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AN INTERNAL OBSERVABILITY ESTIMATE FOR STOCHASTIC
HYPERBOLIC EQUATIONS*

X1aovu Ful, Xu Liv?, QI L' aAND XU ZHANG!

Abstract. This paper is addressed to establishing an internal observability estimate for some linear
stochastic hyperbolic equations. The key is to establish a new global Carleman estimate for forward
stochastic hyperbolic equations in the L2-space. Different from the deterministic case, a delicate analysis
on the adaptedness for some stochastic processes is required in the stochastic setting.
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1. INTRODUCTION AND MAIN RESULT

Let T > 0 and (£2,F,{F:}+>0,P) be a complete filtered probability space, on which a one-dimensional
standard Brownian motion {B(t)};>¢ is defined such that F = {F;};>0 is the natural filtration generated by
B(-), augmented by all the P-null sets in F. Let H be a Banach space, and let C(]0,7T]; H) be the Banach space
of all H-valued strongly continuous functions defined on [0,7]. We denote by L2(0,T;H) the Banach space
consisting of all H-valued F-adapted processes X (-) such that ]E(|X(')|2L2(0,T;H)) < 00, with the canonical norm;
by Lg°(0,T;H) the Banach space consisting of all H-valued F-adapted essentially bounded processes; and by
L2(£2;C([0,T); H)) the Banach space consisting of all H-valued F-adapted continuous processes X (-) such that
E(\X(-)\%([O,T];H)) < oo. Similarly, one can define Lg°(£2; C™([0,T];’H)) for any positive integer m.

Let G C R™ (for some n € N) be a nonempty bounded domain with a C? boundary I'. Set Q = (0,T) x G
and X = (0,T) x I'. Assume that b € C?(G) (i,j = 1,2,...,n) satisfy

v (z) = b (x), Yuxed, (1.1)

Keywords and phrases. Stochastic hyperbolic equation, observability estimate, global Carleman estimate, adaptedness, optimal
control.

* This work is partially supported by the NSF of China under grants 11231007, 11822110, 11871084 and 11471231, by the
Fundamental Research Funds for the Central Universities under grants 2412015BJ011 and 2015SCU04A02, by the Foundation
for the Author of National Excellent Doctoral Dissertation of China under grant 201213, by the Program for New Century
Ezcellent Talents in University under grant NCET-12-0812, by the Fok Ying Tong Education Foundation under grant 141001,
and by the Chang Jiang Scholars Program from Chinese Education Ministry. The authors highly appreciate the anonymous
referees for their constructive comments which led to this improved version.

L School of Mathematics, Sichuan University, Chengdu 610064, P.R. China. xiaoyufu@scu.edu.cn; lu@scu.edu.cn;
zhang_xu@scu.edu.cn

2 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P.R. China. 1iux216@nenu.edu.cn

Article published by EDP Sciences © EDP Sciences, SMAI 2016


http://dx.doi.org/10.1051/cocv/2016042
http://www.esaim-cocv.org
http://www.edpsciences.org

AN INTERNAL OBSERVABILITY ESTIMATE FOR STOCHASTIC HYPERBOLIC EQUATIONS 1383

and for some constant sg > 0,

n

S @EE > solé?, Y (2.8) = (@.€',....€") € G xR™. (12)

i,j=1
Let us consider the following stochastic hyperbolic equation:
n ..
dys — > (07ys,)q,dt = (bly + f)dt + (bgy + g)dB(t) in Q,

ij=1

y=0 on ¥, (1.3)
y(0) = yo, y:(0) =1 in G,
where (yo,y1) € L*(G) x H(G), f,g € LE(0,T; L*(G)),
by € L(0,T; LP(G)) with p € [n,00] and by € L(0, T; L(G)). (1.4)
Also, set
Hry = Lg(2;C((0,T); L*(G))) () LE(2; € ([0, T); HH(G)))

and

Hr = L(2;C*([0,T); L*(G))) [ L#(82; C([0, T); Hy(G))).

Then Hp and Hp are Banach spaces with the canonical norms. In this paper, we use the following notion of
solution for equation (1.3).

Definition 1.1. A function y € Hp is called a solution to equation (1.3), if the following conditions hold:

(1) y(0) = yo and (0) =y1 in G, P-as.
(2) For any t € (0,7) and ¢ € C%(G) N CL(G), it holds that

(ye(t), ‘P>H*1(G) i) — We(0), ) 1@y, 1 (G)

/ X9 > e ou ()], (s 2) + [ (s 2)y(s,2) + F(5,2)] () p dads ws)

1
+/Ot/G[bg(s,x)y(s,x)+9(s,x)}<p(x)dde(s), P-as.

For any initial value (yo,41) € L?(G) x HY(G), it is easy to show that equation (1.3) admits a unique
solution y € Hr.

Let Iy be a part of the boundary of G satisfying certain conditions, which will be specified later. For any
given constant § > 0, write

Os(Iy) = {ac € G; dist (x, [p) < 5}.
Put
T = ‘bl‘L]?O(O,T;Lp(G)) and 7o = ‘bQ‘L]?O(O’T;Loo(G)). (1.6)

The main purpose of this paper is to establish the following inequality:

2— 'L/p r
(Yo, y1)lz2(G)xm-1(G) < Ce o(ri +3) {

1Yl L2(0,7:22(05 (o)) + 1[5 9 )|(L§(0,T;L2(G)))2],
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where y is the solution to (1.3) corresponding to any given initial value (yo,y1). Here and henceforth, C' denotes
a generic positive constant (which may be different from line to line), depending only on G, T, Iy, b¥ (i,j =
1,...,m), ¢, and d(-) and o in Condition 1.2 (to be given later).

The inequality (1.7) is called an observability estimate for (1.3). For the case that (f,g) = 0 in (1.3), this
inequality means that the initial energy of a solution in the time ¢ = 0 can be bounded by its partial energy
in the local observation domain Os(I}) in the time duration [0, T]. Such kind of inequalities are closely related
to control and state observation problems of deterministic/stochastic hyperbolic equations. For example, they
can be applied to a study of the controllability (e.g. [1,2,4,9,15,17]) and also inverse problems (e.g. [7,8]) for
deterministic hyperbolic equations. There exist numerous works devoted to observability estimates for deter-
ministic hyperbolic equations. However, there are only a very few works addressed to similar problems but for
stochastic hyperbolic equations [12,13,16].

Up to now, there are several methods to establish observability estimates for deterministic hyperbolic equa-
tions, such as the (Rellich-type) multiplier method [9], the non-harmonic Fourier series technique [14], the
method of micro-local analysis [1] and the method of global Carleman estimate [15]. The multiplier method is
only applicable to some very special hyperbolic equations. Indeed, even for a deterministic hyperbolic equation,
the observability estimate cannot be derived by this method directly for the case that the coefficients of lower
order terms depend on both the space variable and time variable. Also, the non-harmonic Fourier series tech-
nique has restrictions not only on the coefficients, but also on the spatial domain G (requiring the domain G to
have some special shapes). Furthermore, since the propagation of singularities for stochastic partial differential
equations is far from being well-understood, how to use the method of micro-local analysis in the stochastic
framework to establish observability estimates is still unclear. Therefore, the Carleman estimate method turns
out to be a useful tool to establish observability estimates for stochastic hyperbolic equations.

In [16], by means of a global Carleman estimate, a boundary observability estimate for equation (1.3) (with
(b)1<i j<n = Iy, the n x n identity matrix) was obtained:

oy

2 2
0T, (ceasion < et (|32

J ; ) 1.8
L2(0,T;L2(Iv)) I g)|(L§(07T7L2(G)))2> (1.8)

where y solved equation (1.3) associated to an initial data (yo,y1) € Hg(G) x L?(G), and v = v(z) =

(vt 02, ...,v") denotes the unit outward normal vector of G at x € I'. Also, in (1.8), T" was required to

satisfy the condition:

445
e min |z — 2]? > T? > 4max |z — 20|%,
9c =tel z€@
for some ¢ € (0,1) and zp € R*\ G.
In [12], by virtue of another global Carleman estimate, the result in [16] was improved to the following
boundary observability inequality:

Oy

1
o375 2
‘(yo’ylﬂHé(G)xL?(G) < (Ce (Tl +7'2) < o

+ (s Dl z2(0.1:L2(0)))2 ) (1.9)

L2(0,T5L2 (1))

with T > 2max |z — x| (for the case that (b%);<; j<, = I,,). Notice that in (1.9), the power of 7 is smaller
zeG

than that in (1.8) (Indeed, m < 2). Also, an internal observability estimate was established in [12]:

1
/T g (1.10)

(o, y1) |1 (@)x L2 (@) < ceCl (]Vy|L2 o205y T 1Dl zomrze)): )

The main difference between (1.7) and (1.10) is that the inequality (1.10) provides an observability estimate
of the H'-norm for solutions to equation (1.3), but the inequality (1.7) is an estimate of the L?-norm type.
Compared with the known inequality (1.10), the estimate (1.7) has more applications. For example, one appli-
cation of (1.7) is the stabilization of stochastic hyperbolic equations (but the detailed analysis is beyond the
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scope of this paper and will be presented in our forthcoming work). On the other hand, the inequality (1.7) can
be used to solve state observation problem (see [12] for example).

