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MEAN-FIELD STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL
PROBLEMS: OPEN-LOOP SOLVABILITIES *

JINGRUT SUN!

Abstract. This paper is concerned with a mean-field linear quadratic (LQ, for short) optimal control
problem with deterministic coefficients. It is shown that convexity of the cost functional is necessary
for the finiteness of the mean-field LQ problem, whereas uniform convexity of the cost functional is
sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex cost
functionals, a characterization of the finiteness of the problem is derived and a minimizing sequence,
whose convergence is equivalent to the open-loop solvability of the problem, is constructed. Then,
it is proved that the uniform convexity of the cost functional is equivalent to the solvability of two
coupled differential Riccati equations and the unique open-loop optimal control admits a state feedback
representation in the case that the cost functional is uniformly convex. Finally, some examples are
presented to illustrate the theory developed.
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1. INTRODUCTION

Let (£2,F,F,P) be a complete filtered probability space on which a standard one-dimensional Brownian
motion W = {W(t);0 < ¢t < oo} is defined, where F = {F;}4>0 is the natural filtration of W augmented by all
the P-null sets in F. Consider the following controlled linear stochastic differential equation (SDE, for short)
on a finite horizon [t, T:

dX(s) = {A(S)X(s) + A($)E[X (5)] + B(s)u(s) + B(s)E[u(s)] + b(s)}ds

+{C5)X () + C(5)EIX ()] + D(s)u(s) + D()E[us)] +o(s) W (s),  sefr,7], (1)
X(t) = ¢,

where A(-), A(), B(-), B(-), C(:), C(-), D(-), D(-) are given deterministic matrix-valued functions; b(-), o(-)
are vector-valued F-progressively measurable processes and ¢ is an F;-measurable random vector. In the above,
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u(+) is the control process and X (-) is the corresponding state process with initial pair (t,€). For any ¢t € [0,T),
we define

T
Ui, T) = {u :[t, T] x 2 — R™ | u(-) is F-progressively measurable, IE/ lu(s)|*ds < oo} .
t

Any u(-) € U[t, T] is called an admissible control (on [t,T]). Under some mild conditions, for any initial pair (¢, &)
with € being square-integrable and any admissible control u(-) € U[t, T, (1.1) admits a unique square-integrable
solution X (-) = X (-;t,&, u(+)). Now we introduce the following cost functional:

J(t, &ul) = TE{<GX(T), X(T))+2(g, X(T)) + (GE[X(T)], E[X(T)]) + 2(g, E[X (T)])
eI ) G Gy =24 () G5 )] s 12
LTG50 ) () (i) )= 26 Gl oo}

where G, G are symmetric matrices and Q(-), Q(-), S(-), S(*), R(-), R(-) are deterministic matrix-valued functions
with Q()T = Q(-), Q)T = Q(), R()T = R(:), R()T = R("); g is an Fr-measurable random vector and g
is a (deterministic) vector; ¢(-), p(-) are vector-valued F-progressively measurable processes and ¢(-), p(-) are
deterministic vector-valued functions. Our mean-field stochastic LQ optimal control problem can be stated as

follows:

Problem (MF-LQ). For any given initial pair (¢,£) € [0,T) x L%, (§;R™), find a u*(-) € U[t, T] such that

J(t.&u ()= inf (& u()) £ V(L E). (1.3)

u(-)eU[t,T]

In the above, L% (£2;R™) is the space of all Fy-measurable, R"-valued random vectors £ with E|¢|? < co. Any

u*(+) € U[t, T) satistying (1.3) is called an (open-loop) optimal control of Problem (MF-LQ) for the initial pair
(t,g), and the corresponding X*(-) = X (-;¢,&, u*(+)) is called an optimal state process. The function V(-,-) is
called the value function of Problem (MF-LQ). In the special case where b(-), o(-), g, g, q(-), G(*), p(-), and p(-)
vanish, we denote the corresponding mean-field LQ problem, cost functional, and value function by Problem
(MF-LQ), JO(t, & u(+)), and VO(t,€), respectively.

Comparing with the classical stochastic LQ optimal control problem, a new feature of Problem (MF-LQ) is
that both the state equation and the cost functional involve the states and the controls as well as their expecta-
tions. In this case, we call (1.1) a controlled mean-field (forward) SDE (MF-SDE, for short). The history of MF-
SDEs can be traced back to the work of Kac [18] in 1956 and McKean [21] in 1966. Since then, many researchers
have made contributions to such kind of equations and applications; see, for example, [2,9,10,12-15,24]. For
recent development of MF-SDEs, readers may refer to [5,7,8,11,17,19,20,27] and the references cited therein.
Control problems of MF-SDEs were studied by Ahmed et al. [3], Ahmed [1], Park et al. [23], Buckdahn et al. [6],
Andersson and Djehiche [4], Meyer et al. [22], and so on. More recently, Yong [28] investigated an LQ problem
for MF-SDEs in finite horizons and gave some interesting motivation for the control problem with E[X (-)] and
E[u(-)] being included in the cost functional. Later, Huang et al. [16] generalized the results in [28] to the case
with an infinite time horizon.

In [28], two coupled differential Riccati equations are derived by decoupling the optimality system. It is shown
that under certain conditions, the two Riccati equations are uniquely solvable and Problem (MF-LQ) admits
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a unique optimal control which has a state feedback representation. To be precise, if

G, G+G>=
{ o a.e. s€[0,71], (1.4)

0,
S(s) =8(s) =0, R(s), R(s)+ R(s)

for some § > 0, then the unique solvability of the two Riccati equations can be obtained from the classical result
([29], Thm. 7.2). However, examples show that the two Riccati equations might still be solvable even if both
R(+) and R(-) are negative semi-definite (see Example 6.1). On the other hand, it may happen that Problem
(MF-LQ) is open-loop solvable, while the optimal control cannot be obtained by solving the corresponding
Riccati equations due to the possible singularities of the terms R+ DT PD and R+ R+ (D+D)" P(D+ D) (see
Example 6.2). Thus, some questions arise naturally: (a) what is the relationship between Problem (MF-LQ) and
the solvability of the two Riccati equations? (b) How can we characterize the open-loop solvability of Problem
(MF-LQ)? (¢) How can we find an optimal control in general? The purpose of this paper is to study Problem
(MF-LQ) from an open-loop point of view and to address the above issues. Closed-loop mean-field LQ problems
will be investigated in a forthcoming paper.

Our main idea and results of this paper can be informally described as follows. By a representation of the
cost functional, we first show that for the open-loop solvability of Problem (MF-LQ), a necessary condition is
the convexity of the cost functional and a sufficient condition is the uniform convexity of the cost functional.
Under the convexity condition, by adding eE ftT lu(s)|?ds (¢ > 0) to the original cost functional, we get a family
of uniformly convex functionals. The corresponding mean-field LQ problems admit unique optimal controls
uk(+), € > 0, which form a minimizing sequence of Problem (MF-LQ). Then the open-loop solvability of Problem
(MF-LQ) is characterized by the convergence of the sequence, whose limit is an optimal control of Problem
(MF-LQ). To construct u’(-) explicitly, we further investigate Problem (MF-LQ) with uniformly convex cost
functionals. Since the uniform convexity condition is much weaker than (1.4), the result in [28] fails to apply
to this case. To overcome this difficulty, we reduce Problem (MF-LQ) to a classical stochastic LQ problem and
a deterministic LQ problem. By making use of a result found in [26], we establish the equivalence between the
uniform convexity of the cost functional and the solvability of the two Riccati equations. Then by the completion
of squares technique, we obtain a state feedback representation of the optimal control via the solutions of the
two Riccati equations.

The rest of the paper is organized as follows. Section 2 gives some preliminaries. In Section 3, we study Problem
(MF-LQ) from a Hilbert space viewpoint and derive necessary and sufficient conditions for the finiteness and
open-loop solvability of the problem by considering a family of uniformly convex cost functionals. Section 4
shows that the solvability of two coupled Riccati equations is necessary for the uniform convexity of the cost
functional. In Section 5, we further prove that the solvability of the two coupled Riccati equations is also
sufficient for the uniform convexity of the cost functional. Moreover, a state feedback representation is obtained
for the optimal control. Some illustrative examples are presented in Section 6.

