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QUANTUM HAMILTONIAN AND DIPOLE MOMENT IDENTIFICATION
IN PRESENCE OF LARGE CONTROL PERTURBATIONS
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Abstract. The problem of recovering the Hamiltonian and dipole moment is considered in a bilinear
quantum control framework. The process uses as inputs some measurable quantities (observables) for
each admissible control. If the implementation of the control is noisy the data available is only in the
form of probability laws of the measured observable. Nevertheless it is proved that the inversion process
still has unique solutions (up to phase factors). Both additive and multiplicative noises are considered.
Numerical illustrations support the theoretical results.
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1. Introduction and motivation

Successful manipulation of quantum dynamics (see [5] and references therein for a recent review) leads to
interesting perspectives among which is the possibility to identify the system through measurements of control-
dependent observations. This technique, called quantum identification or quantum inversion, was documented
both theoretically [1,4,16,23] and numerically [8,11,18]. However although the numerical implementations show
interesting robustness of the identification process with respect to noise, there is less theoretical guidance to
explain this fact. Two fundamental questions concerning the well-posedness of this problem arise: the existence
and the uniqueness of the Hamiltonian, and/or the dipole moment, compatible with the given measurements.
In this work we only study the uniqueness.

More specifically we start from the setting in [16] which treats the case without noise. After some technical
preliminaries in Section 3 we address the noise-free case in Section 4 and relax many of the assumptions used
in the previous work. Then in Section 5 we introduce the possibility that the control is subject at each time to
unknown perturbations. We consider both additive and multiplicative noise. Since the actual control that acts
on the system is unknown, only the probability laws of the observations are available. We explain which are the
properties of the set of measurements required to determine uniquely (up to phase factors) the free Hamiltonian
and dipole moment.

Then a numerical implementation is presented in Section 6. Some closing remarks are the object of Section 7.
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1 Université Paris-Dauphine, PSL Research University, CNRS, Ceremade, 75016 Paris, France. fu@ceremade.dauphine.fr
2 Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France. Gabriel.Turinici@dauphine.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2017

https://doi.org/10.1051/cocv/2016026
http://www.esaim-cocv.org
http://www.edpsciences.org


1130 Y. FU AND G. TURINICI

1.1. Notations

We introduce the following notations

• LM1,M2,...,Mm is the Lie algebra spanned by the matrices M1,M2, . . . ,Mm;
• for any matrix or vectorX we denote byX its conjugate (the matrix whose entries are the complex conjugates

of the entries of X) and by X∗ its adjoint (the transpose conjugate);
• HN is the set of all Hermitian matrices HN = {X ∈ CN×N |X∗ = X};
• SN is the unit sphere of CN : SN = {v ∈ CN |‖v‖ = 1};
• Ψ(t,H, u(·), μ, Ψ0) is the solution of the equation (2.1) below; to simplify the notation, when there is no

ambiguity, we denote it Ψ(t);
• λk(X), k = 1, . . . , N are the eigenvalues of X ∈ HN taken in increasing order; we also introduce φk(X)
k = 1, . . . , N to be eigenvectors of X (forming an orthonormal basis of CN ) corresponding to eigenvalues
λk(X); note that Span{φk(X)} may not be unique;

• SU(N) is the special unitary group of degree N , which is the group of N × N unitary matrices with
determinant 1;

• su(N) is the Lie Algebra of skew-Hermitian matrices (the Lie algebra of SU(N));

2. The model

We present the mathematical framework following closely the notations of the previous work [16].
Consider a controlled quantum system with time-dependent wave-function Ψ(t) satisfying the Schrödinger

equation: {
iΨ̇ (t,H, u(·), μ, Ψ0) = (H + u(t)μ)Ψ(t,H, u(·), μ, Ψ0)
Ψ(0, H, u(·), μ, Ψ0) = Ψ0,

(2.1)

where H is the internal (“free”) Hamiltonian and μ the coupling operator between the control u(t) ∈ L1
loc(R+; R)

and the system. We work in a finite dimensional framework, therefore H,μ ∈ HN for some N ∈ N∗. The goal is
to determine the matrix entries of H and μ from laboratory measurements of some observables depending on
Ψ(t). The control u(t) can be changed in order to gather enough information on the system.

However, contrary to [16], we allow in this work some time independent perturbations to appear in the
control u(t). That is, when the control is implemented in practice the nominal control intensity required by
the experimentalist, denoted ε(t), is perturbed by Y which means that u = u(t, ε(·), Y ); here Y is a discrete
random variable with possible outcomes y1, y2, . . .. We assume that the law of the random variable Y is time
independent. A first example is the additive perturbation u(t) = ε(t) + Y . Such perturbation models have
already been used in the quantum computing literature under the name of “fixed systematic errors”, see section
VI.A. equation (40) of [14] or “systematic control error”, see [15]. In [19] the authors use a noise model called
“low frequency noise” (see Sect. IV.C. of [12]): it is defined as the portion of the (control) amplitude noise that
has a correlation time that is long (up to 103 times) compared to the timescale of the dynamics therefore it can
be considered as constant in time. Additional noise models (additive or multiplicative) are presented in [24].

The perturbation Y is unknown and thus Ψ(t) is a random variable, as are all measurements depending
on Ψ(t). Repeating the control experiment several times the experimentalist will only learn the law of the
measurements. From now on we will denote by LY Z the law of the random variable Z (that is measurable with
respect to the sigma-algebra generated by Y ).

Two different settings are considered depending on which parameters are to be identified and the nature of
the information available:

• Setting (S1): The Hamiltonian H is known and the goal is to identify the dipole moment μ.
• Setting (S2): Both the Hamiltonian H and the dipole moment μ are unknown.

The measurements are of the form 〈OΨ(T,H, u, μ, Ψ0), Ψ(T,H, u, μ, Ψ0)〉 with O ∈ HN a member of a list of
possible measurements. Often, the experimentalist only measures one observable in a list (but can repeat the
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experiment many times). This means that for general O1, O2 ∈ HN no information is available on the joint
distribution of the values 〈O1Ψ(T,H, u, μ, Ψ0), Ψ(T,H, u, μ, Ψ0)〉 and 〈O2Ψ(T,H, u, μ, Ψ0), Ψ(T,H, u, μ, Ψ0)〉 of
these two observables.

3. Some technical preliminaries

3.1. Complete sets of commuting observables

We recall in this section several facts about complete sets of commuting observables (hereafter abbreviated
CSCO). We refer the reader to ([6], p. 146) for details.