It is not clear whether it is possible to derive (1.7) from (1.10) directly. Indeed, this turns out to be very diffi-
cult, even for deterministic linear hyperbolic equations with some lower order terms (see [4,6]). Also, compared
with the deterministic problem, the stochastic setting will bring this problem some new difficulties. Actually,
as we shall see later, a suitable auxiliary optimal control problem (different from the deterministic context) has
to be constructed to guarantee the adaptedness of the related stochastic processes.

Before giving our main result, let us first introduce some assumptions on (b%)1<; j<n (i, =1,...,n) and 7.

Condition 1.2. There exists a positive function d(-) € C?*(G) with the property that min|Vd(z) > 0
zelG
such that, for some constant oy > 0, the following compatibility condition is satisfied:

Z Z Pbij,(l)i,jdmi/)zj/ _ bijg,bi/j/dzi/} f’ﬁj > Lo Z bijgigj’ 4 (SL',fl, o ’gn) c G xR,
ig=1ij'=1 ij=1

In the sequel, we shall choose the set I as follows:

In=xzel: z”: b (2)dy, (2)v7 () > 0 3, (1.11)

ij=1
where the function d(-) is given in Condition 1.2. Also, write
Go = O5(F0) and 20 = FO X (O,T) (1.12)

Remark 1.3. Notice that Condition 1.2 is a sufficient condition for establishing Carleman estimates for deter-

ministic linear hyperbolic operators 07 — > 0, (b7 0,,). If (b)1<; j<n = In, then d(z) = |z — x0|* satisfies
ij=1

Condition 1.2 with z¢ being any given point in R™ \ G. On the other hand, Condition 1.2 can also be regarded

as a special case of the pseudo-convexity condition in [5]. In fact, for the wave operator 97 — A, if we set

a(z,€) = |£)? and d(x) = |2 — x0|?, then it is easy to check that

{a.{a,d}}(2,6) = 4[¢]* > 0, ¥ (z,€) € G x (R"\ {0}),

where {a,d} denotes the Poisson bracket of a and d, i.e.,

fa,d}(z,6) ="

j=1

(00 0d 0 0d
afj 8xj (%j afj

), Y (2,€) € G x R™\ {0}.

Moreover, it is easy to see that there is no critical point of the function d(-) in G.

Remark 1.4. In [4], Condition 1.2 was used to establish an internal observability estimate for deterministic
hyperbolic equations. We refer to [4,11] for more explanations on Condition 1.2 and some interesting nontrivial
examples. Also, as ([11], Example 1.1) shows, there exists some example for which Condition 1.2 fails.

In what follows, set

n n n
My = min Z l)ijcim?.,clw].7 M; = max Z bijdxidxj and dy = max Z biid, 17, (1.13)

zeG =1 zeG =1 =1
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and define?

24./ndy I o~ 1
Ty =max{ 2/ M1+ ————~ |1+ == > blog+—| ¢ 1.14
’ VT ming1, s} RIE ¥ lo@) + o (1.14)

where s¢ is the constant appeared in (1.2).

Remark 1.5. It is easy to check that if d(-) satisfies Condition 1.2, then for any a > 1 and b € R, the function
d(-) = ad(-) + b still satisfies this condition when g is replaced by apg. Therefore, throughout this paper, we
may assume that d(-) and po satisfy that

9T¢
fo > A and My > meaé(d(x). (1.15)

The main result of this paper is stated as follows.

Theorem 1.6. Assume that Condition 1.2 holds. Then, for any T > Ty (defined by (1.14)), the observability
inequality (1.7) holds for any solution to equation (1.3).

Remark 1.7. The restriction on T in Theorem 1.6 is a technical condition, and T} is not sharp. However, this
condition plays a key role in our Proof of Theorem 1.6. It is reasonable to expect that it can be improved to a
better one as that in [12] (for the estimates (1.9) and (1.10)), but this is an unsolved problem.

Remark 1.8. The condition (1.15) is relevant to the interior behavior/property of the diffusion, and it will
play a key role in the estimates on the energy terms (see (2.13)—(2.15) in the proof of Thm. 3.1). On the other
hand, the assumption on the time T in Theorem 1.6 is relevant to the diffusion/reflection on the boundary. This
assumption will play a key role in the estimates on the boundary term (see Step 4 in the proof of Thm. 3.1). If
one considers a special case, i.e. (bY)1<; j<n = I, then sop = 1 and we take d(z) = |z — z¢|?, the corresponding
condition on T is the following:

T>1Ty= max{élmal(x —x0|, 1+48yn(n+ 2) malgc[(x K V(:r)]} .
z€G S

The rest of this paper is organized as follows. In Section 2, we present a key weighted identity for partial
differential operators of second order with symmetric coefficients. Section 3 is devoted to establishing a Carleman
estimate for deterministic hyperbolic equations in the H'-space. In Section 4, an auxiliary optimal control
problem is introduced and analyzed. In Section 5, a global Carleman estimate for stochastic hyperbolic equations
in the L2-space is derived. In Section 6, energy estimates for random hyperbolic equations and backward
stochastic hyperbolic equations are given. Section 7 is devoted to a proof of our main result (i.e., Thm. 1.6).
Finally, in Appendices A and B, we give the proofs of some technical results.

2. A WEIGHTED IDENTITY FOR PARTIAL DIFFERENTIAL OPERATORS OF SECOND ORDER
WITH SYMMETRIC COEFFICIENTS

In this section, we show a pointwise weighted identity for partial differential operators of second order with
symmetric coefficients, which will play a crucial role in the sequel.

3From the proof of ([4], Thm. 5.1), it is easy to see that the number do defined in (1.13) is positive. Hence, the set Il given
by (1.11) is not empty.
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Lemma 2.1. Assume that a” = o' € C*(R™) (i,j = 1,2,...,m) for some m € N, u, £ € C*(R™) and
¥ e CHR™). Set 0 = e’ and v = Ou. Then

2
m m m
62 Z (a9 uy,) )z, +22 Z (Qaijai/j/éml,vmvm —a'gtd Vg,V ,)+W2a”vz v—AZa”ﬁsz
ij=1 j=1 |i,j'=1 im1 i—1
z;
m m m
o o g g )
>2 Z Z (2(1” (aZ jfxi,)wj/ — (a”a’ J fxi,)wj) +Va" | vg,vg; + 2 Z aW, v, + Bv®,
1,j=1 [#,5/=1 1,j=1
(2.1)
where . .
A=— Z (a9, 0y, — &c, —a%ly,0,) —¥ and B =2A¥ —2 Z (Aaijfmi)xj. (2.2)
i,j=1 i,5=1

Remark 2.2. Lemma 2.1 looks very similar to Theorem 4.1 in [4]. The only difference is about the regularity
on the auxiliary function ¥. In [4], ¥ was required to be in C?(R™). But here we weaken this requirement to
be ¥ € C'(R™). Note that, the choice of ¥ usually depends on coefficients of the principal operator under
consideration (see Eq. (4.13) in [4]). Hence, this implies that we only need the C?-regularity for coefficients of
principal operators, rather than the C3-regularity required in [4].

Proof of Lemma 2.1. Recalling 6 = e and v = fu, we see that Ou,, = vy, — £,,v (i = 1,2,...,m). Proceeding

exactly as ([4], Thm. 4.1), we obtain that

m
—0 Z (aijumi)zj =1 + IQ,

ij=1
where . .
L== (a"vy,)e, + A and L=2 a“l,v, + . (2.3)
i,j=1 i,j=1
This implies that
. 2
Z a”uw m = ‘I1|2+2I112+|12‘2 >2015. (24)

By virtue of ([4], Eq. (4.8)), a simple calculation shows that

LIy =2 % a'ly,v,, (— > (aYvg,)a, +Av> + Vv (— > (a¥vg,)a, —|—Av>

i,j=1 i,5=1 i,7=1

[
'tlﬂs

m Y m Y m ..
2
(2 > ava’ by, vpve, — 3 avat by v, v, — A YD a0 )
x

j=1 iilj'=1 i, =1 i=1 _
J
m m (2.5)
ij’ i'jz ) ( ij i’j’z ) (/1 ijg ) 2
+ E 2a (a wir)a, T a’a i), Vg, Vg; — g a’ly, Ijv
i,5,4",5'=1 ' ' i,j=1
m m
— g (!Pa”vvwl)wj + v g a" vy, Vg, + E a" W, vy, + A2,

i,j=1 i,j=1 i,j=1

Combining (2.5) with (2.4), we obtain the desired inequality (2.1). O
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3. A CARLEMAN ESTIMATE FOR DETERMINISTIC HYPERBOLIC EQUATIONS
IN THE H'-NORM

This section is addressed to deriving a Carleman estimate for the following (deterministic) hyperbolic
equation:

n

Ut — Z (b”u%)w? =F in Q,

i,7=1

u =20 on X, (3.1)
u(0) = ug, ur(0) =u;  in G,

where (ug,u1) € HHG) x L3(G), F € L*(Q), and b¥ (i,j =1,...
As in Theorem 1.6, we assume that T > T (defined in (1.1
and Condition 1.2. By (1.15), it is easy to see that % < %. Hence, we can choose a constant ¢; €

n) satisfy (1.1), (1.2) and the Condition 1.2.
), and Go, po and d(-) are given in (1.12)

g\_/

w
~

(To/T, min{1, —V’QOIM)}) Now, for any given constant ¢o € (0,1) and parameter A > 0, we choose the weight
function # and the auxiliary function ¥ (appeared in Lem. 2.1) as follows:

(t, x) = ett:o),
Ut z) = Ao(t, ),

o(t,z) = d(z) — 1 (t — T/2)2, (32)
W(z) = A (}il(b“dmi)x_j — 2, — c0> .

