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Abstract. We prove that a family of linear bounded evolution operators (G(t, s))t≥s∈I can be asso-
ciated, in the space of vector-valued bounded and continuous functions, to a class of systems of elliptic
operators A with unbounded coefficients defined in I×R

d (where I is a right-halfline or I = R) all having
the same principal part. We establish some continuity and representation properties of (G(t, s))t≥s∈I

and a sufficient condition for the evolution operator to be compact in Cb(R
d; Rm). We prove also a

uniform weighted gradient estimate and some of its more relevant consequence.
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1. Introduction

In recent years, the study of second-order elliptic operators with unbounded coefficients has been object of
increasing interest since they appear in many models of probability and mathematical finance. Whereas the
theory of Kolmogorov equations is well developed in the scalar case, as the considerable literature shows (see
e.g., [9] and the references therein), the case of systems of equations is nowadays at a preliminary level.

In this paper, we consider a family of nonautonomous second-order uniformly elliptic operators A (having
all the same principal part), defined on smooth functions w : R

d → R
m by

(Aw)(t, x) =
d∑

i,j=1

Qij(t, x)D2
ijw(x) +

d∑
j=1

Bj(t, x)Djw(x) + C(t, x)w(x), (1.1)

for any t ∈ I (I being a right-halfline or I = R) and x ∈ R
d. In (1.1), the entries Qij of the matrix-valued

function Q are smooth functions, possibly unbounded, and infI×Rd λQ(t, x) is positive, where λQ(t, x) is the
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minimum eigenvalue of the matrix Q(t, x). As far as Bj and C are concerned, they are m×m matrices whose
elements are smooth enough and possibly unbounded real valued functions (see Hypotheses 2.1).

We deal with the parabolic Cauchy problem associated to A in Cb(Rd; Rm) the space of vector-valued bounded
and continuous functions, i.e., we look for a locally in time bounded classical solution u = (u1, u2, . . . , um) of
the system {

Dtu(t, x) = (Au)(t, x), (t, x) ∈ (s,+∞) × R
d,

u(s, x) = f(x), x ∈ R
d,

(1.2)

where s ∈ I and f ∈ Cb(Rd; Rm). By a locally in time bounded classical solution of (1.2) we mean a function
u ∈ C1,2((s,+∞) × R

d; Rm) ∩ Cb([s, T ] × R
d; Rm) satisfying (1.2) and bounded in each strip [s, T ]× R

d.
In [12, 21] the simpler case of weakly coupled equations (i.e., Bj(t, x) = bj(x)Im for any (t, x) ∈ I × R

d,
j = 1, . . . , d and some real valued function bj) is considered. More precisely, in [12] the analysis is carried over in
Cb(Rd; Rm), whereas in [21] also the Lp-setting is studied, assuming that the diffusion coefficients are bounded.
Very recently, taking advantage of some results contained in this paper, the Lp-theory has been extended also
to first-order coupled systems as in (1.1) (see [6]).

This paper is devoted to keep on the analysis started in [12] aiming at considering more general systems than
those studied in [12]. The presence of a first order term as in (1.1), where the first partial derivatives of all the
components of u are mixed together, makes the problem quite involved and already the unique solvability of the
problem (1.2) is a not trivial question. Indeed, the method used in [12] takes strongly into account the special
structure of the equations and can not be immediately adapted to our situation. To overcome this difficulty,
we provide two sets of assumptions (see Hypoyheses 2.2 and 2.3) which yield uniqueness of a locally in time
bounded solution to problem (1.2). Under Hypotheses 2.2, we extend to our situation the method used by Kresin
and Maz’ia in [23] in the case of bounded coefficients. Such assumptions reduce to those assumed in [12] in the
case of weakly coupled equations and represent the natural generalization to the vector case of those typically
assumed in the case of a single equation. On the other hand, Hypotheses 2.3 allows to get uniqueness of the
solution u as above by a comparison argument: we show that u can be estimated pointwise from above by
G(t, s)|f |2, where G(t, s) is the evolution operator associated to a suitable nonautonomous elliptic operator A.
Once uniqueness is guaranteed, the existence of a classical solution of the problem (1.2) is then proved by some
compactness and localization argument based on interior Schauder estimates recalled in the Appendix. Hence,
under the previous assumptions, we can associate an evolution operator G(t, s) to A in Cb(Rd; Rm), i.e., for
any f ∈ Cb(Rd; Rm), G(·, s)f represents the unique locally in time bounded classical solution to (1.2).

The next (natural) step in our investigation consists in proving some continuity properties of the evolution
operator, which hold in the scalar case. In particular, an integral representation formula, in terms of some finite
Borel measures, is available for G(t, s). More precisely, for any i = 1, . . . ,m, t > s ∈ I and x ∈ R

d, there exists
a family {pij(t, s, x,dy) : j = 1, . . . ,m} of finite Borel measures such that

(G(t, s)f)i(x) =
m∑

j=1

∫
Rd

fj(y)pij(t, s, x,dy), f ∈ Cb(Rd; Rm). (1.3)

Formula (1.3) allows to extend the evolution operator G(t, s) to the space of bounded Borel vector-valued
functions and to prove the strong Feller property for G(t, s). With some considerable efforts, we prove that the
measures pij(t, s, x,dy) are absolutely continuous with respect the Lebesgue measure. One of the main difficulty
is represented by the fact that, differently from the scalar case, pij(t, s, x,dy) are signed measures.

In Section 4, we use the pointwise estimate of |G(t, s)f |2 in terms of G(t, s)|f |2 to prove that the compactness
of G(t, s) in Cb(Rd) is a sufficient condition for the compactness of G(t, s) in Cb(Rd; Rm). To prove the quoted
estimate, besides the standard regularity assumptions on the coefficients of A, the just mentioned assumption
on the drift matrices Bj = bjIm + B̃j (j = 1, . . . , d) and the existence of a Lyapunov function for the operator
A(t), we impose that all the entries of the matrices B̃j (j = 1, . . . , d) can grow no faster than λσ

Q, for some
σ ∈ (0, 1), and that the quadratic form associated to the potential C is bounded from above.
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Section 5 is devoted to prove a weighted gradient estimate for the function G(t, s)f . More precisely, under
suitable assumptions (see Hypotheses 5.1), which are essentially growth and algebraic conditions on the coef-
ficients of the operator A, their derivatives and the positive definite (t, x)-dependent matrix M , we show that
the map M(JxG(·, s)f)T is continuous and bounded in (s, T ] × R

d and that for any T > s ∈ I there exists a
positive constant Ks,T such that

‖M(JxG(t, s)f)T ‖∞ ≤ Ks,T (t− s)−1/2‖f‖∞, t ∈ (s, T ), f ∈ Cb(Rd,Rm). (1.4)

Unweighted uniform gradient estimates are classical when the coefficients of A are bounded and have been
recently extended to scalar elliptic operators with unbounded coefficients (see e.g., [3, 4, 8, 25, 30]) to the case
of unbounded coefficients. On the other hand, weighted gradient estimates seem to be new also in the scalar
case. We stress that we can allow M(t, ·) to grow at most linearly at infinity. This condition could seem too
restrictive, but as the classical case of bounded coefficients shows, in general the gradient of the solution to
problem (1.2) does not vanish with polynomial rate as |x| → +∞. Moreover, in view of the applications to
stochastic differential games, this bound on the growth of M is not restrictive at all. Estimate (1.4) is obtained
by adopting the Bernstein method (see [7]), which has been already used in the case of a single elliptic equation
with unbounded coefficients (see [25,29]) and in the case of domains with sufficiently smooth boundaries under
Dirichlet and first-order, non tangential homogeneous boundary conditions (see [3,4]). Differently from the scalar
case, additional technical difficulties arise, due to the presence of the matrix M . As a first application of (1.4),
we provide a sufficient condition for the compactness of the vector evolution operator G(t, s) in Cb(Rd; Rm)
to imply the compactness of G(t, s) in Cb(Rd). The main step in this direction is the proof of the following
representation formula of a component of G(t, s)f in terms of G(t, s):

(G(t, s)f)k̄(x) = (G(t, s)fk̄)(x) +
∫ t

s

(G(t, r)(SG(·, s)f(r, ·))(x)dr, t > s ∈ I, x ∈ R
d, (1.5)

where SG(·, s)f =
∑d

i=1〈rowk̄B̃i, DiG(·, s)f〉 + 〈rowk̄C,G(·, s)f〉 and rowk̄B̃i, rowk̄C denote the k̄- row of the
matrices B̃i and C, respectively. To make formula (1.5) meaningful, we need to guarantee that the integral term
is well defined. We prove this fact assuming that rowk̄C is bounded for some k̄ ∈ {1, . . . ,m} and using (1.4).

Other (and more relevant for the applications) consequences of the gradient estimate are an existence result
for the system of forward backward stochastic differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dYτ = H(τ,Xτ ,Zτ )dτ − ZτdWτ , τ ∈ [t, T ],
dXτ = b(τ,Xτ )dτ + G(τ,Xτ )dWτ , τ ∈ [t, T ],
YT = g(XT ),
Xt = x, x ∈ R

d,

(1.6)

and identification formulae for the pair Y and Z in terms of the mild solution to a semilinear problem associated
with an autonomous elliptic operator of the type (1.1). The main novelty lies in the fact that we do not assume
that H is (globally) Lipschitz continuous as assumed in [17, 34]: we just assume β-Hölder continuity (for some
β ∈ (0, 1)) with respect to the second set of variables, which is not uniform with respect to the other variables.

The above identification formulae are then used to prove the existence of a Nash equilibrium for a nonzero-
sum stochastic differential game. We follow the approach of [19], where the coefficients of the controlled system
are assumed to be bounded, and, as in our case, the diffusion is assumed to be independent of the control. The
results in [19] have been extended to the infinite dimensional setting in [16] still assuming the coefficients of
the controlled system to be bounded. Very recently, in [20] the authors have proved the existence of a Nash
equilibrium, relaxing the boundedness of the drift of the controlled system but still assuming the diffusion to be
bounded. We stress that, in our situation we can allow the diffusion of the controlled system to be unbounded.
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Notation

Functions with values in R
m are displayed in bold style. Given a function f (resp. a sequence (fn)) as above,

we denote by fi (resp. fn,i) its ith component (resp. the ith component of the function fn). By Bb(Rd; Rm)
we denote the set of all the bounded Borel measurable functions f : R

d → R
m. For any k ≥ 0, Ck

b (Rd; Rm)
is the space of all the functions whose components belong to Ck

b (Rd), where the notation Ck(Rd) (k ≥ 0) is
standard and we use the subscripts “c”, “0” and “b”, respectively, for spaces of functions with compact support,
vanishing at infinity and bounded. Similarly, when k ∈ (0, 1), we use the subscript “loc” to denote the space of
all f ∈ C(Rd) which are Hölder continuous in any compact set of R

d. We assume that the reader is familiar also
with the parabolic spaces Cα/2,α(I × R

d) (α ∈ (0, 1)) and C1,2(I × R
d), and we use the subscript “loc” with

the same meaning as above. By Jxu we denote the Jacobian matrix of u with respect to the spatial variables.
Square matrices of size m are thought as elements of R

m2
. For any M ∈ R

m2
, we denote by Mij , and rowjM ,

the ijth element and the jth row vector of the matrix M . For any k ∈ N, by Ik we denote the identity matrix of
size k. Finally, λM and ΛM indicate the minimum and the maximum eigenvalue of the (symmetric) matrix M .
When M depends on x (resp. (t, x)) we write λM (x) and ΛM (x) (resp. λM (t, x) and ΛM (t, x)) instead of λM(x)

and ΛM(x) (resp. λM(t,x) and ΛM(t,x)).
By ej and 1l, we denote, respectively, the jth vector of the Euclidean basis of R

m and the function identically
equal to 1 in R

d. The open disk with center at 0 and radius R > 0 is denoted by DR.
For any R > 0 we denote by GD

R (t, s) (resp. GN
R (t, s)) and GD

R (t, s) (resp. GN
R(t, s)) the evolution operator

associated with the realization of the operators A and Ã (see Hypotheses 2.3) in Cb(DR; Rm) and Cb(DR),
respectively, with homogeneous Dirichlet (resp. Neumann) boundary conditions on ∂DR. Finally, G(t, s) denotes
the evolution operator associated to the operator Ã in Cb(Rd), whose existence has been proved in [25].

2. Existence and uniqueness of locally in time

bounded classical solutions to (1.2)

2.1. Assumptions, remarks and examples

Let I be an open right-halfline or I = R and let A be the system of elliptic operators defined in (1.1). In
this section we prove that, for any s ∈ I and any f ∈ Cb(Rd; Rm) there exists a unique locally in time bounded
classical solution to the Cauchy problem (1.2).

The following are standing assumptions that we will not mention anymore.

Hypotheses 2.1. The coefficients Qij = Qji, (Bi)hk and Chk belong to C
α/2,α
loc (I×R

d), for any i, j = 1, . . . , d,
h, k = 1, . . . ,m. Moreover, λ0 := infI×Rd λQ > 0.

