ESAIM: COCV 22 (2016) 1236-1263 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2016038 WWW.esallm-cocv.org

AN OPTIMISATION APPROACH FOR STABILITY ANALYSIS
AND CONTROLLER SYNTHESIS OF LINEAR HYPERBOLIC SYSTEMS *

PIERRE-OLIVIER LAMARE!, ANTOINE GIRARD? AND CHRISTOPHE PRIEUR?

Abstract. In this paper, we consider the problems of stability analysis and control synthesis for first-
order hyperbolic linear Partial Differential Equations (PDEs) over a bounded interval with spatially
varying coefficients. We propose Linear Matrix Inequalities (LMI) conditions for the stability and for the
design of boundary and distributed control for the system. These conditions involve an infinite number
of LMI to solve. Hence, we show how to overapproximate these constraints using polytopic embeddings
to reduce the problem to a finite number of LMI. We show the effectiveness of the overapproximation
with several examples and with the Saint-Venant equations with friction.
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1. INTRODUCTION
We consider the following general system

Oey(t, x) + A(2)0ay(t, x) = F(x)y(t, x), (L.1)
where ¢ € RT is the time variable, x € [0,1] is the spatial variable, y : RT x [0,1] — R"™, F and A are in

CY ([0, 1] ; R™*™). The matrix A(z) is diagonal and in addition

A () 0
Az) =

An (@)

with Ag(z) <0 for k€ {1,...,m} and A\y(x) >0 for k € {m+1,...,n}, for all x € [0, 1]. Let us introduce the
following notation

y=ly (ta)y"(t,2)] ",
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where y~ : Rt x [0,1] — R™ and y* : Rt x [0,1] — R~ We consider the following boundary conditions

0)
1)] , teRT, (1.2)

where G is a matrix in R™*™. The initial condition is
y(O,x) = yo(x)a T € (Oa 1) ) (13)
where 4% € L2 ((0,1); R™). It can be shown that the following result holds, see [10] and the references therein.

Proposition 1.1. There exists a unique (weak) solution y € C° (R+;L2((O,1);R")) to the Cauchy prob-
lem (1.1)—(1.3).

Let us define the concept of Global Exponential Stability (GES) for system (1.1)—(1.3).

Definition 1.2. The system (1.1)—(1.3) is said to be Globally Ezponentially Stable if there exist v > 0 and
C > 0 such that, for every initial condition y° € L2 ((0,1); R"™), the solution to the Cauchy problem (1.1)—(1.3)
satisfies
—vt |, 0 +
(8, e,y < Ce™ 8] 0.aymm » ¥t € RT (1.4)

While for finite dimensional and time-delay systems a large number of numerical techniques for stability
analysis exists, for PDEs these tools are mostly lacking. In this paper, we propose some techniques to verify
numerically the existence of quadratic Lyapunov functions for first-order hyperbolic PDEs over a bounded
interval with spatially varying coefficients. Besides this analysis aspect, we propose some techniques for the
synthesis of boundary and distributed controls.

The Lyapunov analysis has been a common and powerful approach to analyse and control systems in fi-
nite dimension for several decades. Among the large literature on stability analysis and stabilisation of finite
dimensional system let us mention [3] covering a large number of results on the resolution of Linear Matrix
Inequalities (LMI) coming from the Lyapunov analysis. In [14], a numerical toolbox to solve various control
problems, in particular those written in terms of LMI, is presented. It allows in particular an optimisation of
any given convex cost (such as the trace of the Lyapunov matrix). Thus, it is particularly attractive to express
problem under LMI form to take advantages of the existing toolboxes.

The use of Lyapunov function is now appearing for hyperbolic systems. Lyapunov converse results have been
stated recently in [12]. More specifically, a special attention has been made on quadratic Lyapunov functions.
Indeed, this class of functions allows to express conditions for stability as Matrix Inequalities (MI). We can
cite also [5,10,15,17] for the linear case. LMI conditions derived by an operator approach is used in [11] for
the H° boundary control of parabolic and hyperbolic systems. Quadratic Lyapunov function has also been
used for 2 x 2 quasilinear systems [6] and n X n quasilinear systems [7]. MI-based conditions derived from a
quadratic Lyapunov function were stated in [4] for the construction of boundary observers for linear as well
as for quasilinear hyperbolic systems. However, the approach by a quadratic Lyapunov function is not always
effective to prove stability for hyperbolic systems. A result from [1] gives a necessary and sufficient condition
for the existence of a quadratic Lyapunov function. In [9], an example with a stabilising static output feedback
has been designed such that the previous condition is violated and thus that there does not exist a quadratic
Lyapunov function for this system.

The results in this paper are related to the resolution of the LMIs proposed in [15] and to the control synthesis.
We also propose a Lyapunov function with an “affine” kernel similar to the one used in [8]. The conditions involve
the spatial variable, hence the number of constraints is infinite. These conditions are analogous to stability
conditions for finite-dimensional Linear Parameter Varying (LPV) systems. Hence, an approach inspired by this
framework is applied to find a candidate Lyapunov function. More precisely, to reduce the numerical complexity,
different approximations based on properties of the exponential and affine functions are considered in this paper.
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The control synthesis relies on a combination of classical techniques coming from the stabilisation for discrete
and continuous-time finite dimensional systems. Then, the latter overapproximation techniques are used to get
a finite number of conditions.

The paper is organized as follows. In Section 2, we propose new LMI conditions for the stability of systems
described by (1.1)—(1.3). In Section 3, we address the problem of the design of static boundary and distributed
controllers. In Section 4, overapproximation techniques are presented to reduce the complexity of the LMI
conditions stated so far. Finally, in Section 5, methods are tested on academic examples and with the Saint-
Venant equations with friction.

Notation. The set of complex numbers is denoted by C. The set of square real matrices of dimension n is
denoted by R™*™. Given a matrix A, the transpose of the matrix A is denoted by AT. Given N square matrices
Ay, ..., Ay, of respective dimension ki, ..., ky, the block diagonal matrix A € R+ Fkn)x(kit+kn) whoge
block diagonal matrices are Ay, ..., Ay, is denoted by diag[A1,..., Ax]. The identity matrix of dimension n
is denoted by I,,. For a symmetric matrix A € R"*" A being positive definite is denoted by A > 0, while A
being positive semi-definite is denoted by A > 0. The smallest eigenvalue of a matrix A € R"*" is denoted by
Amin (A) while its largest eigenvalue is denoted by Apax (4). The derivative of a matrix A(z) with respect to
variable z is denoted by A’(x).

2. CONDITIONS FOR STABILITY

In this section, we propose a Lyapunov function, and derive some conditions for the solution to system (1.1)-
(1.3) to satisfy (1.4).
Let us introduce the following notation

A(z) = diag [/17 (x), A+(ac)] ,

where A~ (z) = diag[A1(x),. .., An(2)] and AT (z) = diag[Ami1(2), ..., An(2)]. Let us denote |A(z)| the matrix
whose elements are the absolute value of the elements of the matrix A(z), that is

|A(x)] = diag [—A7($),A+(1')] , (2.1)

and let us denote by fn,m the matrix

(2.2)

In,m =
n—m,m In_m

~ _Im Om,n—m
0

For a matrix A in R"*", we decompose it in four block matrices A__ in R™*™ A_, in R™*(=™) A, in
R =m)xm and A, in RO=7)X(=m) guch that A = [f‘: ’2::}

Exponential kernel

In [15], sufficient conditions have been given for the stability of (1.1)—(1.3) with A(x) and F(z) constant. We
consider a slightly different Lyapunov function

1
Viy) = / YT (2) |A()| " Q(@)y(x)da, (2.3)

where

Q(z) = diag [e**Q ™, e Q"] (2.4)

with Q~ in R™*™_ Q% in R(»=m)x(n=m) are two symmetric positive definite matrices and p a real coefficient.
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Proposition 2.1. If there exist v > 0, u in R, and symmetric positive definite matrices Q= in R™*™ and QT
in Rv=m)X(n=m) sych that for Q(x) given by (2.4) the following conditions hold, for all z € [0,1],

Q(z)A(z) = A(z)Q(z), (2.5)
—2uQ(x) + F' (z) |A(x)] 7' Q@) + Q(x) |A(x)| ™ F(z) < —2v|A(z)| ! Q(), (2.6)

together with
[dn o] Lm0 [dr o] < [0, 0] Tome [0S, £71 ] (27)

then the linear hyperbolic system (1.1)~(1.3) is GES.