First, recall that an observable is a self-adjoint operator on CN . Once a basis of CN is chosen the observable
can be represented as a matrix O ∈ HN .

A set of observables O = {O1, . . . , OK} is called set of commuting observables (named SCO hereafter) if
[Ok, O�] = 0, ∀k, � ∈ {1, . . . ,K}.

When all observables in the SCO are multiples of the identity operator the SCO is said to be trivial; unless
specified otherwise, we only work with non-trivial SCO.

All observables in the SCO O can be diagonalized simultaneously i.e., there exists at least an orthonormal
basis Φ = {φ1, . . . , φN} of CN such that any O ∈ O is diagonal in the basis Φ. This means that in particular
any φ� is an eigenvector of any observable O ∈ O. In general the basis Φ is not unique because of possible
degeneracies in the spectrum of the observables in O. By definition a SCO is called a complete set of commuting
observables (CSCO) if the orthonormal basis that diagonalizes the SCO is unique up to phase factors and
permutations, i.e., if {ϕ1, . . . , ϕN} is another orthonormal basis rendering all O ∈ O diagonal then there exists
a permutation σ of {1, . . . , N} and phases β1, . . . , βN ∈ R such that ϕk = eiβkφσ(k) for all k = 1, . . . , N .

Examples:

(1) Let H be a Hamiltonian with all eigenvalues λ�(H) of multiplicity 1. Then O = {H} is a CSCO.
(2) Let {v1, . . . , vN} be an orthonormal basis of CN . Then defining Pk to be the projection on vk (that is

Pk = vkv
∗
k) the set O = {Pk, 1 ≤ k ≤ N} is a CSCO. In this case Pk are called populations of the states vk.

(3) Consider N = 3 and O = {Od} with:

Od =

⎛
⎝−1 0 0

0 1/2 0
0 0 1/2

⎞
⎠ . (3.1)

Because the eigenspace corresponding to the eigenvalue 1/2 is of dimension 2 O is not a CSCO.
In this case both the canonical base of C3: {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T} and the orthonormal basis
{(1, 0, 0)T , (0, 1/2,−√

3/2)T , (0,
√

3/2, 1/2)T} render Od diagonal.
(4) Consider the truncated spin-less Hydrogen atom whose eigenstates can be labeled by a set of three indexes

φn,l,m with n = 1, 2, . . . , Nt, l = 0, 1, . . . , n−1, m = −l,−l+1, . . . , l−1, l. Here Nt ∈ N is a fixed truncation
threshold. A CSCO is given by the operators H (Hamiltonian), L2 (square of the angular momentum
operator), Lz (the z component of the angular momentum operator) which act on the eigenstate φn,l,m as:

Hφn,l,m =
CH

n2
φn,l,m, L

2φn,l,m = l(l + 1)�2φn,l,m, Lzφn,l,m = m�φn,l,m, (3.2)

with CH an universal constant and � the Plank constant. Here n is called principal quantum number, l the
angular momentum quantum number and m the magnetic quantum number. Note that in this case {H,L2}
is a SCO but not a CSCO.

Measuring simultaneously all observables in a CSCO is in principle possible as it is compatible with the
Heisenberg uncertainty principle since all observables in a CSCO commute two by two; therefore the values
of those observables may be simultaneously computed with infinite precision.
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The following characterization of a CSCO will be used in the following sections:

Lemma 3.1. Let O = {O1, . . . , OK} be a SCO. Then O is a CSCO iff there exist γ1, . . . , γK ∈ R such that all
eigenvalues of

∑K
k=1 γkOk have multiplicity one.

Proof. We prove first the direct implication. Consider a basis Φ = {φ1, . . . , φN} of CN that renders all Ok

diagonal and denote (Ok)j the jth eigenvalue of Ok, that is Okφj = (Ok)jφj . Suppose now by contradiction that
for any γ = (γ1, . . . , γK) ∈ RK there exists i(γ) 	= j(γ) ≤ N , such that

∑K
k=1 γk(Ok)i(γ) =

∑K
k=1 γk(Ok)j(γ).

Define the functions g�1,�2 : RK → R by g�1,�2(γ1, . . . , γK) =
∑K

k=1 γk[(Ok)�1 − (Ok)�2 ] and let A�1,�2 = {γ ∈
R

K ; g�1,�2(γ) = 0}. We obtain that ∪1≤�1<�2≤NA
�1,�2 = R

K . By the Baire’s theorem at least a couple (�∗1, �
∗
2)

exists such that A�∗1 ,�∗2 has non empty interior. Therefore the analytic function g�∗1,�∗2 is null on a non empty
open set hence it is null everywhere.

But this means that (Ok)�∗1 = (Ok)�∗2 for all k = 1, . . . ,K. Therefore for all Ok ∈ O the �∗1th eigenvalue is
of multiplicity 2 (the �∗1th eigenvector and the �∗2th eigenvector are associated to the same eigenvalue) which
contradicts the uniqueness of the basis that diagonalizes O, and hence we obtain a contradiction with the
definition of a CSCO.

The reverse implication is more straightforward. Any basis Φ = {φ1, . . . , φN} that renders all Ok ∈ O diagonal
will also render

∑K
k=1 γkOk diagonal. But by hypothesis all eigenvalues of

∑K
k=1 γkOk are distinct and therefore

the basis Φ is unique (up to permutation and phases) and hence O is a CSCO.

3.2. Background on controllability results

Let L ∈ N
∗ and G1, . . . , GL be L finite dimensional, connected, compact and simple Lie groups with the

identity element Id. Let A�, B� ∈ g� for all � = 1, . . . , L where g� is the Lie algebra of G�.

Definition 3.2. Consider L bilinear systems on the Lie groups G�:{
dX�(t)

dt = (A� + u(t)B�)X�(t),
X�(0) = Id.

(3.3)

The systems are called simultaneously controllable (or ensemble controllable) if there exists TA1,...,AL,B1,...,BL > 0
such that for all T ≥ TA1,...,AL,B1,...,BL and for all V� ∈ G�, � = 1, . . . , L arbitrary, there exists a control
u ∈ L1([0, T ],R) with X�(T ) = V�, ∀� = 1, . . . , L.

Let A = A1

⊕
. . .
⊕
AL ∈⊕L

�=1 g� and B = B1

⊕
. . .
⊕
BL ∈⊕L

�=1 g�. The following simultaneous control-
lability results are proved in ([21], Thms. 1 & 2 and [3], Lem. 3, p. 29).