In what follows we will consider, alternatively, two additional sets of assumptions.

Hypotheses 2.2.

(i) There exist ε > 0 and a function κ : I × R
d → R, bounded from above by a constant κ0, such that the

function

Kη,ε :=
d∑

i,j=1

(Q−1)ij [〈Biη, η〉〈Bjη, η〉 − 〈B∗
i η,B

∗
j η〉] − 4〈Cη, η〉 + 4εκ

is nonnegative in I × R
d for any η ∈ ∂D1 ⊂ R

m;
(ii) for any bounded interval J ⊂ I there exist μJ ∈ R and a positive (Lyapunov) function ϕJ ∈ C2(Rd) blowing

up as |x| → +∞ such that supη∈∂D1
supJ×Rd(AηϕJ −μJϕJ ) < +∞, where Aη = Tr(QD2)+ 〈bη,∇x〉+2εκ

and bη,j = 〈Bjη, η〉 for j = 1, . . . , d.
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Hypotheses 2.3.

(i) There exist functions bi ∈ C
α/2,α
loc (I × R

d) and B̃i ∈ C
α/2,α
loc (I × R

d; Rm2
) such that Bi := biIm + B̃i in

I × R
d for any i = 1, . . . , d and |(B̃i)jk| ≤ ξλσ

Q in I × R
d, for any j, k = 1, . . . ,m, i = 1, . . . , d and some

locally bounded function ξ : I → (0,+∞) and σ ∈ (0, 1);
(ii) HJ := supJ×Rd(ΛC + 4−1m2dξ2λ2σ−1

Q ) < +∞ for any bounded interval J ⊂ I;
(iii) Hypothesis 2.2(ii) is satisfied with Aη replaced by Ã = Tr(QD2) + 〈b,∇〉, where b = (b1, . . . , bd).

Remark 2.4.

(i) Hypotheses 2.2 and 2.3 are technical assumptions used to prove the uniqueness of the classical solution
u to the Cauchy problem (1.2). Hypothesis 2.2(i) is obtained adapting a similar condition used in ([23],
Thm. 8.7) in the case of bounded coefficients. In literature there are also different technical conditions
which lead to a maximum principle for solutions to systems of partial differential equations. We refer the
reader e.g., to [28] where a weak maximum principle is proved for weak solutions to strongly coupled
elliptic systems with bounded coefficients in bounded domains.

(ii) Hypothesis 2.2(i) can be replaced with the weaker requirement that Kη,ε is bounded from below in J×R
d,

uniformly with respect to η ∈ ∂D1, for any bounded interval J ⊂ I. Indeed, in this case, for any J
as above, let cJ > 0 be such that Kη,ε ≥ −cJ in J × R

d for any η ∈ ∂D1. The change of unknowns
v(t, x) := e−cJ(t−s)/4u(t, x) transforms the elliptic operator A into the operator A− cJ/4, which satisfies
Hypothesis 2.2(i) and, clearly, the uniqueness of v is equivalent to the uniqueness of u.

(iii) In the scalar case when the elliptic operator in (1.1) is A = Tr(QD2) + 〈b,∇〉 + c and c is bounded
from above (otherwise, Proposition 2.7 fails in general), taking ε = 1 and κ = c, one easily realizes that
Hypothesis 2.2(i) is trivially satisfied. Moreover, Hypothesis 2.2(ii) reduces to require the existence of a
Lyapunov function for the operator A + c, for any bounded interval J ⊂ I. This condition seems to be
much more general than that typically assumed (i.e., the existence of a Lyapunov function for the operator
A) and, as the proof of Proposition 2.7 shows, it appears naturally when one considers the problem solved
by u2, where u is the solution to the Cauchy problem (1.2), with A and f ∈ Cb(Rd) instead of A and f .
In view of this fact, Proposition 2.7 and Theorem 2.8 below hold true provided there exists γ ≥ 1 and a
Lyapunov function for the operator A + γc.

(iv) Hypotheses 2.2 and 2.3 are independent in general. Indeed Hypotheses 2.3(i)−2.3(ii) imply Hypothe-
sis 2.2(i), whereas Hypothesis 2.2(ii) is stronger than Hypothesis 2.3(iii). Indeed, if Hypothesis 2.3(i)
holds, then

∑d
i,j=1(Q

−1)ij [〈B̃iη, η〉〈B̃jη, η〉−〈B̃iη, B̃jη〉] is negative and of order λ2σ−1
Q . This fact together

with Hypothesis 2.3(ii) implies Hypothesis 2.2(i) (taking the first point of this remark into account). On the
other hand, assuming Hypothesis 2.3(i), the function Kη,ε which, clearly, depends only upon B̃i (since the
diagonal parts cancel), can be of order less than λ1−2σ

Q . For instance, assume d = m = 2, Q = diag(λQ, ΛQ),
B1 = b1I2 diagonal and B̃2 
= 0. Then, Kη,0 = Λ−1

Q (〈B̃2η, η〉2 − |B̃2η|2) − 4〈Cη, η〉 is bounded from below
if ΛC + ξ2λ2σ

Q Λ−1
Q < +∞, which is weaker than the condition in Hypothesis 2.3(ii) if λQ = o(ΛQ). Finally,

concerning Hypotheses 2.2(ii) and 2.3(iii), the latter requires the existence of a Lyapunov function for one
decomposition of each drift matrix, while the former requires the existence of a Lyapunov function for any
decomposition Bi = bηIm + B̃η,i (η ∈ ∂D1).

Now, we exhibit two classes of elliptic systems which satisfy Hypotheses 2.2 (see Example 2.5) or Hypothe-
ses 2.3 (see Example 2.6).

Example 2.5. Let the coefficients of the operator A be given by

Qij ≡ δij , Bi(t, x) = −xi(1 + |x|2)rg(t)B̂i, C(t, x) = −(1 + |x|2)γh(t)Ĉ



942 D. ADDONA ET AL.

for any (t, x) ∈ I × R
d, i, j = 1, . . . , d, where

• B̂i (i = 1, . . . , d) and Ĉ are constant and positive definite matrices;
• g, h ∈ C

α/2
loc (I) have positive infima and g is bounded in I;

• γ > 2r + 1, r ≥ 0.

Observe that

Kη,0(t, x) =(1 + |x|2)2r(g(t))2
d∑

i=1

x2
i (|〈B̂iη, η〉|2 − |B̂∗

i η|2) + 4(1 + |x|2)γh(t)〈Ĉη, η〉,

for any (t, x) ∈ I × R
d and η ∈ ∂D1. Hence,

Kη,0(t, x) ≥ −(1 + |x|2)2r‖g‖2
∞

d∑
i=1

x2
i |B̂i|2 + 4(1 + |x|2)γh0λĈ ,

for any t, x and η as above, where h0 denotes the positive infimum of the function h. Since γ > 2r + 1,
the function Kη,0(t, ·) tends to +∞ as |x| → +∞, uniformly with respect to t ∈ I and η ∈ ∂D1. Therefore,
Hypothesis 2.2(i) is satisfied with ε = 1 and with a suitable choice of the constant κ. On the other hand, in this
case the operator Aη in Hypothesis 2.2(ii) is given by

Aη = Δ− g(t)(1 + |x|2)r
d∑

j=1

〈B̂jη, η〉xjDj + 2κ

and the function ϕ, defined by ϕ(x) = 1 + |x|2, for any x ∈ R
d, satisfies Hypothesis 2.2(ii), with ε = 1 and

μJ = 2κ.

Example 2.6. Let the coefficients of the operator A be given by

Qij(t, x) = q(t)(1 + |x|2)kQ0, Bi(t, x) = −b(t)xi(1 + |x|2)pIm + b̃(t)(1 + |x|2)rB̃0,i,

C(t, x) = −h(t)(1 + |x|2)γĈ,

for any (t, x) ∈ I × R
d and i, j = 1, . . . , d. Here,

• q ∈ C
α/2
loc (I) ∩ Cb(I) has positive infimum and Q0 is a constant positive definite matrix;

• the functions b, b̃ and h belong to C
α/2
loc (I). Moreover, b has positive infimum;

• B̃0,i (i = 1, . . . , d) and Ĉ are constant, with Ĉ positive definite;
• the exponents k, p, r, γ are nonnegative, p > (k− 1)∨ 0 and there exists σ ∈ (0, 1) such that 0 ≤ r ≤ kσ and
γ > k(2σ − 1).

Clearly Hypothesis 2.3(i) is satisfied. Moreover, the condition γ > k(2σ− 1) yields the boundedness from above
of the function ΛC + 4−1m2dξ2λ2σ−1

Q so that the constant HJ in Hypothesis 2.3(ii) is finite. Further, since
Ã = q(t)(1 + |x|2)kTr(Q0D

2
x) − b(t)(1 + |x|2)p〈x,∇x〉 taking ϕ(x) = 1 + |x|2 we can estimate

(Ãϕ)(t, x) = 2q(t)Tr(Q0)(1 + |x|2)k − 2b(t)(1 + |x|2)p|x|2
≤ 2‖q‖∞Tr(Q0)(1 + |x|2)k − inf

t∈I
b(t)(1 + |x|2)p+1, (2.1)

for any t ∈ I and any x ∈ R
d \D1. Due to the choice of p and k, the right-hand side of the previous inequality

diverges to −∞ as |x| → +∞, uniformly with respect to t ∈ I. Hence, Hypothesis 2.3(iii) is satisfied.
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2.2. Existence and uniqueness under Hypotheses 2.2

The uniqueness of the classical solution to problem (1.2) which is bounded in any strip [s, T ]×R
d, T > s ∈ I,

is a straightforward consequence of the following result.

Proposition 2.7. Fix s ∈ I, f ∈ Cb(Rd; Rm) and let u be a locally in time bounded classical solution to
problem (1.2). If Hypotheses 2.2 hold true, then ‖u(t, ·)‖∞ ≤ eεκ0(t−s)‖f‖∞ for any t > s.

Proof. Fix T > s ∈ I and let μ = μ[s,T ] and ϕ = ϕ[s,T ]. Up to replacing μ with a larger constant if needed, we
can assume that supη∈∂D1

sup[s,T ]×Rd (Aηϕ− μϕ) < 0 and μ > 2εκ0.
For any n ∈ N, we set vn(t, x) := e−μ(t−s)|u(t, x)|2−e−(μ−2εκ0)(t−s)‖f‖2

∞−n−1ϕ(x) for any (t, x) ∈ [s, T ]×R
d.

As it is immediately seen,

Dtvn(t, ·) =e−μ(t−s)[(A0|u|2)(t, ·) + (2εκ(t, ·) − μ)|u(t, ·)|2] + (μ−2εκ0)e−(μ−2εκ0)(t−s)‖f‖2
∞

− 2e−μ(t−s)V (t, ·, D1u(t, ·), . . . , Ddu(t, ·),u(t, ·)),

for any t ∈ (s, T ], where V (·, ·, ξ1, . . . , ξd, ζ) :=
∑d

i,j=1 Qij〈ξi, ξj〉 − ∑d
j=1〈Bjξ

j , ζ〉 − 〈(C − εκ)ζ, ζ〉 for any
ξ1, . . . , ξd, ζ ∈ R

m and A0 = Tr(QD2). Since μ > 2εκ0 we can estimate

Dtvn(t, ·) − (A0vn)(t, ·) − (2εκ(t, ·) − μ)vn(t, ·) − 2ε(κ(t, ·) − κ0)e−(μ−2εκ0)(t−s)‖f‖∞
<n−1[(A0ϕ)(t, ·) + 2εκ(t, ·)ϕ− μϕ] − 2e−μ(t−s)V (t, ·, D1u(t, ·), . . . , Ddu(t, ·),u(t, ·)), (2.2)

for any t ∈ (s, T ] and x ∈ R
d.

Our aim consists in proving that vn ≤ 0 in [s, T ] × R
d for any n ∈ N. Once this property is checked, letting

n → +∞ we will obtain e−2εκ0(t−s)|u(t, x)|2 − ‖f‖2
∞ ≤ 0 for any t ∈ [s, T ] and x ∈ R

d. The estimate in the
statement will follow from the arbitrariness of T > s.

Since vn tends to −∞ as |x| → +∞, uniformly with respect to t ∈ [s, T ], it has a maximum attained at some
point (t0, x0) ∈ [s, T ] × R

d. If t0 = s, then we are done since vn(s, ·) < 0. Suppose that t0 > s and assume, by
contradiction, that vn(t0, x0) > 0. Since 2εκ(t0, x0) − μ ≤ 2εκ0 − μ < 0, the left-hand side of (2.2) is strictly
positive at (t0, x0).

