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1. Introduction

In reference [9], Coron and the first author (H. Brezis) have investigated the existence of multiple S2-valued
harmonic maps. In the process they were led to introduce a concept of topological degree for maps f ∈ H1(S2; S2).
Note that such maps need not be continuous and thus the standard degree (defined for continuous maps) is not
well-defined. Instead they used Kronecker’s formula

deg f =
�

S2
det (∇f) (1.1)

valid for f ∈ C1(S2; S2), and a density argument (C1(S2; S2) is dense in H1(S2; S2)) due to Schoen and
Uhlenbeck [16], to assert that deg f , defined by (1.1), belongs to Z for every f ∈ H1(S2; S2).

They also used the technique of “bubble insertion” which allows to modify the degree d1 of a given (smooth)
map f : S2 → S2 by changing its values in a small disc Bε(x0). More precisely (see [7, 9]), for any ε > 0 and
d2 ∈ Z one can construct some g ∈ H1(S2; S2) such that g = f outside Bε(x0), deg g = d2, and

�
S2
|∇g −∇f |2 ≤ 8π |d2 − d1| + o(1) as ε→ 0 (1.2)

(in fact [9] contains a more refined estimate in the spirit of Lem. 3.4 below). This kind of argument serves as
a major source of inspiration for several proofs in this paper. As we are going to see, estimate (1.2) provides a
useful upper bound for the Hausdorff distance between homotopy classes in H1(S2; S2).

Subsequently the first author and Nirenberg [11] (following a suggestion of Boutet de Monvel and Gabber [5],
Appendix) developed a concept of topological degree for map in VMO (SN ; SN ) which applies in particular
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to the (integer or fractional) Sobolev spaces W s,p(SN ; SN ) with

s > 0, 1 ≤ p <∞ and sp ≥ N. (1.3)

This degree is stable with respect to strong convergence in BMO and coincides with the usual degree when
maps are smooth.

In the remaining cases, i.e., when sp < N , there is no natural notion of degree. Indeed, one may construct a
sequence of smooth maps fn : SN → SN such that fn → P (with P ∈ SN a fixed point) in W s,p and deg fn → ∞
([4], Lem. 1.1). Therefore, in what follows we make the assumption (1.3).

Given any d ∈ Z, consider the classes

Ed := {f ∈W s,p(SN ; SN ); deg f = d}; (1.4)

these classes depend not only on d, but also on s and p, but in order to keep notation simple we do not mention
the dependence on s and p.

These classes are precisely the connected or path-connected components of W s,p(SN ; SN ). [This was proved
in [11] in the VMO context, but the proof can be adapted to W s,p.] Moreover if N = 1 we have (see Sect. 2)

Ed =
{
f ; f(z) = eıϕ(z) zd, with ϕ ∈W s,p(S1; R)

}
. (1.5)

Our purpose is to investigate the usual distance and the Hausdorff distance (in W s,p) between the classes Ed.
For that matter we introduce the W s,p-distance between two maps f, g ∈W s,p(SN ; SN ) by

dW s,p(f, g) := |f − g|W s,p , (1.6)

where for h ∈ W s,p(SN ; RN+1) we let

|h|W s,p :=
∥∥∥∥h−

�
SN

h

∥∥∥∥
W s,p

,

and ‖ ‖W s,p is any one of the standard norms on W s,p. Let d1 	= d2 and define the following two quantities:

distW s,p(Ed1 , Ed2) := inf
f∈Ed1

inf
g∈Ed2

dW s,p(f, g) , (1.7)

and
DistW s,p(Ed1 , Ed2) := sup

f∈Ed1

inf
g∈Ed2

dW s,p(f, g) . (1.8)

It is conceivable that
DistW s,p(Ed1 , Ed2) = DistW s,p(Ed2 , Ed1), ∀ d1, d2 ∈ Z, (1.9)

but we have not been able to prove this equality (see Open Problem 1 below). Therefore we consider also the
symmetric version of (1.8), which is nothing but the Hausdorff distance between the two classes:

H − distW s,p(Ed1 , Ed2) = max {DistW s,p(Ed1 , Ed2),DistW s,p(Ed2 , Ed1)} . (1.10)

We should mention that even in cases where we know that (1.9) holds true, the qualitative properties of
the two quantities in (1.9) might be quite different. Consider for example the classes Ed1 , Ed2 in W 1,1(S1; S1)
when 0 < d1 < d2. It is shown in Proposition 3.2 that DistW 1,1(Ed1 , Ed2) is attained by some f and g, while
DistW 1,1(Ed2 , Ed1) is not.

It turns out that in general the analysis of the usual distance distW s,p is simpler than that of DistW s,p , so we
start with it. Note that we clearly have

distC0(Ed1 , Ed2) = 2, ∀ d1 	= d2. (1.11)
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Indeed, on the one hand we have ‖f − g‖C0 ≤ 2, ∀ f, g, and on the other hand if ‖f − g‖C0 < 2 then

deg f = deg g. [This is obtained by considering the homotopy Ht =
tf + (1 − t)g
|tf + (1 − t)g| , t ∈ [0, 1].] By contrast,

it was established in [11] that surprisingly, when s = 1/2, p = 2 and N = 1 one has distH1/2(E1, E0) = 0,
and thus distVMO(E1, E0) = 0. The usual distance distW s,p(Ed1 , Ed2) in certain (non-fractional) Sobolev spaces
was investigated in works by Rubinstein and Shafrir [15], when s = 1, p ≥ N = 1, and Levi and Shafrir [14],
when s = 1, p ≥ N ≥ 2. In particular, they obtained exact formulas for the distance (see [15], Rem. 2.1, [14],
Thm. .4) and tackled the question whether this distance is achieved (see [15], Thm. 1, [14], Thm. 3.4). Another
motivation comes from the forthcoming paper [13], where we consider a natural notion of class in W 1,1(Ω; S1)
(with Ω ⊂ RN ) and determine the distance between these classes. In particular, Theorem 1.5 is used in [13].

Throughout most of the paper we assume that N = 1. It is only in the last two sections that we consider
N ≥ 2.

We pay special attention to the case where s = 1. In this case, we have several sharp results when we take

dW 1,p(f, g) = |f − g|W 1,p :=
(�

S1
|ḟ − ġ|p

)1/p

. (1.12)

The following result was obtained in [15].

Theorem 1.1. Let 1 ≤ p <∞. We have

distW 1,p(Ed1 , Ed2) = 2(1/p)+1π(1/p)−1 |d1 − d2|, ∀ d1, d2 ∈ Z. (1.13)

In particular
distW 1,1(Ed1 , Ed2) = 4 |d1 − d2|, ∀ d1, d2 ∈ Z. (1.14)

For the convenience of the reader, and also because it is used in the proof of Theorem 1.2, the proof of
Theorem 1.1 is presented in Sections 3 and 4.

In view of (1.13), it is natural to ask whether, given d1 	= d2, the infimum

inf
f∈Ed1

inf
g∈Ed2

dW 1,p(f, g) = 2(1/p)+1π(1/p)−1 |d1 − d2| (1.15)

is achieved. The answer is given by the following result, proved in [15] when p = 2.

Theorem 1.2. Let d1, d2 ∈ Z, d1 	= d2.

(1) When p = 1, the infimum in (1.15) is always achieved.
(2) When 1 < p < 2, the infimum in (1.15) is achieved if and only if d2 = −d1.
(3) When p ≥ 2, the infimum in (1.15) is not achieved.

We now turn to the case s 	= 1. Here, we will only obtain the order of magnitude of the distances distW s,p , and
thus our results are not sensitive to the choice of a specific distance among various equivalent ones. [However,
we will occasionally obtain sharp results for H1/2(S1; S1) equipped with the Gagliardo distance defined below.]
When 0 < s < 1 a standard distance is associated with the Gagliardo W s,p semi-norm

dW s,p(f, g) :=
(�

S1

�
S1

|[f(x) − g(x)] − [f(y) − g(y)]|p
|x− y|1+sp dxdy

)1/p

. (1.16)

Theorem 1.3. We have

1. Let 1 < p <∞. Then
distW 1/p,p(Ed1 , Ed2) = 0, ∀ d1, d2 ∈ Z. (1.17)
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2. Let s > 0 and 1 ≤ p <∞ be such that sp > 1. Then

C′
s,p |d1 − d2|s ≤ distW s,p(Ed1 , Ed2) ≤ Cs,p |d1 − d2|s (1.18)

for some constants Cs,p, C′
s,p > 0.

We next investigate the Hausdorff distance H − distW s,p (still with N = 1).

Theorem 1.4. We have

1. In W 1,1,
DistW 1,1(Ed1 , Ed2) = 2π|d1 − d2|, ∀ d1, d2 ∈ Z. (1.19)

2. If 1 < p <∞, then
H − distW 1/p,p(Ed1 , Ed2) ≤ Cp |d1 − d2|1/p, ∀ d1, d2 ∈ Z. (1.20)

3. If s > 0 and 1 ≤ p <∞ are such that sp > 1, then

DistW s,p(Ed1 , Ed2) = ∞, ∀ d1, d2 ∈ Z such that d1 	= d2. (1.21)

We do not know whether (1.20) is optimal in the sense that for every 1 < p <∞ we have

DistW 1/p,p(Ed1 , Ed2) ≥ C′
p |d1 − d2|1/p, ∀ d1, d2 ∈ Z, (1.22)

for some positive constant C′
p. See Open Problem 2 below for a more general question. See also Section 7 for

some partial positive answers.
We now discuss similar questions when N ≥ 2. We define distW s,p and H − distW s,p using one of the usual

W s,p (semi-)norms.
For s = 1, N ≥ 2, p ≥ N , and for the semi-norm |f − g|W 1,p = ‖∇f − ∇g‖Lp , the exact value of the W 1,p

distance distW 1,p between the classes Ed1 and Ed2 , d1 	= d2, has been computed by Levi and Shafrir [14]. A
striking fact is that this distance does not depend on d1 and d2, but only on p (and N).

We start with distW s,p .

Theorem 1.5. We have

1. If N ≥ 1 and 1 < p <∞, then

distWN/p,p(Ed1 , Ed2) = 0, ∀ d1, d2 ∈ Z. (1.23)

2. If [1 < p <∞ and s > N/p] or [p = 1 and s ≥ N ], there exist constants Cs,p,N , C′
s,p,N > 0 such that

C′
s,p,N ≤ distW s,p(Ed1 , Ed2) ≤ Cs,p,N , ∀ d1, d2 ∈ Z such that d1 	= d2, (1.24)

(here N ≥ 2 is essential).

Remark 1.6. We do not know whether, under the assumptions of Theorem 1.5, item 2, it is true that
distW s,p(Ed1 , Ed2) = C′′

s,p,N , ∀ d1, d2 ∈ Z such that d1 	= d2, for some appropriate choice of the W s,p semi-
norm. [Recall that the answer is positive when s = 1 [14].]

We now turn to the Hausdorff distance.

Theorem 1.7. Let N ≥ 1. We have

1. For every 1 ≤ p <∞

H − distWN/p,p(Ed1 , Ed2) ≤ Cp,N |d1 − d2|1/p, ∀ d1, d2 ∈ Z. (1.25)
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2. If s > 0 and 1 ≤ p <∞ are such that sp > N , then

DistW s,p(Ed1 , Ed2) = ∞, ∀ d1, d2 ∈ Z such that d1 	= d2. (1.26)

We conclude with three questions.