Theorem 3.3. The collection (3.3) of L bilinear systems is simultaneously controllable if and only if LA,B =⊕L
�=1 g� or equivalently dimRLA,B =

∑L
�=1 dimRg�.

Lemma 3.4. We suppose that LA�,B�
= g�, for all � = 1, . . . , L. Then LA,B 	=⊕L

�=1 g� if and only if there exist
�, �′ ∈ {1, . . . , L}, � 	= �′ and an isomorphism f : g� → g�′ such that f(A�) = A�′ and f(B�) = B�′ .

Theorem 3.5. Let G be a finite dimensional, connected, compact and simple Lie group and g be its Lie algebra.
Let A,B ∈ g such that LA,B = g and α1,. . . ,αL ∈ R be real constants, αi 	= αj ∀i 	= j. Consider the collection
of control systems on G: {

dX�(t)
dt = {A+ (u(t) + α�)B}X�(t),

X�(0) = Id.
(3.4)

Then the collection of systems (3.4) is simultaneously controllable.
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Remark 3.6. Although the Theorems 3.3 and 3.5 are formulated on a Lie group, this is enough to obtain
controllability for the wave-function; recall that if X(t,H, u(·), μ) : R × HN × L1

loc(R+; R) × HN → SU(N)
satisfies the following equation:

{
iẊ(t,H, u(·), μ) = (H + u(t)μ)X(t,H, u(·), μ),
X(0, H, u(·), μ) = Id,

(3.5)

then Ψ(t,H, u(·), μ, Ψ0) = X(t,H, u(·), μ)Ψ0 is the solution of (2.1). Since SU(N) is transitive on the sphere SN

(see [7], p. 88), if the control system is controllable on the Lie group SU(N) then it will also be controllable in
the wave-function formulation.

4. Inversion without noise

Theorem 4.1 (Setting (S1)). Let H, μ1, μ2 ∈ HN , H diagonal, Ψ1
0 , Ψ

2
0 ∈ SN and denote for a = 1, 2 and

ε ∈ L1
loc(R+,R): Ψa(t, ε) = Ψ(t,H, ε(·), μa, Ψ

a
0 ). Let O be a (non-trivial) SCO. We suppose that N ≥ 3 and:

• (A1): LiH,iμ1 = LiH,iμ2 = su(N).
• (A2): tr(H) = tr(μ1) = tr(μ2) = 0.
• the eigenvalues of H are all of multiplicity one.

Then there exists T > 0 such that if:

〈OΨ1(T, ε), Ψ1(T, ε)〉 = 〈OΨ2(T, ε), Ψ2(T, ε)〉 ∀ε ∈ L1([0, T ]; R), ∀O ∈ O, (4.1)

then for some (αi)N
i=1 ∈ RN :

(μ1)jk = ei(αj−αk)(μ2)jk, ∀j, k ≤ N. (4.2)

Remark 4.2.

(1) Assumption (A1) is required for the simultaneous controllability, see Theorem 3.3 and Lemma 3.4.
(2) The assumption (A2) can be made without loss of generality according to [16]. In fact, changing the

Hamiltonian H and/ or dipole moment μ by adding a multiple of the identity operator Id, does not change
the observations. In this case, the state Ψ(t) is replaced by eiϕΨ(t) with the phase ϕ ∈ R depending on
tr(H), tr(μ) and on the control u.

Remark 4.3. The proof also shows that the values of any additional observable commuting withH are identical
for both systems, in particular all populations are always identical.

Moreover, when μ1 and μ2 are matrices of dipole operators (i.e., have the form of real potentials) truncated
to dimension N , then μ1 and μ2 are real symmetric matrices; the Theorem implies (μ1)jk = ±(μ2)jk for all j, k.
In general this is not enough to conclude that μ1 = μ2 as it can be seen from the counter-example 1 from ([16],
p. 381) where N = 3, Ψ1

0 = Ψ2
0 = (1, 0, 0)T :

H =

⎛
⎝E1 0 0

0 E2 0
0 0 E2

⎞
⎠ , μ1 =

⎛
⎝ 0 −μα 0
−μα 0 μβ

0 μβ 0

⎞
⎠ , μ2 =

⎛
⎝ 0 μα 0
μα 0 μβ

0 μβ 0

⎞
⎠ , E1, E2, μα, μβ ∈ R (arbitrary). (4.3)

In this case all control fields give rise to identical populations for both systems. This under-determination can
be mitigated under additional hypothesis as in Remark 4.8.
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Remark 4.4. When eigenvalues of H are degenerate but O is a CSCO the Theorem 4.6 below should be used
instead.

Proof. Consider the collection of two systems (H,μ1) and (H,μ2) seen as a control system on SU(N)
⊕
SU(N)

with operators iH
⊕
iH , iμ1

⊕
iμ2 ∈ su(N)

⊕
su(N). This collection can either be controllable or not. Denote

Rt = {(Ψ1(t, ε), Ψ2(t, ε))|ε ∈ L1([0, t]; R)}, R∞ = ∪t≥0Rt. It is known (see [13], Thm. 6.5 item (ii) p. 322) that
there exists T such that RT = R∞.

Since O is a non-trivial SCO it contains at least an observable, denoted O, that is not multiple of the identity.
For this observable there exist Ψx, Ψy ∈ SN such that 〈OΨx, Ψx〉 	= 〈OΨy , Ψy〉. But the condition (4.1) shows
that no control ε exists that drives Ψ1

0 to Ψx and Ψ2
0 to Ψy; therefore the joint system iH

⊕
iH , iμ1

⊕
iμ2 is not

controllable simultaneously. Then it exists an automorphism of su(N) that sends iH to iH and iμ1 to iμ2. But the
automorphisms of su(N) are of the form X ∈ su(N) 
→WXW−1 ∈ su(N) or X ∈ su(N) 
→ WXW−1 ∈ su(N)
for someW ∈ SU(N). Recall that the matrixH is real (because it is diagonal and in HN ). Consider first that one
can find W ∈ SU(N) such that H = WHW−1 and μ2 = Wμ1W

−1. The first identity shows that [H,W ] = 0 and
therefore W is diagonal with the diagonal containing entries of the form eiα� , � ≤ N ; the conclusion follows from
the second identity. Consider now that there exists W ∈ SU(N) such that iH = WiHW−1; then [H2,W ] = 0,
thus W diagonal and therefore H = −H , impossible.

