0.2 < x1 < 0.2} 0.2 20 16.8209 0.0613

The parameters T and μ being given, a systematic way to enhance controllability is to increase |ω| as shown by
Table 8, which corresponds to μ = 1/2, T = 1/5 and ω = {(x1, x2, x3) ∈ Σ | − 0.65 < x3 < 0.65}. On Figure 6
(left), we have visualized yc(T ), while the controllability gap |y

T
−yc(T )| has been visualized on Figure 6 (right).

Not surprisingly the control deteriorates away from ω, the controllability gap taking its maximal values at the
poles.

To conclude with the target function (6.2), we are going to compare the controllability properties associated
with control domains ω of same area but with different shapes or location. For these experiments we take
μ = 1/2 and T = 2, the other parameters being as in the above experiments. Table 9 summarizes the results
obtained from two sets of experiments: In the first case (resp., the second case) we have three control domains ω
with |ω| = 2π (resp., |ω| = 0.8π). These results show that the number of conjugate gradient iterations necessary
to achieve convergence may vary significantly, as does the controllability gap for the domains of smaller area.
On the other hand, the norm of the computed optimal control shows less variations.
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Table 10. Numerical results with the Lipschitz continuous target function (6.3) for various
values of κN .

κN |ωN |/|Σ| No. Iters Norm uc Rel. error
0 0.5 141 111.8703 0.1559

0.75 0.125 300 142.3226 0.2384
0.875 0.0625 250 243.3815 0.2053
0.95 0.025 315 327.3470 0.2842

Table 11. Numerical results with the Lipschitz continuous target function (6.3) for ω = ωN∪ωS

and various values of κS = κN .

κN = κS |ω|/|Σ| No. Iters Norm uc Rel. error
0.5 0.5 82 72.3659 0.1064
0.75 0.25 106 127.5446 0.1529
0.875 0.125 149 246.4855 0.1624
0.950 0.050 127 284.5191 0.1886
0.975 0.025 165 571.7372 0.1808

The last experiments with a Lipschitz continuous target function concern y
T

defined by

yT (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if x ∈ Σ, x3 >

1
6
,

3
2

sin(3πx3) + cos(2πx3) if x ∈ Σ,−1
6
≤ x3 ≤ 1

6
,

−1 if x ∈ Σ, x3 < −1
6
·

(6.3)

For these experiments we took R = 1, y0 = 0, T = 2, μ = 1/2, u0 = 0, k = 1010, Δt = 1/100, h = 0.0051, and
tol = 10−5 for the stopping criterion. We considered first control domains ω = ωN of the following type:

ωN = {(x1, x2, x3) ∈ Σ, κN < x3 ≤ 1} , (6.4)

with 0 ≤ κN < 1. The results of numerical experiments with κN varying from 0.5 to 0.95 are reported in
Table 10. They show that getting close to y

T
is more energy-demanding than with the target function defined

by (6.2); also, for the target function (6.3) at least, using cap shaped control domains ω makes controllability
more difficult, for the same value of |ω|. To test this last property we modified ω, defining it now as ω = ωN ∪ωS ,
with

ωS = {(x1, x2, x3) ∈ Σ, −1 ≤ x3 < −κS } , (6.5)

and 0 ≤ κS < 1. On Figure 7 (left) (resp., (right)) we have visualized the function yc(T ) (resp., the controllability
gap |y

T
− yc(T )|) associated with the computed optimal control, assuming that ω = ωN , with κN = 0.

On Table 11, we have reported the numerical results associated with ω = ωN ∪ ωS, κN = κS , κN varying
from 0.5 to 0.975 (that is, |ω|/|Σ| varying from 0.5 to 0.025).

By comparison with Table 10, these results show that for the same area the two cap control sets have better
controllability properties than the one cap ones, which is not surprising since by splitting ω the way we did we
have reduced the mean distance to ω of the points of Σ \ω (actually, results in that direction have been obtained
in [18] for domains of R

d with the flat metric, suggesting that the controllability enhancement by fragmentation
of ω, we observe here, is not specific to the sphere).
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Figure 7. Target function (6.3): Case ω = ωN with κN = 0. Visualization of yc(T ) (left) and
|yT − yc(T )| (right).

Table 12. Numerical results with the discontinuous target function (6.6) (h = 0.0051, Δt = 1/100).