We have the following global Carleman estimate for equation (3.1).

Theorem 3.1. Assume that Condition 1.2 holds. Then, there is a positive constant Ao, such that for any T > Tj
and A > X, any solution u to (3.1) satisfies that

/ e [Auf + |Vul?) + Nu?]dzdt < C
Q

T
/ PP F2dxdt 4+ A2 / / e (u? + N2u?)dzdt | . (3.3)
Q 0o Jao

Remark 3.2. Notice that Theorem 3.1 is an improvement of ([4], Thm. 5.1). Indeed, in ([4], Thm. 5.1), the
global Carleman estimate (3.3) for a deterministic hyperbolic equation was established under the additional
condition that «(0) = u(T") = 0 in G. However, this condition seems too strong to be satisfied in applications
(see, for example Eq. (7.5) in [4]). Therefore, it is necessary to establish the global Carleman estimate (3.3)
without this restriction.

In the rest of this section, we give a Proof of Theorem 3.1.

Proof of Theorem 3.1. The proof is long and therefore we divide it into four steps.

Step 1. A pointwise inequality for hyperbolic operators. In Lemma 2.1, we choose m = n + 1 and

a) pxm = -1 Z~O ,and 6, £, ¢ and ¥ = ¥(z) being given as in (3.2). Then, by a simple calculation,
0 (b7)
nxn

we have the following weighted inequality for the hyperbolic operator, which is very similar to ([4], Cor. 4.2),
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except some different lower order terms.

e\ uyy — Z (b”uz z; + 2 Z ( Z bijbi/j/fxl,vzivzj, - Z bij/l&ﬁiv2
i,j=1 il =1 ' i=1
n n B
Z DIV Uy 00,00, + 0 Bug, — 240, Z VIvg, + D W l0F) 20,
3,1 ,j'=1 i=1 i=1 ¥ (3 4)
> 2 [Ett + Z (bijEwl)w]. — !P} v —8 Z bijfwjtvwlvt +2 Z bijy'/xjvvxi + Bv?
i,5=1 ij=1 Q=1
42 Z {b% + Z [21)” B700,)a, — 69677 L,,), } n !Pbij}vwlvxj,
7] 1 / / 1
where .
A= by — S (B9l by, — b Ly — bl ) — 0,
ij=1 !
M =, (vf + > bijvxivxj) =2 3 bl v,,v0 — Yoy + Alyo?, (3.5)
ij=1 ij=1
n .
:2[Aw+(/1€t)t S (Ab%i)w}.
ig=1 J

Step 2. Estimates on “the energy terms”. First, by the definitions of ¥ and /, it is easy to show that

2 {ztt + En: (b70y,); — y'/} = —4Xc1 + 2 En: (N dy, ), — 20 = 2)co. (3.6)

i,j=1 i,j=1

Further,

2 Z {vien + Z 26 (68, )y = B9 ) |+ 067 o,

1,j=1 i/ ,5'=1
n n
=23 [= b+ > I d,, ), — 20eb - oAbV
i,j=1 N i ,5'=1 " (37)
N DI ER UL P U SR P (e
it g =1 it j'=1
n n
> 2\ g Z bijvxivw]. — (8¢1 + 2¢o)A Z bijvwlvw]. =2 (o — 4e1 — <o) Z bijvxivx_j.
i,j=1 i,j=1 i,j=1

Further, by (3.2) and (3.5), we obtain that
A=L0F =l — 30 (09l by = b Ly = bl )) =W = N | F(2t = T) — Z bdy,dy, | + ON).
i,j=1 ' ij=1

Hence,

B=2)|(dc1+co) D b9dpde, + Y bTdy, | D 6T dy,da, | —(Sciteo)ct(2t—T)| +0(N2). (3.8)
/ / 1

i,j=1 3,j=1 z;
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Proceeding the same analysis as (11.6)—(11.8) in [4], we have that

n

> En: bdy, (6" dy, oy, )ay > o En: b dy,dy, . (3.9)

i,5=114",j'=1 i,j=1
By (3.8), (3.9) and (1.15), noticing that ¢; < V“O &, we find that for any T > Ty,
B >2X(4er +co) > bdy,dy, + O(N?). (3.10)

i,j=1

On the other hand, by (1.15), it is easy to see that

oMo oMo 2
> > Ty > 4My > 4M,
8c1 + ¢o 9 0= L= 0
which implies that
o —4er —co > po — 32¢1 — 4eg > 0. (3.11)

Therefore, combining (3.6), (3.7) (3.10) and (3.11) with (3.4), we conclude that for any T' > Tp, there isa Ay > 0
and ¢* > 0, such that for any A > A\q,

2 {Ktt + Z (bijémi)zj — W} vf -8 Z bijﬁzjtvzivt + 2 Z bijkpxjvvmi + Bv?

',j 1 ij=1 ij=1
. o 3 (3.12)
+2 Z {wtt + Z [ 207 (6" 90,,)0, — (07 zzi,)zj,] + w}vmv%
i,7=1 i',j'=1 . .
> AV + |[Vol? + A20?).
Integrating (3.12) in @ and noting that v = e*®u on X, by (3.1) and (3.4), we obtain that
c*)\/(vf+\Vv|2+)\2v2)dxdt§/e2’\¢\F\2dxdt+2/ Mtdxdt+2>\do/ Z bivivie W" ’
Q Q Q So {524
(3.13)
Here we use the following identity:
/E (269677 0,00, = VI 00, ) 0P AE = )\/ Z by Z b d, 0 V‘ dx.

i,5,8",5' =1 i, =1

Step 3. Estimates on “the spatial boundary term”. Let us estimate the last term of (3.13). Similar to
the proof of (11.15) in [4], we choose functions hy € C1(G;[0,1]") and p € C?(G; |0, 1]), such that hg = v on I,
and for the same § appeared in (1.12),

{P(f) =1, z€0s3(l0)NG,
p(l’)EO, l’GG\Og/g(F@).
Let h = hope?*?. Then, by ([4], Lem. 3.2) (with g and a” replaced by h and b, respectively),

/ Z b”z/zﬂpeQ’w’ ’ dzdt = / {2 [Fh-Vu—(uh - Vu)i+ushe - Vu—(V - h)uf)

i,5=1

- Z b’Jux7uxk a + Zuylu% b”h)}dasdt.

i,7,k=1 i,j=1
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Therefore, it is easy to check that

/ Z byt VjpezA¢’—’ dadt

zgl

T
< g/ e F2dxdt + )\/ / e\ Vu)?dzdt + 2/ uth - Vudx’
A Q Os/2(Io)NG 0
T
+4v/nA / / e e Ty || Vu|dedt + CA / / e u2dadt
0 05/2 Fo)ﬁG 05/2 Fo)ﬂG

+ 6\/_/\\Vd|2|b”\cc)+0 / / | Vu2dzdt

ij=1 Os/2(I0)NG

1 T T
<C|~ / P F2dadt + A / / P uldadt | 4 2 / uth-Vudx‘
A Q 0 O,;/Q(FQ)QG G 0

n T
+63/nA (| [Vd] > 6] + 1 / / | Vu|2dzdt.
0 JOs/2(Io)NG

i,=1

By (3.13) and the above inequality, we get that

c*)\/ (02 + |Vo|? + A2v?)dadt
Q

T T T
<C / e F2dgdt + N2 / / ePu2dadt | + 4Mdy / uth-Vudx’ 42 / de]
Q 0 JGo el 0 a 0 (3.14)
+12v/nX\2dy | |Vd] Z bY@ + 1 / / 2’\¢\Vu\2dxdt,
ij=1 Os/2(Io)N

where M = M + 2\doush - Vu. _
Next, let us estimate the last term in (3.14). Put n(t,z) = p?e®*?, where p; € C2(G; [0, 1]) satisfies that

pi(z) =1, x¢€0s52(I0)NG,
pi(x) =0, ze€G\Go.
By (3.1), we have that

n

/nuFdxdt:/ nu | ug — Z(b”ux)x] dxdt
Q Q

ij=1

/ (nuuy)¢dadt —/ wg(new + nuy )daedt —l—/ Z bJux7ux dadt +/ Z by, Nz, dadt.
Q

i,j=1 i,j=1

This implies that

T T
1 1
/ / | Vu)?dedt < C —2/ 62’\¢\F\2d$dt+/ / e (\2u? +u?)dedt ——/(nuut)tdxdt.
0 O&/g([‘o)ﬁc )\ Q 0 Go S0 Q
(3.15)
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Combining (3.14) with (3.15), we end up with

— T T
c*/\/ (v + |Vo]? + A2v?)dadt < C’/ | F|2dadt —|—/ Mdas‘o + C)\2/ / e (u? + N2u?)dxdt,
Q Q G 0 JGo