Proof. For the stability analysis we consider the candidate Lyapunov function (2.3), where Q(z) is given by (2.4).
Let us introduce the constants

A= min i (142)] 7" () (2.8)
X = max Ao (|A(x)r1 Q(:c)) . (2.9)

The matrix [A(z)| "' Q(x) being symmetric positive definite (due to condition (2.5) and since Q(z) and |A(z)| !
are symmetric positive definite), one can conclude that A\, A > 0 and for all y € L2((0,1); R"),

2 T2
A|y‘L2((O,1);R") <V(y) <A ‘ZU|L2((0,1);RW,) : (2.10)
Let us compute the time-derivative of the candidate Lyapunov function (2.3) along the solutions to system (1.1),

(1.2). Using the commutativity condition (2.5), we have

) 1
V=2 [ 0T () |4 Qylt,a)ds
0
1

= —2/ yT(t,w)fn’mQ(x)axy(t,x)dw + 2/ yT(t,x)Q(x) \A(x)\fl F(x)y(t, z)dx.
0 0

Noting that ~2y InmQuy = ~0s (4 TamQy) + 9" LomQy and I,;m Q' = ~2uQ, one has

1

V=- [yT(t,w)fn,mQ(w)y(t,x)K — 2#/ y T (t,2)Q(x)y(t, z)dx

0

! 1
1 / yT (t,2) Q) |A()| "} F()y(t, x)dz

_ y_(t,O) ! |:Im Om,nm:|—r T |:Im Om,nm:|
- |: :| G+_ G++ In’mQ(O) G+_

e e 2]

n—m,m In—m

1

2 / yT (1 2)Q() | A(x)| "} Fa)y(t, )dz — 24 / yT (t, 2)Q(@)y(t, 2)de.

0

Then, (2.6) and (2.7) imply that V' < —20V. Hence, for all t € R*, one has V (y(t,-)) < e~2'V (3°). Combining
this relation with (2.10), the proof is complete. O
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Remark 2.2. In the proof of Proposition 2.1, for the computation of the time derivative of V', we have proceeded
as if the solutions were in C'. Nonetheless, the calculus remains valid with L2-solutions. It is due to the density
of Cl-solutions in the set of L2-solutions (see [2], p. 67, Sect. 2.1) for a developed explanation.

The relation between the previous stability conditions and LPV systems is done in the following proposition.

Proposition 2.3. Let i in R. Conditions (2.6) and (2.7) are satisfied if and only if the continuous time LPV
system

plt) = ding [ L, L] (JAG) 7 F@) = o) plt), 2 € [0,1], (2.11)
and the discrete time system
h(t+ 1) = diag [Im, e‘“]n_m] et Gdiag [I,, " In—m] h(t) (2.12)

share a common block diagonal Lyapunov matriz diag [Q~,QT], where Q= and QT are symmelric matrices in
R™*™ gnd RO=m)>X(0=m) respectively.

Proof. Condition (2.6) describes a condition for the stability of the continuous time LPV system (2.11) via the
existence of the Lyapunov matrix diag[Q~, Q7]

Condition (2.7) may be developed as
P_P,
Py Py

<0, (2.13)

with

P_ =Gl _Q G__+G[_QTG4- —-Q,
P =Gl QG 1 +GL QTG

P, =P,

Py =e®GlLQ G +GLQTGy —e QT

The matrix P in (2.13) may be rewritten as
P= (e“G)T diag [Q_,e_z“QJr] e’ G — diag [Q_,e_z“QJr] . (2.14)
Thus, with (2.14), inequality (2.13) leads to establish

P <0< e'G diag [Im,e_“In,m] diag [Q_, Q+] diag [Im,e_“In,m] et
< diag [Im,e*”fn,m] diag [Q*, Qﬂ diag [Im,e*”fn,m]
& diag [In, € L—m] (e”G)T diag [Im, e*“In,m] diag [Q*, Qﬂ
x diag [Im,e*”fn,m] e Gdiag [, " I;—m] < diag [Q*, Qﬂ .

Hence, the discrete-time system (2.12) shares a common block diagonal Lyapunov matrix diag [Q~, Q"] with
the continuous-time LPV system (2.11). It concludes the proof of Proposition 2.3. O

Remark 2.4. A consequence of Proposition 2.3 is a trade-off in the choice of p between the satisfaction of (2.6)
and (2.7). Positive or negative values of y allow to consider (2.11) more stable or unstable respectively, but have
the reverse effect on (2.12).
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Affine Kernel

Other sufficient conditions for the global exponential stability of system (1.1)—(1.3) are obtained when consid-
ering a different kernel Q(x) in (2.3). The next proposition is built using

Q(x) = diag [(1 + pz)Q~, (1 — pz)Q*] (2.15)
in (2.3).

Proposition 2.5. If there exist v > 0, u € (—1,1), and symmetric positive definite matrices Q~ in R™*™ and
QT in RO=m)X(=m) sych that for Q(x) given by (2.15) the following conditions hold, for all x € [0,1],

Q(x)A(x) = A(x)Q(@), (2.16)
— uQ(0) + F'(2) |A(x)| " Qx) + Q(x) |A(x)| ™ Fl) < —2v |A(x)| " Q(x), (2.17)
together with
vl B e | Pl P P | P
Gi- Giy Onmm  QF Gio Giy | = | On—mm In-m 0 (A-wQ*t ] [On—mum In—m |’
(2.18)
then the linear hyperbolic system (1.1)~(1.3) is GES.

Proof. As mentioned earlier, we consider the candidate Lyapunov function (2.3) where Q(x) is given by (2.15).
We used the definitions of A and A given in (2.8) and (2.9) in the context of Q(x) given by (2.15). The matrix
|A(z)| 7" Q(x) is positive definite (due to condition (2.16)), one can conclude that X, A > 0. Therefore, for all
y € L2((0,1);R"),

A|y‘iQ((0,1);R") <V(y) <A ‘y|i2((071);mn) . (2.19)
Let us compute the time-derivative of the candidate Lyapunov function along the solutions to system (1.1),
(1.2). Using the commutativity condition (2.16), we have

1
V=2 / Oy (@) [A(2)| 7" Qa)y(t, x)de
0
2 18 T _Im Om,nfm ! T -1
=2 [ o) o U Qe s +2 [T (0,0)0() [4()] 7 Pyt x)d
1 1
= -2 / Ozy " (8, 2)P(x)y(t, x)dz + 2 / y' (t2)Q(x) [Alz)| ™! F(a)y(t, x)de,
0 0
where P(z) = {7g+e:ﬁ?Q_ (fj;;;;gﬁ } Noting that —20,y " Py = —0, (yTPy) +y Py we get
1
V= [y () P@y(t, )]s - o / yT (t, 2)Q(0)y(t, 2)da
1
2 / YT (L 2)Q() [A(@)| " F(a)y(t,2)da
0
T
I, O L Omn—m
{G+ G++] PO) [G+ Gis }

_{OG__ G_+]T7’(1) [OG__ G_+]

n—m,m In—m n—m,m In—m

.y / y T (£, 2)Q(0)y(t, x)dw + 2 / yT (1 2)0(2) | Alz)| "L F(2)y(t, z)dz.
0 0
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Then, (2.17) and (2.18) imply that V < —2uV. Hence, for all ¢ € RT, one has V (y(t,-)) < e 2"V (v°).
Combining this relation with (2.19) the proof is complete. O

Remark 2.6. The condition
Q) A() = A(x)Q(x), (2.20)
holds as soon as @~ and QT are diagonal (as in [10]) but this is not necessary. It becomes necessary when the

eigenvalues of A(z) are of multiplicity 1. It may happen that the matrices cannot be chosen diagonal even in
the constant case. For instance, let us consider the following matrices in R2*2

AZIQ)

~10 -9
F—{m 6}’

1
G==l.

22

It may be proved that there do not exist a real p and a diagonal matrix ) in R?*2 such that (2.6) and (2.7) hold
(see Appendix A). However, there exist a real y and a non-diagonal matrix ) such that it satisfies (2.5), (2.6),
and (2.7) as, for instance
w=0.2,
3.3860 2.2424
- [2:2424 31074

3. CONTROLLER SYNTHESIS

3.1. Boundary control synthesis

We consider next the problem of boundary control synthesis, when boundary condition (1.2) is given by
G=T+ LKp, (3.1)

where matrices T in R"*™, L in R"*9 (n > ¢) are given and the matrix Kp in R?7*™ has to be designed such
that system (1.1)—(1.3) with the boundary conditions (3.1) is GES. We propose results based on the use of
the Lyapunov function (2.3) in the context of the exponential kernel (2.4) only. The case of the affine kernel is
considered in Appendix B.