Remark 4.5. The result is stronger than the Theorem 1 in ([16], p. 380) which requires:

• A stronger condition on the spectrum of H (the non-degenerate transition condition); recall that the transi-
tions of H are called non-degenerate if the eigenvalues λk(H) of H satisfy λi(H)− λj(H) 	= λa(H)− λb(H)
for all (a, b) 	= (i, j). Here we only ask that the eigenvalues have multiplicity one.

• That observables in O are the populations (thus in particular O is a CSCO). Here a single non-trivial
observable is enough.

• That the equality (4.1) take place at all times T ≥ 0. Here only one time (large enough) is required.

Theorem 4.6 (Setting (S2)). Let μ1, μ2, H1, H2 ∈ HN , Ψ1
0 , Ψ

2
0 ∈ SN and denote for a = 1, 2 and ε ∈

L1
loc(R+,R): Ψa(t, ε) = Ψ(t,Ha, ε(·), μa, Ψ

a
0 ). We suppose that N ≥ 3 and the following assumptions hold true:

(A1): LiH1,iμ1 = LiH2,iμ2 = su(N);
(A2): tr(H1) = tr(H2) = tr(μ1) = tr(μ2) = 0;
Let O = {O1, . . . , OK} be a CSCO and Φ = {φ1, . . . , φN} an orthonormal basis that diagonalizes O.
Then there exists T > 0 such that if:

〈OkΨ1(T, ε), Ψ1(T, ε)〉 = 〈OkΨ2(T, ε), Ψ2(T, ε)〉 ∀ε ∈ L1([0, T ]; R), ∀k = 1, . . . ,K, (4.4)

then there exist (αi)N
i=1 ∈ RN and θ ∈ R such that for all j, k ≤ N either

〈μ1φj , φk〉 = ei(αj−αk)〈μ2φj , φk〉, 〈H1φj , φk〉 = ei(αj−αk)〈H2φj , φk〉, 〈Ψ1
0 , φj〉 = ei(θ−αj )〈Ψ2

0 , φj〉, (4.5)

or

〈μ1φj , φk〉 = −ei(αj−αk)〈μ2φj , φk〉, 〈H1φj , φk〉 = −ei(αj−αk)〈H2φj , φk〉, 〈Ψ1
0 , φj〉 = ei(θ−αj)〈Ψ2

0 , φj〉. (4.6)

Remark 4.7. When O is not a CSCO, the same proof allows only to obtain that an isomorphism of Lie
algebras exists that sends iH1 to iH2 and iμ1 to iμ2. In general it is not possible to obtain more than a general
isomorphism as shown by the following counter-example:

H1 =

⎛
⎝1 0 0

0 −1/2 0
0 0 −1/2

⎞
⎠ ,W =

⎛
⎝1 0 0

0 1/2
√

3/2
0 −√

3/2 1/2

⎞
⎠ , μ1 =

⎛
⎝0 1 2

1 0 0
2 0 0

⎞
⎠ , (4.7)
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H2 = WH1W
−1 = H1, μ2 = Wμ1W

−1 =

⎛
⎝ 0

√
3 + 1/2 1 −√

3/2√
3 + 1/2 0 0

1 −√
3/2 0 0

⎞
⎠ , Ψ2

0 = WΨ1
0 ,O = {Od}. (4.8)

It is immediate to see that 〈Odψ, ψ〉 = 1/2 − 3/2|〈ψ, (1, 0, 0)T 〉|2 and that W (1, 0, 0)T = (1, 0, 0)T . When the
control ε on the first system realizes the transformation X the observable is 1/2− 3/2|〈XΨ1

0 , (1, 0, 0)T 〉|2; at the
same time the control realizes the transformation WXW−1 on the second system giving the observable 1/2 −
3/2|〈WXW−1WΨ1

0 , (1, 0, 0)T 〉|2. But 〈WXW−1WΨ1
0 , (1, 0, 0)T 〉 = 〈XΨ1

0 ,W
−1(1, 0, 0)T 〉 = 〈XΨ1

0 , (1, 0, 0)T 〉.
Therefore it is not possible to distinguish between the couple (H1, μ1) and (H2, μ2) (at least for this initial
data).

Remark 4.8. If, for physical reasons, we know the initial state of the system, then Ψ1
0 = Ψ2

0 ; when this initial
state has non-zero components along every element of the basis, i.e. 〈Ψ1

0 , φk〉 	= 0, for all k ≥ 1 the equation (4.5)
implies eiαj = eiθ for all j = 1, . . . , N which means H1 = H2 and μ1 = μ2. When some coefficients 〈Ψ1

0 , φk〉 are
zero, further symmetries may occur and one can have, for instance, μ1 	= μ2: see counter-example 1 from ([16],
p. 381) presented in Remark 4.3.

On the other hand, in this case, the conclusion (4.6) can be written more conveniently in the adapted basis
{v1 = e−iα1/2φ1, . . . , vN = e−iαN /2φk}:

〈μ1vj , vk〉 = −〈μ2vj , vk〉, 〈H1vj , vk〉 = −〈H2vj , vk〉, Ψ1
0 = Ψ2

0 = eiθ/2
N∑

�=1

ς�v�, ς� ∈ R. (4.9)

Proof. Denote by T the time at which the couple of systems (H1, μ1), (H2, μ2), seen as a control system on
SU(N)

⊕
SU(N) with operators iH

⊕
iH , iμ1

⊕
iμ2 ∈ su(N)

⊕
su(N) reaches all attainable states. Since a

CSCO is a non-trivial SCO it follows as in the Theorem 4.1 that there exists an isomorphism of f : su(N) →
su(N) such that iH2 = f(iH1), iμ2 = f(iμ1).

All isomorphisms of su(N) are of the form X ∈ su(N) 
→ WXW−1 ∈ su(N) or X ∈ su(N) 
→ WXW−1 ∈
su(N) for some W ∈ SU(N). We only treat here the “exotic” case f(X) = WXW−1 as the second alternative
is similar. Thus H2 = −WH1W

−1 and μ2 = −Wμ1W
−1. With the notations in the equation (3.5) we write:

X(t,H2, u(·), μ2) = X(t,−WH1W
−1, u(·),−Wμ1W

−1) = WX(t,H1, u(·), μ1)W−1. (4.10)

As the first system is controllable then every state X ∈ SU(N) can be reached by some control u(·) thus

〈OkXΨ
1
0 , XΨ

1
0 〉 = 〈OkWXW−1Ψ2

0 ,WXW−1Ψ2
0 〉, ∀X ∈ SU(N), ∀k ≤ K. (4.11)

Note that (4.11) also holds for any linear combination of observables in O. We invoke the Lemma 3.1 and obtain
the existence of an observable O, diagonal in the basis Φ and with all eigenvalues distinct, such that

〈OXΨ1
0 , XΨ

1
0 〉 = 〈OWXW−1Ψ2

0 ,WXW−1Ψ2
0 〉, ∀X ∈ SU(N). (4.12)

The vectors φk are eigenvectors of O and denote as λk(O) the corresponding eigenvalues. In particular
O =

∑N
k=1 λk(O)φkφ

∗
k. We can suppose that λ1(O) < λ2(O) < . . . < λN (O) (otherwise re-index the vectors).