(3.16)
where

— 1 LI
M = M +2dohuch - Vu— — [12v/n\do [ [Vd| D 67| cq +1 | | nuu.
S0

4,5=1

Step 4. Estimates on “the time boundary term”. Let us estimate M (0,x) and M(T,z), respectively.
By (1.15) and the definition of M in (3.5), we have that

ij=1 ij=1

M(0,z) > |AanT vtz + Z bijvmivzj) —2X Z bijdzivzjvt ‘
ci

O\ w2 — v? TN | AT? — bd,. d,. | v?
+[00%)0® — 2t + > Wdads, | 2|,

,j=1

>\ |eT - ( > b"jd%dmi> <v§+ ) b"jvxiv%)] .
p - t=

i,j=1 i,j=1

n
+ |00 =0 + TN [ ST = S bid,d,, | o? ‘tzo.

ij=1
Noting that by (1.14) and ¢; > Ty/T, we have
N 3
aT > 2/ My > 2 > 0dyds; | > 2y/50|Vd. (3.17)
ij=1
This implies that
1 3.3 5 -
M(0,x) > {5/\01Tmin{1,30}(vt2 + |Vo)?) + Z)\‘gc‘fTSUQ +O\*)v? — vf] ‘ . (3.18)
t=
Further,
2dohush Vu‘ > /ndore®d (u? + |Vul?)
=0 =0 (3.19)

> —2\/ﬁd0)\(vf +A22T%2 4 Vo2 + >\2|Vd\2v2)‘ )
t=
On the other hand,

1 oo
—— [12VnNdo [ [Vd] D> 07|y + 1] | mu

50 ij=1
_ 1L 12/nX\?dy | |Vd| i 6| ey 1] | P3| vor — Aer To? — vf + of (3.20)
S0 ig=1 c&) )\ClT /\ClT t=0
1 - ij 2
> _soclT)\ 12v/ndo | [Vd| > b7 +1 | | v .

,j=1
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Therefore, by (3.18)-(3.20), we get that

M(0,z) > (AF1vf + AR |Vol* + X F0? + O(A)v® + O(1)v7) ] (3.21)

)
t=0

where

1 : 1 L
Fl = §ClT mln{l,So} - 2\/ﬁd0 - m 12\/ﬁd0 ‘Vd| Z ‘b”|c(§) +1 5

4,5=1

F2 = %6171111i11{17 80} - Qﬁdo, F3 = %C‘;’TS - Qﬁdo(C%Tz + ‘Vd|2)

(3.22)

By (3.17) and (1.14), for any T' > Ty, it holds that ¢;T > 1,

L 6vndo | 12y/nd
0 ig=1

and therefore, F5 > 0. Moreover,

3 1 3 8
F3> 23T —2/ndo3T? (1 + — ) = Z3T?* |eT — =v/ndp (1 +-— )| >0,
4 4sg 4 3 S

where we use the following fact:

4\/’5 d 8\/’5 do + 4\/5 dog > Sﬁdo + 4\/5(10 = %\/ﬁdo ( ! > .

= 1 N
min{1, s} 0 3min{l, so} 0 3min{l, so} =73 3s0 i

T>
“ 280

Finally, by (1.14), one can find constants C' > 0 and Ay > 0 such that for any A > Ag,
M(0,-) > 0. (3.23)
Meanwhile, noting that £(T, z) = —¢(0, z), we have that there is a constant A3 > 0 such that for any A > As,
M(T,-) <0. (3.24)
Combining (3.23) and (3.24) with (3.16), and noting that v = e*®u, for any A > \g = max{A1, A2, A3}, we end

up with the desired estimate (3.3). This completes the Proof of Theorem 3.1. O

4. AN AUXILIARY OPTIMAL CONTROL PROBLEM
In this section, as a preliminary, we analyze an auxiliary optimal control problem. Some ideas are taken from
([6], pp. 190-199 and [4], Prop. 6.1).

Let y € L2(2; C([0,T]; L*(@))) satisfy y(0) = y(T) = 0 in G, P-a.s. For any K > 1, let o = o* (2) € C*(G),
such that min_ _ o(z) = 1 and

1 lf T € GO)
) 4.1
o(z) { K if dist(z, Go) > = -

For any integer m > 3, let h = %, and set

yfn = yﬁn(x) =y(jh,x) and gbfn = qﬁjm(ac) = ¢(jh,z), j=0,1,...,m, (4.2)
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where ¢(t,z) = d(x) — c1(t — T/2)? (see (3.2)). Consider the following system:

2L 220 4 2d-1
Ji,J2=1
T{:”Ll_rlm 2>\¢
-F - ’fgh +rd Myl e 4l (1<j<m—1)in G, (4.3)
=0 (0<j<m) on I
S L N ST in G,

S 3
Here (r],,, 73, 72,) € (Lijh (£2; LZ(G))> (j =0,1,...,m) are controls. The set of admissible sequences for (4.3)
is defined by
o 3
Aad: {{(Z'Ijn’ T{m? T%m7 T‘Z’n) _;'nzo : (Z7j77,7 Tlm? T2m? m) € L (‘97 H(% (G)) X <L~27:7h(‘97 L2(G)))
and {(z m,rlm,rém, m)}j * , solves (4. 3)}
Since {(0,0,0, —/\yZneQM{n)};”:O € Aqq, it follows that Auq # 0.

Next, define a cost functional as follows:

m—1

S T N Ty [ N UtV |
T M s ) o= SE /G ol mmdﬁiEzl /G |24, [2e e

j=1
+ ‘T{mP + ‘T%m|2 —2)\¢>{nd +K ‘ 7 ‘2d
; o| = i e x ; rl |*dz |,
and consider the following optimal control problem: find a {(2J,,#, .7} #.)}Y7o € Aqa, such that

J({(zﬂ}b,r{m,rzm, )}] 0) ) . .min. J({(ngr{m’T%m’Tgn)}?:O)' (4'5)

{(Zh 00 Tom ,Tfn,)}_';»"zo €Auq

Notice that for any {(z7,, rlm, T%m, ‘ )};":O € Auq, by the standard regularity results for elliptic equations, we
have that 2], € L% (2; H*(G) N Hg(G)).
We have the followmg result.

Proposition 4.1. For any K > 1 and m > 3, the problem (4.5) admits a wunique solution
20 ¢ ) p VY e Agg, (which depends on . Furthermore, define
2 s Tams T, o €A hich d d K). Furth d

P =P(@) S Kijy(2),  0<j<m. (4.6)
Then,
2 =2 =p) =p"=0in G,
o (4.7)
2y P € Ly, (O H(G)NHG(G)), 1<j<m—1.
Also, the following optimality conditions hold:
j i—1
i +o 1;” —220 =0 in G,
h A 1<j<m, (4.8)

7
po—0 )2\2" e M = 0 in G,
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j+1 —_— 2 j j_l n . . . J .
E (pm p]m +pm ‘]_‘]h) _ Z 83:_7’2 (b]l]Q@ijlpzﬂ) +e—2>\¢mé7jn =0 m G’

2 ; _
| h Pttt 1<j<m-—1. (4.9)
pl, =0 on T,
Moreover, there is a constant C = C(K,\) > 0, independent of m, such that
m—1
hE Y / N R L K\ﬁ{f] da + hIE/ [P 12de < C, (4.10)
and
(G st P 13 G s ) Gl O
hIEZ/{ o SRS e s b <G (4

We refer to Appendix A for a proof of this proposition.

5. GLOBAL CARLEMAN ESTIMATE FOR STOCHASTIC HYPERBOLIC EQUATIONS
IN THE L?-SPACE

We define a formal differential operator A by

I 8 0 0
= _ — vy

In order to prove Theorem 1.6, we need the following global Carleman estimate for stochastic hyperbolic
equations.
Theorem 5.1. Assume that the Condition 1.2 holds. Let Ty be given by (1.14). Then there exists a A\§ > 0 such
that for any T > Ty, A > Ny, and any y € LE($2;C([0,T); L*(G))) satisfying y(0) = y(T) =0 in G and

E(y, An) 12y = By + £, u-1@)my@)» V1 € Li(2: Hy(Q)) with An € Lg(0,T; L*(G)), (5.1)
it holds that
T
AE /Q ey dadt < C <1E|e’\¢ Flir-1@) + 101y 720, 1,5-1(y) + A°E /O /G 62’\¢y2dwdt> : (5.2)
0

Proof of Theorem 5.1. We borrow some idea from [4,6,10]. The whole proof is divided into six steps.