Theorem 3.1. If there exist v > 0, p in R, a matriz U in RY*™, and symmetric positive definite matrices S~
in R™*m S+ g ROv=m)x(n=m) gych that, with S(z) = diagle=2#*S~,e?*S*], the following conditions hold,
for all z € [0,1],
S(@)A(@) = A@)S(@), (3.2)
—2pS(2) + S(2)F T (2) [A(2)| ™" + [A(2)] 7" F(2)S(2) < —2vS(2) [A(z)] ", (3.3)

diag [S~,e2S*] (TS(0)+LU)" | o
’ 4
TS(00)+ LU diag[e”2#5—,ST]] ~ 0 (34)

then the boundary control given by (3.1) with
Kg =US"0), (3.5)

is such that system (1.1)~(1.3) is GES and a Lyapunov function of the form (2.3) exists with Q(z) = S~ (z).



OPTIMISATION FOR CONTROL OF HYPERBOLIC SYSTEMS 1243

Proof. Replacing U by KpS(0) and applying the Schur complement formula (see, for instance, [3], pp. 7-8)
in (3.4) one gets

diag [S™, e 2#St] — S(0) (T + LK) diag [e 25, 7]~ (T + LK) 5(0) > 0. (3.6)
Reassembling the term in one matrix and multiplying from the left and right by S~!(0) we get a matrix
M__ M_,
M = >0, (3.7)
My My

with
M__=(S) " = (T+LKgp) (S) ' (T+LKg) —(T+LKgp), (S*) ' (T+LKg), ,
M_y = (T+LKp)  (S7) " (T+LKp)_, — (T+LKg), (S) (T +LKp),,,
MJr* = Ml—Jra

My =e 2 (ST = (T+ LKp) , (7)) (T +LKg) .
—(T+LKg)|, () (T +LKg), . .

Letting @~ = (S7) ™", Q@+ = (S+) ™" we get
e condition (2.5) by multiplying left and right (3.2) by Q(x),
e condition (2.6) by multiplying left and right (3.3) by Q(z),
e condition (2.7) from the matrix M in (3.7). Indeed, M is equal to the matrix —P in (2.13) in the proof of
Proposition 2.3, this latter is equivalent to the inequality (2.7).

It concludes the proof of Theorem 3.1. O

3.2. Distributed control synthesis

We consider the case of a distributed control that is that the matrix in the right-hand side of (1.1) is of the
form
F(x) = H(x)+ B(z)Kp(x), x€]0,1], (3.8)
where matrices H(z) in R™*", B(x) in R"*? (n > p) are given, and matrix Kp(z) in RP*™ has to be designed
such that system (1.1)—(1.3) is GES with the distributed control (3.8). In the following, we assume that Kp(x)
is given by

14
Kp(z) =Y ai(z)K;, (3.9)
i=1

where «;, K; i = 1,...,£, are, respectively, some continuous real functions and matrices in RP*",

Remark 3.2. Examples of suitable functions «;, in (3.9), are the Bézier functions basis and spline basis func-
tions of degree 1.

Remark 3.3. Though most of the physical devices are controlled from the boundaries (see, for instance, [2]
or [5]), there exist physical applications embedding such distributed controller (3.8). For instance, the evolution
of a population of bacteria or animals in cultivation conditions may be described by a system of the form (1.1).
As a matter of example, in [13], a hyperbolic PDE model of chemostat is considered. In such situation y(¢, x)
represents the number of individuals of age = at time ¢, the function F' is a mortality function or a sampling.
Thus, the control may be to synthesise this mortality rate or this sampling, for instance to insure some criteria
on the cultivation process. In the latter reference, it should be noted that the control quantity is a dilution rate
and is time dependent contrary to (3.8).
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Henceforth, for a given p in R, let us denote by I ,, () the matrix
It o (x) = diag [ Ly, e 2 L] . (3.10)
Theorem 3.4. Let an integer £ > 0 be given. If there exist v > 0, u in R, matrices U; in RP*",
i = 1,...,0, and symmetric positive definite matrices S~ in R™*™ S+ ip R=m)x(n=m) gych that, with
S(z) = diag[e~2#* S~ e?1* ST, the following conditions hold, for all x € [0,1],
S(z)A(z) = A(x)S(z), (3.11)

(14@)| ™" H(@) - u1 ) (@) + S() (\A(x)\*H(x) - ufn)T

+ f:a,»(x) (I8 (@) T UT BT () |A(x)| 7! + Z iz L B(a)U; (15, (2)) "
i=1
< —2vS(x) |A(z)| ", (3.12)
[diag [s7,e2st] (GS(0)" ] >0, (3.13)
GS(0) diag [e 25—, 5]
with I, ,,,(x) given in (3.10), then the distributed control given by (3.8) and (3.9) with
K;=U;S7Y0), i=1,...,¢, (3.14)

is such that system (1.1)~(1.3) is GES and a Lyapunov function of the form (2.3) exists with Q(z) = S~ (z).

Proof. We know that system (1.1)—(1.3) is exponentially stable if conditions of Proposition 2.1 hold. To apply
this result let us check (2.5), (2.6), and (2.7) successively. Using the Schur complement formula with (3.13),
letting @~ = (S*)_1 and QT = (ST)~! as in the proof of Theorem 3.1, conditions (2.5) and (2.7) are satisfied.
We can rewrite (2.6) as

(1)) F@) — 1) Q@) + Q@) (1A@)| ™ F(x) - 1, ) < ~2v[A()| " Q).

We use the expression of F' given by (3.8), (3.9) and get

¢ T
<|A(ac)|_1 (H(as) —I—B(a:)Zai(ac)Ki> —,un> Q(x)

=1 ,
+Q(x) </1(1‘)_1 (H(l‘) + B(x) Zai(w)Ki> - Mn> < 2w |A)| " Q(x). (3.15)

i=1

This last inequality is not convex in K; and Q(z). To overcome this issue we multiply (3.15) at the left and
right by S(z), we get
1 —1 T
(14(@) ™ H (@) - /un) S(z) + S(x) (|A<x>| H(z) - ufn)
¢
+) i(2)S(2)K] B(a)" Az Z e ' B(a)K;S(x) < —2vS(z) |A(z)] ",

and we let K; = U;S71(0), i = 1,..., £, which implies (3.12). This concludes the proof of Theorem 3.4. O
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Remark 3.5. The simultaneous synthesis of a boundary control and of a distributed control is possible. For the
exponential kernel it consists in the computation of matrices S, ST, U, and U;, i = 1,..., 4, satisfying (3.2),
(3.4), and (3.12). For the affine kernel it consists in the computation of matrices S=, S*, U, and U;, i = 1,..., 4,
satisfying (B.1), (B.3), and (B.9). The motivation for applying both controllers may be from an optimal point
of view. Indeed, two controllers give more degrees of freedom for governing the state equation and thus it allows
to drive the system to the origin with a better performance. It may be possible that a system is not stabilisable
using boundary or distributed control but it can be stabilised by combining the two types of controllers.

4. OVERAPPROXIMATION TECHNIQUES

Conditions (2.6) and (2.17) involve the spatial variable x € [0, 1]. Hence, the number of LMI is infinite. Thus,
some overapproximation may be introduced in order to numerically check it. Here, the term overapproximation
means that the original constraints are embedded in a larger set having nice structural properties which may
be exploited (see, for instance, [5]). In this section we aim at giving some practical techniques for the stability
analysis and the control synthesis in the context of the exponential kernel (2.4) only. As for Section 3, the case
of the affine kernel (2.15) is considered in Appendix B.