2. PRELIMINARIES

Throughout this paper, we denote by R™*™ the Euclidean space of all n x m real matrices, and by S™
the space of all symmetric n x n real matrices. Recall that the inner product (-,-) on R"™*™ is given by
(M, N) + tr (M TN), where the superscript T denotes the transpose of vectors or matrices, and the induced
norm is given by |M| = /tr (M TM). When there is no confusion, we shall use (-,-) for inner products in
possibly different Hilbert spaces, and denote by | - | the norm induced by (-,-). For a matrix M € R™*™  we
denote by R(M) the range of M, and if M € S™, we use the notation M > 0 (> 0) to indicate that M is positive
(semi-) definite. For a bounded linear operator A form a Banach 2" space into another Banach space %, we
denote by A* the adjoint operator of A. Let T' > 0 be a fixed time horizon. For any ¢ € [0,T] and Euclidean
space H, we let LP(t,T;H) (1 < p < o0) be the space of all H-valued functions that are LP-integrable on [t, T,
and let C([t, T];H) be the space of all H-valued continuous functions on [t, T]. Next, we introduce the following
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spaces:
L%, (2;H) = {5 : 2 — H | € is Fi-measurable, E[¢* < oo}7

T
LA(t, T; H) = {np :[t,T] x 2 — H | ¢(-) is F-progressively measurable, IE/ lp(s)2ds < oo} )
t

LA(02; C([t, T]; H)) = {(p :[t, T] x 2 — H | ¢(-) is F-adapted, continuous, E ( sup |g0(5)|2> < oo} ,
s€t,T]

2
T
LA, LN, T;H) = o [t,T) x 2 — H | ©(+) is F-progressively measurable, E (/ |cp(s)|ds> < 00
¢

Further, we introduce the following notation: For any S™-valued measurable function F on [t, T,

F>0 < F(s)>20, ae seltT],
F>0 < F(s)>0, ae seltT],
F>0 < F(s) =4I, ae. secltT], for some d > 0.

The following assumptions will be in force throughout this paper.

(H1) The coefficients of the state equation satisfy the following:

(-) € L0, T; R™ ™), b(-) € L2(£2; L} (0, T; R™)),

A(), A(-) € LY0,T; R™™), B(-)
¢ () € L=(0, T;R™™), o(-) € L2(0, T; R™).

. ’B
C(-),C(-) € L*(0,T;R™™), D(-),D
(H2) The weighting coefficients in the cost functional satisfy the following:

Q()a@() € Ll(OaT; Sn)? S(),S() € Lz(OaT; Rmxn)’ R()7R() € LOO(OaT;Sm)a
g € L% (£2;R"), q(-) € LA(2; LY (0, T;R™)), p(-) € L4(0,T;R™),
G,G eS", geR"™, q(-) € LY(0,T;R™), p(-) € L3(0,T; R™).

By a standard argument using contraction mapping theorem, one can show that under (H1), for any
(t,€) € [0,T) x L%, (2;R") and any u(-) € U[t,T], (1.1) admits a unique solution X(-) = X(-;¢,&,u()) €
L2(£2; O([t,T];R™)). Hence, under (H1)-(H2), the cost functional (1.2) is well-defined, and Problem (MF-LQ)
makes sense. Now we introduce the following definition.

Definition 2.1.
(i) Problem (MF-LQ) is said to be finite at initial pair (t,€) € [0,T] x L%, (£2;R™) if
V(t,€) > —oc. (2.1)

Problem (MF-LQ) is said to be finite at t € [0,T] if (2.1) holds for all & € L%, (£2;R™), and Problem
(MF-LQ) is said to be finite if it is finite at all ¢ € [0, T7.

(ii) Problem (MF-LQ) is said to be (uniquely) open-loop solvable at initial pair (t,£) € [0,T] x L%, (§;R™) if
there exists a (unique) u*(-) € U[t, T] satisfying (1.3). Problem (MF-LQ) is said to be (uniquely) open-loop
solvable at t if for any £ € L% (£2; R™), there exists a (unique) u*(-) € U[t, T] satisfying (1.3), and Problem
(MF-LQ) is said to be (uniquely) open-loop solvable (on [0,T)) if it is (uniquely) open-loop solvable at all
tel0,T).
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Next, we introduce the following mean-field backward SDE (MF-BSDE, for short) associated with the state
process X (-) = X (-;¢,&, u(+)):

dy (s) = —{ATY + ATE[Y]+ CT Z + CTE[Z] + QX + QE[X]
+8Tu+ STE[y] +q+q}ds+ZdW(s), set,T), (2:2)
Y(T)=GX(T)+ GE[X(T)] + g+ g.

The following result is concerned with the differentiability of the map u(-) — J(¢, & u(-)).

Proposition 2.2. Let (H1)-(H2) hold and t € [0,T) be given. For any & € L% (£2;R™), X € R and u(-),v(-) €
Ult, T), the following holds:

J(t,&ul-) + () — J(t, &ul-) = A2T0(t,0;v(-)) + 20E /T (B'Y + B'E[Y]|+D"Z + D"E[Z] (2.3)
+ SX + SE[X] + Ru+ RE[u] + p+ p,v)ds,

where X (+) = X (-;t,&,u(-)) and (Y (-), Z(+)) is the adapted solution to the MF-BSDE (2.2) associated with X (-).
Consequently, the map u(-) — J(t,&u(-)) is Fréchet differentiable with the Fréchet derivative given by

DJ(t, & ul(-))(s) = Q{B(S)TY(S) + B(S)T]E[Y(s)] + D(S)TZ(S) + D(S)TIE[Z(S)] + 5(s)X (s) 2.4)

+S(s)E[X ()] + R(s)u(s) + R(s)E[u(s)] + p(s) + p(s)] } se[t,T).

Proof. Let )?() = X(-;t,&u(-) + Av(-)) and Xo(-) be the solution to the following MF-SDE:

dXo(s) = {A(s)XO(s) + A(s)E[Xo(s)] + B(s)v(s) + B(S)E[U(s)}}ds

(
+ {C’(S)Xo(s) + C(s)E[Xo(s)] + D(s)v(s) + D (s)]E[v(s)}}dW(s), s€et,T),
Xo(t) =0,

By the linearity of the state equation, )A(() = X(-) + AXo(-). Hence,
J(&, & ul-) + () — J(t & ul))

= AE{ (G[2X(T) + AXo(T)], Xo(T)) + 2{g, Xo(T))

LER) () ()0 ()]

+ A{ (G (2BIX ()] + NE[Xo(T)] ), E[Xo(T)] ) + 2(g, E[Xo(T)])

[ [ CHRUER) () +=(()- G

= 2>\E{<GX(T) +9,Xo(T)) + /T [(QX +STu+q, Xo) + (SX + Ru + p,v>} ds}



1104 J. SUN

+>\2E{<GXO(T),X0(T)> 4 /tT <(g "g) (XU‘)) , <XUO>>ds}

~ T
+2>\{<GIE[X(T)}+§J,]E[XO(T)]>+/

oo s + [7((§5) (). (59)) )

= 2)\IE{ (GX(T)+ GE[X(T)] + g + g, Xo(T))

(QE[X]+STE[u]+4, E[Xo)) + (SE[X] + RE[u] + 5, E[v]) | ds}

+/tT [(QX+QIE[X]+STu+ST]E[u]+q+q, Xo>+<SX+SIE[X]+Ru+R]E[u}+p+,5,v>}ds}
FA2J0(t, 0: ().
Now applying Ito’s formula to s — (Y (s), Xo(s)), we have
E(GX(T)+ GE[X(T)] + g + g, Xo(T))
— E/tT { ~(ATY +ATEY]+CTZ+ CTE[Z] + QX + QE[X]| + STu+ S E[u] + ¢ + ¢, Xo)
+ (AXo + AE[Xo] + Bv + BE[u],Y) + (CXo + CE[X,] + Dv + DE[u], Z>}ds

T
= IE/ {<BTY +BTE[Y]+ D' Z+ D'E[Z],v) — (@X + QE[X] + STu+ STE[u] + ¢+, Xo>}ds.
t

Combining the above equalities, we obtain (2.3). O

From the above, we have the following result, which gives a characterization for the optimal controls of
Problem (MF-LQ).