Let us prove that the right-hand side of (2.2) is nonpositive at (t0, x0). This will lead us to a contradiction
and we will conclude that vn ≤ 0 in [s, T ] × R

d.
Since ∇xvn vanishes at (t0, x0), 〈Dju(t0, x0),u(t0, x0)〉 = eμ(t0−s)Djϕ(x0)/(2n) for any j = 1, . . . , d. Hence,

it is enough to show that the maximum of the function

Fn,ζ(ξ1, . . . , ξd) := n−1[(A0ϕ̃)(t0, x0) + 2εκ(t0, x0)ϕ̃(x0) − μϕ̃(x0)] − 2V (t0, x0, ξ
1, . . . , ξd, ζ)

in the set Σ =
{
(ξ1, . . . , ξd) ∈ R

md : 〈ξj , ζ〉 = (2n)−1Djϕ̃(x0), j = 1, . . . , d
}

is nonpositive, where ϕ̃ = eμ(t0−s)ϕ.
Note that the function Fn,ζ has a maximum in Σ attained at some point (ξ1

0 , . . . , ξ
d
0 ), since it tends to −∞ as

‖(ξ1, . . . , ξd)‖ → +∞. Applying the Lagrange multipliers theorem, we easily see that (ξ1
0 , . . . , ξ

d
0 ) satisfies the

conditions

2
d∑

k=1

Qjk(t0, x0)ξk
0,i −

m∑
k=1

(Bj(t0, x0))kiζk − γjζi = 0, i = 1, . . . , d, j = 1, . . . ,m, (2.3)

for some real numbers γ1, . . . , γd, where ξk
0,i and ζi (i = 1, . . . ,m) denote, respectively, the compo-

nents of the vectors ξk
0 and ζ. Multiplying both sides of (2.3) by ζi and summing over i, we get γj =

|ζ|−2[n−1(Q(t0, x0)∇ϕ̃(x0))j −〈Bj(t0, x0)ζ, ζ〉] for any j = 1, . . . ,m. Replacing the expression of γj in (2.3), we
deduce that

ξj
0 =

1
2n

|ζ|−2ζDjϕ̃(x0) +
1
2

d∑
k=1

(Q−1)jk(t0, x0)[B∗
k(t0, x0)ζ − |ζ|−2〈Bk(t0, x0)ζ, ζ〉ζ],
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for j = 1, . . . , d. Hence, a direct computation shows that

V (t0, x0, ξ
1
0 , . . . , ξ

d
0 ) =

1
4n2|ζ|2 |

√
Q(t0, x0)∇ϕ̃(x0)|2 +

1
4
|ζ|2Kζ/|ζ|(t0, x0)

− 1
2n|ζ|2

d∑
j=1

Djϕ̃(x0)〈Bj(t0, x0)ζ, ζ〉

and, consequently,

max
Σ

Fn,ζ =
1
n

(Aζ/|ζ|(t0)ϕ̃(x0) − μϕ̃(x0)) − 1
2n2|ζ|2 |

√
Q(t0, x0)∇ϕ̃(x0)|2 − 1

2
|ζ|2Kζ/|ζ|,ε(t0, x0).

By Hypothesis 2.2(ii) and the choice of μ, the right-hand side of the previous formula is nonpositive. The proof
is complete. �

Now, we turn to show the existence of a unique locally in time bounded classical solution u to problem (1.2).

Theorem 2.8. Under Hypotheses 2.2, for any f ∈ Cb(Rd; Rm) and s ∈ I, the Cauchy problem (1.2) admits a
unique locally in time bounded classical solution u. Moreover, u ∈ C

1+α/2,2+α
loc ((s,+∞) × R

d) and satisfies

‖u(t, ·)‖∞ ≤ eεκ0(t−s)‖f‖∞, t > s. (2.4)

Proof. Fix f ∈ Cb(Rd; Rm) and let un be the unique classical solution to the Cauchy−Dirichlet problem⎧⎨
⎩

Dtun(t, x) = (Aun)(t, x), t ∈ (s,+∞), x ∈ Dn,

un(t, x) = 0, t ∈ (s,+∞), x ∈ ∂Dn,

un(s, x) = f(x), x ∈ Dn,
(2.5)

(see [27], Thm. IV.5.5). By classical solution we mean a function which belongs to C1,2((s,+∞) ×Dn) and is
continuous in ([s,+∞) ×Dn) \ ({s} × ∂Dn).

Let us prove that the sequence (un) converges to a solution to problem (1.2) which satisfies the properties in
the statement. The same arguments as in the proof of Proposition 2.7 show that

‖un(t, ·)‖∞ ≤ eεκ0(t−s)‖f‖∞, t > s. (2.6)

Hence, the interior Schauder estimates in Theorem A.2 guarantee that, for any compact set E ⊂ (s,+∞) × R
d

and large n, the sequence ‖un‖C1+α/2,2+α(E;Rm) is bounded by a constant independent of n. By the Ascoli–
Arzelà Theorem, a diagonal argument and the arbitrariness of E, we can determine a subsequence (unj ) which
converges to a function u ∈ C

1+α/2,2+α
loc ((s,+∞)×R

d; Rm) in C1,2(E; Rm) for any E as above. Clearly, u satisfies
the differential equation in (1.2) as well as the estimate (2.4), as it is easily seen letting n → +∞ in (2.6); we
just need to show that u is continuous in t = s and it therein equals the function f . As a byproduct, we will
deduce that the whole sequence (un) converges in C1,2(E; Rm), for any compact set E ⊂ (s,+∞) × R

d, since
any subsequence of (un) has a subsequence which converges in C1,2(E; Rm).

Fix R ∈ N and let ϑ be any smooth function such that χDR−1 ≤ ϑ ≤ χDR . For any nj > R the function vk :=
ϑunj belongs to C([s, T ]×DR; Rm)∩C1,2((s, T ]×DR; Rm), it vanishes on (s, T ]×∂DR, vj(s, ·) = ϑf and Dtvj−
Avj = gj in (s, T ]×DR, where gj = −Tr(QD2ϑ)unj − 2(Jxunj )Q∇ϑ−∑d

k=1(Bkunj )Dkϑ, for any j such that
nj > R. Since the function t �→ (t−s)‖unj(t, ·)‖C2

b (Dnj
) is bounded in (s, s+1) (by a constant depending on k) we

can apply Proposition A.1 and, taking (2.6) into account, we can estimate |gj(t, x)| ≤ KR(1 + (t− s)−1/2)‖f‖∞,
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for any (t, x) ∈ (s, s+1)×DR and any nj > R, where KR is a positive constant independent of j. Let us represent
vj by means of the variation-of-constants formula

vj(t, x) = (GD
R (t, s)(ϑf))(x) +

∫ t

s

(GD
R (t, r)gj(r, ·))(x)dr, t ∈ [s, T ], x ∈ DR.

Recalling that vj ≡ unj in DR−1 and taking the previous estimate into account, it follows that |unj (t, ·)− f | ≤
|GD

R (t, s)(ϑf)− f |+K ′
R

√
t− s‖f‖∞ in DR−1, for any t ∈ (s, s+ 1) and some positive constant K ′

R independent
of j. Letting first j tend to +∞ and, then, t tend to s+, we deduce that u is continuous at t = s for any
x ∈ DR−1. Since R ∈ N is arbitrary, we conclude that u ∈ C([s, T ] × R

d; Rm) and u(s, ·) = f . �

2.3. Existence and uniqueness under Hypotheses 2.3

Now we show that the assertions in Theorem 2.8 continue to hold if, as an alternative to Hypotheses 2.2,
we consider Hypotheses 2.3. Note that, since we no longer assume Hypotheses 2.2, we can not apply Propo-
sition 2.7 to guarantee the uniqueness of the solution to the Cauchy problem (1.2). The role of the following
theorem is twofold. First, it replaces Proposition 2.7, and, combined with Theorem 2.8, it shows that the Cauchy
problem (1.2) admits a unique locally in time bounded classical solution u. Secondly, it shows that, for any
f ∈ Cb(Rd; Rm), the function |u|2 can be estimated pointwise in terms of G(t, s)|f |2.
Theorem 2.9. Let us assume that Hypotheses 2.3 are satisfied. Then, for any s ∈ I and any f ∈ Cb(Rd; Rm),
the Cauchy problem (1.2) admits a unique locally in time bounded classical solution u. Moreover, u belongs to
C

1+α/2,2+α
loc ((s,+∞) × R

d) and, for any T > s ∈ I,

|u(t, x)|2 ≤ e2H[s,T ](t−s)(G(t, s)|f |2)(x), (t, x) ∈ [s, T ] × R
d, f ∈ Cb(Rd; Rm), (2.7)

where H[s,T ] is the constant in Hypothesis 2.3(ii).

Proof. Clearly, estimate (2.7) yields the uniqueness of the solution to problem (1.2). Moreover, the arguments
here below can also be applied to prove that the solution un to the Cauchy problem (2.5) satisfies (2.7), with
R

d replaced by Dn. This estimate replaces (2.6) and allows us to repeat verbatim the proof of Theorem 2.8 to
get the existence of a classical solution u to the problem (1.2).

Fix f ∈ Cb(Rd; Rm), T > s ∈ I. To prove (2.7) we need to show that the function v : [s, T ]×R
d → R, defined

by v(t, x) := e−2H(t−s)|u(t, x)|2 − (G(t, s)|f |2)(x) for any (t, x) ∈ [s, T ] × R
d, where H = H[s,T ], is nonpositive.

Clearly, it belongs to Cb([s, T ] × R
d) ∩ C1,2((s, T ) × R

d) and v(s, ·) ≡ 0. Moreover, taking Hypothesis 2.3(i)
into account, by a straightforward computation we get Dtv(t, x) = Ãv(t, x) + 2e−2H(t−s)g(t, x) for any (t, x) ∈
(s, T ]×R

d, where g =
∑d

i=1〈B̃iDiu,u〉 −Tr(JxuQ(Jxu)T ) + 〈Cu,u〉 −H |u|2. From Hypothesis 2.1, the Young
and Cauchy-Schwarz inequalities and Hypothesis 2.3(i) we get

g ≤− λQ|Jxu|2 + 2mξλσ
Q|u|

d∑
i=1

|Diu| + (ΛC −H)|u|2

≤(εdm2ξ2 − 1)λQ|Jxu|2 + [(4ε)−1λ2σ−1
Q + λC −H ]|u|2

in [s, T ] × R
d, where ε = ε(t) is an arbitrary positive function. Choosing ε = (m2ξ2d)−1 and taking Hypothe-

sis 2.3(ii) into account, we get Dtv − Ãv ≤ 0 in (s, T ] × R
d. The maximum principle in ([25], Thm. 2.1) shows

that v ≤ 0 in [s, T ] × R
d, which is the claim. �

Remark 2.10. We stress that the arguments used in the proof of Theorem 2.8 (and, hence, in the proof of
Thm. 2.9) to guarantee the existence of a solution to problem (1.2) work as well if we approximate this problem
by homogeneous Neumann–Cauchy problems in the ball Dn. We will use this approximation in the proof of
Theorem 6.3.
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3. The evolution operator and its main properties

As a consequence of Theorem 2.8 (resp. Thm. 2.9) we can associate an evolution operator {G(t, s)}t≥s∈I to
A in Cb(Rd,Rm), by setting G(·, s)f := u, where u is the unique locally in time bounded classical solution to
the Cauchy problem (1.2). The uniqueness statement in Proposition 2.7 and Theorem 2.9 yield the evolution
property of the family {G(t, s)}t≥s∈I . Moreover, (2.4) and (2.7) (together with the estimate ‖G(t, s)‖L(Cb(Rd)) ≤
1), imply that this family is an evolution operator in Cb(Rd; Rm). Moreover, for any T > s ∈ I,

‖G(t, s)f‖∞ ≤ e�(t−s)‖f‖∞, t ∈ [s, T ], f ∈ Cb(Rd; Rm), (3.1)

with � = εκ0 (resp. � = H[s,T ]).

Remark 3.1. Note that, under Hypotheses 2.2, estimate (3.1) holds true for any t > s ∈ I. The same is true
even if Hypotheses 2.3 are satisfied with J = I. In this latter case � = H for any t > s and some positive
constant H , independent of t and s.

In this subsection we investigate the main properties of the evolution operator (which from now on we simply
denote by G(t, s)). All the results contained in this section hold true when at least one between Hypotheses 2.2
and 2.3 are satisfied.

3.1. Continuity properties

We start by proving some continuity properties of G(t, s).

Proposition 3.2. Let (fn) be a bounded sequence of functions in Cb(Rd; Rm). Then, the following properties
are satisfied:

(i) If fn converges pointwise to f ∈ Cb(Rd; Rm), then G(·, s)fn converges to G(·, s)f in C1,2(E) for any
compact set E ⊂ (s,+∞) × R

d;
(ii) If fn converges to f locally uniformly in R

d, then G(·, s)fn converges to G(·, s)f locally uniformly in
[s,+∞) × R

d.

Proof.