Step 1. First, recall the functions {(zm,rlm,rgm, m)}m o in Proposition 4.1. For m = 2¢ (i = 2,3,...), we
define

"(a) =+ Y & ({ ({=imz @ = [t = G+ VR || Fin )Xo 0,
j=0
(k) = %m_:ﬂz ({ = 3mift @) = [t = G+ DA @) } | Fin) xm om0,
- (5.3)
() = E ({( = 3migh @) = [t = G+ DR @) } | Fin) xom om0,
§=0
7t x) = %m 1]]": ({ (t— jh)ri (@) — [t — (G + 1)h]fin(w)} ‘fjh) X (i, (j+1)h) ()-
§=0
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By (4.10) and (4.11), there is a subsequence of { (™, ", 75", 7™) }zﬂ (still denoted by itself), such that for
some (Z,71,72,7) € (L%(Q;Hl(O,T;L2(G))))4, as m — 0o,

(27, 7, 75 ) — (3,71, 72, 7) weakly in (L2(52; H'(0,T; L*(G)))) . (5.4)
Also, by (4.3), 2 € LZ(2; H'(0,T; L*(G))) is the weak solution to the following random hyperbolic equation:

AZ =71y + 7o+ Aye? +7 in Q,

z2=0 on X, (5.5)
20) = 2(T) =0 in G.
This implies that
z € L(2;C([0,T; Hy(2))) 0 LE(£2; CH([0, T; L*(£2))). (5.6)
The proof of (5.6) is given in the Appendix B. For any constant K > 1, put
P2 K.
By (4.8)—(4.11), it is easy to see that p is the solution to the following system:
Ap+2e 22 =0  in Q,
p=20 on X/,
50)=p(T) =0 inG,
PO =) =0 i o
. 1 _ .
Betogze =0 inQ,
D — T2 220 _ 0 inQ
p—o57e .

Noting that (71,79) € (L2(§2; H'(0,T; L*(G))))?, similar to the proof of (5.6), we can also deduce that
p € Li(2;C([0, T]; Hy (G))) N Lg(£2; CH([0, T); LX(G))).

Step 2. Applying Theorem 3.1 to p in (5.7), we obtain that

AE / (N25% + B7 + |VB[*)e* dadt < C
Q

T
E / Z2e 22 dadt + N’E / / (A\2p? + p7)e* dadt
Q 0 JGo

T ~2 =2
<C|E / Pe 2 dpdt + E / / <T—12+T—i>e_”¢’dxdt . (5.8)
o o Joo \A2 A

Here and hereafter, C' denotes a constant, independent of K and A. Moreover, by (5.7) again, p; satisfies

Apy + (2e72), =0 in Q,
pr =0 on X,

r 5.9
P+ (% —2@%) e =0 in Q, (5.9)
- o (T2 2 _ .
Pt =3 ( ;zt - X¢t7"2> e =0 in Q.
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Applying Theorem 3.1 to p¢, by (5.9), we obtain that
)‘E/ (NP} + P, + ‘Vﬁt\z)ezwdxdt
Q

T
< C |Ele (e72z),|32(g) + VB / / (NP7 + pgy) e dadt
Go

2
/ (Zt + A2z 2) 2>\¢dxdt+]E/ /G <—+— + 77+ )\2> e2x\¢dxdt] )
0

Step 3. By (5.7), we have that

~ ~ 0\ ~ o o ,,:2 7‘:2 3
_IE/Q (Tl,t + Tg)pdxdt = ]E/Q (Tlpt — Tgp)dxdt = _]Ej/Q 0 ()\12 + )\_i) e~ 22 qxdt.

This implies that

<C

0= E(AZ — F1e — 72 — Aye®? —7,5) 1, )

__E / 2e~2dzdt — E / 0 (” n TQ)e—dedt—JEA / ypePdrdt — KE / P2dzdt.
Q Q Q

Az

Hence,

E / e 2dpdt + B / (”2 + T’j) e~ dedt + KE / Pdedt = —\E / ype e dadt.
Q A A Q Q

Combining (5.8) and (5.11), we arrive at
—2)\¢ 7”% 7"2 —2)\¢ -2 c 2 2X\¢
E 3% dadt + E + = e dedt + KE | 7“dadt < —E | y“e* ?dxdt.
Q P Q Ao
Step 4. Using (5.5) and (5.9) again, and noting p¢(0) = pu(T) = 0 in G, we find that

0= E(AZ —Fry — 72 = \ye® —F,u) 1o o

= -E / Z(e*z), dadt — E / (71t + P2) predadt — AE / ypue*?dzdt — E / Fhrdadt.
Q Q Q Q

Notice that

1397

(5.10)

(5.11)

(5.12)

(5.13)

2
-E / Z(e7*z), dadt = E / {zt 2 dgdt— 5 (e —W’)tt] dzdt = E / (22 + Apu 22— 20207 2%) e dadt.
Q Q Q

Further, in view of the third and fourth equalities in (5.9), it follows that

—]E/ (7:1715 + FQ)ﬁttd.Tdt = —E/ (Fl,tﬁtt — f27tﬁt)da§dt
Q Q

]E/ F17t§ (H — 2¢t7“1) e A dadt +]E/ Fot 92 (th ¢ T2) e~ 22 qpdt

e Ty 2 2
]E/ 0 Lty LZ — Xﬁbt";lfl,t - ﬁﬁst";ﬂ:&t e 2 dadt.
Q

A2 A

(5.14)

(5.15)
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Further, by p = K7 and integration by parts,
-E / Fppdaedt = KE / F2dxdt. (5.16)
Q Q

Therefore, by (5.13)-(5.16), we get that

T%t ’F% t 2 ~ ~ 2 ~ ~ —2X¢ 92
IE/ 0 7 + )\_zl - betTlTLt - F¢t7“27“2,t e dzdt + K]E/ 7y dadt
Q Q (5.17)

+E / (22 + Aoz — 2X%¢72%)e P ?dadt = A\E / ypue® ?dadt.
Q Q

Now, by (5.17) and (5.12), using the Cauchy—Schwarz inequality and noting (5.10), we obtain that

7:2 ,];2 ~9
E / (224X22%)e M dzdt + E / 0 (%Jr%w%%) e M dzdt <ONE / y2e P dadt. (5.18)
Q Q Q

Step 5. By (5.7), we find that

E(FLo+ 72 + Aye™? +7,2e7) o ) = B(AZZe7) o )

n
=-F / Z(ze ), dadt + Y E / WFz,, (2e7 ) dadt
Q i e ' *
" A 5.19
=—E / (3 + Apuz® — 20297 2%)e PMdadt + Y E / vk 2, 2 e 0 dadt (5-19)
Q =1 Y@

—2A Y E / V*z, Zhye P dadt.
g k=1 7@

This yields that

IE/ |Vz2e~ 2 dadt < C]E/ [|F1,¢ + 72 + 7|2[e ™2 + NyZ| + (32 + A?22)e 2] dadt
Q Q
(5.20)

~2 ~9

;

< C]E/ [erW’ + (% + % +i? 422+ /\222> e—W’] dadt.
Q

By (5.12), (5.18) and (5.20), we choose a constant K in (5.12) so that

max_|¢|

2)
K > (Ce ®mea (5.21)

(to absorb the term CE fQ 72e~ 2 dzdt in (5.20)). Then we deduce that

7:2 ,];2 ~9
E / (V22 + 22 + X25%)e 2Mdadt + E / o~ + 2L+ + T—g e dzdt < CAE / y2e? e dadt.
o o\ A A o

(5.22)
Step 6. Recall that (Z,71,72,7) depend on K. Now, we fix A and let K tend to infinity. By (5.12) and (5.22),
we conclude that there exists a subsequence of

(2,71, 72,7) € (L3(£2; Hy (0, T; L*(G))) N LE(92; L*(0,T; Hy(G))))
X (Lg(£2; H'(0,T; L*(G))))? x L#(0,T; L*(G)),
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which converges weakly to some (z,71,72,0), with supp7; C (0,T) x Gy (j = 1,2), since o(z) = o () — o0
for any « ¢ Go, as K — oo. By (5.7), we deduce that (z, 7y, 72) satisfies

AZ =Ty + 7o + Aye?” in Q,
(5.23)
z=0 on 0Q.

Using (5.22) again, we find that
E|ze > |H1 @ 1 ]E/ / 72 ++ 73)e P dadt < C'/\]E/ y2e? e dadt. (5.24)
Go Q

By (5.1), with n replaced by z above, one gets that
E (y7 ’Fl,t + 72+ Ayezw)m(@) = E(bly + fa 2) L2(Q)

Hence, for any € > 0,

)\E/Q Y2 ?dzdt = E(f, 2)12(q) + E(01Y, 2) 12(Q) — E(Y, 1.t + 72) £2((0.7)x Go)

<c{1
£

T
]E|e>\¢fﬁ1_1(Q) + E‘6A¢b1y|%2(07T;H_1(G)) + AQ]E/ /G y262>\¢d$dt‘|
0

+¢€ ]E|67A _|H1(Q +E\ze ‘L2 0 THI(G)) + E/ / Tl,t +'F%)ez>\¢d1’dt‘| }
Go
(5.25)
Finally, choosing ¢ in (5.25) sufficiently small and noting (5.24), we arrive at the desired estimate (5.2). This
completes the Proof of Theorem 5.1. O

6. AN ENERGY ESTIMATE FOR BACKWARD STOCHASTIC HYPERBOLIC EQUATIONS

In this section, we establish energy estimates respectively for a random hyperbolic equation and a backward
stochastic hyperbolic equation, which will play important roles in the proof of Theorem 1.6.
First, set T € [0,T) and consider the following random hyperbolic equation:
Oor — > (099,,),,dt = 019 in (T, T) x G,
ij=1
¥ =0 on (ZA“, T)x 1T, (6.1)

IT) =19, 9(T)=v; inG.

It is easy to see that for any (Jo,91) € L*(02,F57,P; H)(G)) x L*(2, F#,P; L*(G)), (6.1) admits a unique
solution

9 € Lg(2;C([0,T]; Hy(G))) ) LE(2; C* ([0, T); L*(@))).
Furthermore, we have the following energy estimate.