Theorem 2.3. Let (H1)-(H2) hold and (t,€) € [0,T) x L% (£2;R") be given. Let u*(-) € U[t,T] and
(X*(1),Y*(+), Z*(*)) be the adapted solution to the following (decoupled) mean-field forward-backward stochastic
differential equation (MF-FBSDE, for short):

AX*(s) = {AX* + AE[X*] + Bu* + BE[u*] + b}ds
+{CX* + CE[X"] + Du* + DE[u*] + o }dW(s), s € [t,T],

av*(s) = —{ATY* + ATE[Y*]+ CT 2" + CTE[Z"] + QX" + QE[X"] (2:5)
+5Tu + 5TE ] + g+ qfds + 2°AW(s),  s€[L,T)

X*(t) =¢, Y*(T)=GX*(T)+ GE[X*(T)|+ g+ g.

Then w*(-) is an optimal control of Problem (MF-LQ) for the initial pair (¢,£) if and only if
JOt,0;u(-)) =0,  Vu(-) €U, T), (2.6)

and the following stationarity condition holds:
DI, & u* () = 2{BTY* +DTZ" + SX* + Ru* + p

+BTE[Y*] + DTE[Z*] + SE[X*] + RE[u"] + p} =0, ac. as
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Proof. By (2.3), we see that u*(-) is an optimal control of Problem (MF-LQ) for the initial pair (¢,¢) if and
only if

T
RI9(6,05()) X [ (D06t ()(o).uls)ds
t
=J(t&u () + () = J(E,&u () 20, VAER, Vu() e U[t, T,
which is equivalent to (2.6) and the following:

T
E/t (DI & u*())(s),u(s))ds <0,  Vul) € UL, T).

Note that the above inequality holds for all u(-) € U[t, T| if and only if DJ(t, & w*(+))(-) = 0. The result therefore
follows. 0

3. FINITENESS AND OPEN-LOOP SOLVABILITY OF PROBLEM (MF-LQ)

We begin with a representation of the cost functional. For any u(-) € U[t,T], let X{¥(-) be the solution of

dXg(s) = {A(S)Xé‘(S) + A(s)E[Xg (s)] + B(s)u(s) + B(s)E[u(s)] }ds

+{C5) X5 (s) + CBIXE ()] + Dis)uls) + D()E[u(s)] faw (s),  sefr7), G
XU(t) = 0.

By the linearity of (3.1), we can define bounded linear operators £ : U[t,T] — L2(t,T;R"™) and Ly :Ut,T] —
L% (£2;R™) by u(-) — X§(-) and u(-) — X§(T), respectively, via the MF-SDE (3.1). Then

+{GEDXE()] BT
(i) (i) o
( [

D). (1))

= <G£Atu, Etu> <@E[Etu] Etu > <Q£tu Ltu> + 2<S£tu,u> + <Ru,u>
+ <QIE [Liu], E[Lu] > + 2<S]E[[,tu] [u]) < Elu], E[u])
= ([£;(G+E*GE)L, + L£;(Q + E*QE)L; + (S + E*SE)L, + L£; (ST + E*STE) + (R + E*RE)]u, u).

JO(t,05u() = E{<GX8L(T)»X6‘(T)>

Denote
M 2 LHG+E*GE)Ly + L1(Q +E*QE)Ly + (S + E*SE)L, + £3(ST +E*STE) + (R + E*RE),  (3.2)

which is a bounded self-adjoint linear operator on U[t, T']. Then by Proposition 2.2, the cost functional J (¢, §; u(+))
can be written as

J(t, & u(-)) = (Meu,u) + (DJ (L, £ 0),u) + J(t,&;0), (3.3)
V(t,€) €[0,T] x L%, (£2;R™), Yu(-) € U[t, T). '

Now let us introduce the following conditions.

(H3) The following holds:
JO(t,0;u(-) =0, Yu(-) €Ut,T]. (3.4)
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(H4) There exists a constant 6 > 0 such that
T
JO(t,0;u()) > 515:/ lu(s)|*ds,  Yu() €U[t,T). (3.5)
¢

From (3.3), we see that the map u(-) — J(t,& u(-)) is convex if and only if
M, >0, (3.6)
which is also equivalent to (H3), and u(-) — J(t,&;u(+)) is uniformly convex if and only if
M; > 061, for some § > 0, (3.7)

which is also equivalent to (H4). The following result tells us that (H3) is necessary for the finiteness (and
open-loop solvability) of Problem (MF-LQ) at ¢, and (H4) is sufficient for the open-loop solvability of Problem
(MF-LQ) at .

Proposition 3.1. Let (H1)—-(H2) hold and t € [0,T") be given. We have the following:

(i) If Problem (MF-LQ) is finite at t, then (H3) must hold.
(ii) Suppose (H4) holds. Then Problem (MF-LQ) is uniquely open-loop solvable at t, and the unique optimal
control for the initial pair (t,€) is given by

W) = =S MDI(E0)) (33)
Moreover,
V(t,€) = J(t,£0) — i M DI 0)] . (3.9)
Proof.

(i) We prove the result by contradiction. Suppose that J(¢,0;u(-)) < 0 for some u(-) € U[t,T]. By Proposi-
tion 2.2, we have

J(t, & () = J(t,€0) + NT0(t,0;u(-) + AE /T<DJ(t,£;0)(s),u(s)>ds, vVeR.

Letting A — 00, we obtain that
V(t,&) < lim J(t, & Au()) = —oo,
A—00

which is a contradiction.
(ii) Suppose (H4) holds. Then the operator M, is invertible, and

2

1 1 1 1 1 2
J(tag; U()) = ’Mtrzu + §Mt QDJ(tag; 0) + J(t,gv 0) - Z Mt 2DJ(t7§7 0) ;

2

> J(L60) 1 [MIDILED)| . Ve € L (2R, V() € UlLT)

Note that the equality in the above holds if and only if
Ly
u= —§Mt DJ(t,&;0).

The result therefore follows. O
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Due to the necessity of (H3) for the finiteness of Problem (MF-LQ), we will assume (H3) holds in the rest of
this paper. Now for any € > 0, consider state equation (1.1) and the following cost functional:

T
Jo(t,Eu() 2 J(t, & u() + <E / fus) 2ds
= (M + D)u,u) + (DJ(E € 0),u) + J(£,€;0).

(3.10)

Denote the corresponding optimal control problem and value function by Problem (MF-LQ). and V.(-,),
respectively. By Proposition 3.1, part (ii), for any £ € L%(Q; R™), Problem (MF-LQ). admits a unique optimal
control

u2() = —2(My + D) DI &0 (311)

and the value function is given by
1 2
Va(t,6) = J(1,6:0) = 5 |(My +eD)" 2D (t,£:0)| - (312)
Now, we are ready to state the main result of this section.

Theorem 3.2. Let (H1)-(H3) hold and & € L%, (§2;R™). We have the following:

(i) lime—o V2(t,&) = V(t,€). In particular, Problem (MF-LQ) is finite at (t,€) if and only if {V-(t,&)}e0 is
bounded from below.
(ii) The sequence {u*(-)}eso defined by (3.11) is a minimizing sequence of u(-) — J(t,&u(:)):

i I G () = inf I Eu() = V(). (3.13)

(iii) The following statements are equivalent:

(a) Problem (MF-LQ) is open-loop solvable at (t,&);

(b) The sequence {uX(-)}eso s bounded in U[t, T;
(¢) The sequence {uZ(-)}es0 admits a weakly convergent subsequence;
d)

(

In this case, the weak (strong) limit of any weakly (strongly) convergent subsequence of {u’(-)}eso is an
optimal control of Problem (MF-LQ) at (t,£).

The sequence {ul(-)}e>0 admits a strongly convergent subsequence.

To prove Theorem 3.2, we need the following lemma.
Lemma 3.3. Let H be a Hilbert space with norm | -| and 0,0, € H, n=1,2,....
(i) If 0,, — 0 weakly, then |0| < liminf [6,,].
(ii) 0, — 0 strongly if and only if
10, — 0] and 0, — 0  weakly.
Proof of Theorem 3.2.
(i) For any €2 > €1 > 0, we have
JEz (ta 5; u()) > J€1 (t7 g; u()) = J(t’ g; u())a V’LL() € U[t, T]a

which implies that
sz(tvf) > V€1 (tag) = V(tvf)’ Vea >e1 > 0.
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Thus, the limit lim._,¢ V-(¢, &) exists and

V(t,€) = lim V.(t,€) > V(¢,€). (3.14)

On the other hand, for any K,§ > 0, we can find a u%(-) € U[t, T], such that

T T
Vo(t,€) < J(h € () +eIE/t b ()[2ds < max{V(t,§),—K}—|—5+dE/t [u? (s)2ds.