κN |ωN |/|Σ| k No. Iters Norm uc Rel. error

0 0.5

106 72 148.8302 0.1402
108 80 117.8068 0.1274
1010 81 172.6996 0.1270
1015 81 172.7599 0.1271

0.75 0.125
108 140 99.2490 0.3193
1010 150 101.7040 0.3180
1015 150 101.8320 0.3180

6.3. Results for a discontinuous target function

The target functions defined by (6.1), (6.2) and (6.3) are all Lipschitz continuous. The test problem that
we are going to consider now is more challenging since this time the target function yT is the discontinuous
function defined by

yT (x) =

{
2 if x ∈ Σ, x3 > 0,

−1 if x ∈ Σ, x3 < 0.
(6.6)

As for the above cases, Σ is the sphere of radius one centered at (0, 0, 0), the other data being, in addition to yT ,
y0 = 0, T = 2, μ = 1/2, u0 = 0, Δt = 1/100, h = 0.0051, tol = 10−5, ω = ωN with ωN as in (6.4). Table 12
shows numerical results obtained for two supporting sub-domains ωN and various values of k. We observe that
for k > 1010 the results are essentially identical; on the other hand, the size of ω has a very significant influence
on the number of iterations, the cost of the control, and how close y(T ) is to the target function. Concerning
this last issue it is clear that the discontinuity of the target function in (6.6) makes controllability much more
difficult.

For κN = 0, we have visualized on Figure 8 the computed solution yc(T ) (left) and the controllability gap
|yc(T )−yT | (right). This figure shows that away from the target function discontinuity set (the equatorial circle
x3 = 0, here) the matching between yc(T ) and y

T
is quite ‘reasonable’. In fact, the relative error is mostly
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Figure 8. Target function (6.6): Case ω = ωN with κN = 0. Visualization of yc(T ) (left) and
|yT − yc(T )| (right).

Table 13. Numerical results for different values of k with a discontinue target function, sup-
porting ωN ; Δt = 1/200 and h = 0.0017.

κN |ωN |/|Σ| k No. Iters Norm uc Rel. error

0 0.5

106 90 195.8025 0.1451
108 90 198.9890 0.1379
1010 90 199.0279 0.1378
1015 90 199.0131 0.1378

0.75 0.125
106 150 187.1418 0.2927
108 200 207.7558 0.2881
1010 216 218.4220 0.2880
1015 216 218.4223 0.2880

concentrated near the discontinuity, since(∫
Σ0.8

|yc(T ) − y
T
|2dΣ

/∫
Σ0.8

|y
T
|2dΣ

)1/2

= 0.03, where Σ0.8 = {(x1, x2, x3) ∈ Σ | |x3| > 0.2} .

We repeated these experiments with h = 0.0017 and Δt = 1/200: The results reported in Table 13 are close
to those in Table 12.

6.4. Null controllability problems

The following numerical experiments concern the target function yT = 0, that is the null state. The experi-
ments reported in Section 6.4.1 concern smooth initial state functions y0, while in Section 6.4.2, we investigate-
null controllability when y0 is a discontinuous function.

6.4.1. Null-controllability for smooth function y0

In this section, the first initial state y0 that we consider is defined by

y0(x1, x2, x3) = sin(2x1x2) + cos(2x2x3), ∀(x1, x2, x3) ∈ Σ, (6.7)
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Table 14. Numerical results for the initial data (6.7) (ω = {(x1, x2, x3) ∈ Σ | |x3| < 0.3}).

Quantity T = 1 T = 2 T = 3 T = 5
Number of iterations 33 12 12 10

Norm uc 11.0765 4.9177 3.6459 2.6355
||yc(T )||L2(Σ) 0.0305 0.0247 0.0142 0.0091

||yc(T )||L2(Σ)/||y0||L2(Σ) 0.0086 0.0070 0.0040 0.0026
||yc(T )||L2(Σ)/||yc

nc(T )||L2(Σ) 0.0098 0.0080 0.0046 0.0029

Table 15. Numerical result for the initial data (6.7): dependence of ω.

ω |ω|/|Σ| N . Iter Norm uc ||yc(T )||L2(Σ)

||yc(T )||L2(Σ)
||y0||L2(Σ)

||yc(T )||L2(Σ)
||yc

nc(T )||L2(Σ)

ω1 1 2 2.1928 1.6726×10−6 4.7226×10−7 5.4073×10−7

ω2 0.90 10 2.3515 0.0110 0.0031 0.0036

ω3 0.70 11 2.9446 0.0191 0.0054 0.0062

ω4 0.55 14 3.4724 0.0232 0.0065 0.0075

ω5 0.30 12 4.9177 0.0247 0.0070 0.0080

ω6 0.20 13 5.7826 0.0284 0.0080 0.0092

the set Σ still being the sphere of radius one centered at (0, 0, 0). We observe that the mean value of y0 is
strictly positive and given by ȳ0 =

∫
Σ cos(2x2x3) dΣ/(4π), implying that if the system is left uncontrolled, the

function y(t) will converge to the positive constant ȳ0 as t −→ +∞.
The numerical experiments reported below have been performed using Δt = 1/100, h = 0.0051, k = 108.

The conjugate gradient algorithm (5.25)–(5.37) has been initialized with u0 = 0 and stopped using tol =
5 × 10−7 in the stopping criterion. The results reported in Table 14 correspond to μ = 1/2, T = 1, 2, 3, 5 and
ω = {(x1, x2, x3) ∈ Σ | |x3| < 0.3}. In the first column of Table 14, we have denoted by yc

nc(T ) the computed
value of the state function associated with v = 0 (the uncontrolled situation).