Proposition 6.1. There is a constant C > 0, depending only on T, G and b¥ (1 <1i,j < n), such that for any
solution ¥ to (6.1) and for all t, s satisfying T <t < s <T, it holds that

E / (194(s,2) % + [V9(s, 2)[?)da < CeCr 7T g / (19:(, 2)* + [VO(t, 2)|*) da. (6.2)
G G
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Next, let Te (0, T]. We consider the following backward stochastic hyperbolic equation:

da = Bdt 4+ ndB(t) in (0,T) x G,
dB =" (0 aw,)e,dt = biadt + byndt + ¢dB(t) in (0,T) x G,
i,j=1 (6.3)
a=0, =0 on (0,T) x I,
a(T) = a0, B(T)=Po in G.

Set
Hi = L3(62; C((0,T]; Hy (G))) x LE(£2; C([0, T); L*(G))) x L(0, T Hy (G)) x L3(0, T; L*(G)).

We shall use the following notion of solution for the system (6.3).
Definition 6.2. (a, 3,7,() € Hs is called a solution to the system (6.3), if

(1) a(T) = ap and @(T) = [ in G, P-a.s.
(2) For any t € (0,7) and ¢ € C3(G), it holds that

T T
oT) — aft) = /t B(s)ds + /t n(s)dB(s) inG, P-as. (6.4)

and

,j=1

(B(T), ) r2(c) — (B(1), P)r2(c) :/t /G = > b9 (@)ps, (@)a, (s, 2) + bis, w)al(s, 2)p(x) | dads

T
+/ / [b2(s, z)n(s, x)p(x)dads + ((s, z)p(x)dzdB(s)], P-a.s.
t Ja
(6.5)
It is easy to show the following well-posedness result for (6.3) (and hence we omit the proof).

Lemma 6.3. For any (ao, fo) € L%, (12, Hi (G)) x L%, (12, L*(G)), there is a unique solution (e, 8,1,¢) € Hp
to the system (6.3).

Furthermore, we have the following energy estimate.

Proposition 6.4. There is a constant C' > 0, depending only on T, G and b (1 <i,j <n), such that for any
solution (c, B,1m,C) to (6.3), and for all s,t satisfying 0 < s <t < T, it holds that

IE/ (18(s,2)[> + [Va(s, z)*)dz < Oec(rf‘"“’“?)%/ (18(t, 2)]* + |Va(t, z)|?)da, (6.6)
G G
and
E T 2 2\ dadt < O C(r127il/p+7‘§)f“ 2 (6.7)
; G(K\ + | Vnl*)dadt < Ce |(O‘0’ﬁo)‘Lg__f(Q;Hé(G))xL%_.T(Q;L"’(G))’ :

Proof of Proposition 6.4. Define a (modified) energy of the system (6.3) as follows:

Et) = %E/G (|5(t,w)|2 + Z b ey, (t, 2)ay, (t, ) +rf‘+“’|a(t,w)|2) dz, t€]0,T]. (6.8)

4,j=1
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Then, by It6’s formula, we get that

Et) — / / (b1 + bo ) dardr + ]E/ / Z b9 e, Ny + € )dxdT

hi=1 (6.9)
+ri ”“”]E/ /aﬁdxdT—l— —r{ "/"IE/ / In|*dzdr.
Set p; = % and pg = By 14 L p1 + = =1 and 2(n/p) T+ 5= n/p) T —|— = 1, and using Hoélder’s

inequality and Sobolev’s embeddlng theorem, we obtaln that

‘IE/Gbl(T,x)a(T,x)ﬁ(T,x)dx‘ gE/G|bl(7,x)|\a(7,x)|%\a(T,x)P*%m(r,x)\dx

<nkE (||a(r ) » LP1(G)|‘O‘(T’.)|17%|LP2(G)|5(T’.)|L2(G)>
P -3
=nE(|a(r,-)| 2m |a(r ’LQ(G |6(r, ’LQ(G)
L7=2(G)
_ P = 1—%
= E <|O‘ ’L 2n (G)ﬁ |a |L2(G)|ﬁ(7»')|m(c)> :
Notice that
35
n
|a(7,~)|£ﬁ(a) <C /G 1B(r, 2)|* + Z b o, (1, 2) g, (T, ) + 17 "/”\a(T, )? | dz|
ij=1
1 n
27 2p
1lon/p 1-2 ~ > 2
T ”“”|oz |L2('JG) < /G |B(r,z)|> + Z b o, (1T, @), (T, ) + 777 |alT, z)[? | dz ,
ij=1
" 3
|ﬁ(7—7 .)|L2(G) < /G 1B(r, $)|2 + Z bijaarqz (T, .T,‘)Otxj (r,2) + Tl e a(, l‘)|2 dz
ij=1
We have )
‘IE / by (7, x)a(r, 2)B(r, x)dx’ < Or= 7 E(r). (6.10)
G
By a similar argument, we can also obtain that
_2 _2 1
ro Y E/Ga(r x)B(r, dx‘ <= “”IE/G {rf "o (1) 4 B3 (T, .Z‘):l doe <ri"7E(T). (6.11)

Further, for a sufficiently small € > 0,

E / t /G bo(r,2)B(r, 2)n(r, 2)dadr| < C(e)r3 / "E(r)dr + B / t /G V(. ) Pdadr 612

By (6.9)—(6.12), we find that

—]E/ / (IC? +ri ”“’In\2+ Z b1, me, ) dadr + E(s) < E(t )+C( =7 +r2>/ E(r (6.13)

Zj 1
This, together with Gronwall’s inequality, implies that

~ 2n

E(S)SQC(Tl /P+T2)TS( ) (614)
which implies (6.6) and (6.7). O
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7. PROOF OF THEOREM 1.6

In this section, we shall prove Theorem 1.6.

Proof of Theorem 1.6. We borrow some ideas from [3]. The whole proof is divided into four steps.
Step 1. Note that the solution y to (1.3) may not be zero at t = 0 and ¢t = T". To apply Theorem 5.1, we need

to choose a suitable cutoff function. Set

T T
T; = 3~ e;T, Tj= 5 +¢;T, Ry= iré% d(z) and R; = max d(z), (7.1)

where j = 0,1,2 and 0 < g9 < £1 < 3. By (3.2), (1.14) and (1.15), for any T > Ty, we have that

C1 T2

6(0,2) = 9(T,x) < B} —

<0, Vzed. (7.2)

Therefore, there exists an €1 € (0, %)7 which is close to %, such that

R% 61T2
<1 __ ==
olt.x) < S - g

On the other hand, it follows from (3.2) that

<0, V(tz)e[0,T)U(T,T)] xG. (7.3)

¢(§,w> =d(z) > R, Va2cdG.

Therefore, there is an g9 € (0, 1), which is close to 0, such that

R2
bt x) > =2, VY (t,x) € (T, T§) x G. (7.4)
Furthermore, choose a nonnegative function £ € C§°(0,T') such that

Et)y=1 in (T1,TY). (7.5)

Step 2. In this step, we prove that there is a A\; > 0, such that for any A\ > Ay,

T
A\E / e y2dadt < C (AQIE / / ey dadt + Elyl7s(yxqy + E / e2Ae f2dxdt>, (7.6)
Q 0 Go Q

where J = (0,Ty) U (T, T).
To this aim, set § = {y. Then g satisfies the following forward stochastic hyperbolic equation:

n

dge = Y (07 §a,)a,dt = (b1 + f)dt + (baf + £9)dB(t) in Q,
ij=1

§=0 on X,

7(0) = §(T) = 0 in G,

with f = &f + &uy + 2&y:. By Theorem 5.1, for any A > Ao, we have that

T
AE /Q e”%zdxdtw<E|e*¢f%—1@>+|ek¢b1ﬂ|%;<o,T;H1<G>>+A2E /O /G e”%zdwdt). (7.8)
0
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By the definition of f, we find that

E\e’\¢f\§{_1(Q) =EleM(&f + &y + 260) |51 (o)

2
= sup ’E@w(ff + &y +26Ye), M) -1(Q). 1L (Q)

\h|L2(n;Hé<Q)):1
A 2 2|1, A 2
<le ¢f|L]§(O,T;L2(G)) +CXe ¢y|L]§(J;L2(G))
Ao £12 2 A(RZ—12) o
< 1e* flZ2(0.1i02(c)) + CN%e e )‘y|L%(J;L2(G))’
Further, recalling the definition of ; and noting the embedding L?*/P*2(G) — H~'(G), we get that
1Xb13] L2 (0,711 (0y) < Cle™b1€yl a0, msn20mv2(cy) < CT11e €Yl 1200, 1302(0)-

Further, by (7.3) and (7.5),

1€yl T20.r22(c)) = 1€ V200, 1102(0)) — ]E/Qew(l — &)y dadt

(R?—C1T2/4))\‘y|2L]§

A 2
> [e*yLz 0,712y — Ce (SL2(G)"

Therefore, by (7.8)—(7.11), there is a constant Cy = C1(T, G), independent of A and r, such that
Ao, 12 LAY g 2)¢, 2
Y T20702(0 < O |71V 20 1,020 +AE/O /G e*y dadt
0

2 2 1
+e T TN+ NElyl T2 (sxe) + X‘e>‘¢f|2L]§(O,T;L2(G)) :

Since R? — ¢T?/4 < 0, one may find a sufficiently large A\; > 0, such that for any A > A, (7.6) holds.