Open Problem 1. Is it true that for every d1, d2, N , s, p

DistW s,p(Ed1 , Ed2) = DistW s,p(Ed2 , Ed1)? (1.27)

(recall that DistW s,p(Ed1 , Ed2) has been defined in (1.8)). Or even better:

Does DistW s,p(Ed1 , Ed2) depend only on |d1 − d2| (and s, p,N)? (1.28)

There are several cases where we have an explicit formula for DistW s,p(Ed1 , Ed2) and in all such cases (1.28)
holds. See, e.g., the proofs of Theorem 1.4, items 1 and 3, and Theorem 1.7, item 2. We may also ask ques-
tions similar to (1.28) for distW s,p(Ed1 , Ed2) and for H − distW s,p(Ed1 , Ed2) (assuming the answer to (1.28) is
negative); again, the answer is positive in many cases. A striking special case still open when N = 1 is: does
distW 2,1(Ed1 , Ed2) depend only on |d1 − d2|?

Open Problem 2. Is it true that for every N ≥ 1 and every 1 ≤ p <∞, there exists some C′
p,N > 0 such that

DistWN/p,p(Ed1 , Ed2) ≥ C′
p,N |d1 − d2|1/p, ∀ d1, d2 ∈ Z? (1.29)

A weaker version of Open Problem 2 is obtained when we replace DistWN/p,p by H − distWN/p,p (there will be
no difference of course in case the answer to Open Problem 1 is positive):

Open Problem 2′. With the same assumptions as in Open Problem 2, is it true that

H − distWN/p,p(Ed1 , Ed2) ≥ C′
p,N |d1 − d2|1/p, ∀ d1, d2 ∈ Z? (1.30)

The only case for which Open Problem 2 is settled is [N = 1, p = 1] (see Thm. 1.4, item 1). We emphasize three
cases of special interest: 1. [N = 1, p = 2], 2. [N = 2, p = 2] and 3. [N = 2, p = 1]. In case 1, the answer to Open
Problem 2′ is positive (see Cor. 7.6). See also Section 7 where further partial answers are presented.

Here is another natural open problem. Recall that for any f ∈ WN/p,p(SN ; SN ) and any sequence (fn) ⊂
WN/p,p(SN ; SN ) such that |fn − f |WN/p,p → 0, we have deg fn → deg f . We also know (Thm. 1.5, item 1) that
there exist sequences (fn), (gn) in WN/p,p(SN ; SN ) such that |fn−gn|WN/p,p → 0 but | deg fn−deg gn| = 1, ∀n.

Open Problem 3. Is it true that | deg fn − deg gn| → 0 for any sequences (fn), (gn) in WN/p,p(SN ; SN ) such
that

|fn − gn|WN/p,p → 0 as n→ ∞

and
|fn|WN/p,p + |gn|WN/p,p remains bounded as n→ ∞?

Our paper is organized as follows. In Section 2 we recall some known properties of W s,p(SN ; SN ). Sections 3–5
concern only the case N = 1, while Sections 6 and 7 deal with N ≥ 1. The proofs of Theorems 1.1 and 1.2
are presented in Sections 3 and 4. Theorem 1.3, item 1 and Theorem 1.4, items 2 and 3, are special cases of,
respectively, Theorem 1.5, item 1 and Theorem 1.7, items 1 and 2; their proofs are presented in Section 6.
Theorem 1.3, item 2 is established in Section 5. The proof of Theorem 1.4, item 1 appears in Section 3.
Theorems 1.5 and 1.7 belong to Section 6. Partial solutions to the open problems are given in Section 7. A final
Appendix gathers various auxiliary results.
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2. Some standard properties of maps f : SN → SN

In this section, we always assume that (1.3) holds.

Lemma 2.1. C∞(SN ; SN ) is dense in W s,p(SN ; SN ).

When s = 1, p = 2, N = 2, the above was proved in [16]. The argument there extends to the general case.
When

[0 ≤ s−N/p < 1] or [s−N/p = 1 and p > 1], (2.1)

we can complement Lemma 2.1 as follows.

Lemma 2.2. Assume that (2.1) holds. Then every map f ∈ W s,p(SN ; SN ) can be approximated by a sequence
(fn) ⊂ C∞(SN ; SN ) such that every fn is constant near some point.

We note that condition (2.1) is equivalent to (1.3) + the non embedding W s,p 	↪→ C1. The non embedding
is also necessary for the validity of the conclusion of Lemma 2.2. Indeed, a C1 function f , say on the real
line, whose derivative does not vanish, cannot be approximated in C1 by a sequence (fn) such that each fn is
constant near some point.

The proof of Lemma 2.2 is postponed to the Appendix.

Theorem 2.3 ([11]). For 1 ≤ p < ∞, the degree of smooth maps f : SN → SN is continuous with respect to
the WN/p,p convergence.

As a consequence, under assumption (1.3) the degree extends to maps in WN/p,p(SN ; SN ). Moreover, if (fn)
and f are in WN/p,p and |fn − f |WN/p,p → 0, then deg fn → deg f .

This follows from the corresponding assertion for the BMO convergence [11] and the fact that WN/p,p ↪→
BMO.

When N = 1, an alternative equivalent definition of the degree can be obtained via lifting [10, 12]. In this
case, given f ∈W s,p(S1; S1), it is always possible to write

f(eıθ) = eıϕ(θ), ∀ θ ∈ R, for some ϕ ∈W s,p
loc (R; R) (2.2)

(no condition on s and p [2]).
If, in addition, (1.3) holds, then the function ϕ(· + 2π) − ϕ(·) is constant a.e. [2], and we have

deg f =
1
2π

(ϕ(· + 2π) − ϕ(·)). (2.3)

If instead of (1.3) we assume that either [sp > 1] or [s = 1 and p = 1], then ϕ is continuous and (2.3) becomes

deg f =
1
2π

(ϕ(2π) − ϕ(0)) =
1
2π

(ϕ(π) − ϕ(−π)). (2.4)

Finally, we mention the formula

deg f =
1
2π

�
S1
f ∧ ḟ , ∀ f ∈W 1,1(S1; S1). (2.5)

3. W 1,1 maps

Proof of Theorem 1.1 for p = 1, and Theorem 1.2, item 1.
Step 1. Proof of “≤” in (1.14)
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With no loss of generality we may assume that d1 > d2 and d1 > 0. Set d := d1 − d2 and L := d+ 1. We define
f(eıθ) := eıϕ(θ) ∈ Ed1 , g(eıθ) := eıψ(θ) ∈ Ed2 , where ϕ, ψ ∈W 1,1((0, 2π)) are defined as follows:

ϕ(θ) :=

{
Lθ, if θ ∈ [0, 2d π/L)
Ld2θ + 2(d1 − Ld2)π, if θ ∈ [2d π/L, 2 π),

and

ψ(θ) :=

{
L dist(θ, 2 π Z/L), if θ ∈ [0, 2d π/L)
ϕ(θ) − 2d π, if θ ∈ [2d π/L, 2 π)

(and thus on [0, 2d π/L] the graph of ψ is a zigzag consisting of d triangles).
For k ∈ Z, 0 ≤ k ≤ d− 1, set

Ik =
[
2k π
L

,
(2k + 1)π

L

]
and Jk =

[
(2k + 1)π

L
,

(2k + 2)π
L

]
.

Note that

ψ(θ) =

{
Lθ − 2k π, if θ ∈ Ik
2(k + 1)π − Lθ, if θ ∈ Jk,

so that g = f on Ik and g = f on Jk. Hence∣∣∣ḟ − ġ
∣∣∣ =

{
0, on Ik
−2 (sinϕ)ϕ′, on Jk.

Therefore �
S1

∣∣∣ḟ − ġ
∣∣∣ = 2

d−1∑
k=0

�
Jk

(cosϕ)′(θ) dθ = 4 d = 4 (d1 − d2).

Step 2. Proof of “≥” in (1.14):
We may assume that d := d1 − d2 > 0. We prove that when f ∈ Ed1 and g ∈ Ed2 we have

�
S1 |ḟ − ġ| ≥ 4d. The

map f/g is onto (since its degree is d 	= 0), and thus with no loss of generality we may assume that f(1) = g(1).
Write f(eıθ) = eıϕ(θ) g(eıθ), with ϕ ∈ W 1,1((0, 2π)). We have ϕ(2π) − ϕ(0) = 2d π, and we may assume that
ϕ(0) = 0. Consider 0 = t0 < τ0 < t1 < · · · < τd−1 < td = 2π such that ϕ(tj) = 2πj, j = 0, . . . , d, and
ϕ(τj) = 2πj+π, j = 0, . . . , d−1. Thus the function w := |f−g| satisfies w(eıtj ) = 0 and w(eıτj ) = 2. Therefore,
we have

�
S1 |ẇ| ≥ 4d. In order to conclude, it suffices to note the inequality |ẇ| ≤ |ḟ − ġ| a.e. �

We now turn to the properties of the Hausdorff distance in W 1,1.

Proof of Theorem 1.4, item 1.
Step 1. Proof of “≤” in (1.19):
By symmetry, it suffices to prove that for every f ∈ Ed1 and every ε > 0 there exists some g ∈ Ed2 satisfying

�
S1
|ḟ − ġ| ≤ 2π|d1 − d2| + ε. (3.1)

By density of C∞(S1; S1) in W 1,1(S1; S1) it suffices to prove (3.1) for smooth f . Moreover, we may assume
that f is constant near some point, say 1 (see Lem. 2.2). We may thus write f(eıθ) = eıϕ(θ), θ ∈ [0, 2π], for some
smooth ϕ satisfying ϕ(2π)−ϕ(0) = 2π d1 and constant near 0. For a small λ > 0 define ψ = ψ(λ) on [0, 2π] by

ψ(θ) :=

⎧⎨⎩ϕ(θ) − 2d π
λ

θ, if θ ∈ [0, λ]

ϕ(θ) − 2d π, if θ ∈ (λ, 2π]
(3.2)
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(where d := d1 − d2), and then set g(eıθ) := eıψ(θ) ∈ Ed2 . Clearly,
�

S1
|ḟ − ġ| =

� λ

0

∣∣(eıψ − eıϕ)′
∣∣ = 2|d|π = 2π|d1 − d2|.

Step 2. Proof of
DistW 1,1 (Ed1 , Ed2) ≥ 2π |d1 − d2|, ∀ d1, d2 with 0 ≤ d1 < d2. (3.3)

Let f(z) := zd1 ∈ Ed1 . It suffices to prove that

|f − g|W 1,1 ≥ 2π (d2 − d1), ∀ g ∈ Ed2 .

By the triangle inequality, for any such g, we have�
S1
|ḟ − ġ| ≥

�
S1

[|ġ| − |ḟ |] ≥
∣∣∣∣�

S1
g ∧ ġ

∣∣∣∣ − 2πd1 = 2π (|d2| − d1) = 2π (d2 − d1), (3.4)

since |ḟ | = d1 on S
1.