Letting € — 0, we obtain -
V(t, &) < max{V(t,&),—K} + 0, VK,§>0,

from which we see
V(t,&) < V(t,9). (3.15)

Combining (3.14)—(3.15), we obtain the desired result.
(ii) If V(t,&€) > —oo, then by (i), we have

EEAT@@ﬂh=kwaﬁﬁ%mméwxﬂ=%@©—Jw&@0)
CVLE-V(E =0  as e—0.
Hence, i
tig 7, 020)) = B [Vi(e.6) =<8 [ Juz(o)Pas| = vie).
If V(t,€) = —oo, then by (i), we have
Tt €2 ()) < Jult G () = Valt,6) — —00  as €0,
and (3.13) still holds.

(iii) (b) = (c) and (d) = (c) are obvious. We next prove (c) = (a). Let {u}, (-)}x>1 be a weakly convergent
subsequence of {ul(-)}e>o with weak limit v*(-). Then {u?, (-)}x>1 is bounded in U[t, T]. For any u(-) € U[t,T],

we have
T

T
J(t & uz, () + 5kE/ [uZ, (s)Pds = Ve, (£,€) < J(t, & ul)) +5kE/ [u(s)|*ds. (3.16)
¢ ¢
Note that u(-) — J(t,&;u(-)) is sequentially weakly lower semi-continuous. Letting & — oo in (3.16), we obtain
Tt € () < Hmin (1.6 uf, () < J(EEu(), V() € ULT)

Hence, u*(-) is an optimal control of Problem (MF-LQ) at (¢,£). Now it remains to show (a) = (b) and (a) =
(d). Suppose v*(-) is an optimal control of Problem (MF-LQ) at (¢,&). Then for any € > 0, we have

T
%@@=k@&@W2Vw®+£[\@®ﬁk

T
mw@<¢wawm=vwo+£[|w@&m

from which we see that

T V(t,6) = V(t,6) !
* 2 * 2
IE/t e (s)Pas < 2 TS <E/t v (s)2ds, Ve 0. (3.17)
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Thus, {u¥(-)}e>0 is bounded in the Hilbert space U[t,T] and hence admits a weakly convergent subsequence
{uf, () }r=1. Let u*(-) be the weak limit of {u?, (-)}x>1. By the proof of (c) = (a), we see that u*(-) is also an
optimal control of Problem (MF-LQ) at (¢,¢). Replacing v*(-) with «w*(-) in (3.17), we have

T T
]E/ luz(s)|?ds < ]E/ lu*(s)|*ds,  Ve>O0. (3.18)
t t

Also, by Lemma 3.3, part (i),

T T
]E/ lu*(s)|?ds < liminf]E/ |u:k(s)\2ds (3.19)
t k—oo t

Combining (3.18)—(3.19), we have

T T
]E/ lu*(s)[2ds = Tim ]Ei/ it (s)ds.
t k—oo Jy '
Then it follows from Lemma 3.3, part (ii), that {U:k(')}k>1 converges to u*(-) strongly. O

4. NECESSARY CONDITIONS FOR THE UNIFORM CONVEXITY AND RICCATI EQUATIONS

Theorem 3.2 tells us that in order to solve Problem (MF-LQ), we need only solve mean-filed LQ problems with
uniformly convex cost functionals and then pass to the limit. By Proposition 3.1, under the uniform convexity
condition (H4), the unique optimal control w*(-) for the initial pair (¢,&) is determined by (3.8). However, such
a representation is not easy to compute, since M, 1'is in an abstract form and very complicated. Thus, we
would like to find some more explicit form of the optimal control. In this section we shall investigate uniform
convexity of the cost functional and show the necessity of solvability of two Riccati equations for the uniform
convexity of the cost functional.

First, we present the following result concerning the value function of Problem (MF-LQ)°.

Proposition 4.1. Let (H1), (H2) and (H4) hold. Then there exists a constant o € R such that

VO(s,€) = aE[[¢?], V(s,€) € [t,T] x L% (£2;R™) with E[¢] = 0. (4.1)
Proof. For any s € [t,T] and any u(-) € U[s, T], we define the zero-extension of u(-) as follows:
(o r € [t,s),
(0l utl) = o) TS0 (12
Then v(-) = 0l 5) © u(-) € U[t, T], and due to the initial state being 0, the solution X¢(-) of
dX§(r) = {A(r)Xg(r) + A(r_)IE[Xé’(r)] + B(r)v(r) + B(T_)E[U(’I“)]}d’l“
+ {C(T)X(')’(r) + C(rE[X{(r)] + D(r)v(r) + D(r)E[v(r)]}dW(r), r e [t,T],
Xo(t) =0,
satisfies X{§(r) = 0, r € [t, s]. Hence,
T ) T
(s, 0:u()) = JO(F, 0; 0Ty & u(-) > 51[«:/t 01y & u(-))(r)|*dr = 51[«:/ lu(r)2dr. (4.3)

Now, let (X(-),Y(-), Z(:)) be the solution of the following (decoupled) MF-FBSDE:
dX(r) = {AX + AE[X]}dr + {CX + CE[X|}dW (r), 7€ [s,T],
AY(r)=—{ATY + ATEY]+ C"Z + CTE[Z] + QX + QE[X]}dr + ZdW (r), 1€ [s,T],
X(s)=¢  Y(T)=GX(T)+GE[X(T)].
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By Proposition 2.2 and (4.3), we have
JO(s,&u()) — J%(s,£:0)
T
= J%s,0;u(+) + 2]E/ <BTY+BT1E[Y]+DTZ+DTE[Z}+SX+SE[X],u>] dr

> J%s,0;u(-)) — OE /ST |u(r)|?dr — %E/ST |BTY +BTE[Y]+DT Z+D E[Z]+5X +SE[X]|*dr 4
> —%]E /ST |BTY +BTE[Y]+DT Z+D E[Z]+5X +SE[X]|*dr.
If E[¢] = 0, then E[X(-)] = 0, and one can verify that
X(r)=X(rX(s)7'¢, Y(r) =Y(n)X(s)'E, Z(r) =Z(nX(s)7E,  rels T
where X(-) is the solution to the following R™*"-valued SDE:
dX(r) = A(r)X(r)dr + C(r)X(r)dW (r), r e [0,T],
{X(O) _ 1 (4.5)
and (Y(-),Z(-)) is the adapted solution to the following R™*™-valued backward SDE (BSDE, for short):
{dY(r) =—[A()"Y(r) + C(r)TZ(r) + Q(r)X(r)]dr + Z(r)dW (r), re[0,7T], (4.6)
Y(T) = GX(T).

Note that X(r)X(s)~1, Y(r)X(s)~! and Z(r)X(s) ! are independent of Fs. Thus, E[X (-)] = E[Y (-)] = E[Z(-)] =
0 and (noting (4.4))

T
Po(s.gu()) > (5. 0) = 5E [ [BO)TY () + DY Z(0) + S()X () *dr

T T
]E{(GX(T),X(T)) —I—/ (Q(r)X(r),X(r))dr} — %]E/ |B(r)TY(r) + D(r)TZ(r) + S(T)X(T)| dr
T
.

= s{em(([re)) mTeRmEe "+ [ e TEETQEReRE) ar )¢}

S

L T -7 T T
~<E / €T [X(s) ] [B()TY(r) + D) TZ(r) + S(r)X(r)]

x[B(r)TY(r) + D(r) " Z(r) + S(r)X(r)] X(s) " &dr

T

T
— ]E{gTE([X(s)1]TX(T)TGX(T)X(3)1 T / [X(s)™] " X() T QX (r)X(s) Ldr
T
I )T [BEO)TY() + D)) + S@)X)] T

S

x[B(r)"Y(r) + D(r) " Z(r) + S(r)X(r)] X(s)_ldr> g} =E[¢"M(s)¢].
Note that M(-) : [t,T] — S™ is continuous. The result therefore follows. O

Now, let us introduce the following Riccati equation:

P+PA+ATP+CTPC+Q
—(PB+C"PD+ST)(R+D'PD) ' (BTP+DTPC+5)=0, ac seltT], (4.7)
P(T)=G.
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A solution P(-) of (4.7) is said to be strongly regular if
R(s) + D(s) " P(s)D(s) > I, a.e. s € [t,T], (4.8)
for some 6 > 0. The Riccati equation (4.7) is said to be strongly regularly solvable, if it admits a strongly regular
solution. By a standard argument using Gronwall’s inequality, one can show that if the regular solution of (4.7)
exists, it must be unique. Compared with the strongly regular solution, the notion of regular solution, which is

closely related to the closed-loop strategy, was introduced in [25]. The interested reader is referred to [26] for
further information.