Step 3. We establish an energy estimate for solutions to (1.3). Set

2

E(t) (Ely(t, )[Z2(q) + Elye(t, )ir-1(6))-

DN =

Then by the classical energy estimate, for any Sy € (Tp, 2) and S} € (£, T}),

sy sy T

E)dt < O(1+ry + TQ)E/ / y2dadt + C]E/ / (f% + g*)dadt.
s Ja o Ja

So

On the other hand, we claim that there exists a constant C' > 0, such that

1
2—n/p

g(t) S Cec(rl +7"2) (5(8) "‘ ‘(f, g)\%L§(07T;L2(G)))2), V t, s € [O,T}

1403

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

In the following, we only prove the case of t > s. The other case can be also proved by a similar technique and

Proposition 6.1. By Ito’s formula, let 7' =t in (6.3) and T = ¢ in (1.3). Then it follows that

E(y(t), ﬁ0>L2(G) + E(ye (1), —CYO>H—1(G),H3(G)

= B(y(s), 6(5) 126y + E(ur() —a(3)) -1 6y, 113 ey — E / /G (af + ng)dzdt.

(7.16)
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Denote by S the unit sphere of the space L% (£2; Hj (G)) x L%, (£2; L*(G)). By (7.16), (6.6) and (6.7), we obtain
that

26(t) = sup  |E((y(t), Bo)rza) + (we(t), _O‘0>H*1(G),H3(G))|

(ci0,B0) €S
t
= swp[B] 6986012 + )~ oo — [ [ (af +ng)dact] |
(v0,B0)€ES s JG
<CVE(s) sup  |[(als), B(s))rz (@:mi(e)xrz (2:02())
(ct0,B0) €S s s
+ sup (@ m)lzzs,ur2e)z | (s Dl Lz sr2@))2
(Otoﬂo)ES

ﬂ/p
<Ce € (7 403) [VE(S) +1(f: D) Las.uir2@)?) -

This implies our claim (7.15).
Step 4. First, it follows from (7.4) that

75
]E/ ey 2dadt > eRg)‘E/ /yzdxdt. (7.17)
Q To JG

Also, (7.15) implies that

T
Elyliz(sxa) < Ce© i 2)( £(0) +[(f,9)} (L2 (0,T:22(G))2) (7.18)
and ) o
— rm r2 0
et e0) < | et + 1.9z rason (7.19)
By (7.17), (7.14) and (7.19), we get that
g( )< Ce ( 2= rL/P+7‘2) <eRg>\]E/ 2\ dedt"‘ ‘(f, )‘ Lz 0TL2(G)))2> . (720)
Q

Combining the above estimate with (7.6) and (7.18), we find that

” /p 72 _p2 T 1
£(0) < ceC i ){e ROA(/\]E/O /G e2x\¢y2dxdt+XE\y|2Lg(JxG)>—I—|(f,g)|%L§(O,T;L2(G)))2}
0]

<Cec(r1 /P+r2> {G,RSA(AE T o2 dedt—i—lg(O))-H(f )‘2 }
< o Jo Y h\ »9)(L2(0,1:L2(G)))2 |-

Therefore, there exists a sufficiently large constant A3 > 0, such that for any A > A3, the desired observability
inequality (1.7) holds. O

APPENDIX A. PROOF OF PROPOSITION 4.1

In this section, we give a proof of Proposition 4.1. To this aim, we need the following known result.

Lemma A.1 ([4], Prop. 3.5). For any h > 0, m = 3,4,..., and ¢J,,w), € C (j = 0,1,...,m) satisfying
¢, = q™ =0, we have that

4w3+1—2w3 4+ wit e q3+1_q w3+1 J ¢ _qJ Ll — wi—t
DI i -3 @

h2 T s h h
7=0
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Proof of Proposition 4.1. The whole proof is divided into four steps.

oo

Step 1. Let {{(zJ kol R Rk pgkyym s 0} C Auq be a minimizing sequence of J(-). Thanks to the coercivity
k=1

o0

of the cost functional, since z7;* solves an elliptic equation, it can be shown that {{(zJ ok r{n]i, rén]i, ik il O}k:1

. [eS)
is bounded in A,q. Therefore, there exists a subsequence of {{(23 ok ophk ok rj’k)};ﬂzo}k_l converging weakly

to some {(27,, f{m,f%m,fﬂl)};":o € Agq in (Lijh(Q; HHG)) x (sz]-h(9§ L?(@)))3)™*!. Since the functional J is
strictly convex, this element is the unique solution to (4.5). By (4.6) and the definition of A,4, it is obvious that
20 =zm=p) =pm=0inG.

Step 2. Fix &), € L% (2H*(G)n HY(Q), 8, € L%, (2 L*(G)), and &}, € L%, (2 L%Q) (j =
0,1,2,...,m) with 63, = 65, = 89,, = 652, = 0 and 69, = 61,,,. For (po, 11, p2) € R, put

. 5i+1 _ 925 4 zi—1 I 95t 4 gi—t
T-Zn é E (Zm Zm + Zm f]h) +]E ( Oom om Oom ‘]:]h 1o

h? h?

= s . . ~j+1 ~7
Z 3%.2 (bﬂlpazh (2], + ,uoéém)) —E (% ‘fjh

J1,2=1

5j+1 4 ;
-E 71 ‘fgh [0 = Py — H20h, — My om, 1< j<m—1;

0o _ ,.m __
Ty, =71 =0.

Then {(22, + 00 s P + 110005 P + 12050, 75 "o € Aad. Define a function g(-,-,-) in R® by

g(Ian M1, M?) = J({(ZJ + /’60607717 Tlm + Mlé{m’ ’F%m + M26%m7 Tgn) TZO)
Since g has a minimum at (0,0,0), we get that Vg(0,0,0) = 0.

By ag(aoutl) 0 — (80#;2’0) = 0, noting that {(2J,,#, 7}, .7 )}jLo satisfy the first equation of (4.3), we find
that
5J+1 ;
—K]EZ/N E ‘]—'jh dx+]EZ/ 1m 1m e Ay
m AJ P
—KE) [ Tl T =T d:r—HEZ/ Pim i 270, 4
j=1"¢ h
_KEEM:/ 727371_727377/—1 + T{me—Q)@)n 6] de =0
= 2 o 7h Y 22 1m — Y%
and

m—1
—KIEZ/%M dx+]EZ/ T2m 2m *”%dx——nzz/ (Krﬂ —0 im Wm) 8z =0,
i=17¢ ¢

which, combined with (4.6), gives (4.8).

On the other hand, by %fo’o) = 0, we have that

i . R, R o ;
EY / Kl |E | 2z ;2 Om ‘fah Za (b7720,, 8,) | 20,0807 m b da =0, (A.2)
j=1"¢

J1,J2=1
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which, combined with p2, = p™ = §, = 67, = 0 in G, implies that (4.9) holds. By means of the regularity
theory for elliptic equations of second order, one finds that 2/, pJ, € L%_—jh(ﬂ; H?>(G)NHG)),1<j<m-—1.
Step 3. Recalling that {(27,,7#] 7  #) 7 satisfy (4.3), and noting (4.8)-(4.9) and pj, = K#},, one gets

1

— 27+ 930 4 5i—1 " - N
1

Jj= Ji,j2=1

_E (7"1711 7"1m ‘]_‘]h) o f%m _ )\y] 2>\(Z5m _ TJ :|pznd‘r

m—1 +1 _ i—1 ‘
_E Z / E <ij Q}Z;m +rh ’]_-jh> Z Os, bjljza pJ NEXE:
j=1"6C

J1,J2=1

m p7 _pj_l ) m—1 . ) R ) ) (A3)
+E / —r—ti, do — E > / (fgm + Ayl e om —I—ffn) pldz
=176 j=1"¢
m—1
=B | [ e hans [ o el Pl covitn sk [ 15 pas
= Ve G A G
—E/ ‘T1m| —2)\¢Z:tdx A\E Z / y e2>\¢mp3 dz.
G
By (4.8) and (A.3), there is a constant C' = C(K, A) > 0, such that
m—1
27 12.—22¢7 # | ‘7”2 | —2)¢7 NP
E / |29 |2e 2 mdg +/ 0 P 4+ 22ml ) e PMude + K [ A |2de
ji AU ‘
|7zm |2 ) m—1 ) R
—HE/ gl/\—”;e_2’\¢""dx <CE Z/ |y, |2 mda.
G =Je
This implies (4.10).
Step 4. Noting that (4.9) holds and p%, = 20 = p™ = 2 = 0, we obtain that
0
]E(pm |~7:h) 4]]24(1Pm ‘fh +5pm o Z awj bjljzax“E( Qs;n + Pm ’]:h>:|
Ji,j2=1
E(32 —2X\¢7, _ 951 o—2A¢;, 1 20 o—2X¢p,
n (o | Fn)e z2me + z.€ _0 G,
Ap HE(p | Fon—2)n) — 42 T O . A (A4
o - o[, (B L)
J1,j2=1
sma—=2X¢7 _ 9sm—1,—2X¢n " | sm—2,—2X¢}n >
e T =0 in G,
and for j =2,...,m — 2,
E(p)? | Fin) — AR | Fin) + 5ph, + E0), | Fi—1yn) — 40l + 0l ?
h4
Z azjz |:bj1j281J1]E< h2 ‘fjh (A5)

J1,J2=1
~q _ +1 s 3
E(231 | Fin)e 2207550 _ 247 e —2X¢h, 4 2i-1e 2AGI !