(i) From the inequality (3.1) and the interior Schauder estimates in Theorem A.2, we deduce that
supn∈N

‖G(·, s)fn‖C1+α/2,2+α(E) < +∞ for any compact set E ⊂ (s,+∞)×R
d. Therefore, using the same ar-

guments as in the proof of Theorem 2.8, we can prove that there exists a function v ∈ C
1+α/2,2+α
loc ((s,+∞)×

R
d) and a subsequence (G(·, s)fnk

) which converges to v in C1,2(E) as k → +∞, for any E as above. Clearly,
Dtv = Av in (s,+∞) × R

d.
To complete the proof, we need to show that v can be extended by continuity on {s} × R

d and v(s, ·) ≡ f .
Indeed, once this property is proved, we can conclude that v is a local in time bounded classical solution to
problem (1.2). Hence, by uniqueness, we conclude that v ≡ G(·, s)f . Since this argument can be applied to
any subsequence of (G(·, s)fn) which converges in C1,2((s,+∞)×R

d), and the limit is G(·, s)f , we conclude
that the whole sequence (G(·, s)fn) converges to G(·, s)f locally uniformly in (s,+∞) × R

d.
To prove that v can be extended by continuity at t = s, we fix m, r ∈ N, with r < m. From the proof of
Theorem 2.8 and recalling that supn∈N ‖fn‖∞ < +∞, we deduce that

|(GD
m(t, s)fn)(x) − fn(x)| ≤ |GD

r (t, s)(ϑfn)(x) − ϑ(x)fn(x)| + Kr

√
t− s

for any (t, x) ∈ (s, s+ 1)×Dr−1 and some positive constant Kr independent of m. Thus, letting m → +∞
we conclude that

|(G(t, s)fn)(x) − fn(x)| ≤ |GD
r (t, s)(ϑfn)(x) − ϑ(x)fn(x)| + Kr

√
t− s, (3.2)
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for any (t, x) ∈ (s, s + 1) × Dr−1. Next step consists in letting n → +∞. Clearly, the left-hand side
of (3.2) converges to |v(t, x) − f(x)| for any (t, x) ∈ (s,+∞) × R

d. As far as the right-hand side is con-
cerned, we observe that Riesz’s representation theorem (see [1], Rem. 1.57) shows that there exists a family
{pr

ij(t, s, x,dy) : t > s, x ∈ Dr, i, j = 1, . . .m} of Borel finite measures such that

(GD
r (t, s)g)i(x) =

m∑
j=1

∫
Rd

gj(y)pr
ij(t, s, x,dy), g ∈ Cc(Dr; Rm), (3.3)

for any t > s, x ∈ R
d, i = 1, . . . ,m. Since each function ϑfn is compactly supported in Dr, from (3.3) it

follows that GD
r (·, s)(ϑfn) converges to GD

r (·, s)(ϑf) pointwise in [s,+∞) × R
d, as n → +∞. Hence, we

can take the limit in (3.2) and conclude that |v(t, ·) − f | ≤ |GD
r (t, s)(ϑf) − ϑf | + Kr

√
t− s in Dr−1, for

any t ∈ (s, s+ 1). Since the function GD
r (·, s)(ϑf) is continuous in [s,+∞)×Dr, this implies that v can be

extended by continuity to {s} × Dr−1 by setting v(s, ·) = f . The arbitrariness of r allows us to complete
the proof.

(ii) Fix T > s ∈ I. In view of property (i), we just need to prove that, for any compact set E ⊂ R
d and ε > 0,

there exists δ ∈ (0, 1) such that

lim sup
n→+∞

‖G(·, s)fn − G(·, s)f‖C([s,s+δ]×E;Rm) ≤ ε. (3.4)

Fix r ∈ N such that E ⊂ Dr−1. Taking first the supremum over Dr−1 and, then, the limsup as n → +∞ in
both the sides of (3.2), we conclude that

lim sup
n→+∞

‖G(·, s)fn − fn‖C([s,s+δ]×Dr−1;Rm) ≤ ‖GD
r (·, s)(ϑf) − ϑf‖C([s,s+δ]×Dr−1;Rm) + Kr

√
δ.

Indeed, since ϑfn tends to ϑf , uniformly in Dr, from (2.6) it follows that GD
r (·, s)(ϑfn) converges to

GD
r (·, s)(ϑf) uniformly in [s, s + 1] ×Dr−1. Finally, splitting

G(·, s)fn − G(·, s)f = G(·, s)fn − fn + (fn − f) + f − G(·, s)f ,
and using the above estimate, we deduce that

lim sup
n→+∞

‖G(·, s)fn − G(·, s)f‖C([s,s+δ]×Dr−1;Rm) ≤

‖GD
r (·, s)(ϑf) − ϑf‖C([s,s+δ]×Dr−1;Rm) + Kr

√
δ + ‖G(·, s)f − f‖C([s,s+δ]×Dr−1;Rm).

Since the functions GD
r (·, s)(ϑf) and G(·, s)f are continuous in [s, s + 1] × Dr−1, estimate (3.4) follows

immediately. �

3.2. A representation formula for G(t, s) and strong Feller property

In the following theorem we prove that the evolution operator G(t, s) can be extended to the set of all the
bounded Borel measurable functions f : R

d → R
m. This is a consequence of the fact that, for any f ∈ Cb(Rd; Rm),

each component of G(t, s)f admits an integral representation formula in terms of some finite Borel measures.
These measures are absolutely continuous with respect to the Lebesgue measure but, in general, differently from
the scalar case, they are signed measures.

Theorem 3.3. There exists a family {pij(t, s, x,dy) : t > s ∈ I, x ∈ R
d, i, j = 1, . . . ,m} of finite Borel

measures, which are absolutely continuous with respect to the Lebesgue measure, such that formula (1.3) holds
true for any t > s, x ∈ R

d, i = 1, . . . ,m. Moreover, through formula (1.3), the evolution operator G(t, s) extends
to Bb(Rd; Rm) with a strong Feller evolution operator. Actually, G(·, s)f ∈ C

1+α/2,2+α
loc ((s,+∞) × R

d; Rm) for
any f ∈ Bb(Rd; Rm) and s ∈ I.
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Proof. Throughout the proof, s is arbitrarily fixed in I. Since, for any (t, x) ∈ (s,+∞) × R
d, the map

f �→ (G(t, s)f)(x) is bounded from C0(Rd; Rm) into R
m, from the Riesz’s Representation Theorem (see e.g.,

[1], Rem. 1.57) it follows that there exists a family {pij(t, s, x,dy) : t > s ∈ I, x ∈ R
d, i, j = 1, . . .m} of finite

Borel measures such that (1.3) is satisfied by any f ∈ C0(Rd; Rm). To extend the previous formula to any
f ∈ Cb(Rd; Rm), it suffices to approximate such an f , locally uniformly in R

d, by a sequence (fn) ⊂ C0(Rd; Rm),
write (1.3), with f replaced by fn, and use both Proposition 3.2(ii) and the dominated convergence theorem, ap-
plied to the positive and negative parts of the measures pij(t, s, x,dy), to let n tend to +∞. Clearly, formula (1.3)
allows us to extend the evolution operator G(t, s) to Bb(Rd; Rm).

Let us now prove that each measure pij(t, s, x,dy) is absolutely continuous with respect to the Lebesgue
measure. Equivalently, we prove that, for any (t, x) ∈ (s,+∞) × R

d and any i, j = 1, . . . ,m, the positive and
negative parts of pij(t, s, x,dy) are absolutely continuous with respect to the Lebesgue measure. For this purpose,
we recall that, by the Hahn decomposition theorem (see e.g., [35], Thm. 6.14), for any (t, x) ∈ (s,+∞) × R

d

there exist two Borel sets P = P (t, s, x) and N = N(t, s, x) such that the maps p+
ij(t, s, x,dy) and p−ij(t, s, x,dy),

defined, respectively, by p+
ij(t, s, x, A) = pij(t, s, x, A ∩ P ) and p−ij(t, s, x, A) = −pij(t, s, x, A ∩N) for any Borel

set A ⊂ R
d, are positive measures and pij(t, s, x,dy) = p+

ij(t, s, x,dy) − p−ij(t, s, x,dy).
Being rather long, we split the proof into several steps.

Step 1. We claim that, for any f ∈ Bb(Rd) and j = 1, . . . ,m, the function G(·, s)(fej) belongs to
C

1+α/2,2+α
loc ((s,+∞) × R

d; Rm), DtG(·, s)(fej) = AG(·, s)(fej) in (s,+∞) × R
d and ‖G(t, s)(fej)‖∞ ≤

e(�∨0)(T−s)‖f‖∞ for any t ∈ (s, T ] and any T > s, where � is the constant in (3.1). Clearly, since G(·, s)f =∑m
j=1 G(·, s)(fjej) for any f ∈ Bb(Rd,Rm), the claim implies that the function G(·, s)f enjoys the regularity

properties in the statement and ‖G(t, s)f‖∞ ≤ √
me(�∨0)(T−s)‖f‖∞ for any t ∈ (s, T ]4.

To prove the claim, we begin by recalling that the space B(Rd) of all the real valued Borel functions coincides
with the set Bω1(Rd) =

⋃
η<ω1

Bη(Rd), where, throughout this step, we denote by η the ordinal numbers and
ω1 is the first nonnumerable ordinal number. The sets Bη(Rd) are defined as follows: B0(Rd) = C(Rd) and, if
η > 0, then the definition of Bη(Rd) depends on the fact that η + 1 is a successor ordinal or not. In the first
case, Bη(Rd) is the set of the pointwise limits, everywhere in R

d, of sequences of functions in Bη−1(Rd); in
the second one, Bη(Rd) =

⋃
η0<η B

η0(Rd). Hence, any Borel function belongs to Bη(Rd) for some ordinal less
than ω1. We refer the reader to ([26], Chap. 30) and [36] for further details.

We fix j ∈ {1, . . . ,m} and, for any ordinal η < ω1, we denote by Pj(η) the set of all the functions f ∈
Bη

b (Rd) which satisfy the claim. We use the transfinite induction to prove that Pj(η) = Bη
b (Rd) for any ordinal

less than ω1. In view of Theorem 2.8, Pj(0) = B0
b (Rd) = Cb(Rd). Fix now an ordinal η and suppose that

Pj(β) = Bη
b (Rd) for any ordinal β ≤ η. We first assume that η + 1 is a successor ordinal. In such a case, f

is the pointwise limit, everywhere in R
d, of a sequence (fn) ∈ Bη

b (Rd). By assumptions, f is bounded; hence,
up to replacing fn by fn ∧ ‖f‖∞, which still belongs to Bη

b (Rd), we can assume that ‖fn‖∞ ≤ ‖f‖∞ for
any n ∈ N. Since G(·, s)(fnej) ∈ C

1+α/2,2+α
loc ((s,+∞) × R

d; Rm) for any n ∈ N, using the interior Schauder
estimates in Theorem A.2, as in the proof of Theorem 2.8, we can prove that, up to a subsequence, G(t, s)(fnej)
converges to a function v in C1,2(E; Rm), for any compact set E ⊂ (s,+∞) × R

d. The function v belongs to
C

1+α/2,2+α
loc ((s,+∞) × R

d; Rm), solves the equation Dtv = Av in (s,+∞) × R
d and satisfies the estimate

‖v(t, ·)‖∞ ≤ e�(T−s)‖f‖∞ for any t ∈ (s, T ] and any T > s. The representation formula (1.3) reveals that
v = G(·, s)(fej); hence, f ∈ Bη+1

b (Rd). Suppose now that η + 1 is a limit ordinal. Then, f ∈ Bβ
b (Rd) for some

ordinal β less than η+1. Since Pj(β) = Bβ
b (Rd), it is clear that f ∈ Pj(η+1) and we are done also in this case.

Step 2. Now, we prove that for any r > 0 there exists a positive constant K0, depending on M , but being
independent of t and f ∈ Cc(Dr), such that

|(GD
r (t, s)(fej))(x)| ≤ |(GD

r,0(t, s)f)(x)| + K0

√
t− s ‖f‖∞, (t, x) ∈ (s, s + 1) ×Dr. (3.5)

4This estimate will be improved in Corollary 3.4, removing the constant
√

m.
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for any j ∈ {1, . . . ,m}. Here, GD
r,0(t, s) denotes the evolution operator associated with the realization of the

operator A0 = Tr(QD2) in Cb(Dr), with homogeneous Dirichlet boundary conditions.
In the rest of the proof, we denote by K a positive constant, which is independent of t ∈ (s, s + 1), x ∈ Dr

and may vary from line to line.
Fix f ∈ Cc(Dr), j ∈ {1, . . . ,m}, set u = GD

r (·, s)(fej) and observe that

u(t, x) = (GD
r,0(t, s)f)(x)ej +

∫ t

s

(GD
r,0(r, s)g(r, ·))(x)dr, (t, x) ∈ (s, s + 1) ×Dr, (3.6)

where (GD
r,0(t, s)h)k = GD

r,0(t, s)hk, for any k = 1, . . . ,m and any vector valued function h, and g =
∑d

i=1 BjDju
+Cu. Differentiating both sides of (3.6), taking the norms and using the estimate ‖GD

r,0(t, s)ψ‖C1
b (Dr) ≤ K(t−

s)−1/2‖ψ‖∞, which holds true for any ψ ∈ Cb(Dr) and any t ∈ (s, s+ 1) (see [13], Thm. 4.6.3), we can estimate

‖Jxu(t, ·)‖Cb(Dr ;Rm) ≤ c√
t− s

‖f‖∞ + K

∫ t

s

1√
σ − s

‖Jxu(σ, ·)‖Cb(Dr ;Rm)dσ, t ∈ (s, s + 1).