The following result shows that the strongly regular solvability of the Riccati equation (4.7) is necessary for
the uniform convexity of the cost functional.

Theorem 4.2. Let (H1)-(H2) and (H4) hold. Then the Riccati equation (4.7) is strongly regularly solvable.

To prove the above result, we need the following lemma, whose proof can be found in [26].

Lemma 4.3. Let (H1)-(H2) hold. For any O(-) € L%(t,T;R™*"), let Po(-) € C([t,T);S"™) be the solution to
the following Lyapunov equation:

Po + Po(A+ BO) + (A+ BO)" Pg + (C + DO)" Po(C + DO)
+0TRO+STO+0"S+Q =0, a.e. s € [t,T), (4.9)
Po(T) =G.

If there exists a constant 3 > 0 such that for all O(-) € L2(t,T;R™*™),
Po(s), R(s)+ D(s)" Po(s)D(s) > I, a.e. s € [t,T], (4.10)
then the Riccati equation (4.7) is strongly regularly solvable.

Proof of Theorem 4.2. We only need to show that the condition stated in Lemma 4.3 holds. To this end, let
O(:) € L3(t,T;R™ ") and P(-) = Po(:) be the corresponding solution of (4.9). For any deterministic u(-) €
L2(t, T;R™), let X*“(-) be the solution of

{dX“(s) = [(A+ BO)X" + BuW]ds + [(C + DO)X" + DuW|dW,  s€ [t T,
“(t) =0,

and set

v() £ O()XM() +u()W() € Ult,T].

Clearly,
E[X*(s)] =0, E[v(s)] =0, s € [t,T]. (4.11)

By the uniqueness of solutions, X*(-) also solves

{dX“(s) = {AX"+ AE[X "]+ Bv+ BE[v] }ds + {CX"+CE[X "]+ Dv+ DE[v] }dW, s et T],
“(t) = 0.
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Thus, by applying Itd’s formula to s — (P(s)X"(s), X*(s)), we have (noting (H4) and (4.11))

T T
5]E/t 10(5) X" (5) + u(s)W(s)|>ds = 5]E/t lv(s)|2ds < JO(t,0;v(+))

T
- IE{(GX“(T),X“(T)) +/t [(QX™, X*) +2(SX",v) + <Rv,v>}ds}
/T {(PX“, X")+ (P[(A+ BO)X" + BuW|,X") + (PX",(A+ BO)X" + BuW)

—E
+(P[(C + DO)X" + DuW], (C + DO)X*" + DuW')
QX" X") + 2(SX", OX" + ulW) + (ROX" +ulV), OX" + ulV') |ds

T
- IE/ {2([BTP+DTPC+ 5+ (R+DTPD)OIX",uW) + (R + DT PD)uW,ulV’) }ds.
t
Hence, for any u(-) € L2(t, T;R™), the following holds:

T
]E/ {2 ([BTP+D"PC+ S5+ (R+D"PD—46)O]WX", u)
t " (4.12)
+W2{((R+D"PD — 5I)u,u>}ds = 515:/ |O(s) X “(s)]*ds > 0.
t

Now, applying It0’s formula again, we have

{d]E[W(S)X“(S)] = {[A(s) + B(s)O(s) |E[W (s) X" (s)] + sB(s)u(s)}ds7 s € t,T),
E[W(t)X"“(t)] =0.

Fix any ug € R™ and take u(s) = uoly pyp)(s), with t <’ <t'+h <T. Then

0, s € [t, ],

EWEX 6] = 1400 / T b B, s e le.71,

where @(-) is the solution of the following R™*"-valued ordinary differential equation (ODE, for short):

{4‘5(5) — [A(s) + B(s)6(s)]®(s), s €[0,T],
B(0) = 1.

Consequently, (4.12) becomes
t'+h s
/ {2 ([BTP+D"PC+ S+ (R+D'"PD - 51)0]d(s) / ®(r) "' B(r)ruodr, uo)
# t
+s{((R+D"PD — 6I)uy, u0>}ds > 0.

Dividing both sides by h and letting h — 0, we obtain

t'([R(t")+ D) " P{)D(t') — 6I]ug,uo) >0,  Yug €R™, ae.t' €[t,T],
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which implies that
R(s) + D(s)" P(s)D(s) > 41, a.e. s € [t,T].

Next, for any (s,x) € [t,T] x R™, let X(-) be the solution of

{dX(r) = [A(r) + B(T)@(T)]X(r)dr + [C(T) + D(T)@(T)] X (r)dW(r), rels,T],
X(s) =W(s)x,

and set
w(-) £6()X(-) € U[s,T].

Similar to the previous argument, by applying It6’s formula to r — (P(r)X (r), X (r)), we can derive that
JO(s, W (s)x;w(-)) = E(P(s)W (s)x, W(s)x) = s (P(s)x, x).
By Proposition 4.1, we have
s(P(s)z,z) = J(s, W(s)z;w(-)) = aE[|W(s)z|*] = salz|?, V(s,z) € [t,T] x R",
which implies that P(s) > oI,V s € [t,T]. The proof is completed. O

From Theorem 4.2, we see that the Riccati equation (4.7) is strongly regularly solvable under the uniform
convexity condition (H4). With the strongly regular solution P(-) of (4.7), we may further introduce the following
deterministic LQ optimal control problem.

Consider the state equation

{zé:)) :iA(s) + A(s)]y(s) + [B(s) + B(s)]v(s), s€t,T), (4.13)
and the cost functional
T
T(t.a0()) 2 (G + G o)+ [ [ oy +2(Ty.0) + (Do) Jas, (4.14)

where _ _ _
T=Q+Q+(C+C)'P(C+0C),

I'=(MD+D)'P(C+C)+S+5,
Y=R+R+(D+D)"P(D+ D).

We pose the following deterministic LQ problem.

Problem (DLQ). For any given (¢,x) € [0,T) x R", find a v*(-) € L?(¢, T; R™), such that

J(t, z;0()). (4.15)

J(t, z:v (1) = inf
(t, ;0" (1)) B -

Note that the Riccati equation associated with Problem (DLQ) is
T+ A+ A+ A+ATT+Q+Q+(C+C) P(C+C)
—[[I(B+B)+(C+C)TP(D+D)+(S+S)T|[R+R+(D+D) P(D+D)] "
+

+
x[(B+B)TII +(D+D)"P(C+C)+(S+5)] =0, ae selT],
II(T) =G +G.

(4.16)

We have the following result.
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Theorem 4.4. Let (H1)-(H2) and (H4) hold. Then the map v(-) — J(t,0;v(-)) is uniformly convez, i.e.,

exists a X > 0 such that
J(t,0;0( )\/ s)|*ds, Yo(-) € L3(t, T;R™).

Consequently, the strongly regular solution P(-) of the Riccati equation (4.7) satisfies
Y=R+R+(D+D)"P(D+D)>0,
and the Riccati equation (4.16) admits a unique solution II(-) € C([t,T];S").
Proof. Let P(-) be the strongly regular solution of the Riccati equation (4.7) and set
©=—(R+D"PD)"Y(B"P+D'PC+8) € L*(t,T; R™™).
We claim that
Jo,0;0()X() + () = J(0:00)y() + (), Vo) € L3t T;R™).
To prove (4.19), take any v(-) € L%(t,T;R™), let y(-) be the solution of

{ s) [ )+ A(s )] (s)+ [B(s) + B(s)] [Q(S)y(s) + v(s)], selt,T],
y(t) =0,

and X (-) be the solution of
dX(s) = {AX + AE[X] + B(OX +v) + BE[OX + v]}ds

+{CX + CE[X] + D(OX +v) + DEOX +4]}aW(s),  s€[tT],
X(t) = 0.