Step 3. Proof of
DistW 1,1(Ed1 , Ed2) ≥ 2π |d1 − d2|, ∀ d1 ≥ 0, ∀ d2 ∈ Z with d2 < d1. (3.5)

The case d1 = 0 is trivial since we may take as above f(z) := z0 = 1 and apply (3.4).
We now turn to the case d1 > 0 and d2 < d1 which is quite involved. Inequality (3.5) is a direct consequence

of the following

Lemma 3.1. Assume that d1 > 0 and d2 < d1. Then for each δ > 0 there exists f ∈ Ed1 such that�
S1
|ḟ − ġ| ≥ (2π − δ) (d1 − d2), ∀ g ∈ Ed2 . (3.6)

Proof. For large n (to be chosen later) let fn(eıθ) = eıϕn(θ) ∈ Ed1 , with ϕn ∈ W 1,1((0, 2π)) defined by setting
ϕn(0) = 0 and

ϕ′
n(θ) =

{
d1n, θ ∈ [2j π/n2), (2j + 1)π/n2]
−d1(n− 2), θ ∈ ((2j + 1)π/n2), (2j + 2)π/n2],

j = 0, 1, . . . , n2 − 1. (3.7)

Therefore, the graph of ϕn is a zigzag of n2 triangles. Note that the average gradient of ϕn is d1, since
� (2j+2) π/n2

2j π/n2
ϕ′
n = 2π

d1

n2
, j = 0, 1, . . . , n2 − 1. (3.8)

Hence
� 2π

0
ϕ′
n = 2π d1 (so indeed fn ∈ Ed1). On the other hand, note that

� (2j+2) π/n2)

2j π/n2
|ϕ′
n| = 2(n− 1)π

d1

n2
, j = 0, 1, . . . , n2 − 1 =⇒

� 2π

0

|ϕ′
n| = 2(n− 1)π d1,

i.e., limn→∞ ‖ḟn‖L1(S1) = ∞.
Consider now any g ∈ Ed2 and write g(eıθ) = eıψ(θ) with ψ ∈ W 1,1((0, 2π)) satisfying ψ(2π) − ψ(0) = 2π d2.

For convenience we extend both ϕn and ψ to all of R in such a way that the extensions are continuous functions
whose derivatives are 2π-periodic. Set h = fn g ∈ Ed with d := d1 − d2 > 0. Hence, h(eıθ) = eıη(θ) with
η := ϕn − ψ. We can find d (closed) arcs on S1, I1, . . . , Id, with disjoint interiors such that:

Ij = {eıθ; θ ∈ [sj , tj]}, h(eısj ) = h(eıtj ) = 1 and
� tj

sj

η′ = 2π, for j = 1, . . . , d.
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For small ε > 0 define, for each j = 1, . . . , d:

α−
j = max

{
θ ∈ [sj , tj ]; h(eıθ) = eıε

}
, β−

j = min
{
θ ∈ [α−

j , tj ] ; h(eıθ) = eı(π−ε)
}
,

α+
j = max

{
θ ∈ [β−

j , tj ]; h(eıθ) = eı(π+ε)
}
, β+

j = min
{
θ ∈ [α+

j , tj ]; h(eıθ) = eı(2π−ε)
}
.

(3.9)

Then, set I±j := {eıθ; θ ∈ [α±
j , β

±
j ]}. Using the equality

fn − g = eıϕn − eıψ = 2ı sin
(
ϕn − ψ

2

)
eı (ϕn+ψ)/2,

we obtain

|ḟn − ġ|2 = cos2
(
ϕn − ψ

2

)
(ϕ′
n − ψ′)2 + sin2

(
ϕn − ψ

2

)
(ϕ′
n + ψ′)2. (3.10)

Note that by the definition of I±j we have

z = eıθ ∈ I±j =⇒
∣∣∣∣sin(

ϕn(θ) − ψ(θ)
2

)∣∣∣∣ , ∣∣∣∣cos
(
ϕn(θ) − ψ(θ)

2

)∣∣∣∣ ≥ sin(ε/2). (3.11)

Combining (3.11) with (3.10) and (3.7) gives

�
I±j

|ḟn − ġ| ≥ sin(ε/2)
� β±

j

α±
j

√
(ϕ′
n − ψ′)2 + (ϕ′

n + ψ′)2

≥
√

2 sin(ε/2)
� β±

j

α±
j

|ϕ′
n| ≥

√
2 sin(ε/2) d1(n− 2) |I±j |,

(3.12)

where |I±j | := β±
j − α±

j . If for one of the arcs I±j there holds

√
2 sin(ε/2) d1(n− 2) |I±j | > 2πd,

then we clearly have
�

S1 |ḟ − ġ| > 2πd by (3.12), and (3.6) follows. Therefore, we are left with the case where

|I−j |, |I+
j | ≤

c0
n
, j = 1, . . . , d, (3.13)

where c0 = c0(d1, d2, ε).
While in the previous case the lower bound followed from the fact that |ϕ′

n| is large (i.e., of the order of n),
the argument under assumption (3.13) uses another property of ϕn. Namely, thanks to (3.8), the change of ϕn
on an interval of length O(1/n) (like is the case for I±j ) is only of the order O(1/n). It follows that fn is “almost”
a constant on the corresponding arc and an important contribution to the BV norm of fn − g comes from the
change of the phase ψ on the corresponding interval. The latter equals approximately π− 2ε, and summing the
contributions from all the arcs yields the desired lower bound. The details are given below.

In the sequel we will denote by c different constants depending on d1, d2 and ε alone. A direct consequence
of (3.8) that will play a key role in the sequel is the following:∣∣∣∣�

J

ϕ′
n

∣∣∣∣ ≤ c

n
, for every interval J ⊂ R with |J | ≤ c0

n
· (3.14)

This implies that
|fn(z1) − fn(z2)| ≤

c

n
, ∀ z1, z2 ∈ I±j , j = 1, . . . , d.
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Therefore, for each I±j there exists ν±j ∈ S1 such that

|fn(z) − ν±j | ≤
c

n
, ∀ z ∈ I±j , j = 1, . . . , d. (3.15)

By (3.15) we have ∣∣1 − |g(z) − (fn(z) − ν±j )|
∣∣ ≤ c

n
, ∀ z ∈ I±j , j = 1, . . . , d. (3.16)

Fix an arc I±j . By (3.16), we can define on [α±
j , β

±
j ] a W 1,1-function ψn = ψn,j,±, determined uniquely up to

addition of an integer multiple of 2π, by

g(eıθ) − (fn(eıθ) − ν±j ) = |g(eıθ) − (fn(eıθ) − ν±j )| eıψn(θ). (3.17)

From (3.15)–(3.17) we have
|eıψ(θ) − eıψn(θ)| ≤ c

n
, ∀ θ ∈ [α±

j , β
±
j ], (3.18)

and
|ġ(eıθ) − ḟn(eıθ)| ≥ |g(eıθ) − (fn(eıθ) − ν±j )| |ψ′

n(θ)| ≥
(
1 − c

n

)
|ψ′
n(θ)|. (3.19)

By (3.19), we have

�
I±j

|ġ − ḟn| ≥
(
1 − c

n

)� β±
j

α±
j

|ψ′
n| ≥

(
1 − c

n

)
|ψn(β±

j ) − ψn(α±
j )|. (3.20)

By (3.18), (3.20),(3.14) and (3.9), we obtain
�
I±j

|ġ − ḟn| ≥
(
1 − c

n

)
|ψ(β±

j ) − ψ(α±
j )| − c

n
≥

(
1 − c

n

)
|η(β±

j ) − η(α±
j )| − c

n
≥

(
1 − c

n

)
(π − 2ε). (3.21)

Summing (3.21) over the 2d arcs I−j , I+
j , j = 1, . . . , d yields

�
I±j

|ġ − ḟn| ≥
(
1 − c

n

)
(2π d− 4ε d). (3.22)

Finally we choose ε = δ/8 and n ≥ 4π
δ
c(d1, d2, ε) and deduce from (3.22) that (3.6) holds. �

Step 4. Proof of (1.19) completed:
Combining Steps 1, 2 and 3 we find that

DistW 1,1 (Ed1 , Ed2) = 2π |d1 − d2|, ∀ d1 ≥ 0, ∀ d2 ∈ Z,

which yields directly
DistW 1,1(Ed1 , Ed2) = 2π |d1 − d2|, ∀ d1 ∈ Z, ∀ d2 ∈ Z. �

We close this section with some results concerning the attainability of DistW 1,1 (Ed1 , Ed2). For any d1 	= d2 we
may ask (question 1) whether there exists f ∈ Ed1 such that

dW 1,1 (f, Ed2) := inf
g∈Ed2

|f − g|W 1,1 = DistW 1,1(Ed1 , Ed2) , (3.23)

and in case the answer to question 1 is positive for some f ∈ Ed1 , we may ask (question 2) whether the infimum
infg∈Ed2

|f − g|W 1,1 is actually a minimum, i.e., for some g ∈ Ed2 ,

|f − g|W 1,1 = dW 1,1(f, Ed2) = DistW 1,1(Ed1 , Ed2) . (3.24)
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There is a trivial case where the answer to both questions is affirmative, namely, when 0 = d1 	= d2. Indeed, for
f = 1 and g(z) = zd2 we clearly have,

|f − g|W 1,1 =
�
S1

|ġ| = 2π|d2| = DistW 1,1(E0, Ed2) .

The next proposition provides answers to these attainability questions, demonstrating different behaviors ac-
cording to the sign of d1(d2 − d1).

Proposition 3.2. We have

1. If d1(d2 − d1) > 0 then f ∈ Ed1 satisfies (3.23) if and only if

d1(f ∧ ḟ) ≥ 0 a.e. in S
1. (3.25)

Among all maps satisfying (3.23), some satisfy (3.24) and others do not.
2. If d1(d2 − d1) < 0 then for every f ∈ Ed1 we have dW 1,1 (f, Ed2) < DistW 1,1(Ed1 , Ed2), so (3.23) is never

satisfied.

The proof relies on several lemmas.

Lemma 3.3. Let d1, d2 ∈ Z be such that d1(d2 − d1) > 0. If f ∈ Ed1 satisfies (3.25) then
�

S1
|ḟ − ġ| ≥ 2π|d1 − d2|, ∀ g ∈ Ed2 . (3.26)

If the stronger condition
d1(f ∧ ḟ) > 0 a.e. in S

1, (3.27)

holds, then �
S1
|ḟ − ġ| > 2π|d1 − d2|, ∀ g ∈ Ed2 . (3.28)

Proof of Lemma 3.3. It suffices to consider the case 0 < d1 < d2. Note that (3.25) is equivalent to
�

S1 |ḟ | =� 2π

0
f ∧ ḟ = 2πd1, i.e., to f being a minimizer for

�
S1 |v′| over Ed1 ((4.3) for p = 1). Therefore the same

computation as in (3.4) yields (3.26).
Next assume the stronger condition (3.27). Writing f(eıθ) = eıϕ(θ), with ϕ ∈ W 1,1((0, 2π)), we then have

ϕ′ > 0 a.e. in (0, 2π). Suppose by contradiction that for some g ∈ Ed2 equality holds in (3.26). Then (3.4) yields

|ġ − ḟ | = |ġ| − |ḟ | , a.e. in S
1. (3.29)

Writing g(eıθ) = eıψ(θ), with ψ ∈W 1,1((0, 2π)), the same computation as in (3.10), gives

∣∣(eıψ − eıϕ)′
∣∣2 = cos2

(
ϕ− ψ

2

)
(ϕ′ − ψ′)2 + sin2

(
ϕ− ψ

2

)
(ϕ′ + ψ′)2. (3.30)

Combining (3.29) with (3.30) leads to

sin2

(
ψ − ϕ

2

)
(ψ′ − ϕ′)2 = sin2

(
ψ − ϕ

2

)
(ψ′ + ϕ′)2. (3.31)

The equality (3.31) clearly implies that ϕ′ = 0 a.e. on the set {f 	= g}. Since this set has positive measure, we
reached a contradiction to (3.27). �
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Lemma 3.4. If d1(d2 − d1) < 0 then for every f ∈ Ed1 there exists g ∈ Ed2 such that
�

S1
|ḟ − ġ| < 2π|d1 − d2|. (3.32)

The proof of Lemma 3.4 is quite involved. It is inspired by the work of Brezis and Coron (see [7, 9]) in a
two-dimensional setting, where the importance of a strict inequality like (3.32) was emphasized. The heart of
the estimate is the following lemma.