As expected, the norms of the control and of the computed value of y(T ) are decreasing functions of T . The
last two rows of Table 14 show that indeed approximate null-controllability is taking place, the last row being
particularly interesting since it shows that the control process has ‘almost killed’ (that is considerably damped)
the constant component of the solution. In order to study the influence of ω on the controllability, we ran a
series of experiments for T = 2 and various control sets ω, the other data and parameters being unchanged.
The sets ω we considered are given by:

ω1 = Σ

ω2 = {(x1, x2, x3) ∈ Σ | |x3| < 0.9}
ω3 = {(x1, x2, x3) ∈ Σ | |x3| < 0.7}
ω4 = {(x1, x2, x3) ∈ Σ | |x3| < 0.55}
ω5 = {(x1, x2, x3) ∈ Σ | |x3| < 0.3}
ω6 = {(x1, x2, x3) ∈ Σ | |x3| < 0.2})

the corresponding results being reported in Table 15. They show, as already observed, that increasing |ω|
enhances controllability; they show also very spectacular controllability results if ω = Σ, a not very realistic
situation indeed.

On Figure 9 we have visualized, for ω = ω5, the time evolution of the L2(ω)-norm of the computed optimal
control (left figure), and (on the right figure) the point-wise values at t = T of the associated state function
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Figure 9. Left: Time evolution of the L2(ω)-norm of the optimal control. Right: Visualization
of the point-wise values of the final state function yc(T ; uc) (initial data (6.7), ω = ω5, T = 2).

Table 16. Numerical results for the initial data (6.8) (ω = {(x1, x2, x3) ∈ Σ | |x3| < 0.3}).

Quantity T = 1 T = 2 T = 3 T = 5
Number of iterations 23 26 37 40

Norm uc 0.5623 0.0288 0.0015 4.0466×10−6

||yc(T )||L2(Σ) 0.0024 1.2170×10−4 5.4987×10−6 1.4528×10−8

||yc(T )||L2(Σ)/||y0||L2(Σ) 0.0014 7.3321×10−5 3.3429×10−6 8.7526×10−9

||yc(T )||L2(Σ)/||yc
nc(T )||L2(Σ) 0.0280 0.0277 0.0242 0.0240

(denoted by yc(T ; uc) here). One more time, one can observe: (i) the oscillatory behavior of the control as t is
getting close to T , and (ii) that the proximity of yc(T ; uc) to 0 deteriorates as the distance to the control set ω
increases. Similar behaviors were observed for the torus, as reported in [12].

Since the controllability results reported in Tables 14 and 15 reflect the fact that the mean value of the
function y0 defined by (6.7) is different from 0, it is natural to consider a function y0 whose mean value is 0
in order to see if, as expected, the property

∫
Σ

y0 dΣ = 0 enhances null-controllability. The results reported in
Table 16, obtained with ω = ω5, tol = 5 × 10−6, and y0 defined by

y0(x1, x2 x3) = sin(2x1x2), ∀(x1, x2, x3) ∈ Σ, (6.8)

confirm this prediction.

6.4.2. Null-controllability for a discontinuous function y0

In order to further investigate the influence of the initial state y0 on the null-controllability, we performed
numerical experiments with the discontinuous initial state function y0 defined by

y
T
(x) =

{
1 if x ∈ Σ, x3 > 0,

0 if x ∈ Σ, x3 < 0.
(6.9)
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Table 17. Numerical results for the discontinuous initial data (6.9) (ω = ωN ∪ ωS and κN =
κS = 0.75).

Quantity T = 2 T = 3 T = 5

Number of iterations 16 13 10

Norm uc 3.1317 2.3123 1.6801

||yc(T )||L2(Σ) 0.0124 0.0105 0.0080

||yc(T )||L2(Σ)/||y0||L2(Σ) 0.0049 0.0042 0.0032

||yc(T )||L2(Σ)/||yc
nc(T )||L2(Σ) 0.0068 0.0058 0.0044

Σ still being the sphere of radius one centered at (0, 0, 0). The numerical experiments reported below have been
performed using Δt = 1/100, h = 0.0051, k = 1010. The conjugate gradient algorithm (5.25)−(5.37) has been
initialized with u0 = 0 and stopped using tol = 5 × 10−7 in the stopping criterion. The results reported in
Table 17 correspond to μ = 1/2, T = 2, 3, 5 and ω = ωN ∪ ωS with κN = κS = 0.75 (see (6.4) and (6.5) for
the definition of ωN and ωS). As expected, controllability improves as T increases. We observe also that the
discontinuity of y0 does not prevent good null-controllability properties: this is not surprising since the highly
oscillatory Fourier components of y0 associated with the discontinuity are the ones which are the most strongly
damped by the diffusion operator.
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