Let us write W−1Ψ2
0 = xΨ1

0 + yv with x, y ∈ C, |x|2 + |y|2 = 1, v ∈ SN , v ⊥ Ψ1
0 .

Suppose y 	= 0; then there exists X ∈ SU(N) such that XΨ1
0 = φN and Xv ∈ Span{W−1φN , φN}⊥.

Then 〈OXΨ1
0 , XΨ

1
0 〉 = λN (O) = 〈OWXW−1Ψ2

0 ,WXW−1Ψ2
0 〉. Since λN (O) is the maximum possible value

for O and all eigenspaces of O are of dimension 1 it follows that WXW−1Ψ2
0 ∈ Span{φN} hence XW−1Ψ2

0 ∈
Span{W−1φN}. Then:

1 = |〈XW−1Ψ2
0 ,W

−1φN 〉| = |〈X(xΨ1
0 + yv),W−1φN 〉| = |〈xφN ,W−1φN 〉| = |x||〈φN ,W−1φN 〉|. (4.13)
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It follows y = 0, |x| = 1; therefore W−1Ψ2
0 ∈ Span{Ψ1

0} which means that there exists θ ∈ R such that
Ψ2

0 = eiθWΨ1
0 ; after trivial simplifications the equality (4.12) can be written

〈OXΨ1
0 , XΨ

1
0 〉 = 〈OWXΨ1

0 ,WXΨ1
0 〉, ∀X ∈ SU(N). (4.14)

But X ∈ SU(N) means that XΨ1
0 can be chosen arbitrary in SN ; we have therefore:

∀w ∈ SN : 〈Ow,w〉 = 〈OWw,Ww〉 = 〈W ∗OWw,w〉 = 〈W ∗OWw,w〉. (4.15)

But this implies O = W ∗OW and thus:

N∑
k=1

λk(O)φkφ
∗
k = O = W ∗OW = W ∗

(
N∑

k=1

λk(O)φkφ∗k

)
W =

N∑
k=1

λk(O)(W
∗
φk)(W

∗
φk)∗. (4.16)

Since all eigenvalues of O are non-degenerate the representation O =
∑N

k=1 λk(O)φkφ
∗
k is unique up to phases.

Therefore there exist αk ∈ R such that W
∗
φk = e−iαkφk or, equivalently, W ∗φk = eiαkφk.

The conclusion follows from the relationships H2 = −WH1W
∗, μ2 = −Wμ1W

∗ and Ψ2
0 = eiθWΨ1

0 .

5. Inversion in presence of noise

Let (Ω,F ,P) be a discrete probability space, V = {y� ∈ Rd|� ∈ I ⊂ N} a set of values in Rd (possibly
infinite) and let Y : Ω → V be a random variable. We can suppose that for all y� ∈ V , P(Y = y�) > 0 (otherwise
we eliminate all y� such that P(Y = y�) = 0). Moreover after re-indexing I we can suppose that I = N∗ or
I = {1, . . . , L0} for some L0 ∈ N∗. Denote ξk = P(Y = yk), ∀k ∈ I.

We can suppose that (ξ�)�≥1 is a decreasing sequence (re-indexing if necessary).

5.1. Technical preliminaries: a correspondence lemma

Let Ja : CN×N → R, a = 1, 2 and h : Rd+1 → R be real analytic functions with Ja bounded.

Lemma 5.1. Let Aa, Ba ∈ su(N), T > 0, ε ∈ L1([0, T ],R) and denote by Xa(t, y�, ε) the solution of{
dXa(t,y�,ε)

dt = (Aa + h(ε(t), y�)Ba)Xa(t, y�, ε)
Xa(0, y�, ε) = Id,

(5.1)

for a = 1, 2 and any � ∈ I. Suppose that the following equality in law holds

LY (J1(X1(T, Y, ε))) = LY (J2(X2(T, Y, ε))) ∀ε ∈ L1([0, T ],R). (5.2)

Then for any � ∈ I, there exists n0(�, ξ1, . . . , ξn, . . .) and κ(�) ∈ I, κ(�) ≤ n0(�, ξ1, . . . , ξn, . . .) such that

J1(X1(T, y�, ε)) = J2(X2(T, yκ(�), ε)) ∀ε ∈ L1([0, T ],R). (5.3)

Proof. Let � ∈ I. The proof is divided in several steps.

Step 1:
Fix a control ε. We introduce the notation:

vk
a = Ja(Xa(T, yk, ε)), a = 1, 2 and k ∈ I.
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According to the assumption (5.2) we know that J1(X1(T, Y, ε)) and J2(X2(T, Y, ε)) follow the same law. Thus
P(J1(X1(T, Y, ε)) = v�

1) = P(J2(X2(T, Y, ε)) = v�
1). Then∑

k′∈I/vk′
2 =v�

1

ξk′ =
∑

k∈I/vk
1 =v�

1

ξk ≥ ξ� > 0. (5.4)

Therefore {k′ ∈ I/vk′
2 = v�

1} 	= ∅. In addition, there exists a n0(�) ∈ I such that
∑

k>n0(�),k∈I ξk < ξ� and∑
k>n0(�)−1,k∈I ξk ≥ ξ� (by convention a sum over an empty set of indexes is zero). So we have {k′ ∈ I/k′ ≤

n0(�), vk′
2 = v�

1} 	= ∅. The index n0(�) depends only on the law of Y and the index �.
Letting ε vary in L1([0, T ]; R) we obtain a function κ1 : L1([0, T ]; R) → {k ∈ I, k ≤ n0(�)} such that

J1(X1(T, y�, ε)) = J2(X2(T, yκ1(ε), ε)). (5.5)

Note: when the index κ1(ε) with the property (5.5) is not unique, any compatible value in the set {k ∈ I, k ≤
n0(�)} can be chosen.