Lemma 3.5. Consider any f ∈ Ed1 and a point ζ ∈ S1, which is a Lebesgue point of ḟ with (f ∧ ḟ)(ζ) 	= 0.
Then for every d2 such that

(d2 − d1) · (f ∧ ḟ)(ζ) < 0 (3.33)

there exists g ∈ Ed2 satisfying (3.32).

Proof of Lemma 3.5. We may assume that condition (3.33) is satisfied by ζ = 1. Write f(eıθ) = eıϕ(θ) with
ϕ ∈W 1,1((0, 2π)) satisfying ϕ(2π)−ϕ(0) = 2πd1. By assumption, θ0 = 0 is a Lebesgue point of ϕ′ = f ∧ ḟ with
ϕ′(0) := α 	= 0 and we have

lim
δ→0

1
δ

� δ

0

|ϕ′ − α| = 0. (3.34)

Denote d = d1 − d2 and note that, by (3.33), we have αd > 0. For each small ε > 0 set g = eıψ , where ψ = ψε

is defined by

ψ(θ) =

⎧⎨⎩ϕ(θ) − 2d π
ε

θ, if θ ∈ [0, ε]

ϕ(θ) − 2d π, if θ ∈ [ε, 2 π].

By (3.30), we have �
S1
|ġ − ḟ | =

(
2|d|π
ε

) � ε

0

h(θ) dθ, (3.35)

where

h(θ) = hε(θ) :=

[
1 + 4 sin2

(
d π θ

ε

) {
−εϕ

′(θ)
2d π

+
(
εϕ′(θ)
2d π

)2
}]1/2

· (3.36)

Set F := ϕ′ − α and write
(hε(θ))2 = Xε + Yε + Zε, (3.37)

where

Xε = Xε(θ) := 1 − 2εα
d π

(
1 − εα

2d π

)
sin2

(
d π θ

ε

)
= 1 − 2εα

d π
sin2

(
d π θ

ε

)
+O(ε2), (3.38)

Yε = Yε(θ) :=
2εF
d π

(
−1 +

εα

d π

)
sin2

(
d π θ

ε

)
= O(εF ), (3.39)

and

Zε = Zε(θ) :=
ε2F 2

(d π)2
sin2

(
d π θ

ε

)
= O(ε2F 2). (3.40)

Since Xε ≥ 1/4 for small ε, for such ε we deduce from (3.37) that

hε(θ) ≤ (Xε)1/2 + |Yε| + (Zε)1/2. (3.41)

Integrating (3.41) over (0, ε) and using (3.34), (3.39) and (3.40) yields
� ε

0

hε(θ) dθ ≤
� ε

0

(Xε(θ))1/2 dθ + o(ε2). (3.42)
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From (3.38) we have

(Xε)1/2 = 1 − εα

d π
sin2

(
d π θ

ε

)
+O(ε2). (3.43)

Combining (3.35), (3.42) and (3.43) we obtain
�

S1
|ġ − ḟ | ≤ 2|d|π

ε

(
ε− εα

d π

� ε

0

sin2

(
d π θ

ε

)
+ o(ε2)

)
= 2|d|π − ε|α| + o(ε),

so that (3.32) holds for sufficiently small ε. �

Proof of Lemma 3.4. It suffices to consider the case where d1 > 0, so by assumption d2 − d1 < 0. Since
�

S1(f ∧
ḟ) = 2πd1 > 0, the set

A := {ζ ∈ S
1; ζ is a Lebesgue point of ḟ with (f ∧ ḟ)(ζ) > 0},

has positive measure. Applying Lemma 3.5 to any point ζ ∈ A we conclude that there exists g ∈ Ed2 for
which (3.32) holds. �

Proof of Proposition 3.2.
Step 1. Proof of item 1:
Assume without loss of generality that 0 < d1 < d2. Let f ∈ Ed1 satisfy (3.25). By (3.26), dW 1,1 (f, Ed2) ≥
2π(d2−d1). Since DistW 1,1(Ed1 , Ed2) = 2π(d2−d1) (by (1.19)) we obtain that f satisfies (3.23). On the other hand,
for f ∈ Ed1 for which (3.25) does not hold we conclude from Lemma 3.5 that dW 1,1(f, Ed2) < DistW 1,1(Ed1 , Ed2) =
2π(d2 − d1), so (3.23) does not hold for f .

For f ∈ Ed1 satisfying condition (3.27) (we may take for example f(ζ) = ζd1) we get from (3.28) that (3.24)
is violated (although (3.23) holds). Finally to show that (3.24) occurs for some f , choose ϕ ∈ W 1,1((0, 2π))
such that for some a ∈ (0, 2π) we have:

(i) ϕ′ ≥ 0 on [0, a].

(ii) ϕ(0) = 0, ϕ(a) = 2πd1.

(iii) ϕ = 2πd1 on [a, 2π].

Next define ψ on [0, 2π] by:

ψ(θ) =

⎧⎨⎩ϕ(θ), for θ ∈ [0, a]

2π d1 + 2π (d2 − d1)
θ − a

2π − a
, for θ ∈ (a, 2π].

Setting f(eıθ) = eıϕ(θ) and g(eıθ) = eıψ(θ) we clearly have f ∈ Ed1 and g ∈ Ed2 . Since f satisfies (3.25) we know
that dW 1,1 (f, Ed2) = 2π(d2 − d1). But clearly also |f − g|W 1,1 = 2π (d2 − d1).

Step 2. Proof of item 2:
The result follows directly from Lemma 3.4 and (1.19). �

Remark 3.6. If d1 = 0 and d2 	= 0 then for every non constant f ∈ E0 we have dW 1,1 (f, Ed2) <
DistW 1,1(E0, Ed2) = 2π|d2|. This implies that a constant map is the only map for which (3.23) holds. Indeed,
since

�
S1(f ∧ ḟ) = 0, there are Lebesgue points of f ∧ ḟ of both positive and negative sign. Hence, for every

d2 	= 0 we can find a Lebesgue point for which (3.33) is satisfied, and the result follows from Lemma 3.5.
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4. W 1,p maps, with 1 < p < ∞
Proof of Theorem 1.1 when 1 < p <∞. We first sketch the proof of the inequality “≥” in (1.15). Given any
f ∈ Ed1 and g ∈ Ed2 , set w := f g ∈ Ed, with d := d1 − d2. Let w̃ := T ◦w ∈ Ed where, as in [13,15], T : S1 → S1

is defined by
T (eıθ) = eıϕ with ϕ = ϕ(θ) = π sin(θ/2), ∀ θ ∈ (−π, π]. (4.1)

Noting that |eıθ − 1| =
2
π
|ϕ|, we obtain as in [13, 15] (with ∂τ standing for the tangential derivative)

�
S1
|∂τ (f − g)|p ≥

�
S1
|∂τ |f − g||p =

�
S1
|∂τ |f g − 1||p =

�
S1
|∂τ |w − 1||p

=
(

2
π

)p �
S1
|∂τ w̃|p ≥

(
2
π

)p
inf
v∈Ed

�
S1
|v̇|p.

(4.2)

The inequality “≥” in (1.15) clearly follows from (4.2) and the next claim:

min
v∈Ed

�
S1
|v̇|p = 2|d|p π. (4.3)

To verify (4.3) we first associate to each v ∈ Ed a function ψ ∈ W 1,p((−π, π); R) such that v(eıθ) = eıψ(θ),
θ ∈ [−π, π], with ψ(π) − ψ(−π) = 2d π. We then have, invoking Hölder inequality,

�
S1
|v̇|p =

� π

−π
|ψ′|p ≥ (2|d|π)p

(2π)p−1
,

whence the inequality “≥” in (4.3). On the other hand, the function w̃(eıθ) = eıdθ clearly gives equality in (4.3),
completing the proof of (4.3). Note that w̃ is the unique minimizer in (4.3), up to rotations. The proof of the
inequality “≤” in (1.15) can be carried out using an explicit construction, like the proof in [15] for p = 2. �

Next we turn to the question of attainment of the infimum in (1.15).

Proof of Theorem 1.2, items 2 and 3. The proof of the case p ≥ 2 is identical to the one given in [15] for p = 2,
so we consider here only item 3 (i.e., we let 1 < p < 2).

Step 1. The infimum in (1.15) is achieved when d2 = −d1

Assume that d2 = −d1. Let d := d1 − d2 = 2d1. We saw above that w̃(eıθ) = eıdθ realizes the minimum in (4.3).
Consider S := T−1 : S1 → S1 (see (4.1)), given explicitly by

S(eıθ) = eıψ , with ψ(θ) = 2 arcsin(θ/π), ∀θ ∈ [−π, π].

Although S is not Lipschitz, we do have w := S ◦ w̃ ∈ W 1,p(S1; S1) (i.e., w ∈ Ed). Indeed, this amounts to
1√

1 − t2
∈ Lp((1 − δ, 1)), which holds since p < 2. Since d is even and w has degree d, there exists f ∈ Ed1

satisfying w = f2. We let g := f ∈ Ed2 , so that w = f g. Note that f − g takes only purely imaginary values,
and therefore

|∂τ (f − g)| = |∂τ |f − g|| a.e. on S
1. (4.4)

For these particular f, g, w and w̃, we get, using (4.4) that all the inequalities in (4.2) are actually equalities,
and we see that the infimum in (1.15) is attained.

Step 2. If the infimum in (1.15) is achieved, then d2 = −d1

Assume that the infimum in (1.15) is achieved by two functions f ∈ Ed1 and g ∈ Ed2 . Set d := d1 − d2, w := f g
and w̃ := T ◦ w. We then have w, w̃ ∈ Ed. We may assume that d > 0. From the fact that both inequalities
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in (4.2) must be equalities we deduce that:

(i) w̃ is a minimizer in (4.3) and,
(ii) (4.4) holds.

From (i) it follows that w̃(eıθ) = eı(dθ+C) for some constant C, and we may assume that C = 0. Therefore,

w−1(1) = w̃−1(1) = {1, ω, ω2, . . . , ωd−1}, with ω = eı2π/d.

On the small arc Ij between ωj and ωj+1 we may write f − g = ρ eıψ with ρ = |f − g| and ψ ∈ W 1,p
loc , and we

have
|∂τ (f − g)|2 = ρ2[ψ̇]2 + [ρ̇]2.

By (ii), ψ̇ = 0 on Ij , so that ψ is constant on Ij , say ψ = αj on Ij . The equality f − g = ρ eıαj on Ij implies
that g = eı(2αj−π) f on Ij , and therefore g ∧ ġ = −f ∧ ḟ on each Ij . Since this is true on each Ij , we finally
conclude that d2 = −d1. �

5. W s,p maps, with sp > 1

Proof of Theorem 1.3, item 2.
Step 1. Proof of “�” in (1.18):
Fix a smooth map h ∈ E1 such that h(z) ≡ 1 when Re z ≤ 0.