To get this estimate we also took advantage of the fact that ‖u(t, ·)‖∞ ≤ K‖f‖∞ for any t ∈ (s, s + 1). The
generalized Gronwall lemma (see [18]) shows that ‖Jxu(t, ·)‖Cb(Dr ;Rm) ≤ K(t−s)−1/2‖f‖∞ for any t ∈ (s, s+1).
We thus deduce that ‖g(t, ·)‖Cb(Dr ;Rm) ≤ K(t−s)−1/2‖f‖∞ for any t ∈ (s, s+1) and, from (3.6), estimate (3.5)
follows at once.

Step 3. Here, we prove that, for any Borel set O ⊂ R
d with zero Lebesgue measure, any r > 0, j ∈ {1, . . . ,m}

and t ∈ (s, s + 1), it holds that

|(G(t, s)χOej)(x)| ≤ K
√
t− s, t ∈ (s, s + 1), x ∈ Dr/2. (3.7)

This inequality follows once we prove that

|(G(t, s)(fej))(x)| ≤ (GD
r,0(t, s)|f |)(x) + K

√
t− s ‖f‖∞, (3.8)

for any t, x, f and j as above. Indeed, it is well known that GD
r,0(t, s) admits an integral representation (see [13],

Thm. 3.16) and this implies that GD
r,0(t, s) can be extended to any function f ∈ Bb(Dr) and GD

r,0(t, s)χO = 0,
if O has null Lebesgue measure.

We first prove (3.8) for functions f ∈ Cb(Rd). For this purpose, we fix M > 0 and a function ϑ ∈ C∞
c (Rd) such

that χDr/4 ≤ ϑ ≤ χDr/2 . By the proof of Theorem 2.8, G(·, s)(fej) is the local uniform limit in (s,+∞) × R
d

of the unique classical solution un to the Cauchy problem (2.5), with f replaced by ϑfej , Moreover,

‖GD
M (t, σ)gn(σ, ·)‖L∞(Dr) ≤ K‖gn(σ, ·)‖L∞(Dr/2) ≤ Kr‖f‖∞(1 + (σ − s)−

1
2 )

for any σ ∈ (s, t). Letting n tend to +∞, estimate (3.8) follows recalling that |GD
r,0(t, s)(ϑf)| ≤ GD

r,0(t, s)|ϑf | ≤
GD

r,0(t, s)|f | in Dr.
By transfinite induction, arguing as in Step 1, we extend (3.8) to any f ∈ Bb(Rd). To make the induction work,

it suffices to observe that, if f ∈ Bb(Rd) is the pointwise limit everywhere in R
d of a sequence (fn) ⊂ Bb(Rd)

of functions which satisfy (3.8) and ‖fn‖∞ ≤ ‖f‖∞ for any n ∈ N, then, f satisfies (3.8) as well. This can be
seen, writing (3.8) with f replaced by fn, taking (1.3) into account and letting n → +∞.

Step 4. We can now complete the proof. We fix i, j ∈ {1, . . . ,m}, t0 > s, x0 ∈ R
d and a Borel set A with

null Lebesgue measure. Then, estimate (3.7) shows that |G(t, s)(χA∩Rej)| ≤ K
√
t− s in Dr/2 for any r > 0,

t ∈ (s, s + 1) and some K = Kr, where R = P or R = N . By the arbitrariness of r, it thus follows that
G(t, s)(χA∩Rej) vanishes, locally uniformly in R

d, as t → s+. Step 1 shows that the function v, defined by
v(s, ·) = 0 and v(t, ·) = G(t, s)(χA∩Rej), if t > s, belongs to C

1+α/2,2+α
loc ((s,+∞) × R

d; Rm) ∩ C([s,+∞) ×
R

d; Rm) and is bounded in each strip [s, T ] × R
d. Moreover, Dtv = Av in (s,+∞) × R

d and v(s, ·) = 0 in R
d.

By Proposition 2.7, v identically vanishes in (s,+∞)×R
d. Thus, we conclude that (G(·, s)(χA∩Rej))(x0) = 0,

which implies that 0 = (G(t0, s)(χA∩Pej))i(x0) = p+
ij(t0, s, x0, A) and, similarly, p−ij(t0, s, x0, A) = 0. �
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Corollary 3.4. The following properties are satisfied.

(i) Estimate (3.1) is satisfied by any f ∈ Bb(Rd; Rm).
(ii) Proposition 3.2(i) holds true for any bounded sequence (fn) of Borel functions which converges pointwise

(almost everywhere in R
d) to a Borel measurable function f .

Proof. (i) Fix f ∈ Bb(Rd; Rm) and let the sequence (fn) ∈ Cb(Rd; Rm) converge to f almost everywhere in R
d

and satisfy the estimate ‖fn‖∞ ≤ ‖f‖∞. Since the measures pij(t, s, x,dy) are absolutely continuous with respect
to the Lebesgue measure for any t > s ∈ I and any x ∈ R

d, by formula (1.3) and the dominated convergence
theorem, G(t, s)fn converges to G(t, s)f pointwise everywhere in R

d, as n → +∞. Using (3.1), we can estimate
|G(·, s)fn| ≤ e(�∨0)(T−s)‖fn‖∞ ≤ e(�∨0)(T−s)‖f‖∞ in [s, T ] × R

d and, letting n tend to +∞, we conclude the
proof.

(ii) Fix s ∈ I and (fn), f as in the statement. For any ε > 0, the functions G(s+ ε, s)fn and G(s+ ε, s)f are
bounded and continuous in R

d, thanks to property (i) and Theorem 3.3. Moreover, the proof of property (i) shows
that G(s+ε, s)fn converges pointwise in R

d to G(s+ε, s)f as n → +∞. Splitting G(t, s)fn = G(t, s+ε)G(s+ε)fn
for any n ∈ N and using Proposition 3.2(i) we conclude the proof. �

4. Compactness of G(t, s) in Cb(R
d; Rm)

To begin with, we show that the compactness of the evolution operator G(t, s) in Cb(Rd; Rm) is equivalent
to the tightness of the total variation of the measures {pij(t, s, x,dy) : x ∈ R

d} introduced in Theorem 3.3.

Theorem 4.1. Let us assume that either Hypotheses 2.2 or Hypotheses 2.3 are satisfied and fix b > a ∈ I.
The evolution operator G(t, s) is compact in Cb(Rd; Rm) for any a ≤ s < t ≤ b if and only if the families
{|pij |(t, s, x,dy) : x ∈ R

d} are tight for any s, t as above and i, j ∈ {1, . . . ,m}.
Proof. Let us suppose that G(t, s) is compact in Cb(Rd; Rm) for any a ≤ s < t ≤ b. We fix i, j ∈ {1, . . . ,m},
a ≤ s < t ≤ b, n ∈ N, x ∈ R

d and recall that

|pij |(t, s, x,Rd \Dn) = sup
{∫

Rd

f(y)pij(t, s, x,dy) : f ∈ Cc(Rd \Dn), ‖f‖∞ ≤ 1
}

(4.1)

≤ sup {‖G(t, s)(fej)‖∞ : f ∈ Cc(Rd \Dn), ‖f‖∞ ≤ 1},

(see [1], Prop. 1.4.7). Then, for any n ∈ N, there exist functions fn ∈ Cc(Rd \Dn) with ‖fn‖∞ ≤ 1 such that

sup
x∈Rd

|pij |(t, s, x,Rd \Dn) ≤ ‖G(t, s)(fnej)‖∞ +
1
n
· (4.2)

Clearly, fnej vanishes pointwise in R
d as n → +∞ and ‖fnej‖∞ ≤ 1 for any n ∈ N. By compactness and

Proposition 3.2, we can extract a subsequence (fnh
ej) such that G(t, s)(fnh

ej) vanishes uniformly in R
d,

as h → +∞. Now, writing (4.2) with n replaced by nh and letting h → +∞ the tightness of the family
{|pij |(t, s, x,dy) : x ∈ R

d} follows.
Vice versa, let us suppose that the families {|pij |(t, s, x,dy) : x ∈ R

d} are tight for any a ≤ s < t ≤ b
and i, j ∈ {1, . . . ,m}. We fix a ≤ s < r < t ≤ b and consider the operators Rn := G(t, r)(χDnG(r, s)) in
Cb(Rd; Rm). Since G(t, r) is strong Feller (see Thm. 3.3), each operator Rn is bounded in Cb(Rd; Rm). We claim
that Rn is compact in Cb(Rd; Rm) for any n ∈ N. To this aim, let (fk) be a bounded sequence in Cb(Rd; Rm).
From the interior Schauder estimates in Theorem A.2 it follows that the sequence (G(r, s)fk) is bounded in
C2+α(Dn; Rm). Hence, there exists a subsequence (G(r, s)fkj ) converging uniformly in Dn to some function
g as j → +∞. As a byproduct, χDnG(r, s)fkj converges to χDng uniformly in R

d as j → +∞. Since the
estimate (3.1) holds true also for bounded Borel functions (see Cor. 3.4(i)), we conclude that Rnfkj converges
uniformly in R

d to G(t, r)(χDng) as j → +∞. Hence, Rn is compact in Cb(Rd; Rm).
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To complete the proof, we show that Rn converges to G(t, s) as n → +∞ in L(Cb(Rd; Rm)). For this purpose
we fix f ∈ Cb(Rd,Rm), i ∈ {1, . . . ,m}. Using formula (1.3) we can write

(G(t, s)f)i(x) − (Rnf)i(x) = (G(t, r)(χRd\Dn
G(r, s)f)i(x) =

m∑
k=1

∫
Rd\Dn

(G(r, s)f(y))kpik(t, r, x, dy)

for any x ∈ R
d. Hence, taking (3.1) into account, we can estimate

‖G(t, s)f − Rnf‖∞ ≤
m∑

i,k=1

sup
x∈Rd

∫
Rd\Dn

|(G(r, s)f(y))k ||pik|(t, r, x, dy)

≤e(�∨0)(b−s)‖f‖∞
m∑

i,k=1

sup
x∈Rd

|pik|(t, r, x,Rd \Dn).

Letting n tend to +∞ and using the tightness of the family {|pij |(t, r, x, dy) : x ∈ R
d}, we conclude that Rn

converges to G(t, s) in L(Cb(Rd; Rm). �

In the following theorem we provide sufficient conditions for the compactness of G(t, s) when Hypotheses 2.3
are satisfied. Actually, these assumptions guarantee the compactness of G(t, s) in Cb(Rd), which has been already
studied in [2, 31] extending the results in the autonomous case proved in [33].

Theorem 4.2. Let J ⊂ I be a bounded interval. Under Hypotheses 2.3, if G(t, s) is compact in Cb(Rd) for
every (t, s) ∈ ΣJ := {(t, s) ∈ J × J : t > s}, then G(t, s) is compact in Cb(Rd; Rm) for every (t, s) ∈ ΣJ . In
particular, if there exist a function W ∈ C2(Rd) such that lim|x|→∞W (x) = +∞, a number R > 0 and a convex
increasing function g : [0,+∞) → R with 1/g ∈ L1((a,+∞)) for large a and ÃW ≤ −g ◦W in I × (Rd \DR),
then G(t, s) is compact in Cb(Rd; Rm) for any t > s ∈ I.