Step 2:
Let n ∈ N∗. We consider the space Pn of piecewise constant controls Pn = {f : [0, T ] → R| f = α11[0, T

n ] +
α21] T

n , 2T
n ] + . . . + αn1

] (n−1)
n T,T ]

, α1, . . . , αn ∈ R}. Denote α = (α1, . . . , αn). Therefore for any k ∈ I, we can
define the functions gk from Rn to R by

gk(α) = J2(X2(T, yk, εα)) − J1(X1(T, y�, εα)),

with εα = α11[0, T
n ] + α21] T

n , 2T
n ] + . . .+ αn1

]
(n−1)

n T,T ]
. We know that

Xa(T, yk, εα) = e(Aa+h(αn,yk)Ba) T
n e(Aa+h(αn−1,yk)Ba) T

n . . . e(Aa+h(α1,yk)Ba) T
n a = 1, 2. (5.6)

Therefore the functions Xa are analytic in α (recall that the function h is analytic in α), and since Ja are
analytic, the functions gk are analytic. We denote Ak = {α ∈ Rn/gk(α) = 0}. Each Ak is closed because gk is
continuous. In Step 1, it is proved that

∃κP : R
n → {k ∈ I, k ≤ n0(�)} such that ∀α ∈ R

n gκP(α)(α) = 0. (5.7)

So
⋃

k∈I,k≤n0(�)
Ak = Rn. By the Baire’s theorem, it exists a k such that Ak has an interior point. This means

that gk is analytic and identically zero on a not empty open set. Therefore, gk ≡ 0. So ∀n, ∃κ2(n) ∈ {k ∈ I, k ≤
n0(�)} such that gκ2(n)(ε) = 0, for any control ε ∈ Pn.

Step 3:
Take q ∈ N and denote Bq = {k ∈ I, k ≤ n0(�)}/gk(ε) = 0, ∀ε ∈ P2q}. In Step 2 it is proved that for any
q ∈ N the set Bq is not empty. Obviously (Bq)q∈N is a decreasing sequence and Bq becomes constant from
a certain term, thus B∞ =

⋂
q≥0 Bq 	= ∅. This means that there exists κ(�) ∈ {k ∈ I, k ≤ n0(�)} such that

gκ(�)(ε) = 0, ∀ε ∈ P2q for all q. Yet,
⋃∞

q=0 P2q is dense in L1([0, T ]; R). So we have gκ(�)(ε) = 0, for any control
ε in L1([0, T ]; R).

5.2. Main results

We set d = 1.

Theorem 5.2. Consider the same setting and assumptions as in the Theorem 4.6 with the exception of the
relation (4.4). Then there exists T > 0 such that if:

LY 〈OkΨ1(T, ε+Y ), Ψ1(T, ε+Y )〉 = LY 〈OkΨ2(T, ε+Y ), Ψ2(T, ε+Y )〉 ∀ε ∈ L1([0, T ]; R), ∀k = 1, . . . ,K, (5.8)

then either the conclusion (4.5) or the conclusion (4.6) of the Theorem 4.6 holds (see also Rem. 4.8).

Remark 5.3. When O is not a CSCO, the same proof allows only to obtain that an isomorphism of Lie algebras
exists that sends iH1 to iH2 and iμ1 to iμ2.
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Remark 5.4. Relation (5.8) does not imply that for any γk ∈ R:

∀ε ∈ L1([0, T ]; R) :

LY

〈(
K∑

k=1

γkOk

)
Ψ1(T, ε+ Y ), Ψ1(T, ε+ Y )

〉
= LY

〈(
K∑

k=1

γkOk

)
Ψ2(T, ε+ Y ), Ψ2(T, ε+ Y )

〉
, (5.9)

because the probability laws are not additive. This is in contrast with the situation in the Theorem 4.6 (see
Eqs. (4.11) and (4.12)). But the relation remains true for any operator of the form aOk + bId, a, b ∈ R.

Proof. Choosem0 ∈ N such that m0ξ1 > 1. Then there exists some η > 0 small enough with
∑m0

m=0(ξ1−mη)>1
and ξ1 − m0η > η. As

∑
k∈I ξk = 1, there exists n′

0 ∈ I such that
∑

k∈I,k>n′
0
ξk < η (by convention a sum

over an empty set of indexes is zero). According to Definition 3.2, for all �, �′ ∈ {1, . . . , n′
0}, if the collection of

2 systems (3.3) for A1 = −iH1 + y�(−iμ1) ∈ su(N), B1 = −iμ1 ∈ su(N) and A2 = −iH2 + y�′(−iμ2) ∈ su(N),
B2 = −iμ2 ∈ su(N) is simultaneously controllable, then there exists TH1,H2,μ1,μ2,y�,y�′ > 0 such that the
collection is simultaneously controllable at all times T ≥ TH1,H2,μ1,μ2,y�,y�′ . If the collection is not controllable, we
take TH1,H2,μ1,μ2,y�,y�′ to be the time required to control one system (to any target). According to Theorem 3.5,
we know that the collection of n′

0 systems (3.4) with A = −iH2, B = −iμ2 and (α1, . . . , αn′
0
) = (y1, . . . , yn′

0
)

is simultaneously controllable therefore there exists TH2,μ2,y1,...,yn′
0

such that the collection is simultaneously
controllable at any time T ≥ TH2,μ2,y1,...,yn′

0
. Let T = max1≤�,�′≤n′

0
(TH2,μ2,y1,...,yn′

0
, TH1,H2,μ1,μ2,y�,y�′ ). Suppose

that the observations follow the same law at time T . Recall that Ψa(T, ε+y�) = Xa(T, ε+y�)Ψa
0 with Xa(t, ε+y�)

solutions of (5.1) where Aa = −iHa, Ba = −iμa, for a = 1, 2 respectively and h(ε(t), y�) = ε(t) + y�.
The second part of Remark 5.4 implies that we can suppose, without loss of generality, that any Õ ∈ O has

the smallest eigenvalue equal to 0 and the largest one equal to 1. Fix now Õ ∈ O. We apply the Lemma 5.1 to
X 
→ 〈ÕXΨa

0 , XΨ
a
0 〉, a = 1, 2 which are obviously analytic with respect to X . Then for all � ∈ I, ∃κ(�) such

that
〈ÕΨ1(T, ε+ y�), Ψ1(T, ε+ y�)〉 = 〈ÕΨ2(T, ε+ yκ(�)), Ψ2(T, ε+ yκ(�))〉. (5.10)