Given d2, consider a smooth map g ∈ Ed2 such that g(z) ≡ 1 when Re z ≥ 0. Set f := hd1−d2 g ∈ Ed1 . Then

|f − g|W s,p � |d1 − d2|s. (5.1)

Indeed, estimate (5.1) is clear when s is an integer, since f − g = hd1−d2 − 1. The general case follows via
Gagliardo−Nirenberg.

Step 2. Proof of “�” in (1.18) when 0 < s ≤ 1.
We rely on an argument similar to the one in Step 2 in the proof of Theorem 1.1 in Section 3. Assume that
d := d1 − d2 > 0, and that f(1) = g(1). Write f(eıθ) = eıϕ(θ) g(eıθ), with ϕ ∈ W s,p((0, 2π)) and ϕ(0) = 0. Let
0 = t0 < τ0 < · · · < τd−1 < td = 2π be such that (f − g)(eıtj ) = 0 and |(f − g)(eıτj )| = 2. By scaling and the
hypotheses 0 < s ≤ 1 and sp > 1, we have

|h(b) − h(a)| � (b − a)s−1/p|h|W s,p((a,b)), ∀ a < b, ∀h ∈W s,p((a, b)). (5.2)

Applying (5.2) to h := (f − g)(eıθ) on (a, b) := (tj , τj), j = 0, . . . , d − 1, we obtain that |h|W s,p((tj ,τj)) �
1/(τj − tj)s−1/p, and thus

|f − g|pW s,p �
d−1∑
j=0

|h|pW s,p((tj ,τj))
�

d−1∑
j=0

1
(τj − tj)sp−1

� dsp,

the latter inequality following from Jensen’s inequality applied to the function x �→ 1/xsp−1, x > 0.

Step 3. Proof of “�” in (1.18) when s > 1.
The key ingredient in Step 4 is the Gagliardo−Nirenberg type inequality

|f |W θs,p/θ ≤ Cθ,s,p|f |θW s,p‖f‖1−θ
L∞ , ∀ s > 0, 1 ≤ p <∞ such that (s, p) 	= (1, 1), ∀ θ ∈ (0, 1). (5.3)

Let us note that, if f, g : S1 → S1 and deg f 	= deg g, then (by the argument leading to (1.11))

‖f − g‖L∞ = 2. (5.4)

By (5.3) and (5.4), we find that for every s, p, θ as in (5.3) we have

distW s,p(Ed1 , Ed2) ≥ C′
θ,s,p[distW θs,p/θ(Ed1 , Ed2)]1/θ , ∀ d1, d2 ∈ Z. (5.5)

If we take, in (5.5), θ such that θs < 1, we obtain Step 4 from Step 3. �
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6. Maps f : SN → SN

6.1. A useful construction

Throughout Section 6 we will make an extensive use of special smooth maps f : SN → SN , N ≥ 1. Such
maps “live” on a small spherical cap, say BR(σ), where BR(σ) is the geodesic ball of radius R < 1 centered at
some point σ of SN , and are constant on SN \ BR(σ). Since the construction is localized we may as well work
first on a flat ball BR(0) centered at 0 in RN and then we will transplant f to BR(σ), thereby producing a map
f : SN → SN . On BR(0), the map f is determined by a smooth function F : [0, R] → R and a smooth map
h : SN−1 → SN−1.

For simplicity we start with the case N ≥ 2 since the case N = 1 is somewhat “degenerate” and will be
discussed later.

Fix a smooth function F : [0, R] → R satisfying

F (r) = 0 for r near 0. (6.1)

F (r) = k π for r near R, where k ∈ Z. (6.2)

We may now define f : BR(0) → S
N by

f(x) = (sinF (|x|)h(x/|x|), (−1)N cosF (|x|)). (6.3)

Note that f is well defined and smooth on BR(0) (by (6.1)) and that f is constant near ∂BR(0) (by (6.2)).
More precisely

f(0) = (0, 0, . . . , 0, (−1)N) =

{
N, if N is even
S, if N is odd

and

for x near ∂BR(0), f(x) = (0, 0, . . . , 0, (−1)N cos kπ) = C :=

{
N, if N + k is even
S, if N + k is odd

;

here N = (0, 0, . . . , 0, 1) and S = (0, 0, . . .0,−1) are the north pole and the south pole of SN . We transport f
into BR(σ) ⊂ SN via a fixed orientation preserving diffeomorphism and extend it by the value C on SN \BR(σ).
In this way we have defined a smooth map f : SN → SN .

For the purpose of Lemmas 6.1 and 6.2 below it suffices to assume that F : [0, R] → R is merely continuous
and satisfies F (0) = 0, F (R) = kπ, so that f : SN → SN is a well-defined continuous map.

Lemma 6.1. Let k ∈ {0, 1}. We have
deg f = k deg h. (6.4)

Proof. We emphasize the fact that here we assume N ≥ 2, although the conclusion still holds when N = 1 (see
below).

It will be convenient to assume that F satisfies (6.1) and (6.2); the general case follows by density.
The cases where k = 0 (respectively d = 0) are trivial via homotopy to F ≡ 0 (respectively h ≡ C). With no

loss of generality, we assume that d := deg h > 0 and k = 1.
Since f is constant outside BR(σ), it suffices to determine the degree of f|BR(σ), and then we may as well

work on the flat ball BR(0) ⊂ RN . We will work in the class of maps

C0
C(BR(0); SN ) := {g : BR(0) → S

N ; g = C on ∂BR(0)},

which have a well-defined degree (since they can be identified with maps in C0(SN ; SN )).

Step 1. Proof of (6.4) when d = 1 and k = 1:
This case can be reduced by homotopy to the case h = Id and F : [0, R] → [0, π] is non decreasing. In this case,
for almost every s ∈ S

N the equation f(t) = s has exactly one solution t, and f is orientation preserving at t.
Thus deg f = 1.
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Step 2. Proof of (6.4) when d > 1 and k = 1:
Consider smooth maps h1, h2, . . . , hd : SN−1 → SN−1 of degree 1 which “live” in different regions ω1, . . . , ωd
of SN−1, in the sense that ωj ∩ ωk = ∅ when j 	= k and hj = (0, 0, . . . , 0, 1) in SN−1 \ ωj , ∀ j. We glue these
maps together and obtain a smooth map h̃ : SN−1 → SN−1 of degree d. Since h and h̃ are homotopic within
C∞(SN−1; SN−1), the map f and the map f̃ corresponding to h̃ (via (6.3)) are homotopic within C∞(BR(0); SN ).
Thus deg f = deg f̃ .

On the other hand, let fj be the map associated to hj via (6.3). Set

Ωj := {r y; y ∈ ωj , 0 < r < R}.

Note that the Ωj ’s are mutually disjoint.
If x ∈ BR(0) \Ωj , then fj(x) ∈ C, where

C := {(0, 0, . . . , 0, sin θ, cos θ); θ ∈ R} ⊂ S
N

(since for such x we have h(x/|x|) = (0, 0, . . . , 0, 1)). Similarly, if x ∈ BR(0) \ ∪jΩj , then f(x) ∈ C.
Since C has null measure in SN (here we use N ≥ 2), we may find some value z ∈ SN \ C regular for f (and

thus for each fj). For such z, we have

deg f =
∑

x∈f−1(z)

sgn Jac f(x) =
∑
j

∑
x∈f−1(z)∩Ωj

sgn Jac f(x) =
∑
j

deg fj = d,

the latter equality following from Step 1. �

The conclusion of Lemma 6.1 also holds for N = 1 and arbitrary k, but this requires a separate argument.
When N = 1, we have SN−1 = S0 = {−1, 1} and we have (modulo symmetry) only two maps h : S0 → S0,
namely

h1(−1) = −1, h1(1) = 1,

h2(−1) = 1, h2(1) = 1.

Then deg h1 = 1 and deg h2 = 0.
The associated maps f1, f2 defined on BR(0) = (−R,R) with values in S1 are

f1(x) =

⎧⎨⎩(sinF (x), − cosF (x)), if x > 0

(− sinF (−x), − cosF (−x)), if x < 0,

f2(x) =

⎧⎨⎩(sinF (x), − cosF (x)), if x > 0

(sinF (−x), − cosF (−x)), if x < 0.

Clearly f1 = eıϕ1 and f2 = eıϕ2 , where

ϕ1(x) =

⎧⎨⎩−π/2 + F (x), if x > 0

−π/2 − F (−x), if x < 0,

ϕ2(x) =

⎧⎨⎩−π/2 + F (x), if x > 0

−π/2 + F (−x), if x < 0.
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Thus

deg f1 =
1
2π

(ϕ1(R) − ϕ1(−R)) =
2F (R)

2π
= k

and

deg f2 =
1
2π

(ϕ2(R) − ϕ2(−R)) = 0.

For the record, we call the attention of the reader to the following generalization of Lemma 6.1

Lemma 6.2. For every k ∈ Z,

deg f =

⎧⎪⎨⎪⎩
k deg h, if N is odd
deg h, if N is even and k is odd
0, if N is even and k is even.

(6.5)

Proof. Assume e.g. that k ≥ 2. (The case k < 0 is handled similarly and is left to the reader).
As explained in the proof of Lemma 6.1, we may work in the class C0

C(BR(0); SN ).
We may assume via homotopy that F (r) = k π r/R. Set rj = j R/k, j = 0, . . . , k. Consider the functions

Fj(r) :=

⎧⎪⎨⎪⎩
0, if r < rj−1

F (r) − (j − 1)π, if rj−1 ≤ r < rj
π, if r ≥ rj ,

j = 1, . . . , k.

Consider also the maps fj corresponding to Fj via (6.3). Then f is obtained by gluing the maps (−1)j−1 fj .
By Lemma 6.1, we have

deg fj = deg h, j = 1, . . . , k. (6.6)

We next note that

for every g ∈ C0
C(BR(0); SN ), deg(−g) =

{
deg g, if N is odd
− deg g, if N is even.

(6.7)

By (6.6) and (6.7), we have

deg f =
∑
j

deg
(
(−1)j−1 fj

)
=

⎧⎪⎨⎪⎩
k deg h, if N is odd
deg h, if N is even and k is odd
0, if N is even and k is even.

�

6.2. Proof of Theorem 1.5, item 2

Step 1. Proof of the lower bound in (1.24):
Since we assume that

[s > 0 and sp > N ] or [s = N and p = 1], (6.8)

the space W s,p is embedded continuously in the space of continuous functions, and there exists a constant CN,s,p
such that ∥∥∥∥f −

�
SN

f

∥∥∥∥
L∞

≤ CN,s,p|f |W s,p , ∀ f ∈W s,p. (6.9)

Step 1 is a direct consequence of the next lemma.
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Lemma 6.3. In all spaces W s,p satisfying (6.8) we have, for all f ∈ Ed1 , g ∈ Ed2 , d1 	= d2,

dW s,p(f, g) ≥ 1
CN,s,p

, (6.10)

where CN,s,p is the constant in (6.9).