For each conditions given up to know we propose a result for their overapproximation. We distinguish two
cases: spatially varying and non-spatially varying F' and A. For the clarity of the exposition we propose a
summary table of the results at the end of the section.

4.1. Non-spatially varying case

Let us suppose F(z) = F, A(z) = A. The main goal of this section is to provide a way to numerically verify
conditions of Propositions 2.1 and 2.5 and of Theorems 3.1 and 3.4.
For fixed 1 in R, @ in R™*™ and Q%1 in R—™)*(=m) we write

Qij = diag [*Q ™, e QF], i,j=0,1. (4.1)

Lemma 4.1. For all x € [0,1], Q(x) lies in the convex hull of {Qoo, Qo1, @11} if > 0 and of {Qoo, Q10, Q11}
if p<0.

Proof. We assume that p > 0, the case u < 0 is analogous. Q : x +— Q(z) is a parametrized curve in the
(Q—, Q%) plane. We can express it as an explicit curve. We have e?#*e~2#% = 1, thus the expression of the
explicit curve is given by
1
MX)=—=, Xep=[e?1].
(X) =5 p=[e1]
This curve is convex on this interval. Then,
1

ae T ey 29 () +(1-a)(), ae(O1),

where g(X) = <i> X +e* 4+ 1. When X lies in p, g(X) describes the straight line between Qg and Q1.

1—e—2n
Hence, for X € p one has h(X) < ¢g(X). Thus, Q(x) lies in the convex hull of {Qoo, Qo1, @11}- O
Remark 4.2. In the proof of Lemma 4.1 we do not consider the case pu = 0. Indeed, we get

Q(x) = diag [Q™, QT]. Thus, matrix inequality (2.6) is a “classical” linear matrix inequality which does not
involve the spatial variable x.

Proposition 4.3. If there exist v > 0, p in R\ {0}, and symmetric positive definite matrices Q= in R™*™
and QT in ROv=m)*x(n=m) gy ch that

Qi A = AQj, (4.2)
—20Qu; + FT A" Qij + Qs | A" F < =20 4] Qi
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62“ ______ .

R QOO

Q-i—
FiGURE 1. Hlustration of the elevation of number of points representing the polytope used for
the overapproximation in the (Q~, @™)-plane. Case p > 0.

®
|
N
=
—_ - -

hold for all (i,7) € {(0,0),(0,1),(1,1)} if u > 0 and for all (i,7) € {(0,0),(1,0),(1,1)} if p < 0, together with

T - T ~
[G{i omm,_m} Qoo {G{m om,n_m} < [OG__ G_+} Quilnm [OG__ Gt } 7 (4.4)

Gy + - G+ + n—m,m In—m n—m,m In—m

then conditions (2.5), (2.6), and (2.7) are satisfied for all z € [0, 1].

Proof. We have that

e the inequality (4.4) corresponds to (2.7),
e by Lemma 4.1, the constraints given by the equality (2.5) and LMI (2.6) are embedded in the polytope built
by the points Qoo, Qo1, and Q1.

Thus, conditions (2.5), (2.6), and (2.7) are satisfied. The proof of Proposition 4.3 is complete. O

Remark 4.4. The approximation with the exponential kernel (2.4) can be made tighter by increasing the num-
ber of points describing the polytope embbeding the constraints given by condition (2.5) and LMIs (2.6), (2.7).
For instance, on Figure 1 there are 4 points: Q11, Q, Q, and Qgo. The impact of the number of points is explored
numerically in the next section.

Conditions for the construction of boundary and distributed controllers can be overapproximated in the same
way as the conditions for stability. Let us suppose that H(z) = H and B(z) = B, for all = € [0,1]. For fixed u
in R, S~ in R™*™ and St in R*=")x(n=m) e write, for 4,7 = 0,1,

S;; = diag [e_2“iS_, e2“jS+] , (4.5)
S'Z-j = diag [e*Q”iS*,efz“jSﬂ ,

and
17, = diag [e "' I,,,* I, _,,] . (4.7)
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Proposition 4.5. If there exist v > 0, p in R\ {0}, a matriz U in R?*™, and symmelric positive definite
matrices S~ in R™*™ St jn RM=m)x(n=m) sych that the following conditions hold,

SijA = AS;j, (4.8)
—2uSi; 4+ Sy F 1A+ A7 FSyy < =208 A7,
o o T
So1 (TS()() + LU)

B y >0, (4.10)
TSoo + LU S10

for (i,7) € {(0,0),(1,0), (1,1)} if p > 0 and for (i, 5) € {(0,0),(0,1),(1,1)} if u < 0, then conditions (3.2), (3.3),
and (3.4) are satisfied for all x € [0, 1].

Proof. We have that

e the inequality (3.4) corresponds to (4.10),
e by Lemma 4.1, the constraints given by the equality (3.2) and LMI (3.3) are embedded in the polytope built
by the points Spg, S10, and Sy1 if > 0 or by the points Spg, So1, and Sq1 if p < 0.

Thus, conditions (3.2), (3.3), and (3.4) are satisfied. The proof of Proposition 4.5 is complete. O
Proposition 4.6. Let an integer £ > 0 be given. If there exist v > 0, u in R\ {0}, matrices U; in RP*™,
i=1,...,¢, and symmetric positive definite matrices S— in R™*™, S+t jn R(=m)x(n=m) sych that the following
conditions hold,
Sk = ASjp, (4.11)
T
(\Arl H = L) S+ Sie (1417 H ~ ufn)

ik \“ LT T ik 1 -1
+Zwr€n[énl]al (ZE) " UTBT (Al +me a;i(x) | A7 BU (IF,) 7 < —20Sp AT, (4.12)

(\ArlH — ) Sin + Sie (1417 H (@) —ufn)

ik 1T pT ik 1 -1
+Zwré1[%>§]az (k) UTBT Al +Z ma ai(x) | A7 BU; (IF,) 7 < —20Sp AT, (4.13)
o o T
Sgl (Ggoo) 1 >0, (4.14)
GSoo  S1o

for (k) € {(0,0),(1,0), (L)} if g > O and for (j,k) € {(0,0),(0,1), (L)} i o < 0, then condi-
tions (3.11), (3.12), and (3.13) are satisfied for all z € [0,1].

Proof. First of all the maximum and the minimum of «;, i = 1,..., ¢, are well-defined since «; are continuous
functions defined in the compact [0, 1]. We have that

e the inequality (4.14) corresponds to (3.13),

e by Lemma 4.1, the constraints given by the equality (3.11) and LMI (3.12) are embedded in the polytope
built by the points Syg, S10, and S17 if > 0 or by the points Sgg, So1, and Sp1 if ¢ < 0. Noting that any
value of a continuous function can be expressed as a convex combination of its maximum and minimum,

condition (3.12) holds for all z € [0, 1].
The proof of Proposition 4.6 is complete. O
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4.2. Spatially-varying case

We may generalize the previous results when A and F' are both spatially varying and lie in a convex hull.
We assume that the parametrized matrix

W(z) = |A(z)| " F(x), (4.15)

lies for all « € [0, 1] in the convex hull

N N
W= {W:W:ZaiWi,Zai:I}, (4.16)
i=1 i=1

for given matrices W;, i =1,..., N. We have the following propositions.

Proposition 4.7. If there exist v > 0, p in R\ {0}, and diagonal positive definite matrices Q~ in R™*™ and
Q1 in Rv=m)x(n=m) qych that

-1
—20Qik + W Qi + QWi < —2v [A| 7 Qi (4.17)
InL O'm,nf'm T j InL O'm,nf'm < G__ G—+ T I~ G__ G7+ 4 1
G Gis n,mQOO Gil Gas = 0ncmom Inom n,lel On—mom Inom ) ( . 8)
where
A =diag | min Ai(z),..., min A, (2), max A\p,p1(2),..., max A\, ()], 4.19
& Le[o,l] 1( ) z€[0,1] ( ) xe[o,}i] +1( ) ze[o,}i] ( )] ( )

foralli =1,...,N, and (j,k) € {(0,0),(0,1),(1,1)} if o > 0, (4, k) € {(0,0),(1,0),(1,1)} if p < 0, then
conditions (2.5), (2.6), and (2.7) are satisfied for all x € [0, 1].