Proof. In view of Theorem 4.1, we show that the family {|pij |(t, s, x,dy) : x ∈ R
d} is tight for any (t, s) ∈ ΣJ

and i, j ∈ {1, . . . ,m}. From (4.1), (2.7) and the positivity of the evolution operator G(t, s), it follows that

|pij |(t, s, x,Rd \Dn) ≤ eHJ (t−s) sup {((G(t, s)|f |2)(x))
1
2 : f ∈ Cc(Rd \Dn), ‖f‖∞ ≤ 1}

≤ eHJ (t−s)((G(t, s)χRd\Dn
)(x))

1
2 = eHJ (t−s)(gt,s(x,Rd \Dn))

1
2

for any R
d, any (t, s) ∈ ΣJ and i, j ∈ {1, . . . ,m}, where gt,s(·, dy) are the transition kernels associated with the

evolution operator G(t, s). The assertion now follows from ([2], Prop. 4.2), which shows that the compactness of
the scalar evolution operator G(t, s) in Cb(Rd), for any (t, s) ∈ ΣJ , is equivalent to the tightness of the family
{gt,s(x, dy) : x ∈ R

d} for any (t, s) ∈ ΣJ .
The last assertion follows from ([31], Thm. 3.3) �

Example 4.3. Let A be as in Example 2.6. Using (2.1) we can estimate

(Ãϕ)(t, x) ≤ 2‖q‖∞Tr(Q0)(1 + |x|2)k − inf
t∈I

b(t)(1 + |x|2)p+1

≤ − 1
2

inf
t∈I

b(t)(1 + |x|2)p+1 + K := −g(ϕ(x)),

for any t ∈ I, any x ∈ R
d \ ∂D1 and some positive constant K. Then, the assumptions of Theorem 4.2 are

satisfied, with W = ϕ and g as above. We thus conclude that G(t, s) is compact in Cb(Rd; Rm).
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5. Uniform gradient estimates

In this section, we prove a (weighted) uniform gradient estimate satisfied by the function G(t, s)f , which,
besides, its own interest, leads to some remarkable consequences that we illustrate in the next section. We
assume that the operator A is given by (1.1) with Bi = biIm + B̃i for any i = 1, . . . , d. As usually, we set
b = (b1, . . . , bd). We further assume the following additional assumptions.

Hypotheses 5.1.

(i) The coefficients Qij, bj and the entries of the matrices Bi and C belong to C0,1+α
loc (J × R

d) for any
i, j = 1, . . . , d, some α ∈ (0, 1) and some bounded interval J with J ⊂ I; further, 〈b(t, x), x〉 ≤ b0(t, x)|x|
for any t ∈ J , x ∈ R

d and some negative function b0;
(ii) there exists a (m ×m)-matrix-valued function M such that Mij = Mji ∈ C1,2+α

loc (J × R
d) for any i, j =

1, . . . ,m and both infJ×Rd λM and infJ×Rd λM−1QM−1 are positive;
(iii) the function 2ΛC + ΛH+HT is bounded from above in J × R

d, where

H := M(Jxb)TM−1 −
d∑

j=1

bj(DjM)M−1 −
d∑

i,j=1

Qij(DijM)M−1,

(iv) there exist positive functions ψh : J ×R
d → R (h = 1, . . . , 6) and constants K1, K2, K3 and K4 such that

|B̃i(t, x)| ≤ ψ1(t, x), |DkB̃i(t, x)| ≤ ψ2(t, x), |DkC(t, x)| ≤ ψ3(t, x),
|M−1DtMM−1(t, x)| ≤ ψ4(t, x), |DkM(t, x)| ≤ ψ5(t, x), |DkQ(t, x)| ≤ ψ6(t, x),

in J × R
d, for any i, k = 1, . . . , d and

sup
(t,x)∈J×Rd

(ψ1(t, x))2

λM−1QM−1 (t, x)(λM (t, x))2
< +∞, (5.1)

sup
(t,x)∈J×Rd

(ΛQ(t, x))2

(1 + |x|2)λM−1QM−1(t, x)λQ(t, x)
< +∞ (5.2)

(ΛQ(t, x))2

1 + |x|4 ≤ K1|2ΛC(t, x) + ΛH+HT (t, x)| + K2, (5.3)

(ΛM (t, x))2(ψ3(t, x))2 ≤ K3|2ΛC(t, x) + ΛH+HT (t, x)| + K4, (5.4)

for any (t, x) ∈ J × R
d. Further,

lim
|x|→+∞

sup
t∈J

(ΛQ(t, x)ψ5(t, x))2 + (ΛM (t, x)ψ6(t, x))2 + λQ(t, x)(ψ1(t, x))2

λQ(t, x)(λM (t, x))2|2ΛC(t, x) + ΛH+HT (t, x)| = 0, (5.5)

lim
|x|→+∞

sup
t∈J

ΛM (t, x)ψ2(t, x) + λM (t, x)ψ4(t, x)
λM (t, x)|2ΛC(t, x) + ΛH+HT (t, x)| = 0, (5.6)

lim
|x|→+∞

inf
t∈J

ΛQ(t, x)ψ5(t, x)
b0(t, x)

= 0. (5.7)

Example 5.2. Let A be the operator in (1.1), with the potential C which satisfies the following conditions:

• C is a symmetric matrix-valued function with entries in C
α/2,α
loc (I × R

d) ∩ C0,1+α
loc (I × R

d);
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• supI×Rd ΛC < +∞ and |DiC(t, x)| ≤ K(1 + |x|2)τ for any (t, x) ∈ I × R
d, i = 1, . . . , d and some K > 0 and

τ ≥ 0,

and with Qij and Bi (i, j = 1, . . . , d) as in Example 2.6, i.e., Qij(t, x) = q(t)(1+ |x|2)kQ0, Bi(t, x) = −b(t)xi(1+
|x|2)pIm + b̃(t)(1 + |x|2)rB̃0,i for any i = 1, . . . , d, any (t, x) ∈ I × R

d, where

• q ∈ C
α/2
loc (I) ∩ Cb(I) has positive infimum and Q0 is a constant positive definite matrix;

• the functions b, b̃ and h belong to C
α/2
loc (I). Moreover, b has positive infimum;

• B̃0,i (i = 1, . . . , d) and Ĉ are constant, with Ĉ positive definite;

Take M(t, x) = μ(t)(1 + |x|2)sIm for any (t, x) ∈ I ×R
d, some constant 0 < s < 1/2 and some positive function

μ ∈ C1(I). Further, assume that the nonnegative parameters k, p, r, τ satisfy the following conditions:

(a) k ≥ 2(r ∨ s), (b) 2k − 2 ≤ p, (c) 2s + 2τ ≤ p, (d) 2r < 2s + p, (e) k + s < p + 1. (5.8)

The smoothness assumptions in Hypotheses 2.1, 2.3 and 5.1 are obviously satisfied. To check the other
conditions in Hypothesis 5.1, we need to compute b0, ΛM , ΛM2 , λQ, ΛQ and λM−1QM−1 . As it is immediately
seen,

b0(t, x) = −b(t)(1 + |x|2)p|x|, ΛM2(t, x) = (ΛM (t, x))2 = (μ(t))2(1 + |x|2)2s,

λQ(t, x) = λQ0q(t)(1 + |x|2)k, ΛQ(t, x) = ΛQ0q(t)(1 + |x|2)k,

λM−1QM−1(t, x) = λQ0

q(t)
(μ(t))2

(1 + |x|2)k−2s,

for any (t, x) ∈ I × R
d. In particular, for any bounded interval J ⊂ I, the infimum over J × R

d of the function
λM−1QM−1 is positive due to conditions on μ, q and (5.8)(a). Finally, the matrix H(t, x) is symmetric at any
(t, x) ∈ I × R

d and

H(t, x) = − b(t)(1 + |x|2)pIm − 2pb(t)(1 + |x|2)p−1x⊗ x + 2sb(t)(1 + |x|2)p−1|x|2Im

− 2sq(t)(1 + |x|2)k−2
(
Tr(Q0)(1 + |x|2) + 2(s− 1)〈Q0x, x〉

)
Im.

Hence, ΛH+HT (t, x) = 2ΛH(t, x) and using the fact that b has positive infimum, that the second and fourth
matrices in the previous formula are nonpositive definite, and taking the conditions s > 0 and (5.8)(e) into
account, we conclude that

ΛH(t, x) ≤− b(t)(1 + |x|2)p−1(1 + |x|2 − 2s|x|2) ≤ −(1 − 2s) inf
t∈I

b(t)(1 + |x|2)p, (5.9)

for any (t, x) ∈ I ×R
d, where b0 denotes the infimum of b. Hence, the function 2ΛC +ΛH+HT is bounded from

above in I × R
d and the boundness from above of ΛC implies that |2ΛC + ΛH+HT | ≥ K|x|2p as |x| → +∞.

Moreover, the functions ψj satisfy the following conditions: ψ1(t, x) = O(|x|2r), ψ2(t, x) = O(|x|2r−1), ψ3(t, x) =
O(|x|2τ ), ψ4(t, x) = O(|x|−2s), ψ5(t, x) = O(|x|2s−1) and ψ6(t, x) = O(|x|2k−1), as |x| → +∞, uniformly with
respect to t ∈ J ⊂ I, where J is an arbitrary bounded interval as above. Looking at the asymptotic behaviour
as |x| → +∞, (5.1)–(5.7) lead to the following conditions on the parameters k, r, s, τ and p:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
2r − k ≤ 0, from (5.1), (k + 2s− 1) ∨ (2r) − 2s− p < 0, from (5.5),
2s− 1 ≤ 0, from (5.2), (2r − 1) ∨ (−2s) − 2p < 0, from (5.6),
2k − 2 − p ≤ 0, from (5.3), k + s− p− 1 < 0, from (5.7).
2s + 2τ − p ≤ 0, from (5.4),

(5.10)

All the conditions in (5.10) are easily satisfied due to (5.8)(a)−(e) and the choice of s.
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As it is easily seen, also Hypothesis 2.3 are satisfied with σ = 1/2 and ϕ(x) = 1+ |x|2 for any x ∈ R
d. Indeed,

the operator Ã is defined by Ã = q(1 + |x|2)kTr(Q0D
2) − b(t)(1 + |x|2)p〈x,∇x〉. Taking condition (5.8)(e) into

account, it can be easily checked that Ãϕ diverges to −∞ as |x| → +∞, uniformly with respect to t ∈ I.
We stress that also the case s = 1/2 can be considered. In this situation, from the first part of (5.9) we

can infer that ΛH(t, x) ≤ −K(1 + |x|2)p−1 for some positive constant K and the conditions to impose on the
parameters k, p, r and τ are (5.8)(a) and

(b′) 2k ≤ p + 1, (c′) 2τ ≤ p− 2, (d′) 2r < p− 1, (e′) k < p. (5.11)

We finally note that the conditions (5.8)(c) and (5.11)(c′) can be skipped if the potential C is constant in
I × R

d.

Remark 5.3. We stress that (5.2) forces M to grow no faster than linearly as |x| → +∞. This condition
might seem a bit strong but, already in the classical scalar case when the coefficients are bounded, in general
the gradient of G(t, s)f does not vanish as |x| → +∞. For instance, consider the one-dimensional autonomous
operator A = u′′ + u and take f(x) = sin(x) for any x ∈ R. Then, G(t, s)f = f for any t ≥ s ∈ R and, clearly,
DxT (t)f does not vanish at infinity.

Theorem 5.4. Under Hypotheses 2.3 and 5.1, the function M(JxG(·, s)f)T is bounded and continuous in (J ∩
(s,+∞)) × R

d for any s ∈ J and there exists a positive constant KJ such that

√
t− s ‖M(t, ·)(JxG(t, s)f)T ‖∞ ≤ KJ‖f‖∞, t ∈ J ∩ (s,+∞), f ∈ Cb(Rd; Rm). (5.12)

Proof. To simplify the notation we set u := G(·, s)f , un = GD
n (t, s)f , Fn :=

∑m
j=1 |M∇xun,j|2 and Gn :=∑d

i=1

∑m
j=1 |M∇xDiun,j|2. Moreover, throughout the proof, we denote by K a positive constant, which may

vary from line to line, may depend on s and T = sup J , but is independent of n. Let us consider the function
vn = |un|2 + a(· − s)ϑ2

nFn, where a is positive parameter to be fixed later on, ϑn(x) = ϑ(|x|/n), for any x ∈ R
d,

and ϑ ∈ C∞
c (R) satisfies the condition χ(−∞,1/2] ≤ ϑ ≤ χ(−∞,1]. From now on, we do not stress the dependence

on n of the component of un. Moreover, to ease the notation, we set φs(t) := t−s. The results in ([13], Thms. 9.7
and 9.11) and straightforward computations show that vn is smooth, vanishes on (s, T ] × ∂Dn, vn(s, ·) = |f |2
and Dtvn − Ãvn = gn in (s, T ] ×Dn, where gn =

∑5
i=1 gi,n with

g1,n = − 2
m∑

j=1

|
√
Q∇xuj |2 − 2aφsϑ

2
n

d∑
i,k=1

m∑
j=1

Qik〈M∇xDiuj,M∇xDkuj〉,

g2,n = aφsϑ
2
n

m∑
j=1

〈(H + HT )M∇xuj ,M∇xuj〉 + 2aφsϑ
2
n

m∑
j,k=1

Cjk〈M∇xuk,M∇xuj〉

− 2aφsϑ
2
n

d∑
i,k=1

m∑
j=1

Qik〈DiM∇xuj, DkM∇xuj〉 + 2aφsϑ
2
n

m∑
j=1

〈DtM∇xuj,∇xuj〉,

g3,n = − 2aφs〈Q∇ϑn,∇ϑn〉Fn − 2aφsϑn(Ãϑn)Fn

− 8aφsϑn

d∑
k=1

m∑
j=1

(Q∇ϑn)k

(〈M∇xDkuj ,M∇xuj〉 + 〈DkM∇xuj ,M∇xuj〉
)
,

g4,n =2aφsϑ
2
n

d∑
i,k=1

m∑
j=1

D2
ikuj〈M∇xQik,M∇xuj〉 − 4aφsϑ

2
n

d∑
i,k=1

m∑
j=1

Qik〈DiM∇xDkuj ,M∇xuj〉
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− 4aφsϑ
2
n

d∑
i,k=1

m∑
j=1

Qik〈DiM∇xuj,M∇xDkuj〉,

g5,n =2
d∑

i=1

〈un, B̃iDiun〉 + 2〈Cun,un〉 + aϑ2
nFn + 2aφsϑ

2
n

m∑
j,k=1

uk〈M∇xCjk,M∇xuj〉

+2aφsϑ
2
n

d∑
i=1

m∑
j,k=1

(B̃i)jk〈M∇xDiuk,M∇xuj〉 + 2aφsϑ
2
n

d∑
i=1

m∑
j,k=1

Diuk〈M∇x(B̃i)jk,M∇xuj〉,

and Ã is the operator in Hypothesis 2.3(iii).
Our aim consists in proving that gn ≤ Kvn in [s, T ]×R

d. This estimate and the classical maximum principle
imply that vn ≤ K‖f‖∞, i.e.,

‖GD
n (t, s)f‖∞ +

√
t− s‖ϑnM(JxGD

n (t, s)f)T ‖∞ ≤ K‖f‖∞, t ∈ (s, T ]. (5.13)

Taking advantage of the proof of Theorem 2.8, which shows that GD
n (t, s)f converges to G(t, s)f in C2(Dr; Rm)

for any r > 0, we can let n → +∞ in (5.13) and obtain the assertion. So, let us estimate the function gn.