Proof of Lemma 6.3. Recall (see (1.11)) that

‖f − g‖L∞ = 2. (6.11)

From (6.9) we have ∥∥∥∥(f − g) −
�

SN

(f − g)
∥∥∥∥
L∞

≤ CN,s,p|f − g|W s,p , (6.12)

so that
2 = ‖f − g‖L∞ ≤ |A| + r, (6.13)

where A :=
�

SN (f − g) and r := CN,s,p|f − g|W s,p .
We may assume that A 	= 0, otherwise (6.10) is clear. From (6.12) we have

f(SN ) ⊂ S
N +A+B(0, r). (6.14)

Clearly,

− A

|A| 	∈ S
N +A+B(0, r) if |A| > r,

and then f cannot be surjective – so that deg f = 0. Similarly, we have deg g = 0. This is impossible since
d1 	= d2, and therefore

|A| ≤ r = CN,s,p|f − g|W s,p . (6.15)

Combining (6.13) and (6.15) yields 1 ≤ CN,s,p|f − g|W s,p . �

Step 2. Proof of the upper bound in (1.24):
We will construct maps f ∈ Ed1, g ∈ Ed2 , constant outside some small neighborhood BR(N) of the north pole
N = (0, 0, . . . , 0, 1) of SN , satisfying (1.24). We will use the setting described in Section 6.1.

We start with the case d1 = d, d2 = 0. Let h : SN−1 → SN−1 be any smooth map of degree d (Here we
use the assumption N ≥ 2. If N = 1, such an h does not exist when |d| ≥ 2; see the discussion in Section 6.1
concerning the case N = 1). Let G : [0, R] → R be a smooth function such that

G(r) =

⎧⎪⎨⎪⎩
0, if r ≤ R/4
π/2, if R/3 ≤ r ≤ 2R/3
0, if 3R/4 ≤ r ≤ R.

Let F : [0, R] → R be defined by

F (r) :=

{
G(r), if 0 ≤ r < R/2
π −G(r), if R/2 ≤ r ≤ R.

Clearly, F and G satisfy assumptions (6.1) and (6.2).
We now define as in Section 6.1

f(x) = (sinF (|x|)h(x/|x|), (−)N cosF (|x|)),
g(x) = (sinG(|x|)h(x/|x|), (−1)N cosG(|x|)).
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From Lemma 6.1 we have deg f = d and deg g = 0. Clearly

sinF (r) = sinG(r), ∀ r ∈ [0, R],

and thus

f(x) − g(x) =

{
0, if |x| < R/2
(0, 0, . . . , 0, 2 (−1)N cosF (|x|)), if R/2 ≤ |x| < R.

In the case where d1 = d and d2 = 0, the upper bound (1.24) follows from the fact that f−g does not depend
on d.

We next turn to the general case. Consider a map m ∈ C∞(RN ; SN ) such that m(x) = N when |x| > R/4
and degm = d2. Then, with d := d1 − d2 and with f and g as above, consider

f̃(x) =

{
m(x), if |x| < R/4
f(x), if R/4 ≤ |x| < R,

g̃(x) =

{
m(x), if |x| < R/4
g(x), if R/4 ≤ |x| < R.

Then f̃ ∈ Ed1 , g̃ ∈ Ed2 , and f̃ − g̃ = f − g, whence (1.24). �

6.3. Proof of Theorem 1.5, item 1

Here N ≥ 1. A key ingredient is the following

Lemma 6.4. There are two families of smooth maps fε, gε : SN → SN , defined for ε small, such that

fε(s) = gε(s) = N, ∀ s ∈ Bε/4(S), (6.16)

fε(s) = S, ∀ s ∈ S
N \Bε1/2(S), (6.17)

gε(s) = N, ∀ s ∈ S
N \Bε1/2(S), (6.18)

deg fε = 1, (6.19)
deg gε = 0, (6.20)

|fε − gε|WN/p,p(SN ) → 0 as ε→ 0, ∀ 1 < p <∞. (6.21)

Granted Lemma 6.4 we proceed with the

Proof of Theorem 1.5, item 1. Assume e.g. that d := d1 − d2 > 0. We fix d distinct points σ1, . . . , σd ∈ SN .
Note that fε−S has support in Bε1/2(S). Therefore, for sufficiently small ε, we may glue d copies of fε centered
at σ1, . . . , σd ∈ SN . We denote by f̃ε the resulting map. By construction f̃ε − S is supported in the union of
mutually disjoint balls Bε1/2(σi), i = 1, . . . , d. From (6.19) we have

deg f̃ε = d. (6.22)

Next we consider a family of smooth maps hε : S
N → S

N such that

deg hε = d2 (6.23)

and
hε(s) = N, ∀ s ∈ S

N \Bε/8(σ1). (6.24)

(The construction of hε is totally standard.)
We glue hε to f̃ε by inserting it in Bε/8(σ1) (here we use (6.16)). The resulting map is denoted by f̂ε.

From (6.22) and (6.23) we have
deg f̂ε = d+ d2 = d1, (6.25)

so that f̂ε ∈ Ed1 .
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We proceed similarly with gε using the same points σ1, . . . , σd ∈ SN . We first obtain g̃ε such that, by (6.20),

deg g̃ε = 0. (6.26)

We then glue hε to gε as above and obtain some ĝε such that, by (6.23) and (6.26),

deg ĝε = 0 + d2 = d2, (6.27)

so that ĝε ∈ Ed2 .
Clearly f̂ε − ĝε consists of d glued copies of fε − gε. Therefore∣∣∣f̂ε − ĝε

∣∣∣
WN/p,p

≤ d |fε − gε|WN/p,p

and thus
distWN/p,p(Ed1 , Ed2) ≤

∣∣∣f̂ε − ĝε

∣∣∣
WN/p,p

→ 0 as ε→ 0. �

�

We now turn to the

Proof of Lemma 6.4. Since the construction is localized on a small geodesic ball, we may as well work on the
flat ball BR(0) centered at 0 in RN , with R > ε1/2.

Fix a smooth nonincreasing function K : R → [0, 1] such that

K(t) =

{
1, if t ≤ 1/4
0, if t ≥ 3/4.

(6.28)

Consider the family of radial functions Hε(x) = Hε(|x|) : RN → [0, 1] defined by

Hε(x) = Hε(|x|) :=

⎧⎨⎩K
(

1
4
− 1

2 ln 2
ln

(
ln 1/|x|
ln 1/ε

))
, if |x| < 1

0, if |x| ≥ 1.
(6.29)

Here, ε is a parameter such that
0 < ε < 1/e2. (6.30)

We also consider the radial functions Fε(r) and Gε(r) defined by

Fε(r) :=

{
π (1 −K(r/ε))/2, if r < ε

π (1 −Hε(r)/2), if ε ≤ r < R
(6.31)

and

Gε(r) :=

{
Fε(r), if r < ε

π − Fε(r) = πHε(r)/2, if ε ≤ r < R.
(6.32)

Note that Fε and Gε are smooth (this is clear in the regions {r < ε} and {r > 3ε/4}).
As in Section 6.1 set

fε(x) =
(

sinFε(|x|)
x

|x| , (−1)N cosFε(|x|)
)
, ∀x ∈ BR(0),

gε(x) =
(

sinGε(|x|)
x

|x| , (−1)N cosGε(|x|)
)
, ∀x ∈ BR(0).
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G
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Figure 1. Plots of Fε and Gε given by (6.31) and (6.32).

It is clear (using Lem. 6.1) that (6.16)–(6.20) hold. Moreover,

fε(x) − gε(x) =
(
0, 0, . . . , 0, 2 (−1)N+1 cos

(π
2
Hε(|x|)

))
, ∀x ∈ BR(0),

(since Hε(r) = 1 when r < ε by (6.29)). Therefore

|fε − gε|WN/p,p = 2
∣∣∣cos

(π
2
Hε

)∣∣∣
WN/p,p

.

Consider the function
K̃(r) = 1 − cos

(π
2
K(r)

)
, ∀ r ∈ R.

Clearly K̃ satisfies (6.28). Consider the function H̃ε derived from K̃ via (6.29), so that

H̃ε(x) = 1 − cos
(π

2
Hε(x)

)
, ∀x ∈ R

N ,

and therefore
|fε − gε|WN/p,p(RN ) = 2

∣∣∣H̃ε

∣∣∣
WN/p,p(RN )

→ 0 as ε→ 0

by (A.5) in Lemma A.1 (applied to K̃). �

6.4. Proof of Theorem 1.7, item 1 (and of Thm. 1.4, item 2)

We rely on the following result, whose proof is postponed to the Appendix.

Lemma 6.5. Let N ≥ 1 and 1 ≤ p < ∞. Fix a geodesic ball B ⊂ SN (of small radius). Then there exists a
map h : SN → SN (depending on d) such that

1. deg h = d.
2. h = (0, 0, . . . , 0, 1) outside B.
3. |h|WN/p,p ≤ CN,p|d|1/p.

Granted Lemma 6.5, we proceed as follows. Let g ∈ Ed2 be a smooth map such that g is constant in a neigh-
borhood of some closed ball B. Such maps are dense in Ed2 , and with no loss of generality we assume that
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g = (0, 0, . . . , 0, 1) near B. Let h be as in the above lemma, with d := d1 − d2, and set f =

{
g, in SN \B
h, in B

.

Then clearly f ∈ Ed1 and

distWN/p,p(g, Ed1) ≤ |f − g|WN/p,p ≤ CN,p|d1 − d2|1/p. (6.33)

The validity of (6.33) for arbitrary g ∈ Ed2 follows by density. �

6.5. Proof of Theorem 1.7, item 2 (and of Thm. 1.4, item 3)

This time the key construction is provided by the following

Lemma 6.6. Let N ≥ 1. Fix d1 ∈ Z. Then there exists a sequence of smooth maps fn : SN → SN (with
sufficiently large n) such that:

1. deg fn = d1.
2. For every geodesic ball B ⊂ SN of radius 1/n, fn(B) = SN .

Granted Lemma 6.6, we claim that the sequence (fn) satisfies

distW s,p(fn, Ed2) ≥ C′
s,p,N,αn

α, with C′
s,p,N,α > 0, (6.34)

for any 0 < α ≤ 1 such that W s,p ↪→ Cα. Clearly, the desired result follows from (6.34).
In order to prove (6.34), we argue by contradiction. Then, possibly along a subsequence still denoted fn,

there exist maps gn ∈ Ed2 such that

|fn − gn|Cα = o(nα) as n→ ∞; (6.35)

here, we consider the Cα semi-norm

|f |Cα := sup
{
|f(x) − f(y)|

|x− y|α ; x, y ∈ S
N , x 	= y

}
.

By (6.11), for each n there exists a point s = sn such that gn(s) = −fn(s). With no loss of generality, we may
assume that fn(s) = (0, . . . , 0, 1) and therefore gn(s) = (0, . . . , 0,−1). Let hn denote the last component of
fn − gn and let Bn denote the ball of radius 1/n centered at s. By (6.35), we have hn ≥ 2 − o(1) in Bn. On
the other hand, Lemma 6.6, item 2, implies that there exists some t ∈ Bn such that fn(t) = (0, . . . , 0,−1). It
follows that hn(t) ≤ 0. This leads to a contradiction for large n, and thus (6.34) is proved. �

7. Some partial results towards Open Problems 2, 2′ and 3

7.1. Full answer to Open Problem 2′ when N = 1 or 2, 1 ≤ p ≤ 2, and d1 d2 ≥ 0

We start with the special cases [N = 1, p = 2] and [N = 2, p = 2]. In this cases, we are able to determine
the exact value of DistW s,p(Ed1 , Ed2) provided d2 > d1 ≥ 0 (Props. 7.1, 7.2 and their consequences in Prop. 7.3).
This allows us to give a positive answer to Open Problem 2′ when N = 2 and 1 ≤ p ≤ 2 under the extra
assumption that d1 d2 ≥ 0 (Cor. 7.4).