Proof. Multiplying (4.17) by a; and making the sum for i = 1,..., N, we get
<=1
—20Q ;i + W(w)Tij + ijW(x) < —2v |/1’ Qjks (4.20)

for all 2 € [0,1], (j, k) = {(0,0), (0,1), (1, 1)} if > 0 and (4, k) = {(0,0), (1,0), (1,1)} if u < 0.

e Using Lemma 4.1 and the definition of A in (4.19), one gets (2.6).
e Condition (2.5) is automatically satisfied because of the diagonal form of @~ and Q7.

The proof of Proposition 4.7 is complete. g

Remark 4.8. In the statement of Proposition 4.7 we assume that the matrices Q= and QT are diagonal. It
allows to avoid to add an other assumption on the structure of A. For the results related to the spatially-varying
case we will always state this assumption.

Proposition 4.9. If there exist v > 0, p in R\ {0}, @ matriz U in R?*™, and diagonal positive definite matrices
S~ in R™*m St jp Rv=m)x(n=m) sych that the following conditions hold,
- Q/ASjk + SjkWZ-T + WiSjk < —QI/Sjk |/I|_1 , (4.21)
. . T
oo (TSOOUJFLU) > 0, (4.22)
TSoo + LU S1o

for all i = 1,....N, and (j.k) € {(0,0),(1,0), (1, 1)} if u > 0, (j,k) € {(0,0),(0,1), (1, 1)} if ji < 0, then
conditions (3.2), (3.3), and (3.4) are satisfied for all x € [0, 1].
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Proof. As in the proof of Proposition 4.7 we multiply (4.21) by «;, and make the sum for ¢ = 1,..., N, getting
—2uS;1 + SjkW(l‘)T + W(Z‘)Sjk < —2uSj |/I’_1 , (4.23)

for all z € [0, 1], (4, k) € {(0,0), (1,0), (1, 1)} if >0, (5, k) € {(0,0),(0,1), (1, 1)} if o <0.

e Using Lemma 4.1 and the definition of A in (4.19), one gets (3.3).
e Using the diagonal form of S~ and ST, condition (3.2) is automatically satisfied.
e Condition (4.22) is equivalent to condition (3.4).

The proof of Proposition 4.9 is complete. g

For the distributed controller synthesis, in the case where H as well as B are spatially-varying we may
generalize the above method. We assume that the parametrized matrices

|A(z)| " H{(x), (4.24)

and
|A(z)|~" B(w), (4.25)

lie, respectively, in

M- M-
R = {R:R:ZﬁiRi,Zﬁizl}, (4.26)
=1 =1

and
Mo M>
Z = {Z:Z:Z%Zi,z%:1}, (4.27)
i=1 i=1
for given matrices R;, Z;, 1 =1,..., My, j =1,..., M>. In this context we have the following propositions.

Proposition 4.10. Let an integer £ > 0 be given. If there exist v > 0, p in R\ {0}, matrices U; in RP*™,
i=1,...,0, and diagonal positive definite matrices S~ in R™*™ St jn RM=—m)x(n=m) cych that the following
conditions hold

(Ru, = puIn) Sjre + Sji (Ruy — ul) "

() (k) U ] (@) Z,Us (1% ) < —2uSy | A7 4.2
+Zwr€n[énl]a ‘v, +Z ménl]a LU (IF)) T < —2wSi A, (4.28)
(Riy — pln) Sji + Sjr (R, — puli, )
¢
, -1 —_—
+ > ;él[%,}i] () (I%k UTZT + Z m%}il () Z,,U; ( ) < —2wSp |4l (4.29)

So (G§00> !

. 5 >0, (4.30)
GSoo  Sho

foralluy =1,...,My, 15=1,..., Ms, and (j, k) € {(0,0),(1,0),(1,1)} if u > 0, (4, k) € {(0,0),(0,1),(1,1)} if
<0, then conditions (3.11), (3.12), and (3.13) are satisfied for all x € [0, 1].
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TABLE 1. Summary table of the results of Section 4 relative to the exponential kernel (2.4).

Stability Analysis Non Spatially Varying  Proposition 4.3

Spatially Varying Proposition 4.7
Non Spatially Varying  Proposition 4.5
Boundary Control Spatially Varying Proposition 4.9

Controller Synthesis Non Spatially Varying  Proposition 4.6

Distributed Control Spatially Varying Proposition 4.10

Proof. We multiply (4.28) and (4.29) by £,,, V.., and make the sum for ¢; = 1,..., My, 1o = 1,..., M2, we get

(R(z) = pln) Sk + Six (R(x) — pl) "

£ ¢
i j 71 . . 71 _ 71
+ 2 2€[0.1] ai(@) (Bh,) U Z()" + ;IIEH[(I)I,Il ] ai()Z(x)U; (IF)) " < —2v|A]” Sy, (4.31)
(R(z) — puly) Sji + Sjr (R(z) — ,uIn)T
d ¢
7 —1 . . o
+ 2 2€l0.1] ai(x) (I75,) U Z(x)" + ;x%l[%ﬁ] ai(2)Z(x)U; (1)) < —2v]|A| Sj. (4.32)

e Using Lemma 4.1, the definition of A in (4.19) and the fact that any value of a continuous function can be
expressed as a convex combination of its minimum and maximum, one gets (3.12).

e Condition (3.11) is automatically satisfied because of the diagonal form of S~ and S*.

e Condition (4.30) is equivalent to condition (3.13).

The proof of Proposition 4.10 is complete. d

Since Section 4 gathers a lot of results we propose a summary table (Tab. 1).

5. NUMERICAL EXPERIMENTS

In this section, several examples are presented to illustrate the results of the paper. All the solutions of the
LMIs have been computed with the Yalmip solver [14].

5.1. Stability analysis, illustrating Proposition 4.3

Example 5.1. Let us consider the following matrices

A= diag[-3,1],
~10.2

e[ -
0.2 -0.3

G = [0.6 0.1 ] : (5-2)

The matrix F in (5.1) is non-Hurwitz and the matrix G in (5.2) is such that p (G) < 1. This last property is
classical for the stability analysis of linear and quasilinear hyperbolic system [7,10].

Figure 2 shows that the result obtained with only three points for the polytope is optimal. Indeed the
numerical value of v obtained with three points is the same than with higher number of points. This result might
be expected because all the constraints of the LMI are enclosed by the overapproximation with the polytope
described by three points. The lower curve corresponds to the result of the algorithm when the objective is to
maximize v. In order to make this objective tractable, a relaxation on the right-hand side of the inequality (2.6)
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F1GURE 2. Evolution of v as a function of y for Example 5.1 for the gridding method depending
on the number of points.

is made. The upper curve is the result of the algorithm when the objective is to minimize the trace of Q(0).
Unexpectedly, the second algorithm gives a better v than the first one.

The Lyapunov function (2.3) with the affine kernel (2.15) does not converge, which is not surprising when we
look at LMIs (B.16) and (B.17) in Appendix B. Indeed, to satisfy these latter LMIs we need a large positive p,
that means a p near to be one, but in the same time increasing the p will make the verification of (B.18)
complex. Hence, the Lyapunov function (2.3) with the affine kernel (2.15) may not give results when the matrix
F' is not Hurwitz.

Example 5.2. Let us consider the following matrices

A =diag[-1,1],
0.3 0.1

F= {0.1 —0.3}’ (5:3)
0.1 0.8

G = [0.6 —0.4] : (5.4)

In this example the matrix F' in (5.3) is Hurwitz and the matrix G in (5.4) is contractive that is p(G) < 1.