The term g1,n. Recalling that for any pair of nonnegative definite matrices M1 and M2 it holds that
Tr(M1M2) ≥ λM1Tr(M2) and |Mξ|2 ≤ ΛM2 |ξ|2 in J × R

d, for any ξ ∈ R
d, we conclude that

g1,n ≤ −2
m∑

j=1

〈M−1QM−1 M∇xuj,M∇xuj〉 − 2aφsϑ
2
nλQGn ≤ −2λM−1QM−1Fn − 2aφsϑ

2
nλQGn.

The term g2,n. The assumptions on H, M and C allow us to estimate

g2,n ≤ aφsϑ
2
n(2ΛC + 2ψ4 + ΛH+HT )Fn.

The term g3,n. Its first term is negative; hence, we disregard it. As far as the other terms are concerned,
using the estimates |Q∇ϑn| ≤ Kn−1ΛQχD2n\Dn

|ϑ′(| · |n−1)| and Tr(QD2ϑn) ≤ KΛQn
−2χD2n\Dn

, which hold
in I × R

d, and the Young inequality Kxy ≤ a−1/2K2x2 + a1/2y2 we get

|g3,n| ≤ aKφsΛQn
−2ϑnχD2n\Dn

Fn + 2aφs|ϑ′(| · |n−1)|ϑnn
−1〈b, x〉|x|−1χD2n\Dn

Fn

+ aKφsϑnn
−1ΛQF1/2

n G1/2
n χD2n\Dn

+ aKφs|ϑ′(| · |n−1)|ϑnn
−1ΛQλ

−1
M ψ5χD2n\Dn

Fn

≤√
aKφsFn + a3/2Kφsn

−4Λ2
Qϑ

2
nχD2n\Dn

Fn +
√
aKφsλ

−1
Q Λ2

Qn
−2χD2n\Dn

Fn

+ aφs|ϑ′(| · |n−1)|ϑnn
−1(2b0 + KΛQψ5)χD2n\Dn

Fn + a3/2φsλQϑ
2
nGn.

The term g4,n. We denote by g4,j,n (j = 1, 2, 3) the terms which constitute g4,n. To estimate g4,1,n, we observe
that ∣∣∣∣

d∑
i,k=1

m∑
j=1

D2
ikuj〈M∇xQik,M∇xuj〉

∣∣∣∣ =
∣∣∣∣

d∑
i,h,k=1

m∑
j=1

〈M∇xQikM
−1
kh (M∇xDiuj)h,M∇xuj〉

∣∣∣∣
≤
√
dF1/2

n G1/2
n ΛMλ−1

M ψ6 ≤ ε−1/2KΛ2
Mλ−2

M λ−1
Q ψ2

6Fn + ε1/2λQGn.

Using the Young inequality, we conclude that |g4,1,n| ≤ aε−1KφsΛ
2
Mλ−2

M λ−1
Q ϑ2

nψ
2
6Fn + 2aεφsϑ

2
nλQGn for any

ε > 0.
The other two terms in the definition of g4,n can be estimated in a similar way, splitting DiM∇x =

(DiMM−1)M∇x. We obtain |g4,2,n + g4,3,n| ≤ aε−1Kφsϑ
2
nψ

2
5λ

−2
M λ−1

Q Λ2
QFn + aεφsϑ

2
nλQGn, for any ε > 0.

Collecting everything together, and choosing ε = 1/6 we get

|g4,n| ≤ aKφsλ
−1
Q ϑ2

nλ
−2
M (Λ2

Qψ
2
5 + Λ2

Mψ2
6)Fn +

1
2
aφsϑ

2
nλQGn.
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The term g5,n. We denote by g5,j,n (j = 1, . . . , 6) its terms and observe that

g5,1,n = 2
d∑

i=1

m∑
j,h,k=1

(M−1)ih(B̃i)jk(M∇xuk)huj ,

g5,6,n = 2aφsϑ
2
n

d∑
i=1

m∑
j,h,k=1

(M∇xuk)h〈M∇x(B̃i)jk(M−1)ih,M∇xuj,n〉.

Using Hypothesis 5.1(iii) and, again, Young inequality, we obtain

|g5,n| ≤ (a−1/2K + aKφs + 2ΛC)|un|2 + (a1/2λ−2
M ψ2

1 + a)Fn

+ Kφsϑ
2
n(aλ−1

M ΛMψ2 + a3/2Λ2
Mψ2

3 + aλ−2
M ψ2

1)Fn + 2a3/2φsϑ
2
nλQGn.

Final estimate for gn. Collecting all the terms together, we get

gn ≤ (a−1/2K + Kφs + 2ΛC)|un|2 + InFn + 3aφsϑ
2
nλQ

(√
a− 1

2

)
Gn,

where

In(t, x) =
a

n
φs(t)|ϑ′(|x|n−1)|ϑn(x)b0(t, x)

(
2 + K

ΛQ(t, x)ψ5(t, x)
b0(t, x)

)
χD2n\Dn

(x)+a+
√
aK(T − s)

− λM−1QM−1 (t, x)
[
2 −

√
a(ψ1(t, x))2

λM−1QM−1 (t, x)(λM (t, x))2
− (T − s)

√
aK(ΛQ(t, x))2

(1 + |x|2)λM−1QM−1(t, x)λQ(t, x)

]
+ aφs(t)(ϑn(x))2Jn(t, x),

and

Jn(t, x) =2ΛC(t, x) + ΛH+HT (t, x) + K
ΛM (t, x)ψ2(t, x) + λM (t, x)ψ4(t, x)

λM (t, x)

+ K
(ΛQ(t, x)ψ5(t, x))2 + (ΛM (t, x)ψ6(t, x))2 + λQ(t, x)(ψ1(t, x))2

λQ(t, x)(λM (t, x))2

+ K
√
a

(
(ΛQ(t, x))2

1 + |x|4 + (ΛM (t, x))2(ψ3(t, x))2
)
,

for any (t, x) ∈ [s, T ]× R
d. Clearly, the coefficients in front of |un|2 and Gn are, respectively, bounded in [s, T ],

for any choice of a, and negative, if a < 1/4. Let us consider the term In. Since b0 is a negative function, using
condition (5.7) we conclude that the first line of In can be estimated from above by

√
aK if a < 1/4. As far

as the term in the second line of the definition of In is concerned, using the conditions in (5.1) and (5.2) we
conclude that the term in square brackets is bounded from below by 2 −√

aK, so that, choosing a sufficiently
small we can make the second line of In less that −λM−1QM−1(t, x). As far as Jn is concerned, we observe that,
by conditions (5.3)−(5.6), for any ε > 0, there exists R > 0, independent of n, such that the sum of the last
three terms in Jn can be bounded from above by K{[2ε+

√
a(K1 +K3)]|2ΛC(t, x) +ΛH+HT (t, x)|+K2 +K4}

for any t ∈ J , x ∈ R
d \ DR and n ∈ N. Since the function 2ΛC + ΛH+HT is bounded from above in J × R

d,
choosing ε = 1/4 and a sufficiently small we can thus make Jn bounded from above in J × (Rd \DR) and hence
in J × R

d. Putting everything together, we conclude that

In(t, x) ≤ √
aK − inf

(s,y)∈J×Rd
λM−1QM−1(s, y) + aK, (t, x) ∈ J × R

d,

for a small enough. Taking a smaller value of a (independent of n), if needed, we can easily make In negative
and thus conclude that gn ≤ Kvn as it has been claimed. �
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Remark 5.5. The conditions in Hypotheses 5.1(iii), (iv) are technical and, as the proof of Theorem 5.4 shows,
are used to estimate the function gn (n ∈ N), which appears in the nonhomogeneous part of the Cauchy
problem solved by the function vn, in terms of a constant (independent of n) times the function vn itself. Also
in the scalar case, technical conditions are assumed to prove gradient estimates. Here, things are much more
complicated due to the fact that the single equation is replaced by a system of equations and we are interested
in weighted gradient estimates. We stress that the condition on the matrix H in Hypothesis 5.1(iii) is more than
just a technical assumption. Indeed, in the scalar case, if M = 1 and C = 0, then H is the transpose of the
Jacobian matrix of b. Hence, the condition on H is just a dissipativity assumption on b. Without assuming this
condition one can provide examples of elliptic operators such that the associated evolution operator does not
satisfy the unweighted gradient estimate (5.12). We refer the reader to ([8], Example 6.1.11). Finally, we note
that, in genuine vector valued case, if the matrices Bi identically vanish for any i = 1, . . . , d, then the operator
A reduces to the one considered in [12]. The conditions assumed here slightly differ from the ones considered
in the quoted paper since under our assumptions also the Jacobian matrix of b may help to control the growth
of both the diffusion coefficients and the gradient of the potential matrix C.

Remark 5.6. In the particular case when M = Im, we can relax a bit Hypotheses 5.1. Indeed, we introduced the
function ϑn in the definition of vn in the proof of Theorem 5.12 to guarantee that vn vanishes on (s, T )×∂Dn and
thus apply the maximum principle. By Remark 2.10 we can approximate the evolution operator G(t, s) with the
evolution operator GN

n (t, s) associated to the realization of A in Dn with homogeneous Neumann boundary con-
ditions. We can thus define the function vn by setting vn(t, ·) = |GN

n (t, s)f |2 +a(t−s)
∑m

j=1 |M∇x(GN
n (t, s)f)j |2

for any t ∈ (s, T ). Since the normal derivative of |JxGN
n (t, s)f |2 is nonpositive on (s, T )×∂Dn, the normal deriva-

tive of vn is nonpositive on (s, T )× ∂Dn as well. With this choice of vn, the term g3,n disappears and we do not
need to assume anymore the conditions (5.2), (5.3) and (5.7). Moreover, in this case the matrix H reduces to the
matrix Jxb. Therefore, we are assuming a bound on the growth as |x| → +∞ of the quadratic form associated
with the matrix Jxb. In the scalar case, this is a typical assumption used to prove gradient estimates both in
the autonomous and nonautonomous setting (see e.g., [5, 8, 9, 25, 29, 30]). Finally, if the operator A satisfies
Hypotheses 5.1, then the scalar operator Ã = Tr(QD2) + 〈b,∇〉 satisfies the same conditions, and therefore,
the scalar evolution operator G(t, s) satisfies (5.12) as well.

Example 5.7. Coming back to Example 5.2, if we assume that M ≡ I i.e., if we are interested in unweighted
gradient estimates, then, in view of Remark 5.6, we have to assume the condition (5.1), (5.4), (5.5) and (5.6),
where ψ4 = ψ5 = 0 and λM ≡ ΛM ≡ 1. Then, the system (5.10) provides us with the following conditions
on p, k, r and τ :

2r − k ≤ 0, 2τ − p ≤ 0, (k − 1) ∨ (2r) − p < 0, 2r − 1 − 2p < 0.

Noting that the last condition is implied by the third one, we conclude that the conditions on p, k, r and τ are
the following: 2r ≤ k < p + 1, 2τ ≤ p, p > 2r.

6. Some applications of the gradient estimate (5.12)

6.1. The converse of Theorem 4.2

As Theorem 4.2 shows, the compactness of the evolution operator G(t, s) in Cb(Rd) implies the compactness
of the evolution operator G(t, s) in Cb(Rd; Rm). Now, we are interested in finding out sufficient condition for
the converse. The main step in this direction, consists in proving formula (1.5). Once it is proved, we can adapt
to our situation the arguments in the proof of ([12], Thm. 3.6).