Proposition 7.1. Assume that N = 1 and d2 > d1 ≥ 0. Let f(z) = zd1, z ∈ S1. Then

|f − g|2H1/2 ≥ 4π2 (d2 − d1), ∀ g ∈ Ed2 . (7.1)



DISTANCES BETWEEN HOMOTOPY CLASSES OF WS,P (SN ; S
N ) 1227

Proof. We will use the Fourier decomposition of g ∈ H1/2(S1; S1), given by g(eıθ) =
∑∞

n=−∞ an eı nθ. Recall
(see e.g. [8]) that the Gagliardo semi-norm (1.16) has a simple form

|g|2H1/2 = 4π2
∞∑

n=−∞
|n| |an|2 (7.2)

and that for every g ∈ H1/2(S1; S1),

deg g =
∞∑

n=−∞
n |an|2, (7.3)

∞∑
n=−∞

|an|2 = 1. (7.4)

By (7.2) we have

1
4π2

|f − g|2H1/2 =
∑
n∈Z

n�=d1

|n| |an|2 + d1 |ad1 − 1|2 =
∑
n∈Z

|n| |an|2 + d1 (|ad1 − 1|2 − |ad1 |2)

=
∑
n∈Z

|n| |an|2 + d1 (1 − 2 Read1) ≥ d2 − d1,

by (7.3) and (7.4). �

Proposition 7.2. Assume that N = 2 and d2 > d1 ≥ 0. Let f ∈ Ed1 be defined by f(s) = T −1
((

T (s)
)d1)

where T : S2 → C is the stereographic projection. Then

|f − g|2H1 ≥ 8π (d2 − d1), ∀ g ∈ Ed2 . (7.5)

Proof. Recall that f is a harmonic map and that
�

S2
|∇f |2 = 8π d1; (7.6)

see e.g. [6] and the references therein. For any g ∈ Ed2 , write

|f − g|2H1 =
�

S2
|∇(f − g)|2 =

�
S2
|∇f |2 − 2

�
S2
|∇g|2(g · f) +

�
S2
|∇g|2

≥
�

S2
|∇g|2 −

�
S2
|∇f |2 =

�
S2
|∇g|2 − 8π d1 ≥ 8π (d2 − d1),

by (7.6) and Kronecker’s formula (1.1). �

Proposition 7.3. Let d1, d2 ∈ Z be such that d2 > d1 ≥ 0.

1. When N = 1 we have
DistH1/2(Ed1 , Ed2) = (4π2 |d1 − d2|)1/2. (7.7)

2. When N = 2 we have
DistH1 (Ed1 , Ed2) = (8π |d1 − d2|)1/2. (7.8)

Proof. Formula (7.8) follows from (1.2) and (7.5).
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On the other hand, (7.7) is a consequence of (7.1) and of the following one dimensional version of (1.2):

Given ε > 0 and f ∈ Ed1there exists some g ∈ Ed2such that |f − g|2H1/2 ≤ 4π2 |d1 − d2| + ε. (7.9)

Indeed, let 0 < δ < 1 and set hδ(z) :=
(
z − (1 − δ)

(1 − δ) z − 1

)−d
, with d := d1 − d2. Then hδ ∈ E−d, and thus

gδ := f hδ ∈ Ed2 . On the other hand, we clearly have hδ → 1 a.e. as δ → 0. We claim that

|gδ − f |2H1/2 = |hδ|2H1/2 + o(1) as δ → 0. (7.10)

Indeed, we start from the identity

(gδ − f)(x) − (gδ − f)(y) = (hδ(x) − 1) (f(x) − f(y)) + (hδ(x) − hδ(y)) f(y),

which leads to the inequalities

|(gδ − f)(x) − (gδ − f)(y)| ≥ |hδ(x) − hδ(y)| − |hδ(x) − 1| |f(x) − f(y)| (7.11)

and

|(gδ − f)(x) − (gδ − f)(y)| ≤ |hδ(x) − hδ(y)| + |hδ(x) − 1| |f(x) − f(y)|. (7.12)

By dominated convergence, we have

�
S1

�
S1

|hδ(x) − 1|2 |f(x) − f(y)|2
|x− y|2 = o(1) as δ → 0. (7.13)

Formula (7.10) is a consequence of (7.11)–(7.13).
Finally, (7.9) follows from (7.10) and the fact that |hδ|2H1/2 = 4π2 |d| ([1], Cor. 3.2). �

Corollary 7.4. Assume that N = 1 or 2, 1 ≤ p ≤ 2 and d1 d2 ≥ 0. Then

H − distWN/p,p(Ed1 , Ed2) ≥ C′
p,N |d1 − d2|1/p (7.14)

for some constant C′
p,N > 0.

Proof.
We may assume that d2 > d1 ≥ 0, and under this assumption we will prove that

DistWN/p,p(Ed1 , Ed2) ≥ C′
p,N |d1 − d2|1/p. (7.15)

The case N = 1, p = 1 follows from Theorem 1.4, item 1.
The case where N = 1, 1 < p < 2 follows from (7.1) and the trivial inequality

|f |2H1/2 ≤ |f |p
W 1/p,p (2‖f‖L∞)2−p, ∀ 1 < p < 2, ∀ f.

The case where N = 2 and 1 ≤ p < 2 follows from (7.5) and the Gagliardo−Nirenberg inequality

|f |2H1 ≤ Cp,N |f |p
W 2/p,p ‖f‖2−p

L∞ , ∀ f. �
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7.2. Full answer to Open Problem 2 when 1 ≤ p ≤ N + 1 and d1 d2 ≤ 0

In this section we prove that the answer to Open Problem 2 is positive when N ≥ 1, 1 ≤ p ≤ N + 1 and
d1 d2 ≤ 0 (Prop. 7.5). This implies that the answer to Open Problem 2′ is positive when N = 1 or 2 and
1 ≤ p ≤ 2 (Cor. 7.6). We end with a review of some simple cases of special interest which are still open (see
Rem. 7.7).

Proposition 7.5. Let N ≥ 1 and 1 ≤ p ≤ N + 1. Let d1, d2 ∈ Z be such that d1 d2 ≤ 0. We have

DistWN/p,p(Ed1 , Ed2) ≥ C′
p,N |d1 − d2|1/p. (7.16)

Proof. We rely on the following estimate, valid when 1 ≤ p ≤ N + 1:

| deg f − deg g| ≤ Cp,N |f − g|p/(N+1)

WN/p,p

(
|f |Np/(N+1)

WN/p,p + |g|Np/(N+1)

WN/p,p

)
, ∀ f, g ∈ WN/p,p(SN ; SN ), (7.17)

(see Prop. 7.9 below).
Fix a canonical f1 ∈ Ed1 (for example f1(z) = zd1 when N = 1 or the map given by Lemma 6.5 for N ≥ 1).
This f1 satisfies

|f1|WN/p,p ≤ Cp,N |d1|1/p. (7.18)

Therefore, with different constants Cp,N depending on p and N , but not on d1 or d2, we have

|d1 − d2| ≤Cp,N |f1 − g|p/(N+1)

WN/p,p

(
|d1|N/(N+1) + |g|Np/(N+1)

WN/p,p

)
≤Cp,N |f1 − g|p/(N+1)

WN/p,p

(
|d1|N/(N+1) + |f1|Np/(N+1)

WN/p,p + |f1 − g|Np/(N+1)

WN/p,p

)
≤Cp,N |f1 − g|p/(N+1)

WN/p,p

(
|d1|N/(N+1) + |f1 − g|Np/(N+1)

WN/p,p

)
, ∀ g ∈ Ed2 .

(7.19)

Using (7.19) and the fact that |d1| ≤ |d1 − d2| (since d1 d2 ≤ 0), we find that

|f1 − g|WN/p,p ≥ C′
p,N |d1 − d2|1/p, ∀ g ∈ Ed2 ,

whence (7.16). �

Corollary 7.4 and Proposition 7.5 lead to the following

Corollary 7.6. Assume that N = 1 or 2 and 1 ≤ p ≤ 2. Then

H − distW 1/p,p(Ed1 , Ed2) ≥ C′
p |d1 − d2|1/p, ∀ d1, d2 ∈ Z,

for some constant C′
p > 0.

Remark 7.7. We mention here a few cases of special interest not covered by the results in Sections 7.1 and 7.2.

1. In view of Propositions 7.3, item 1, and Proposition 7.5, we know that when N = 1 and p = 2 we have

DistH1/2(Ed1 , Ed2) ≥ C′ |d1 − d2|1/2, if either 0 ≤ d1 < d2 or d1 d2 < 0. (7.20)

We do not know whether (7.20) holds in the case where 0 < d2 < d1.
2. Let N = 2 and p = 2. We do not know whether the inequality

DistH1(Ed1 , Ed2) ≥ C′ |d1 − d2|1/2 (7.21)

(valid when 0 ≤ d1 < d2 or d2 d1 < 0 by Prop. 7.3, item 2, and Prop. 7.5), still holds in the remaining cases.
A more precise question is whether (7.21) holds with C′ = (8π)1/2.
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7.3. A very partial answer in the general case

Proposition 7.8. Let N ≥ 1 and 1 ≤ p <∞. Then for every d1 ∈ Z there exists some C′
p,d1

such that

DistWN/p,p(Ed1 , Ed2) ≥ C′
p,d1 |d1 − d2|1/p, ∀ d2 ∈ Z. (7.22)

Proof.

Step 1. Proof of (7.22) when d1 = 0.
Since any constant map belongs to E0 it suffices to show that

inf
g∈Ed2

|g|WN/p,p ≥ C′
p|d2|1/p, ∀ d2 ∈ Z. (7.23)

When p > N we rely on ([3], Thm. 0.6). The case p = N follows from Kronecker’s formula (1.1), which
leads to

C′
N |d2|1/N ≤ |g|W 1,N , ∀ g ∈ Ed2 . (7.24)

The case 1 ≤ p < N is a consequence of (7.24) and of the Gagliardo−Nirenberg inequality

|g|W 1,N ≤ C |g|p/N
WN/p,p ‖g‖1−p/N

L∞ = C |g|p/N
WN/p,p , ∀ g ∈ WN/p,p(SN ; SN ).

Step 2. Proof of (7.22) when d1 	= 0.
As in the proof of Proposition 7.5, we fix a canonical f1 ∈ Ed1 satisfying (7.18).

Next we claim that for every d2 ∈ Z, d2 	= d1,

inf
g∈Ed2

|f1 − g|WN/p,p = α(d1, d2) > 0. (7.25)

Indeed, we know from Theorem 2.3 that

inf
g∈Ed2

|f1 − g|WN/p,p = α(f1, d2) > 0. (7.26)

But since f1 is a canonical map in Ed1 we obtain (7.25).
Write, with g ∈ Ed2 ,

|f1 − g|WN/p,p ≥ |g|WN/p,p − |f1|WN/p,p ≥ C′
p |d2|1/p − Cp |d1|1/p, (7.27)

by (7.23) and (7.18). Clearly

C′
p |d2|1/p − Cp |d1|1/p ≥

1
2
C′
p |d2 − d1|1/p (7.28)

provided |d2| is sufficiently large, say |d2| ≥ C(p, d1). Finally we apply (7.25) for all values of d2, |d2| < C(p, d1),
d2 	= d1, and we obtain

inf
g∈Ed2

|f1 − g|WN/p,p ≥ Dp,d1 |d2 − d1|1/p (7.29)

with Dp,d1 > 0, for every d2 ∈ Z, |d2| < C(p, d1). Combining (7.27)–(7.29) yields

inf
g∈Ed2

|f1 − g|WN/p,p ≥ C′
p,d1 |d1 − d2|1/p, ∀ d2 ∈ Z,

with C′
p,d1

:= min{(1/2)C′
p, Dp,d1} > 0. �



DISTANCES BETWEEN HOMOTOPY CLASSES OF WS,P (SN ; S
N ) 1231

7.4. A partial solution to Open Problem 3

Proposition 7.9. Assume that N ≥ 1 and 1 ≤ p ≤ N + 1. Then

| deg f − deg g| ≤ Cp,N |f − g|p/(N+1)

WN/p,p

(
|f |Np/(N+1)

WN/p,p + |g|Np/(N+1)

WN/p,p

)
, ∀ f, g ∈ WN/p,p(SN ; SN ). (7.30)

Note that Proposition 7.9 provides a positive answer to Open Problem 3 when N ≥ 1 and 1 ≤ p ≤ N + 1.