Figure 3 shows that the algorithm for which the objective is to minimize the trace of Q(0) seems to give a
better v than the algorithm for which the objective is to maximize v. Moreover, it shows that the Lyapunov
function (2.3) with the affine kernel (2.15) gives a better v for the first 4 than the exponential kernel (2.4), and
gives solutions at some p while the other kernel fails. Moreover, the shape of the curve obtained in this example
is not the same as the one presented in Example 5.1. This comes from the fact that the matrix F' is Hurwitz,
hence increasing p moves the eigenvalues of \/1|_1 F — ply in the left half-plane of C, so it will increase the
parameter v. The algorithm stops due to LMI (2.7) which is no more solvable for large p. Thus, this example
illustrates also Proposition 2.3.
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FIGURE 3. Evolution of v as a function of p for Example 5.2.

5.2. Controller design, illustrating Theorems 3.1, B.1, and 3.4
Example 5.3. Let us consider system (1.1)—(1.3) with

A =diag[—1,2], (5.5)
—0.1 0.1
F= [0.5 —0.8}’ (5:6)
under the boundary control (3.1) where
—0.51
= [ 0.5 1] !
LT =1[05-1].

Let us choose v = 0.1. The design algorithm gives

p1 = 0.1580,
Kp = [0.5596 0.7910] ,

which lead to the following

G [—0.2202 1.3955} ’ (57)

—0.0596 0.2090

We check numerically the behavior of the solution to (1.1)—(1.3) with the matrix G given by (5.7), with a
two-step variant of the Lax-Friedrichs (LxF) method [16]. The initial condition is chosen as

() = {g:lf&%} C zelo]. (5.8)

Figure 4 shows the evolution of the state of the system (1.1)-(1.3) with initial condition given by (5.8) and
under the boundary control (5.7).
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n

FIGURE 4. Evolution of the first component y; (left) and of the second component ys (right) of
system (1.1)—(1.3) with A and F' given, respectively, by (5.5) and (5.6), initial condition given
by (5.8), and under the boundary control (5.7).

Example 5.4. Let us consider system (1.1)—(1.3) with

A = diag[—2,1], (5.9)
0.5 -0.4

¢= {0.2 0.8 ] ! (5.10)

under the distributed control (3.8) where
—-0.50.2
a= [0.2 0.5} !
B =[051],
(¢, 0) = (1,1).

Numerically, v is fixed to 0.3. The design algorithm gives

w=0.15,
Kp = [-0.3130 —1.1485]

which lead to the following
_|—0.6565 —0.3743

F=1_0.1130 —0.6485| -

(5.11)

Figure 5 shows the evolution of the state of the system (1.1)-(1.3) with initial condition given by (5.8) and
under the distributed control (5.11).

5.3. Saint-Venant equations

We illustrate Proposition 4.7 with the Saint-Venant equations for a prismatic horizontal open channel with a
rectangular cross-section and a unit width, as considered in [1]. The dynamics driven the water velocity V (¢, z)
and the water level H(t,z) in the pool at time ¢t € RT and space-location € [0, L], are described by the
Saint-Venant equations

O H(t,2) + 0, (H(t,2)V(t,z)) = 0, (5.12)

2 2 T
OV (t,x) + Oy (V?(t, x)+gH(t, x)) +gC ‘;I((tt’x)) =0, (5.13)
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FIGURE 5. Evolution of the first component y; (left) and of the second component ys (right) of
system (1.1)—(1.3) with A and G given, respectively, by (5.9) and (5.10), initial condition given

by (5.8), and under the distributed control (5.11).

with C' a friction coeflicient and ¢ the gravity acceleration. The channel is provided with some control devices
allowing to assign the flow-rate on both sides of the channel, that is

Qu(t) = H(t,0)V(t,0),
Qa2(t) = H(t,L)V(t,L).

(5.14)
(5.15)

System (5.12), (5.13) is non-linear, and the objective is to stabilize the water level at a desired steady state
(H*,V*) which is constant with respect to time but depends on the space variable. Hence, system (5.12), (5.13)
is linearized around the steady state (H*,V*), and write in characteristic coordinates. We get

Oy (t,x) = M(2)0z91 (L, )

with the characteristics velocities

=7 (x)yl (tv T) + 01 (x)y2(t7 ),
Oryo (tv ) + Ao (x)81y2 (tv T) =2 (x)yl (tv ) + 02 (x)y2 (tv ),

9

9

~\i(@) = V() - \/gH* (),
Do) = V* (@) + V/gH* (),
and the spatially-varying coefficients
71(3:)290‘/*2(33) ’ oy . + 295 ,
@ |4(ir@+vi@) V@ 2w | 1 (e + V)
72(96)290‘/*2(33) ’ oy . + 9%
O (s ) T N (e )
51(33)290‘/*2(33) 3 1 1 - 95
G |1(slr@+vi@) VO 2| i(JeHw+ V@)
() — 9CV @) 3 RS . 295 .
T (i) YO W] (e )

(5.16)
(5.17)
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FIGURE 6. Evolution of the Lyapunov function V' given by (2.3) with the kernel (2.4) where
Q~, Q*, and p are given by (5.20), (5.21), and (5.18) respectively, along the numerical solution
to system (5.16), (5.17) with boundary condition (5.19) (square marker), and of the theoretical
bound e~ 2"*V (y°) where v and y° are given by (5.22) and (5.8) respectively (star marker).

The steady state (H*, V™) satisfies H*(2)V*(x) = Q* where Q* is a constant and V* satisfies the ODE

vV (x)
9Q*(z) = V*(z)

Vi)  ¢C
dz @ (x)

], z e [0,L],

with the initial condition

V(0) =Vy.
The numerical values chosen are L =1 km, g = 9.81 m s~ 2, C = 0.002s> m™, Q* = H*V* =1 m? s~ !, and
the initial condition Vg = 0.5 m s~!. We compute numerically the matrices W; for

p=14. (5.18)

We compute numerically the steady state and the polytope W given by W € W if and only if
Wi j € [mingepo,1) Wi j (), max,epo,1) Wi j(x)]. This corresponds to the convex hull of 16 matrices W;. Let us
assume the controllers (5.14) and (5.15) are such that in the characteristic coordinates one has

y1(t, 1) 0 0.2 [y1(¢,0)
— . (5.19)
ya(t,0) 0.3 0 | |y2(t,1)
It must be stressed that all of this values may be prone to numerical errors since the explicit expression of V* is

unknown. Next, we compute matrices Q~ and QT such that Proposition 4.7 holds. Conditions (4.17) and (4.18)
are checked with

Q=1 (5.20)
Q' =10.8171, (5.21)
v = 4.8432. (5.22)

Thus, this numerical method is effective on physical device. Figure 6 shows the evolution of the Lyapunov
function V' given by (2.3) with the kernel (2.4) where @, QT, and u are given by (5.20), (5.21), and (5.18)
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respectively, along the numerical solution to system (5.16), (5.17) with boundary condition (5.19), and of the
theoretical bound e 2!V (y°) where v and " are given by (5.22) and (5.8) respectively. The theoretical bound
v obtained numerically is close to the exponential decay of the solution obtained by the numerical integration
of the characteristic Saint-Venant equations (5.16), (5.17), and (5.19).

6. CONCLUSION

In this work, the stability of a hyperbolic system over a bounded interval with spatially-varying coefficients
was analysed. We have proposed a Lyapunov function and stability conditions based on its time-derivative along
the solutions to the system. These conditions are expressed as LMIs. We also design boundary and distributed
controllers by the same techniques. All these conditions correspond to an infinite number of LMIs. Hence, we
proved that this numerical complexity can be relaxed. We show the effectiveness of the method with academic
examples and with the Saint-Venant equations with friction.

APPENDIX A. PROOF ABOUT REMARK 2.6

Let us prove that there do not exist a real p and a diagonal matrix @) such that conditions (2.6) and (2.7)
hold for the example of Remark 2.6.
Condition (2.6) for stability is rewritten as

(F—pul)' Q+Q(F — uly) < 0. (A.1)

Condition (2.7) is rewritten as

1

1@< e,
which implies % < e 2 that is u < # = \. To find a matrix F' such that it does not exist a diagonal @ such
that (A.1) hold, we suppose that F' is written as

a+A b
F=A+4+ M\, = ,
c d+ A

where A = [2}]. Using (A.1) the matrix A shall satisfy
ATQ+QA<2(n—N)Q<0.