Note that v(-) is deterministic. Then

{dIE[X(s)] - {(A + A)E[X] + (B + B) (OE[X] + ) }ds, se[tT),
E[X(t)] = 0.
By the uniqueness of solutions, we see that

EX(s)] =y(s),  selt,T]

Now let z(-) = X(-) — E[X(-)]. Then

{ 2(s) = (A+ BO)zds + {(C + DO)z 4+ (C + C)y + (D + D)(Oy +v) }dW(s), s € [t,T],
(t

) =0.
Keep in mind that v(-) is deterministic and note that

0=P+P(A+B6O)+ (A+BO)"P+ (C+DO)"P(C + DO)
+0TRO+STO+0TS+Q.

there

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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By applying Itd’s formula to s — (P(s)z(s), 2(s)), we have (also, noting E[z] = 0)

JO(t,0;0()X () +v("))

= IE{ (GX(T), X(T)) + (GE[X ()], E[X (T)])
+ /tT [(QX, X) + (QE[X], E[X]) +2(SX,0X +v) +2 (SE[X],E[OX +1])
+(R(OX +v), (X +v)) + (RE[OX + o], E[OX + v]) ] ds}

- E{(Gz(T), 2(T)) + /tT [<Qz, ) +2(Sz,0z) + (ROz, ez>}ds}
+{(G+Gy(T),y(T)) + /tT [((Q +Q)y,y) +2((S + )y, Oy +v)
+((R+ R)(Oy +v),0y +v) |ds

T .
= IE/ {<PZ, z) + (P(A+ BO)z,z) + (Pz,(A+ BO)z)
+(P[(C + DO)z + (C + C)y + (D + D)(Oy +v)],
(C+DO)z+ (C+C)y+ (D+ D)(Oy +v))
+((Q+5T0+075+OTRO) z,2) hds
T
H(@+ET). D)+ [ [(@+Quy) +2((5 + S0y +v)
+<(R+R)(@y+v),@y+v>}ds

= /T (P[(C+C)y+ (D+D)(Oy+v)],(C+C)y+ (D+D)(Oy+v))ds

T
G+ @D )+ [ [(@+Quy)+2((5 + S0y +v)
+{(R+ R)(Oy +v),0y + v>}ds
T
= (G +Gum @)+ [ {{[Q+Q+(C+OTPC+ )
+2([(D+D)"P(C+C)+ S+ Sy, Oy +v)

+{[R+ R+ (D+D)"P(D+ D)|(Oy +v),0y +v) }ds
= J(t,0;0()y(-) +v(-)).

Thus, (4.19) holds. Consequently, by (H4), we have

T(t,0;0()y(-) +v(-) = J°(£,0: 0() X (-) +v(-)) = 5E [T |0(s)X () + v(s)[2ds > 5 [ [E[O(s)X () + v(s)]| *ds
=5 [T 10(s)y(s) + v(s)Pds,  Vo() € L2(t, T;R™),

which implies the uniform convexity of v(-) +— J(t,0;v(-)). The rest of the theorem follows now immediately
from ([26], Thm. 4.6). O
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5. SUFFICIENCY OF THE RICCATI EQUATIONS

In the previous section, we proved that the solvability of the Riccati equations (4.7) and (4.16) is necessary
for the uniform convexity of the cost functional. In this section, we shall show that it is also sufficient. Moreover,
under the uniform convexity condition, the optimal control can be represented explicitly as a state feedback

form wvia the solutions of the Riccati equations.
First we need the following lemma.

Lemma 5.1. Let (H1)-(H2) hold. For any u(-) € U[t,T], let X (-) be the solution of

A3 (s) = { A(9)X§ (5) + AS)ELXG ()] + B(s)u(s) + B(s)Elu(s)] }ds
+ {C(s)XgL(s) + C(8)E[X{ ()] + D(s)u(s) + D(s)]E[u(s)]}dW(s),
X{(t) =0.
Then for any O(-),0(:) € L2(t, T;R™*™), there exists a constant v > 0 such that

T

s € [t,T1,

T
B [ [u(s) - 06) (X3 (o) ~ BXG))*ds > [ fu(e)ds, va() e Uln. T

T

T ~ 2
[ Bl - WX ) ds > 5 [ Bl s, V() euleT)

Proof. Let O() € L*(t,T;R™*"™). Define a bounded linear operator A : U[t, T] — U[t, T] by

Au=u—O0(X{} — E[X{]).
Then A is bijective and its inverse A~! is given by
A =u+ 0 (X - E[X3]),
where X%(-) is the solution of

AX(s) = {(A + BO)X{ + (A — BO)E[XY] + Bu + B]E[u}}ds
+{(C+DO)X; +(C — DOE[XY] + Du+ DE[u] }aW (s),
Xo(t) =0.
By the bounded inverse theorem, A1 is bounded with norm || A~!|| > 0. Thus,

T

T T
E[MWW®=E[\MAAMMHMQM*WZIMM®WB

T
= IIA_lHE/t [uls) — O(s) (X5 (s) —E[X§ () ["ds,  Vu() €Ul T,

which implies the first inequality in (5.2) with v = ||A71|| 7%

s e t,T],

(5.2)



MEAN-FIELD STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL PROBLEMS: OPEN-LOOP SOLVABILITIES 1117

To prove the second, for any v(-) € L(t, T;R™*™), let y*(-) be the solution to the following ODE:

{z)“(s) = [A(s) + A(s)]y"(s) + [B(s) + B(s)]v(s), s €[, T],
°(t) = 0.

y' () (53)

For O(-) € L2(t,T;R™*"), we define a bounded linear operator B : L%(t,T;R™) — L%(t,T;R™) by

Bv=v—6y".

Similar to the previous argument, one can show that B is invertible and

/T lu(s) — O(s) ”(s)’Q ds > 1 /T lu(s)|*ds Yo(-) € L*(t, T;R™*")
: ! R | R

Observe that E[X{ ()] satisfies (5.3) with v(-) = E[u(-)]. The result therefore follows. O

Now we present the main result of this section, which gives a characterization for the uniform convexity of
the cost functional as well as a feedback representation of the optimal control.

Theorem 5.2. Let (H1)—(H2) hold. Then the map u(-) — JO(¢,0;u(-)) is uniformly convez if and only if the
Riccati equation (4.7) admits a strongly reqular solution P(-) such that

Y=R+R+(D+D)'P(D+D)>0, (5.4)

and the corresponding Riccati equation (4.16) admits a solution II1(-). In this case, the unique optimal u*(-) of
Problem (MF-LQ) at (t,€) is given by

u* =0(X* —E[X"]) + OE[X*] + ¢ — E[y] + &, (5.5)

where

—(R+D"PD)Y Y (B"P+D"PC+9),

X (B+DB)'I+(D+D)"P(C+C)+(S+9)],
—(R+D"PD)'[BTy+ DT (¢ + Po) +pl,

~ > Y(B+B)"ij+ (D + D) (E[¢] + PE[0]) +E[p] + 5},

s O O
1

®
with (n(-),¢(+)) and 77(-) being the (adapted) solutions to the following BSDE

dn(s) = —[(A+BO) 'n+ (C+DO)" ¢+ (C+ DO)" Por
+O0Tp+ Pb+qlds+¢dW(s),  s€t,T], (5.7)
n(T) =g,
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and ordinary differential equation

i+ [(A+A) + (B+ B)O] 7+ 67 {(D+ D) (PE[o] + E[(]) + E[s] + 5}
+(C+C)"(PE[o] +E[¢]) + E[g] + ¢+ IIE])] =0,  ae.s€[t,T], (5.8)
n(T) = Elg] + 3,

respectively, and X*(-) is the solution of the closed-loop system

ax*(s) = { (A + BO) (X"~ EIX"]) + [(A+ ) + (B + B)S]E[X"]
+B(¢ ~ Elg]) + (B + B)@ + b}ds
+{(C’+D8)(X*—IE[X*]) +[(C+C)+ (D + D)
+D(p ~Elg]) + (D + D) + o pdW(s), s€[t,T
X*(t) =€

O|E[X"] (5.9)
],

Moreover, the value V (t,€) is given by
V(t,6)=E (P(1)(€ — E[g]) + 20(t), € ~ E[¢]) + (T (H)E[E] + 201(t), E[¢))
+E | " {(Po.o) +20n,b— B +2(¢,0) + 20, El0) (5.10)
~ (Zo(p — El¢]), ¢ — Ele]) - (29, 4) jds,
where Xo = R+ D' PD.