Proof. Assuming the case p = N+1 proved, the other cases follow via Gagliardo−Nirenberg, with the exception
of the case N = 1, p = 1. However, in that special case estimate (7.30) follows from Theorem 1.1. We may thus
assume that p = N + 1.

Let F , G denote respectively the harmonic extension of f , g to the unit ball B of RN+1. Then F,G ∈
W 1,N+1(B; RN+1) and (see e.g. [3])

deg f =
�
B

JacF, deg g =
�
B

JacG. (7.31)

Since for any square matrices A, B of size N + 1 we have

| detA− detB| ≤ C

N+1∑
j=1

‖colj(A) − colj(B)‖
(
‖A‖N + ‖B‖N

)
, (7.32)

we find from (7.31) and (7.32) that

| deg f − deg g| ≤ C |F −G|W 1,N+1 (|F |NW 1,N+1 + |G|NW 1,N+1). (7.33)

Finally, we obtain (7.30) from (7.33) and the estimates

|F |W 1,N+1 ≤ C |f |WN/(N+1),N+1 and |G|W 1,N+1 ≤ C |g|WN/(N+1),N+1. �

Appendix A. Proofs of some auxiliary results

Let K : R → [0, 1] be a smooth non increasing function such that

K(t) =

{
1, if t ≤ 1/4
0, if t ≥ 3/4.

Consider the family of radial functions Hε(x) = Hε(|x|) : RN → [0, 1], N ≥ 1, defined by

Hε(x) = Hε(|x|) :=

⎧⎨⎩K
(

1
4
− 1

2 ln 2
ln

(
ln 1/|x|
ln 1/ε

))
, if |x| < 1

0, if |x| ≥ 1,

and ε is a parameter such that 0 < ε < 1/e2.
The following lemma collects some useful properties of Hε.

Lemma A.1. The functions Hε satisfy

Hε is smooth on R
N , ∀ ε, (A.1)

Hε(r) = 1, ∀ 0 ≤ r ≤ ε, ∀ ε, (A.2)

Hε(r) = 0, ∀ r ≥ ε1/2, ∀ ε, (A.3)
Hε(r) is non increasing on (0,∞), (A.4)

for every 1 < p <∞, ‖Hε(x)‖WN/p,p(RN ) → 0 as ε→ 0, (A.5)
for every 1 < p <∞ and every j = 1, 2, . . . , N, ‖xj Hε(x)‖W 1+N/p,p(RN ) → 0 as ε→ 0. (A.6)



1232 H. BREZIS ET AL.

Lemma A.1 implies in particular that the W s,p-capacity of a point in RN is zero when sp ≤ N and 1 < p <∞.
The above construction is inspired by some standard techniques related to capacity estimates.

Proof. Properties (A.2)–(A.4) are obvious. The smoothness of Hε is clear (from its definition) in the region
{|x| < 1}. It is even clearer from (A.3) in the region {|x| > ε1/2} and thus Hε is smooth on RN since ε1/2 < 1.

Consider the function f : RN → [0,∞] defined by

f(x) =

{
ln(ln 1/|x|), if |x| < 1/e
0, if |x| ≥ 1/e.

(A.7)

We claim that
Hε(x) = K(αf(x) + βε), ∀x ∈ R

N , (A.8)

where
α = − 1

2 ln 2
and βε =

1
4

+
1

2 ln 2
ln(ln 1/ε).

Indeed, (A.8) is clear when |x| < 1/e. In the region |x| ≥ 1/e we have Hε(x) = 0 by (A.3) (since 1/e ≥ ε1/2);
on the other hand for such x we have K(αf(x) + βε) = 0 since βε ≥ 3/4 (again thanks to the property
1/e ≥ ε1/2).

For the proofs of (A.5) and (A.6) it is convenient to distinguish the cases N = 1 and N ≥ 2.

Case 1: N = 1. We must show that

|Hε(x)|W 1/p,p(R) → 0 as ε→ 0 (A.9)

and
|xHε(x)|W 1+1/p,p(R) → 0 as ε→ 0. (A.10)

We claim that
f ∈W 1/p,p(R), ∀ 1 < p <∞. (A.11)

Clearly, it suffices to establish that
�

0<y<x<e−1

|f(x) − f(y)|p
(x− y)2

dxdy <∞, ∀ 1 < p <∞. (A.12)

With the change of variables x = e−s, y = e−s−t, s > 1, t > 0, inequality (A.12) amounts to
� ∞

0

� ∞

1

[ln(1 + t/s)]p

(e−s − e−s−t)2
e−2s−t dtds =

� ∞

0

� ∞

1

[ln(1 + t/s)]p

(et/2 − e−t/2)2
dtds <∞. (A.13)

In order to prove (A.13), we invoke the inequality ln(1 + t/s) ≤ t/s and the convergence of the integrals� ∞

0

tp

(et/2 − e−t/2)2
dt, respectively

� ∞

1

1
sp

ds.

Next, we deduce from (A.8) that

|Hε(x) −Hε(y)|p
|x− y|2 ≤ C

|f(x) − f(y)|p
|x− y|2 , ∀x, y ∈ R. (A.14)

Dominated convergence, (A.14) and (A.3) imply that

|Hε|W 1/p,p(R) =
�

R

�
R

|Hε(x) −Hε(y)|p
|x− y|2 dxdy → 0 as ε→ 0.
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In view of (A.9), property (A.10) amounts to

|xH ′
ε(x)|W 1/p,p(R) → 0 as ε→ 0. (A.15)

Clearly

xH ′
ε(x) = |α| K

′(αf(x) + βε)
ln 1/|x| , ∀x ∈ R, (A.16)

and thus

xH ′
ε(x) = |α| K

′(αf(x) + βε)
ef(x)

, ∀x ∈ R (A.17)

(note that xH ′
ε(x) = 0 in the region |x| ≥ 1/e, while f(x) = ln(ln 1/|x|) in the region |x| < 1/e).

Hence we may write
xH ′

ε(x) = Qε(αf(x) + βε), ∀x ∈ R, (A.18)

where

Qε(t) = |α| K ′(t)
e(t−βε)/α

=
C

ln 1/ε
K ′(t)
et/α

, ∀ t ∈ R, (A.19)

and C is a universal constant. Clearly K ′(t) e−t/α belongs to C∞
c (R) and thus is Lipschitz. We deduce

from (A.11),(A.18) and (A.19) that

|xH ′
ε(x)|W 1/p,p(R) ≤

C

ln 1/ε
|f |W 1/p,p(R) → 0 as ε→ 0.

Case 2: N ≥ 2. We must show that for every 1 < p <∞,

‖Hε(x)‖WN/p,p(RN ) → 0 as ε→ 0 (A.20)

and
‖xj ∇Hε(x)‖WN/p,p(RN ) → 0 as ε→ 0. (A.21)

We claim that
‖Hε‖W 1,N (RN ) ≤

C

(ln 1/ε)(N−1)/N
→ 0 as ε→ 0 (A.22)

and
‖Hε‖WN,1(RN ) ≤ C as ε→ 0. (A.23)

Assertion (A.20) with p > N (respectively p < N) follows from Gagliardo−Nirenberg, (A.22) and ‖Hε‖L∞ = 1
(respectively Gagliardo−Nirenberg, (A.22) and (A.23)).

For the verification of (A.22) and (A.23) note that

|∂γHε(x)| ≤
Ck

ln 1/ε
1

|x|k �Mε(x), ∀x ∈ R
N , (A.24)

for every multi-index γ of length k := |γ| ≥ 1, where

Mε := {x ∈ R
N ; ε < |x| < ε1/2}.

Assertion (A.21) is proved in a similar manner using the fact that

‖xj ∇Hε(x)‖L∞(RN ) ≤
C

ln 1/ε
· �
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Proof of Lemma 6.5. We may as well work in a ball B in RN . We may assume d > 0. Fix d points P1, . . . , Pd
in B. Consider a smooth map T : RN → SN such that T (x) = (1, 0, . . . , 0) when |x| ≥ 1 and degT = 1. For
large n, let

h(x) =

{
T (n(x− Pj)), if |x− Pj | < 1/n for some j
(1, 0, . . . , 0), otherwise.

Clearly, h satisfies properties 1 and 2. We claim that h also satisfies 3. Indeed, this is clear for p = 1 (by
scaling). When N ≥ 2, the general case follows from Gagliardo−Nirenberg.

When N = 1, item 3 still holds, but not the above argument, since we do not have W 1,1 ↪→ W 1/p,p when
1 < p <∞. In order to establish item 3 in W 1/p,p with 1 < p <∞, we fix a small δ > 0. Consider the intervals
I1, . . . , Id of length δ centered at P1, . . . , Pd and set Id+1 := B \ (I1 ∪ · · · ∪ Id). By straightforward calculations,
we have, as n→ ∞:

�
Ij

�
Ik

|h(x) − h(y)|p
|y − x|1+(1/p) p

dxdy =

{
Cp + o(1), if 1 ≤ j = k ≤ d

o(1), otherwise;
(A.25)

this implies that |h|p
W 1/p,p = Cp d+ o(1) and completes the proof of the lemma when N = 1. �

Proof of Lemma 6.6. We may assume that d1 ≥ 0. Consider a maximal family (Bj)1≤j≤J of disjoint balls in SN

of radius 1/(3n). For large n we have J ≥ d1. Consider a smooth map fn : S
N → S

N such that:

1. fn = (1, 0, . . . , 0) outside ∪Bj .
2. deg fn = 1 on each B1, . . . , Bd1 .
3. deg fn = 0 and fn is onto on each Bd1+1, . . . , BJ .

Then clearly fn has all the required properties. �

Finally, we present the

Proof of Lemma 2.2. We work on a ball B containing the origin, instead of SN , and when the given point is the
origin. It suffices to establish the conclusion of the lemma when f ∈ W s,p(B; R) is smooth in B and satisfies
f(0) = 0. By the Sobolev embeddings, we may assume that 1 < p <∞ and s = 1 +N/p.

Write f =
∑N

j=1 xjgj , with gj smooth. This is possible since f(0) = 0. Then

∂k [(1 −Hε) f − f ] = −Hε ∂kf −
N∑
j=1

xj ∂kHε gj → 0 in WN/p,p as δ → 0; (A.26)

this follows from properties (A.5) and (A.6) of Hε and from the fact that the multiplication with a fixed smooth
function is continuous in WN/p,p.

Using (A.26), we immediately obtain that (1−Hε) f → f in W 1+N/p,p as ε→ 0. On the other hand, (1−Hε) f
vanishes near the origin. �
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