To insure the existence of a solution to the latter Lyapunov equation we suppose that A is Hurwitz (trace(A4) =
a+d<0,det(A) = ad — be > 0). Without loss of generality the diagonal matrix @ can be written as [§ 2],
with a > 0. One gets

2a b+ ac
QA+ATQ=

b+ ac 2ad

The determinant of the above matrix is given by 4ada — (b + ozc)z7 which is a polynomial of degree 2 in «,
P(a) = —a?c® + (4ad — 2bc)a — b2

The objective is to obtain a matrix A such that the Lyapunov inequality ATQ + QA < 0 has no diagonal
solution. Hence, if the determinant is negative the counter example is obtained. The determinant of P satisfies

(4ad — 2be)® — 4b*¢* < 0 & 16a2d? — 16adbe < 0
& a?d? < adbe
< ad (ad —be) <0

< ad < 0.
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Hence, with (a,b,c,d) = (=10 — A, =9,10,6 — \) we find F' and it satisfies the condition on a, b, ¢, and d.

APPENDIX B. RESULTS RELATIVE TO THE AFFINE KERNEL

In this section, it is gathered the extension to the affine kernel (2.15) of the propositions proposed in Sections 3
and 4 when considering the exponential kernel (2.4).
B.1. Boundary control synthesis

Theorem B.1. If there exist v > 0, p in (—1,1), a matriz U in RT*", and symmetric positive definite matrices
S= in R™*™ St gp RO=m)X(n=m) sych that, with S(z) = diag [(1 +px) S, (1 — px) ST, the following
conditions hold, for all x € [0,1],

S(x)A(z) = A(x)S(x), (B.1)
—2u5(0) + S(2)F " (2) [A()| ™ + |A(x)| " F(2)S(x) < —2vS(x) |A(x)| 7", (B.2)
diag [S™, (1 — p)ST]  (T'S(0)+LU)"
TS(0)+ LU diag [(14 )71 57, S*]] 20, (B.3)
then the boundary control given by (3.1) with
Kp=US"*0), (B.4)

is such that system (1.1)~(1.3) is GES and a Lyapunov function of the form (2.3) exists with Q(z) = S~1(z).
Proof. The proof is similar to the one of Theorem 3.1. Replacing U by KpS(0) and applying the Schur com-
plement formula in (B.3) one gets

diag [S™, (1 — u) ST] — S(0) (T + LK) " diag [(1 +p)ts, 8t B (T + LKg)S(0) > 0. (B.5)

Reassembling the term in one matrix and multiplying from the left and right by S=1(0) we get the matrix
[N N,
M= _ - >0, (B.6)
My My
with
M= (S) ' =+ (T+LKp) (S) " (T+LKg) _—(T+LKg)|_ (S*) " (T+LKp), ,
My =—(1+p)(T+LKp) (S) '(T+LKg) , —(T+LKg), (ST (T+LKp),,,
M‘F* = MIJ,—)
~ -1 -1
My =Q0-p) (St —=(+w)(T+LKp)  (S7) (I'+LKp)_,
—(T+LKgp)|, () (T+LKg),, .

Letting @~ = (S7) ™", Q@+ = (S*) ™" we get

e condition (2.16) by multiplying left and right (B.1) by O(x),
e condition (2.17) by multiplying left and right (B.2) by Q(z),
e condition (2.18) from the matrix M in (B.6).

It concludes the proof of Theorem B.1. O
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B.2. Distributed control synthesis

Henceforth, for a given p in (—1,1) let us denote I7 . (x) the matrix

Ifi,m(w) = diag [(1 + /Jl’) Ima (1 - /Jl’) Infm} (B7)

Theorem B.2. Let an integer ¢ > 0 be given. If there exist v > 0, p in (—1,1), matrices U; in RP*™,
i = 1,...,¢, and symmetric positive definite matrices S~ in R™*™ 8§+ jn RO=m)x(=m) gych that, with
S(z) = diag {(1 +px)t S, (1- pa) ! S‘ﬂ , the following conditions hold, for all x € [0,1],

S(@)A(x) = Aw)S(a), (B.8)
T
(14@)1 ™" H(@) = ul) $@) + (@) (|A@) ™ H (@) -l )

—1

)4 14
+ Y ail@) (I8, (@) " U BT (@) [A@)] 7+ D ail@) |A@)[ T B@)U; (12, (x))
i i=1

i=1
< —2vS(x) [A(z)| (B.9)
diag[S~, (1 - p) 57 (GS ()"
[ GS(0) diag {(1 +u)t S, S*ﬂ 20, (B.10)

with Iy, . (x) given in (B.7), then the distributed control given by (3.8) and (3.9) with

K;=U;S™Y0), i=1,...¢, (B.11)
is such that system (1.1)~(1.3) is GES and a Lyapunov function of the form (2.3) exists with Q(x) = S~ (z).
Proof. The proof of Theorem B.2 is immediate with the proof of Theorems B.1 and 3.4. O

B.3. Overapproximation: A and F' constants

Conditions of Proposition 2.5 can be easily verified. For fixed p in (—=1,1), @~ in R™*™ Q% in R(»—m)x(n=m)
we write

QO = dlag [Q_a Q+] ; (B12)
Q1 =diag [(1+m)Q~, (1 — Q"] (B.13)
and we have the following proposition.

Proposition B.3. If there exist v € RT, pp € (—1,1), and symmetric positive definite matrices Q~ in R™>™
and QT in ROv=m)*x(n=m) gy ch that

QoA = AQo, (B.14)
Q1A = AQq, (B.15)
— Qo+ FT A7 Qo+ Qo4 F < —20]4] 1 Qu, (B.16)
— Qo+ FT AT Qi+ QAT F < —20]A 7 @, (B.17)
[ Im ofr{ -Q- om,n_m} [ Im 07} < { G__ G_4 }T [—(1—@@* om,n_m} [ G__ G_4
G- Giy On—mm QT G- Git | = [On—mm In-m On—mm (1+0)QT | [ On—mm In—m |’
(B.18)

then conditions (2.16), (2.17), and (2.18) are satisfied for all x € [0,1].
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Proof. Note that Q(z) satisfies

Qx) = diag [(1+ pz)Q ™, (1 — p2)Q*]
=(1—-2)Qo + zQ1.
Since 1 — = (resp. ) is positive and Qg (resp. Q1) verifies (B.16) (resp. (B.17)) then (1 — 2)Qq (resp. zQ1)

verifies also (B.16) (resp. (B.17)). Hence, condition (2.17) holds. In the same manner condition (2.16) holds.
The verification of (2.18) is immediate since (B.18) is equivalent. It concludes the proof of Proposition B.3. [

Similarly to what have been done with the exponential kernel (2.4), we can find some tractable conditions for
the checking of conditions of Theorems B.1 and B.2. For fixed p in (—1,1), S~ in R®*" S+ in R(»=m)x(n=m)
we write

S(w) = diag |[(1+ p2) ™ 57, (1= pa) ' S|, weo,1], (B.19)
and for 4,5 = 0,1,
8y = diag [(1+ )" 87, (1= )~ 5t (B.20)
S;; = diag [(1 +pi) T ST, (1 - ) S*} ; (B.21)
17, = diag[(1 + pi) Im, (1 = 1) In—m] (B.22)

Since (B.19) is no more affine in the (S~, S™)-plane we need the following lemma.

Lemma B.4. For all z € [0,1], S(x) lies in the convex hull of {500, Sho, §11} if uw >0 and of {goo, So1, §11}
if p<O.

Proof. We assume that p > 0, the case p < 0 is analogous. The map S(z) is a parametrized curve in the
(S~,S*)-plane. We can express it as an explicit curve. We have (1 + pz) (1 — px)~! = (1 — p?2%)~1, thus the
expression of the explicit curve is given by

- X

MX) = g Xep= [(1+u)*1,1].