Proof. The “only if” part has been proved in Section 4. Let us now show the “if” part. For any £ € L%_t (£2;R™)
and u(-) € U[t,T], let X(-) = X(-;t,&,u(-)) be the corresponding solution of (1.1). Set

2() =X() - EXQO)] o) =ul) —Eu()],  y() =EX()]

Then
dz(s) = {Az +Bo+b— E[b}}ds
+{Cz+Dv+o+(C+é)y+(D+D)JE[u]}dW(s), s€tT), (5.11)
z(t) = £ — E[¢],
and

{y: (A+A)y + (B + B)E[u] +E[b], s e[t T], (5.12)

y(t) = E[¢].

Now we rewrite the cost functional as follows:

((G+G)y(T) + 2 (Elg] + ), y(T)) (5.13)
T
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Applying It6’s formula to s — (P(s)z(s) 4+ 2n(s), 2(s)), we have (noting E[z] = 0, E[v] = 0)

E(Gz(T) + 29, 2(T)) — E(P(t)(§ — E[¢]) + 2n(t), € — E[¢])
T
-HE/t [(Qz, z) + 2(Sz,v) + (Rv,v) + 2(q, z) + 2{p, v)} ds

- ]E/T [(Pz,z> + (P(Az + Bo+b—E[b]), 2) + (P2, (Az + Bv+b—E[p]))
+t<P{Oz +Dv+0+(C+C)y+ (D+ D)E[u]},
Cz+4 Dv+o+ (C+C)y+ (D+ D)E[u])
—2((A+BO) '+ (C+DO) ¢+ (C+DO) Po+O0"p+Pb+q,z)

+2(n, Az + Bv + b —E[b])

+2(¢,Cz+ Dot o+ (C+C)y+ (D + D)E[up]ds

—|—IE/tT {(Qz, z) + 2(Sz,v) + (Rv,v) + 2(q, z) + 2{p, v)}ds

— ]E/tT {((P +PA+ATP+CTPC+Q)z,2)+2((PB+CTPD+S")v,2)
+{(R+D"PD)v,v) +2(B"n+ D¢+ D" Ps+p,v—Oz)
+2(PE[o] + E[(], (C + C)y + (D + D)E[u])
+(P{(C+ C)y+ (D + D)E[u]}, (C + C)y + (D + D)E[u])
+(Pa,a) +2(n, b~ E[s]) + 2(¢, o) ds
- IE/tT [(@Tzoez, 2) = 2007 Tgv, 2) + (Sov, v) — 2(Top, v — O2)
+((C+O)TP(C+CO)y,y) +2((C+C)" P(D + D)E[u], y) (5.14)
+{((D+ D)"P(D + D)E[u],E[u]) + 2((C + C)" (PE[o] + E[(]), )
+2((D + D)T (PElo] + E[]), Elu]) + (P, o) + 2(n, b — E[b]) + 2(C, )| ds
- E/tT (500~ 0z — ). — 62 — ) — (Zop. )
+{(C+C)"P(C+C)y,y) +2((C +C)"P(D + D)E[ul,y)
+{((D+ D)"P(D + D)E[u],E[u]) +2((C + C) " (PE[0] + E[(]), )

+2((D + D)7 (PE[o] + EC]), E[u]) + (P, o) + 2(n,b— E[b]) + 2(C, a>] ds.
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Applying the integration by parts formula to s — (II(s)y(s) + 27(s),y(s)), we have

(G +G)y(T) + 2(Elg] + ), y(T)) — (HI(E[] + 20(t), E[¢])

S () (y>>+2<(w”> () )¢
t S+S5 R+R ) \Eu/) \E[u Elp] +p/) \E[u]

:/tT {<ﬁy,y>+<n{(A+A)y (B+ B)E }y>

+(My, (A+ Ay + (B + BE[u] +E]) +2(i,y) + 2(7, (A + A)y + (B + BE[u] + E[]) | ds
(5.15)

T
+ / [(Q+Q)y.y) + 2((S+5)y, Elu]) + {(R+R)E[u], E[u]) + 2(Elg]+4,) + 2(Elp]+7, E[u)) |ds

:/T{([1'7+H(A+A)+(A+A)TH+Q+Q]y,y>
+2([IT(B+B)+ (S+9)"|E[u],y) +2(i7 + (A+ A) "7+ Elg] + ¢+ ITE[b],y)

+2((B + B)T7+Elp] + 5, Elul) + (R + R)E[u], Elu]) +2(7, E[b) }ds.
Adding (5.14) and (5.15) together and noting (5.13), we obtain

J(t,& u(-) —E(P(t)(€ — E[¢]) + 2n(t), & — E[¢]) — I(D)E[E] + 27(¢), E[S])
E/tT{ So(v— 02— ¢),0— Oz — @) — (Zop, o)
+ (Pa, ) +2(n,b — E[t]) +2(¢, o) + 2(7, E[b]) }ds
+/T [T+ HA+A)+A+ATT+Q+Q+(C+C)TP(C+C)]y,y)

+ 2([II(B+B)+ (C+C)"P(D+ D)+ (S+S)"|E[u,y)
{[R+ R+ (D+D)"P(D + D)|E[u], E[u])
+2(+ (A+ A) T+ (C+ C)T (PE[o] + E[(]) + E[g] + ¢+ ITE[b], )

_|_

+ 2((B+ B) "7+ (D + D)7 (PE[o] + E[C]) + E[p] + ﬁ,]E[u})}ds
=& [ {00~ 02~ )0 - 62~ ) - (Bop.1)

+ (Po,0) +2(n,b — E[b]) +2(C, o) + 2(7, E[b]) }ds

-/ (67 56y.) - 2(67 TER )

+ (ZE[u], Elu]) — 2(5@, E[u] — éy>}ds (5.16)
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T
—E [ {(5(v-02-p)v-02-¢) - (Zowr9)
t
+ (¥(E[u] - Oy — ¢),E[u] — Oy — @) — (¥p,p)

+ (Po, ) +2(n,b — E[t]) +2(¢, o) + 2(7, E[b]) }ds

:E/tT {(Pa, o) +2(n,b—E[b])

+2(¢,0) +2(n, Eb]) — (Y5, §)

— (Zo(p — E[p]), ¢ — E[p]) + (Xo(v — Oz — ¢ + E[p]), v — Oz — ¢ + E[g])

+ <E(E[u] — Oy — @),E[u] — Oy — ¢>}ds.
Since Xy, X' > 0, (5.16) implies that

J(t, & ul) = ECP()(E — E[E]) +2n(1), € — EE]) + (T ()E[E] + 2n(1), EE])
T
+ IE/t {(Pa,a) +2(n.b— E[)) +2(¢,0) +2(7, E[t])

— (Zolp — Ely]), ¢ — Elgl) - (Z,9) }ds, (5.17)
with the equality holding if and only if

{u—]E[u}:v:@z—l—(p—E[go]:@(X—IE[X])—i—gO—IE[cp],
E[u] = Oy + ¢ = OE[X] + ¢,

which is also equivalent to B
= O(X ~ E[X]) + OE[X] + ¢ — E[¢] + ¢.

In particular, when b(-), ("), (), 3, a(,@(), p(), A(-) = 0, we have
((),¢()) = (0,0), 7() =0, ¢()=¢()=0.
Take £ = 0. Then X (-) satisfies

dX(s) = {A(s)X(s) + A()E[X (5)] + B(s)u(s) + B(s)E[u(s)] }ds

+ {C(S)X(s) + C(s)E[X (8)] + D(s)u(s) + D(s)E[u(s)]}dW(s), s € [t,T],
X(t) =0,

and (5.16) becomes

(5.18)
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Noting that Yy, X > 01 for some § > 0 and making use of Lemma 5.1, we have
T
JO(L,0;u()) > 6]E/ { lu — Efu] — O(X — E[X])]* + [E[u] — OE[X]|* }ds
t
T
> 515/ lu —O(X —E[X])]* - 2(u — O(X — E[X]),E[u]) + (1 +7)[E[u]|*ds
t

T
> ‘5—71[«:/ lu— O(X — E[X])[%ds
t

1+~
> ]E/T u(s)2ds,  Vu() € U, T]
= 1 + ’y ‘ b ) )
for some v > 0. The uniform convexity of u(-) — JO(¢,0;u(-)) follows immediately. O

Note that for Problem (MF-LQ)° (where b(-),a(-),9(-),3(-),q(-),q(:), p(*), p(:) = 0), under the uniform con-
vexity condition (H4), the value at (¢, &) is given by

VO(t,€) = E(P(t)( - E[¢]), € — E[€)) + (I (H)E[E], E[¢]),
where P(-) and I1(+) are the solutions to the Riccati equations (4.7) and (4.16), respectively. The unique optimal
u*(+) is given by B
u* =6(X* —E[X*]) + OE[X "],

where O(+), O(+) are defined by (5.6) and X*(-) is the solution of

dX*(s) = {(A + BO)(X*—E[X*])) + [(A+ A) + (B + B)@]]E[X*}}ds

+{(C+DO)(X*~E[X"]) + [(C+C) + (D + D)OIE[X"|}aW(s),  se[tT],
X*(t) = ¢.