+ e =0 in G.
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By (4.3),

m—1 ; i ;
L P R
0: E Z / [E ( h2 th) Z 83’:72 b]1]28 Ty m)
Jj=1 G Ji1,J2=1 (AG)
R S . ) ; ) J+1 9 Vi Jj—1

2
20 = 2m = p0 = p™ = 0 again, we get that

m—1 . . . . . .
23+1 - 22]m + 23_1 p]m+1 - 2p]m +p]m_1
EZ/GE(WL h2, m fjh)E( - h2, - ‘fjh)dl‘
m—1 . . .
g pl,—2pl, L 4pi 2
=k Z/E(zﬁn f(jl)h)E< - 24 ‘f(jfl)h dz

m—1 +1 i+2 i+1 j
2 Jj+2_9 J

E(p?nlfh)—4E(pm\fh)+5pm o 14pm " E(pp | Fon-2n) — Ao 2+ o
i + Zm e

m2/ E(pli? | Fin) — AE®L | Fin) + 5pd, + Bl | Fi—iyn) — 4pit + vl 2
h4
G

dz

57
2 da.

Therefore,

&=

gt 28 + 247 = 2p), +pl !
Z /GE ( 2 fjh) E (p] }ZZ; i ‘}_jh) dx

j=1
m—1 n i1 i i—1
j g Pt —2p), + 1)
=E /Zgﬂ{ Z 83”.7‘2 |:b]1328x.7'1E( = h;ﬂ = ‘]:jh’
j=1"¢ J1.52=1
B | Fp)e DO — 0,000 4 51Dl }d
_ x.

h2

Noting that 2/ |r =pl.|r =0 (j =0,1,...,m), one has

3

=
™
N

Il
3,_.

- - A J+1 _ 9 j—1
S Oy, (720, 5B (Pn P TP | ) gy
iz Jj17m J

h2
J1,J2=1

J

1 j j—1
_E /zﬂ S o, [bma uz(p” 2 ]fjhﬂdx

Jj=1 J1,92=1

Then by (A.6), we obtain that

g [ B e 25,0 4 e
0=- Z Zm h2
j=1"6

(A7)

P , g+l opi 4 pi—l
+ < (Tlm | hjh) lm +T2m + M\ e 2>\¢m ) ) E <pm s;n + P ’fjh> ]dl’
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It follows from Lemma A.1 that
2j+1 N\a—2XPIFL 5 s5 =227 2i—1 =223~ 1
(%TE(Z% | Fin)e 2% e +zi-te )daz

h2

ml 29+ _ 27 ) (30H1e= 20T _ 57 o—200,
j=0'C
m—1 ; ; ; ; J+1 j
24127 )2 S AL 2 o7 2An o220,
=E / [7( m__Tm e 2Am ypIm _ Tm 2H da
h? h h m
j=0 "¢
By Lemma A.1 and p/, = K7/ , we have that
pint — 20}, + Pl (PR — 7,)?
~E Z / {r] E ( 5 ‘fjh de=KE ; e da, (A.9)
j=0

Further, by (4.8) and Lemma A.1, we get that

m—1 AJ+ o 1l _ 9.7 j—1
"m "m p 2]7 +p
_]EZ/E<T‘}- ) (m h;n m ‘fjh)dx

j=1"¢
m—1 N S| +1 1
Py — T PR =P Ph pj
- _F E|lm " 1m ’ E
£ L (B ) o (B &
Therefore,
m—1 aitl g g+l _ 9ni j—1
-E > /GIE (77"177@ ; Tim ‘}' ) <pm }Zj;m+]3m ‘fjh> dz
j=1
m—1 N Y PIELG=2X¢I i =220,
& / /\92E<r1m "1im ‘Eh) (mm . —T1m® ]__jh> da
J=1 Al
= o (A.10)
-E ﬁ{ [E(H — M | Fin)]? o226,
B A2 h?
j=1"¢
L pi e~ om0,
+E (% ‘fjh o (7] \J—‘]h)}
and

m—1 i1 - i1
BV R Pia ' = 2p}, + ]
—-E /G()\yfneu(bm —|—T%m)E< m % o ’fjh dx

j=1
m—1 A s 1 (it pi pi gl AL 73 ) pitt — pi
=K )‘ygnGQA(ﬁmEE( m ; m _ FPm - m ’F]h> de +E Z/ 2m 2m - ™
j=1"6
m—1 J+L _ ad —2XpIFt L —2xed)
o Tim — Tm _—2x¢7, (e ™ —e ) Aj+1
S o (e 1, m———r
)\2 m h h Im J
j=1"6
m—1 ~j41 N 1 ~ _ J+1 _ J
IE o (T%:_n _T%m)2672)\¢zﬁ/ n (T%:_n _T%m) (e —e 2l\¢’"’)7¢y+1 da
oM h? h h Zm
j=0

(A.11)
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By (A.8)—(A.11), it follows that

. y y IR
Em / {(anH _2%)2672,\% +£[E(T{m -7 |}—jh)]2€72,\¢-g’n
h? A2 h?
j=0 "G
NN il a2
ﬁ (T%m — T%m)2672)\¢{n + K (T¥n+ - Tﬁn) }dx
At h? h?
m—1 i i Jj+1 J
(Zj+1 — 37 ) (672>‘¢7n — 672A¢1n) )
=-FE Z / e = 29+t dy
h h m
j=0 "G
m—1 YRR Y —22¢7t1 —2)¢7
”' —7’ e m —e m /\‘
_EZ/G)\_Q?E <% ’fjh> ( ; )E(r{j,} | Fjn)dz
j=1
m—1 j+1 72)\(25.7'-%—1 72)\(25.7'
Q . /,'1 'rl 72)\¢m ‘ (e m —e nL) '*j*‘rl ‘
—AE; /G ﬁyﬁn[ ( e m) + ; E(#5 | Fon)| de
-1 U Y _ongitl o\
EY / © (! =) (DR — )
At h h me
j=0 '¢

By Holder’s inequality and the above equality, there is a positive constant C' = C'(K, A), independent of m, such
that

Y / {(zz;l—zm?e_wgn+£w«:<r{m — P | F)l? o,
j=0 "¢

12 22 h?
ML p N2 A =,
+%We 22, +K% dx (A.12)

m—1
<CE| Y [ (1802 + 1P+ [+ K1+ ) o+ [ 1605, P
j=1"7¢ G
Finally, by (A.12) and (4.10), recalling that y € L2(£2; C([0,T]; L*(G))), we get the desired estimate (4.11).

This completes the Proof of Proposition 4.1. O

ApPPENDIX B. PROOF OF (5.6)

This appendix is addressed to proving (5.6).
By (5.5), for a.e. w € 2, 2z, = Z(w) € HY(0,T; L*(G)) is a weak solution to the following random equation:

Az = 1wt + Tow + Myoe?? + 7, in Q,
2y =10 on X, (B.1)
2,(0) = z,(T) =0 in G.

Here 71 ¢ = 714 (W), T2.0 = T2(w), Yo = y(w) and 7, = #(w). Also, set hy = 71wt + T2.0 + Ayue? ? + 7.

In the following, without loss of generality, we assume that z, is smooth and give a uniform estimate for it.
Let 0 < t; < to < T. Multiplying the first equation of (B.1) by t?(T —t)?2, and integrating it in (0,7) x G, we

get that
to T
/ /\Vzw|2dxdt§C/ / (|ho|? + |20, ?) dadt. (B.2)
t1 G 0 G
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Put
1

B) = 5 [ (ealOF + [V20(0)P)da.

By the usual energy estimate for the first equation of (B.1) and noting the time reversibility of (B.1), we have
that

to
E(t) < C (E(s) + / / e J;)zdxdr> L Vits € [tt] (B.3)
t1 G
Integrating (B.3) with respect to s from ¢; to t2, we obtain
to ta
E(t) < C ( E(s)ds +/ / e J;)zdxdr> L Vie bt (B.4)
ty t1 G

By (B.2) and (B.4), for any t € [t1,t2], there is a constant C' > 0 such that

T
20,6 (8|72 + \zw(t)@é(g) gc/o /G(|hw‘2+ 2t|2) derdlt. (B.5)

Applying the usual energy estimate to the first equation of (B.1) and noting the time reversibility of (B.1)
again, similar to the proof of (B.3), we find that

|20l 0133 @nner (o iz < C 12wty + 20Ol @) + PolTz0,m2@n)-

This, together with (B.5), implies that

T
|ZulC o 1113 (@0 (0.7 L2(0y) C/O /G(”Lw‘z + |2 ) dadt.

It follows that -
Blzul&(o,rymycmner oz < CE/O /G(|hw\2 + [20,0|?) dadt.
This, together with Z € L2(G; H(0,T; L*(G))), implies that
z € L§(G; C([0, T); Hy (G))) N LE(G; CH([0, T]; L*(G))). O
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