This curve is convex on this interval. Then,
Ma@+m™ +0-a)) <ag((+m)7")+(1-a)(1), ae(01),

where g(X) = (81‘5;7::1) X+ (1+p) " +1. When X lies in j, §(X) describes the straight line between Sog

and Sq;. Hence, for X € p one has B(X) < g(X). Thus, S lies in the convex hull of {500, 510, 511}. O

Proposition B.5. If there exist v > 0, p in (=1,0)U (0,1), a matriz U in RY*™, and symmetric matrices S~
in R™>m S+ jp Rv=m)X(n=m) gych that the following conditions hold,

Si;A = ASy;, (B.23)
- QMSZ] + SijFT ‘A|_1 + ‘A|_1 FSU S —QVSZ‘]‘ |A‘_1 5 (B24)
N " T
So1 (TSOO + LU)
TS()O + LU 510

>0 (B.25)

)

for (i,7) € {(0,0),(1,0),(1,1)} if pw > 0 and for (i,5) € {(0,0),(0,1),(1,1)} if p < 0, then condi-
tions (B.1), (B.2), and (B.3) are satisfied for all x € [0,1].
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Proof. We have that

e the inequality (B.25) is equivalent to (B.3),
e by Lemma B.4 the constraint of equality (B.1) and LMI (B.3) are embedded in the polytope built by the
points SOO, 510, and Sy if © > 0 or by the points SOO, 501, and Sy if w<0.

Thus, conditions (B.1), (B.2), and (B.3) are satisfied for all # € [0,1]. The proof of Proposition B.5 is
complete. O

Proposition B.6. Let an integer £ > 0 be given. If there exist v > 0, u in (—1,0) U (0,1), matrices U; in
RPX™ i =1,...,¢, and symmetric positive definite matrices S~ in R™*™ S+ i Rv=m)x(n=m) gch that the
following conditions hold,

SjpA = ASj, (B.26)
(\Arl H— /un) Sik + Sk (\AF1 H - uln)T

ngl[a%% ) ()" VT BT A ¢ Zm[g,nl (@)1 BUL (B4,) T < 28l Ban)

(1417 H = ) Sy + Sy (1A H (@) ~ ,un>

—-1 -1
E TpT k G -1
+Z£[%§]az( )(p ) UTBT|AI” +Z max 0 )14 (p ) <28 |A7Y,  (B.28)
N . T
5(31 (GL?OO) 1 >0, (B.29)
GSoo S0

D} if w > 0 and for (4,k) € {(0,0),(0,1),(1,1)} o p < 0, then condi-

for (j,k) € {(O’O)a( ;0), (1,
10) are satisfied for all x € [0, 1].

tions (B.8), (B.9), and (B.

Proof. First of all the maximum and the minimum of «;, i = 1,..., /¢, are well-defined since «; are continuous
functions defined in the compact [0, 1]. We have that

e the inequality (B.29) corresponds to (B.10),
e by Lemma B.4 the constraint of equality (B.8) and LMI (B.9) are embedded in the polytope built by the
points SOO, 510, and Sy if © > 0 or by the points SOO, 501, and Sy if w<0.

Thus, conditions (B.8), (B.9), and (B.10) are satisfied for all € [0,1]. The proof of Proposition B.6 is
complete. O

B.4. Overapproximation: A and F spatially-varying

Similar results may be stated for the stability conditions and controller design conditions whenever A and F
are spatially varying. We are considering the sets W, R, and Z defined in (4.16), (4.26), and (4.27) respectively.
Let us remind that, foralls =1,..., N, Wy arein W, forall j = 1,..., My, Rjarein R, and forall k = 1,..., Mo,
7y are in Z.



OPTIMISATION FOR CONTROL OF HYPERBOLIC SYSTEMS 1261

Proposition B.7. If there exist v > 0, p in (—1,1), and diagonal positive definite matrices Q= in R™*™ and
Q1 in Rv=m)x(n=m) sych that

— Qo + W, Qo+ QoW; < —2v| A" Qo, (B.30)
— Qo+ W, Qi+ QuW; < —20|A] 1 @, (B.31)
|: Im_ 07”7"—7":|T |: 7Q_ O""’"*’"li| |: Im_ Om,,n—m:| g |: Ci—— Gi+ :|T |:7(17H)Q_ Om,nfm i|
Gi- Giy On—m,m QF Gi- Gy On—m,m In—m On—m,m (14+p)QT
X [Oﬁf";m ﬁj} , (B.32)

foralli=1,...,N, where |/I| is defined in (4.19) and Qo, Q1 are respectely defined in (B.12), (B.13), then
conditions (2.16), (2.17), and (2.18) are satisfied for all x € [0, 1].

Proof. The proof is similar to the proof of Proposition 4.7. Multiplying (B.30) and (B.31) by «; and making
the sum for i =1,..., N, we get

— Qo+ W (2) Qo+ QoW (z) < —2v |47 Qo (B.33)
— Qo +W(x) Q1 + QW (x) < —2v ’/I Q1, (B.34)
for all z € [0,1].

e Using the fact that
Qz) = (1 —2)Qo + 2Q1,

and the definition of A in (4.19), one gets (2.17).
e Condition (2.16) is automatically satisfied because of the diagonal form of @~ and Q™.

The proof of Proposition B.7 is complete. g

Proposition B.8. If there existv > 0, p in (—1,0)U(0,1), a matriz U in R?*™, and diagonal positive definite
matrices S~ in R™*™, S+ jn RO=m)x(n=m) gych that, the following conditions hold,

— Q/Agjk + SjkWiT + Wigjk < —QI/gjk |/I|_1 , (B.35)
) . T
So1 (TSOO + LU)

) : >0, (B.36)
TSoo + LU S1o

for alli =1,...,N, and ( i, k) € {(0,0),(1,0),(1,1)} if o > 0, (4, k) € {(0,0),(0,1),(1,1)} if p < 0, then
conditions (B. ) (B 2), and (B.3) are satisfied for all x € [0, 1].

Proof. As in the proofs of Proposition 4.7 and 4.9 we multiply (B.35) by «;, and make the sum fori =1,..., N
getting

9

—QMSjk + S'jkW(x)T + W(x)S’jk S —QVSjk |/I’71 s (B.37)
for all z € [0,1], (j, k) € {(0,0),(1,0),(1,1)} if x>0, (4, k) € {(0,0),(0,1), (1,1)} if u < 0.

e Using Lemma B.4 and the definition of A in (4.19), one gets (B.2).
e Condition (B.1) is automatically satisfied because of the diagonal form of S~ and S™.
e Condition (B.3) is equivalent to condition (B.36).

The proof of Proposition B.8 is complete. O
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TABLE B.1. Summary table of the results of Appendix B relative to the affine kernel (2.15).

Non Spatially Varying Proposition B.3
Spatially Varying Proposition B.7
Non Spatially Varying Proposition B.5
Spatially Varying Proposition B.8
Non Spatially Varying Proposition B.6
Spatially Varying Proposition B.9

Stability Analysis

Boundary Control

Controller Synthesis
Distributed Control

Proposition B.9. Let an integer £ > 0 be given. If there exist v > 0, p in (—1,0)U (0, 1), matrices U; in RP*™,
i=1,...,4, and diagonal positive definite matrices S~ in R™*™ St jn RM=m)x(n=m) cych that the following
conditions hold

(Ru —ply) Sik + Sjk (Ru - MIH)T

¢ . , B
. ) 7ik T,T . ‘ {3k - et
+ — mren[g)l:ll] az(x) (In,m) Uz ZL2 + — Il’gﬂ[(l)l:ll] al(x)ZLQ U; (In,m> < QI/Sjk |A| , (B38)
(R, — pulp) Sji + Sk (R, — ,uIn)T
¢ B , )
[ik LT, Sk 1 .
+ max o (x) (In,m) U, 2, + max o;(x)Z,,U; (]n’m> < —2wSj, |A| 7 (B.39)
i=1 “€0.1] “— 2€[0,1]
. T
() =0 (B.40)

GSoo Sho

forallvy =1,...,My, 1a=1,..., My, and (j, k) € {(0,0),(1,0),(1,1)} if u > 0, (4, k) € {(0,0),(0,1),(1,1)} if
<0, then conditions (B.8), (B.9), and (B.10) are satisfied for all x € [0, 1].

Proof. Using Lemma B.4 and the proof of Proposition 4.10 the result follows. U

As for Section 4 we propose a summary table (Tab. B.1) for the results of Appendix B.
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