To conclude this section, we present a sufficient condition for the uniform convexity of the cost functional.
From the following result, we will see that (1.4) implies the uniform convexity condition (H4). However, the
converse fails. A counterexample will be present in the next section (see Example 6.1).

Proposition 5.3. Let (H1)-(H2) hold and t € [0,T) be given. If there exists a constant 6 > 0 such that

_ B, — ST 371 S
{G,G+G>0, R(s) Rls) + B(s) >0, Q) = 5(s) RS20 0 vm (519)

)
Q(s) +Q(s) — [S(s) + 5(8)]T [R(s)+ R(s)] "[S(s)+ S(s)] =0,
then the map u(-) — JO(t,0;u(-)) is uniformly conves.

Proof. For any u(-) € U[t,T], let X¥(-) be the solution of (5.1). Then

JO(,05u(-) =Eq (G(X(T) = E[Xg(T)]), X§(T) - E[X§ (T)])
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T
E/t { (Q(X¢ —E[X{]), X —E[X§]) +2(S(X§ —E[Xy]),u — E[u]) + (R(u — E[u]),u — E[u]) }ds
T
+ [ {{(@+ QBIX31BIX1) +2((5+ S)ELXSLE{) + (R + R[] B }ds
T
& [ {((@-5Tr"8)(xg ~BLx). X5 ~ ELXG))
+(R[u—Eu] + RLS(XY — B[XY)],u — E[u] + R7'S(X¢ - E[X])) }ds
T
+/t {([Q+Q—(S+5)T(R+R)*1(5+5)]E[Xg},IE[Xg]>
+ ((R+R) (Blu] + (R+ R)™\(S + S)E[X;]), Elu] + (R+ R)™1(S + S)E[X;]) Jds
>5E/T|u— Efu] + R~'S(X¥ — E[X¢) yds+5/ R)"\(S + 5)EIX¢] ds.
Consequently, by Lemma 5.1 (taking © = —R71S and © = —(R+ R)"}(S + S)), we have
T 2
JO(t, 05 u(-)) >5E/ {Ju Bl + R75(Xg — EIXG])[* + 1[E[u]? bds
T
1‘17 E/t lu+ RIS (XY — E[X])[*ds

T
> 16171E/t lu(s)Pds, V(") € U[t, T,

for some ~y > 0. This completes the proof. O

6. EXAMPLES

In this section we present two illustrative examples. In the first example, the condition (1.4) does not hold,
but the corresponding Riccati equations are still solvable. Thus, by Theorem 5.2, the cost functional is uniformly
convex. This example shows that the uniform convexity condition (H4) is indeed weaker than (1.4).

Example 6.1. Consider the following Problem (MF-LQ)° with one-dimensional state equation
{dX(s = {E[X(s)] + u(s) + E[u(s)] }ds + V2u(s)dW (s), s e[t 1],
X(t) =¢,

and cost functional
J.6u() = E{GIX WP + GEX I+ [ (RO + RO EuE]R) s}

where -
G=8  G=-a-8 with 0<a< gy,
R(s) = (s+1)3 —4(s+1)?, R(s)=1—(s+1)3, s € [0,1].

The Riccati equations for the above problem are
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and
. AIT(s)? B
I(s) + 211(8) = Ry T R(s) 7 2PG) ~

II(1) = —a.

Clearly,

G+G=-a<0, R(s)=(s+1)2(-3)<—-2, R(s)+R(s)=1-4(s+1)?< -3, s€l0,1].

Hence, the condition (1.4) does not hold. However, one can verify that the above Riccati equations are solvable
on the whole interval [0, 1] with solutions given by
aeQ(lfs)

P(s) =2(s +1)?, 1I(s) = 20[e2(—5) —1] — 1 <

0, s €[0,1].

Note that

R(s)+ D(s) " P(s)D(s) = (s + 1)® > 1, 0.1

_ _ _ s e [0,1].

R(s) + R(s) + [D(s) + D(s)] " P(s)[D(s) + D(s)] = 1,

By Theorem 5.2, the cost functional J(¢,&;u(-)) is uniformly convex in u(-), and for any initial pair (¢,¢) €
[0,1) x Li—t((); R), the problem admits a unique optimal control u*(-) given by

2

W) =X+ |

— 2 <s>] EX*(s)],  selt1]

with X*(-) being the solution to the following closed-loop system:

X°(6) 4 [ 255 4| Bl (9] f

dX*(s) = { T2

Cs+1
n {_32_|_—\/_22X*(s) +2V2 L‘-I-Ll — H(s)] E[X*(s)}} dW (s), s € [t, 1],
X*(t) =¢.

Now we present an example in which the mean-field LQ problem is open-loop solvable, but the cost functional
is not uniformly convex. Hence, the optimal control cannot be constructed directly in terms of the Riccati
equations. However, an optimal could still be found by making use of Theorems 3.2 and 5.2.

Example 6.2. Consider the following Problem (MF-LQ)" with one-dimensional state equation

{dX(s = {X(s) — E[X(s)] + E[u(s)] }ds + u(s)dW (s), s € [t,T],
X(t) =¢,

and cost functional
T
I, u) = E{AX @R + BTN + [ (= 1X R = (9P +4[BX G - [Blu(s)]) s |.

In this example,
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Clearly, the condition (1.4) does not hold. The Riccati equations for the problem are

P(s)+2P(s) —4 =0, s e[t T,
fri o o
and 11(s)?
II(s) — Pl 3 = 0, scltT], 6.2)
II(T) = 3.

Tt is easy to see that P(-) =2 is the unique solution of (6.1). However, since
R(s) + R(s) + [D(s) + D(s)] " P(s)[D(s) + D(s)] = P(s) =2 =0, s € [t,T],

we cannot use (6.2) to solve the problem directly. To investigate the open-loop solvability of the above problem,
let us now consider the following cost functionals for € > 0:

T
JAL&UH):JﬁénwD+fE/ ju(s) ds

T
=E{mxawﬁwmxaw2+1'(—4X@V+we<NM@F+MEM@m2—mwwnﬁd§.

We denote the corresponding mean-field LQ problem and value function by Problem (MF-LQ)? and V(- ),
respectively. The Riccati equations for Problem (MF-LQ)? are

{Pg(s) +2P.(s)—4=0, sel[tT)

P.(T) =2,
and I1(s)?
I(s)— —==20 __—¢ t,T
SC xS R A
I1.(T) = 3.
A straightforward calculation leads to
3¢
P.(s) =2, 1. (s) = ————; € [t,T].
(5 ()= 3= €T

Since

R+et+D'P.D=1+e¢, R4+e4+R+(D+D)'P.(D+D)=c¢,

by Theorem 5.2, the map u(-) — Je(¢,0; u(-)) is uniformly convex for all € > 0 and hence u(-) — J(¢,0;u(-)) is
convex. Moreover,

V2(t,€) = E(P.(t)(¢ — E[¢)), € — E[¢]) + (II-(H)E[¢], E[¢]), (6.3)
and the unique optimal control of Problem (MF-LQ)Y at (¢,€) is given by

—E[X(s)], s € t,T],
with X7 (-) being the solution to the following closed-loop system:

AX*(s) = {X:(s) _ (1 + HT(S)) IE[XE*(s)}} ds — HET(S)]E[X;“(s)]dW(s), se T,
X5 = €.

€
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Letting € — 0 in (6.3), we have from Theorem 3.2 that

. 2var [¢], 0<t<T,
Ve =i 200 = by gge (Sr
Note that "
aE(x:(s)) = - Vg (o)as,  senT)
E[XZ(1)] = E[¢].
Hence,
eix: (] =sigen { - [ Tar} - 0wy, e
and
() = ~TLBX ()] = - s, selnT)
It is clear that for t € [0,7"), uZ(s) converges uniformly to
u*(s)E—%, s € [t’T]v

which, by Theorem 3.2, is an optimal control of the original problem at (¢,&).
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