Recall equation (5.4) in Lemma 5.1 (we use the same notations):∑
k∈I/vk

1=v�
1

ξk =
∑

k′∈I/vk′
2 =v�

1

ξk′ ,

for any control ε(t) ∈ L1([0, T ],R). Now let us take � = 1. In Lemma 5.1 we proved that κ(1) ≤ n0(1) with∑
k>n0(1)−1 ξk ≥ ξ1 > ξ1 − m0η > η >

∑
k>n′

0
ξk. Thus n′

0 ≥ n0(1) ≥ κ(1). By simultaneous controllability,

there exists a control ε such that 〈ÕΨ2(T, ε+ yκ(1)), Ψ2(T, ε+ yκ(1))〉 = 1 and 〈ÕΨ2(T, ε+ yj), Ψ2(T, ε+ yj)〉 = 0
for all j ≤ n′

0 and j 	= κ(1). In addition, Lemma 5.1 proves that for any control ε, v1
1 = v

κ(1)
2 = 1. So for this ε,

ξ1 ≤
∑

k∈I/vk
1 =v

κ(1)
2

ξk =
∑

k′∈I/vk′
2 =v

κ(1)
2

ξk′ ≤ ξκ(1) +
∑

k>n′
0

ξk ≤ ξκ(1) + η. (5.11)

We deduce that ξκ(1) ≥ ξ1−η. With the same reasoning and by recurrence we demonstrate that ξκm(1) ≥ ξ1−mη
for any m ∈ {1, . . . ,m0} thanks to the relationship

∑
k>n0(κm(1))−1 ξk ≥ ξκm(1) ≥ ξ1 −mη ≥ ξ1 −m0η > η >∑

k>n′
0
ξk. If 1, κ(1), . . . , κm0(1) are all distinct, then 1 =

∑
k∈I ξk ≥ ∑m0

m=0 ξκm(1) > 1, which leads to a
contradiction. So at least two among the 1, κ(1), . . . , κm0(1) are equal.

On the other hand equation (5.10) implies that the collection of the two systems{
dX1(t,ε)

dt = [−i(H1 + yκm(1)μ1) + ε(t)(−iμ1)]X1(t, ε)
X1(0, ε) = Id

(5.12)
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and {
dX2(t,ε)

dt = [−i(H2 + yκm+1(1)μ2) + ε(t)(−iμ2)]X2(t, ε)
X2(0, ε) = Id

(5.13)

is not ensemble controllable for all m ∈ {0, . . . ,m0 − 1}. Applying Theorem 3.3 and Lemma 3.4 to G = SU(N),
A1 = −i(H1+yκm(1)μ1), A2 = −i(H2+yκm+1(1)μ2), B1 = −iμ1 and B2 = −iμ2 there exist fm automorphisms of
su(N) such that fm(−i(H1+yκm(1)μ1)) = −i(H2+yκm+1(1)μ2) and fm(−iμ1) = −iμ2. By linearity of f1 and fm,
we obtain (f−1

m ◦ f1)(−iH1) = −iH1 + [(yκ(1) − y1) − (yκm+1(1) − yκm(1))](−iμ1) and (f−1
m ◦ f1)(−iμ1) = −iμ1.

Denote f = f−1
m ◦ f1 and β = (yκ(1) − y1) − (yκm+1(1) − yκm(1)), then we have −iH1 = f(−iH1) + iβμ1 =

f(f(−iH1) + iβμ1) + iβμ1 = f2(−iH1) + 2iβμ1 and by recurrence −iH1 = fp(−iH1) + ipβμ2 for all p ∈ N. All
automorphisms of su(N) belong to a compact set hence the set {fp(−iH1) ∈ su(N), p ≥ 0} is bounded for all m.
Therefore the sequence (ipβμ2)p≥0 is bounded which implies βμ2 = 0. According to assumption (A1), μ2 	= 0.
Thus β = 0. Denote C = yκ(1) − y1, then yκm+1(1) = yκm(1) + C ∀m ∈ {0, . . . ,m0 − 1}. As 1, κ(1), . . . , κm0(1)
are not all different, C = 0.

Since Õ ∈ O was arbitrary we proved so far that the systems without noise (H1+y1μ1, μ1) and (H2+y1μ2, μ2)
give the same observations for the CSCO O; the conclusion follows from the Theorem 4.6.

Remark 5.5. Here and in all similar results, the time T should be understood as ’if the time is large enough’:
the proof can be trivially adapted to treat the situation when the equality in law holds at some other final time
T ∗ provided that T ∗ is larger than the time T given by the theorem.

A similar reasoning allows to prove for the setting (S1) the following:

Corollary 5.6. Consider the same setting and assumptions as in Theorem 4.1 with the exception of the rela-
tion (4.1). Then there exists T > 0 such that if:

LY 〈OΨ1(T, ε+ Y ), Ψ1(T, ε+ Y )〉 = LY 〈OΨ2(T, ε+ Y ), Ψ2(T, ε+ Y )〉 ∀ε ∈ L1([0, T ]; R), ∀O ∈ O, (5.14)

then the conclusion (4.2) of the Theorem 4.1 holds.

5.3. The multiplicative perturbation case

In this section we consider the multiplicative perturbation, which means the control is in the form of u = Y ·ε.
We suppose moreover that this perturbation is positive: V ⊂ R+.

Corollary 5.7. Consider the same setting and assumptions as in the Theorem 4.6 with the exception of the
relation (4.4). Then there exists T > 0 such that if:

LY 〈OkΨ1(T, εY ), Ψ1(T, εY )〉 = LY 〈OkΨ2(T, εY ), Ψ2(T, εY )〉 ∀ε ∈ L1([0, T ]; R), ∀k = 1, . . . ,K, (5.15)

then either the conclusion (4.5) or the conclusion (4.6) of the Theorem 4.6 holds (see also Rem. 4.8).

Proof. The proof is similar with the exception that the simultaneous controllability result to be used is Corol-
lary 5, page 25 in [3].

Remark 5.8. When V also contains negative values, a similar result can be stated. The only difference is that
one obtains:

〈μ1φj , φk〉 = ±ei(αj−αk)〈μ2φj , φk〉, 〈H1φj , φk〉 = ±ei(αj−αk)〈H2φj , φk〉, 〈Ψ1
0 , φj〉 = ±ei(θ−αj)〈Ψ2

0 , φj〉, (5.16)

and a similar relation for the conjugate case. Furthermore, the polynomial situation V ⊂ Rd with d > 1,
u(t) =

∑d
a=0 Yaε

a(t) can be studied. But although this case is also tractable with the controllability result
in [20], the conclusion is very cumbersome to formulate and we leave it as an exercise for the reader.
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Table 1. Law of Y for the numerical example in Section 6. Here L0 = 10; the second row
presents the values y�, � ≤ L0 which have been chosen randomly (uniformly) in [0, 0.1∗ ‖H‖l∞

‖μ‖l∞
=

0.0012]. The third row displays the probabilities ξ�, � ≤ L0 which have been chosen at random,
uniformly in [0, 1], the sum rescaled to 1 and then ordered such that (ξ�)�≥1 is a decreasing
sequence.

� 1 2 3 4 5 6 7 8 9 10

y� 0.000400 0.000066 0.001025 0.000224 0.000816 0.000679 0.000740 0.000975 0.000211 0.000156

ξ� 0.181810 0.163630 0.145450 0.127270 0.109090 0.090900 0.072720 0.054540 0.036360 0.018180

6. Numerical application

Numerical tests are presented for the setting of the Theorem 5.2. We consider the 4-level system (N = 4)
in [8] and want to recover the Hamiltonian matrix Hreal and the dipole moment matrix μreal:

Hreal =

⎛
⎜⎝

0.0833 −0.0038 −0.0087 0.0041
−0.0038 0.0647 0.0083 0.0038
−0.0087 0.0083 0.0036 −0.0076
0.0041 0.0038 −0.0076 0.0357

⎞
⎟⎠ , μreal =

⎛
⎜⎝

0 5 −1 0
5 0 6 −1.5
−1 6 0 7
0 −1.5 7 0

⎞
⎟⎠ .

Note that:

Hreal = ePrealDe−Preal , D =

⎛
⎜⎝

0 0 0 0
0 0.0365 0 0
0 0 0.0651 0
0 0 0 0.0857

⎞
⎟⎠ , Preal =

⎛
⎜⎝

0 1 −1 1
−1 0 1 1
1 −1 0 −1
−1 −1 1 0

⎞
⎟⎠ .

In practice the eigenvalues of the free Hamiltonian are measured by spectrometry and hence known with
high precision, see also the discussion in ([16], p. 379 and Rem. 7, p. 384). Accordingly, we suppose that the
eigenvalues of Hreal are known i.e., the matrix D is known. So identifying Hreal is equivalent to identifying the
anti-Hermitian rotation matrix Preal.

The law of the perturbation Y is given in Table 1. We consider a finite set of test control fields of the form:

ε(t) = exp
(−40(t− T/2)2/T 2

) N∑
i<j,i,j=1

Ai,j sin[(λj(Hreal) − λi(Hreal))t+ θi,j ]. (6.1)

Here λi(Hreal) are eigenvalues of Hreal, i ≤ N and Ai,j , θi,j are parameters to be chosen later. The total
simulation time is T = 3200 which means about 10 periods of the smallest transition frequency λ4(Hreal) −
λ3(Hreal).

Let {ek; k ≤ N} be the canonical basis of CN and O = {eke
∗
k, k ≤ N} (populations).

We choose Nε = 36 controls ε1(t), . . . , εNε(t) drawing θij uniformly in [0, 2π] and Aij uniformly in [0, 0.0012]
and we define the functional to be minimized:

J (P , μ) =
Nε∑
i=1

N∑
j=1

dW1(LY (|〈Ψ(T, ePDe−P , εi +Y, μ, Ψ0
1 ), ej〉|2,LY (|〈Ψ(T,Hreal, εi +Y, μreal, Ψ

0
real), ej〉|2). (6.2)

Here we use the 1-Wasserstein distance (see pp. 34–35 in [22]) dW1 between two laws LY Z1 and LY Z2 defined as
dW1(LY Z1, LY Z2) =

∫ 1

0 |F−1
Z1

(x) − F−1
Z2

(x)|dx with FZ1(respectively FZ2) the cumulative distribution function
of Z1(respectively Z2)(see pp. 73–75 in [22] for details). We start with 10% relative error on μ and P and we use
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Figure 1. The (base 10) logarithm of J (upper plot), the (base 10) logarithm of the relative
error on P (middle plot) and the (base 10) logarithm of the relative error on μ (lower plot) as
a function of the iteration index.

a classical unconstrained nonlinear optimization algorithm to minimize J (P , μ) (we used the Gnu Octave [9,10]
procedure “fminunc”). After 277 iterations, we find:

P277 =

⎛
⎜⎝

0 0.999 −0.999 1.002
−0.999 0 1 0.999
0.999 −1 0 −1.002
−1.002 −0.999 1.002 0

⎞
⎟⎠ , μ277 =

⎛
⎜⎝

0 4.999 −0.998 −0.003
4.999 0 6 −1.5
−0.998 6 0 7
−0.003 −1.5 7 0

⎞
⎟⎠ .

This corresponds to 0.003% relative error on μ and 0.001% relative error on P . We note that the histograms
for (Preal, μreal) and (P277, μ277) are nearly the same. See Figures 1 and 2 for details.

7. Perspectives and concluding remarks

Among the limitations of the present work is the requirement to consider only time-independent perturbations;
it would be interesting to consider time-dependent perturbations and more elaborate noise models (beyond
polynomial) and, of course, perturbations that can take values in an uncountable set (in the same spirit as
in [2, 17]). Extension to infinite dimensional quantum systems can also be interesting; in all these cases one
technical limitation is the absence of simultaneous controllability results analogue to Theorems 3.3 and 3.5, still
missing in general even for finite dimensional models as soon as the dimension is larger than 4.

A distinct extension, which seems attainable with the tools presented here, is to consider a framework that
involves density matrices instead of wave-functions.

Acknowledgements. The authors acknowledge support from the Agence Nationale de la Recherche (ANR), Projet Blanc
EMAQS No. ANR-2011-BS01-017-01.
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Figure 2. The optimization algorithm iterates starting from the initial guess (P0, μ0)
and constructs a sequence of estimations (Pk, μk). We plot the histograms of the laws
LY (|〈Ψ(T, ePkDe−Pk , εi +Y, μk, Ψ

0
1 ), ej〉|2 for various choices of k, i = 1, . . . , 5 and j = 1, 2, 3, 4.

In the top picture are the histograms of the observations (Preal, μreal), in the bottom left pic-
ture are the histograms for the initial guess (P0, μ0) (k = 0) and in the bottom right image the
histograms for the final iteration (P277, μ277) (k = 277). The optimization works well as there
is an obvious match between the top and the bottom right histograms.
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