Since, in general, the evolution operator G(t, s) is well defined only on bounded (and Borel measurable) func-
tions, to make formula (1.5) meaningful we need to guarantee that the Borel measurable function (SG(·, s)f)(r, ·)
is bounded in R

d for any r ∈ (s, t) and that the integral in the right-hand side of (1.5) is finite. Note that in
the weakly coupled case considered in [12], B̃i ≡ 0 for any i = 1, . . . , d. Hence, the boundedness of rowk̄C and
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the uniform estimate (3.1) were enough to guarantee the existence of the integral term in (1.5). In our situation
things are much more difficult since we have to guarantee that also the function

∑d
i=1〈rowk̄B̃i(r, ·), DiG(r, s)f〉

is bounded in R
d for any r ∈ (s, t). As we will see in the following proposition, thanks to the estimate (5.12),

the boundedness of the function (SG(·, s)f)(r, ·) can be guaranteed under the following two different additional
assumptions.

Hypotheses 6.1. Hypotheses 2.3 and 5.1 are satisfied. Further, there exist a bounded interval J and a positive
constant K∗ such that |B̃i| ≤ K∗λM in J × R

d and rowk̄C ∈ Cb(J × R
d; Rm) for any i = 1, . . . , d and some

k̄ ∈ {1, . . . ,m}.
Hypotheses 6.2. Hypotheses 2.3 and 5.1 with M = Im are satisfied. Further, there exist k̄ ∈ {1, . . . ,m} and
a bounded interval J such that rowk̄C and rowk̄B̃i belong to Cb(J × R

d; Rm) for any i = 1, . . . , d.

Theorem 6.3. Assume that Hypotheses 6.1 (resp. Hypotheses 6.2) are satisfied. If G(t, s) is compact in
Cb(Rd; Rm) for any (t, s) ∈ ΣJ = {(t, s) ∈ J × J : t > s}, then G(t, s) is compact in Cb(Rd) for the
same values of t and s.

Proof. To simplify the notation, we set u := G(·, s)f and T := supJ . Moreover, by K we will denote a positive
constant, which is independent of j, n, t and f , and may vary from line to line.

As a first step, we show that the integral in the right-hand side of (1.5) is well defined when f ∈ Bb(Rd; Rm).
Since ‖G(t, s)‖L(Cb(Rd)) ≤ 1 for any I � s ≤ t, we just prove that the function r �→ ‖(SG(·, s)f)(r, ·)‖∞ belongs
to L1((s, t)) for any t ∈ (s, T ). The boundedness of rowk̄C and (3.1) yield that 〈rowk̄C,u〉 ∈ Cb([s, T ] × R

d)
and ‖〈rowk̄C,u〉‖∞ ≤ K‖rowk̄C‖∞‖f‖∞. Moreover, if Hypotheses 6.1 are satisfied, then from (5.12), we get

∣∣∣∣
d∑

i=1

〈rowk̄B̃i(r, ·), Diu(r, ·)〉
∣∣∣∣ ≤√

md

( d∑
i=1

m∑
j=1

|B̃i(r, ·)k̄j |2(Diuj(r, ·))2
)1/2

≤
√
mdK∗λM (r, ·)|Jxu(r, ·)| ≤

√
mdK∗‖M(r, ·)(Jxu(r, ·))T ‖∞

≤K(r − s)−1/2‖f‖∞,

for any r ∈ (s, T ). On the other hand, if Hypotheses 6.2 hold true, then, from (5.12), with M = Im, it follows
that ∣∣∣∣

d∑
i=1

〈rowk̄B̃i(r, ·), Diu(r, ·)〉
∣∣∣∣ ≤ K max

1≤i≤d
‖rowk̄Bi‖∞(r − s)−1/2‖f‖∞.

In both the cases, the function (SG(·, s)f)(r, ·) is bounded in R
d for any r ∈ (s, T ) and

‖(SG(·, s)f)(r, ·)‖∞ ≤ K0(r − s)−1/2‖f‖∞, r ∈ (s,+∞) ∩ J, (6.1)

where K0 depends on m, d, s, J , ‖rowk̄C‖∞, and also on ‖rowk̄B̃i‖∞, (i = 1, . . . , d) when Hypotheses 6.2 hold
true. This, in particular, yields that the integral in the right-hand side of formula (1.5) is well defined.

Now, we split the rest of the proof into three steps. The first two steps are devoted to prove formula (1.5)
for functions f ∈ C2+α

c (Rd; Rm). Once it is proved for such functions, this formula can be easily extended to
functions in Bb(Rd; Rm) by density. Indeed, if f ∈ Bb(Rd; Rm), then we fix a sequence (fn) ⊂ C2+α

c (Rd; Rm),
bounded with respect to the sup-norm and converging to f almost everywhere in R

d. Writing (1.5) with f
replaced by fn and letting n → +∞, from Corollary 3.4(ii) we conclude that G(t, s)fn and G(t, s)fn,k̄ converge
to G(t, s)f and G(t, s)fk̄, respectively, locally uniformly in R

d, as n → +∞. Similarly, SG(·, s)fn converges
locally uniformly in (s,+∞) × R

d to SG(·, s)f , as n → +∞. Taking (6.1) (with f replaced by fn) and the
contractivity of the evolution operator G(t, s) into account, we can apply the dominated convergence theorem
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to infer that the integral term in (1.5) converges to the corresponding one with fn replaced by f , and formula (1.5)
follows.

Step 1. Here, we assume Hypotheses 6.2 and denote by GN
n (t, s) the evolution operator associated with the

operator A in Cb(Dn; Rm), with homogeneous Neumann boundary conditions, which satisfies the gradient
estimate ‖GN

n (t, s)f‖Cb(Dn;Rm) +
√
t− s‖JxGN

n (t, s)f‖Cb(Dn;Rm) ≤ K‖f‖∞ for any n ∈ N, by Remark 5.6.
As it has been stressed in Remark 2.10, GN

n (·, s)f tends to u locally uniformly in R
d, as n → +∞. If we split

(Aũn)k̄ = Ãun,k + Φn,k̄, where Φn,k̄ =
∑d

j=1〈rowk̄B̃j , Djũn〉 + 〈rowk̄C, ũn〉, then we can write

ũk̄(t, x) = (GN
n (t, s)fk̄)(x) +

∫ t

s

(GN
n (t, σ)Φn,k̄(σ, ·))(x)dσ, t ∈ (s, T ), x ∈ Dn. (6.2)

Clearly, ũk̄ and GN
n (·, s)fk̄ converge to (G(t, s)f)k̄ and G(·, s)fk̄, respectively, locally uniformly in (s,+∞) ×

R
d. As far as the integral term in (6.2) is concerned, the boundedness of rowk̄C and rowk̄Bi (i = 1, . . . , d)

and the above gradient estimate imply, first, that ‖Φn,k̄(σ, ·)‖Cb(Dn) ≤ K(σ − s)−1/2‖f‖∞ and, then, that
‖GN

n (t, σ)Φn,k̄(σ, ·)‖Cb(Dn) ≤ K(σ− s)−1/2‖f‖∞ for any σ ∈ (s, T ) and any n ∈ N, since each operator GN
n (t, σ)

is contractive. Next, we estimate

|GN
n (t, σ)Φn,k̄(σ, ·) −GN(t, σ)(SG(·, s)f)(σ, ·)| ≤

GN
n (t, σ)|Φn,k̄(σ, ·)−(SG(·, s)f)(σ, ·)|+|GN

n (t, σ)(SG(·, s)f)(σ, ·)−G(t, σ)(SG(·, s)f)(σ, ·)|. (6.3)

As n → +∞, the last term in (6.3) vanishes, locally uniformly in R
d, due to Remark 2.10. To show that also

the first term vanishes, we prove the following claim.

Claim: For any r > 0, ε > 0 and σ ∈ (s, t), there exists h ∈ N such that GN
n (t, σ)χRd\Dh

≤ ε in Dr, for any n
sufficiently large.

Once the claim is proved, we estimate

‖GN
n (t, σ)gn(σ, ·)‖Cb(Dr) ≤‖GN

n (t, σ)(χDh
gn(r, ·))‖Cb(Dr) + ‖GN

n (t, σ)(χRd\Dh
gn(r, ·))‖Cb(Dr)

≤‖gn(σ, ·)‖Cb(Dh) + ‖GN
n (t, σ)χRd\Dh

‖Cb(Dr) sup
n∈N

‖gn(σ, ·)‖Cb(Dn)

≤‖gn(σ, ·)‖Cb(Dh) + εK(σ − s)−1/2‖f‖∞,

where gn = Φn,k̄ − SG(·, s)f . Since gn vanishes locally uniformly in (s,+∞) × R
d as n → +∞,

lim sup
n→+∞

‖GN
n (t, σ)gn(σ, ·)‖Cb(Dr) ≤ εK(σ − s)−1/2‖f‖∞

and, letting ε → 0+, we conclude that GN
n (t, σ)gn(σ, ·) vanishes uniformly in Dr as n → +∞, for any σ ∈ (s, T ).

To prove the claim, we fix a sequence (ψn) ⊂ Cb(Rd) satisfying χRd\Dn
≤ ψn ≤ χRd\Dn−1 . Since ψn vanishes

locally uniformly in R
d, G(t, σ)ψn tends to 0 locally uniformly in R

d, for any σ ∈ (s, t), by ([25], Prop. 3.1).
Therefore, for any fixed ε,R > 0, there exists k = k(r) > 0 such that G(t, r)ψk ≤ ε/2 in Dr. Since GN

n (t, σ)ψk

converges to G(t, σ)ψk in Dr, we can determine n0 = n0(r) ∈ N such that ‖G(t, σ)ψk−GN
n (t, σ)ψk‖Cb(Dr) ≤ ε/2

for any n ≥ n0, which yields the claim.

Step 2. Here, we assume Hypotheses 6.1. In such a case, the argument in Step 1 does not work, since from the
proof of Theorem 5.4 we now just infer that

√
t− s‖ϑn

√
Q(t, ·)Jxun(t, ·)‖Cb(Dn;Rm) + ‖un(t, ·)‖Cb(Dn;Rm) ≤ K‖f‖∞, n ∈ N, (6.4)

where (ϑn) is a sequence of cut-off functions, such that supp(ϑn) ⊂ Dn for any n ∈ N, and un := GD
n (·, s)f .

From (6.4) we can not deduce the crucial estimate ‖Φn,k̄(r, ·)‖Cb(Dn) ≤ K(r − s)−1/2‖f‖∞. To overcome this
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difficulty, we use a slightly different approximation argument. We denote by Ψn the function whose components
are Ψn,i = ϑn

∑d
j=1〈rowiB̃j , Djun〉+〈rowiC,un〉, for any i = 1, . . . ,m. Since un ∈ C1+α/2,2+α((s, T )×Dn; Rm)

(see [27], Thm. IV.5.5), the function Ψn belongs to Cα/2,α((s, T ) × Dn; Rm) and is compactly supported in
[s, T ]×Dn. Hence ([27], Thm. IV.5.5) shows that, for any n ∈ N such that supp(f) ⊂ Dn, there exists a unique
function wn ∈ C1+α/2,2+α((s, T )×Dn; Rm) which satisfies Dtwn = Ãwn +Ψn in (s, T )×R

d, wn(s, ·) = f and
it vanishes on (s, T )× ∂Dn. Here, Ã is the diagonal vector-valued operator whose m-components coincide with
the operator Ã. For any i = 1, . . . ,m, the component wn,i of wn can be represented through the formula

wn,i(t, x) = (GD
n (t, s)fi)(x) +

∫ t

s

(GD
n (t, r)Ψn,i(r, ·))(x)dr, t ∈ (s, T ), x ∈ Dn. (6.5)

We claim that u is the limit of the sequence (wn). By Theorem A.2, ‖wn‖C1+α/2,2+α(K;Rm) ≤ K for any
compact set E ⊂ (s, T )×R

d and n large enough. Hence, we can extract a subsequence (wnj ) which, as j → +∞,
converges in C1,2([s+τ−1, T ]×Dτ ; Rm), for any τ > (T−s)−1, to some function w ∈ C

1+α/2,2+α
loc ((s, T )×R

d; Rm).
Since un converges to u in C1,2([s + τ−1, T ] ×Dτ ; Rm) (see the proof of Thm. 2.8), we conclude that Dtw =
Ãw + Su in (s, T )×R

d where Sku =
∑d

i=1〈rowkB̃i, Diu〉+ 〈rowkC,u〉 for any k = 1, . . . ,m. To conclude that
w = u, it suffices to show that w can be extended by continuity at t = s, where it equals f . For this purpose, we
follow the same strategy as in the proof of Theorem 2.8, localizing the problem in the ball DR for any R > 0.
To make the arguments therein contained work, we need to show that |gnj (t, x)| ≤ K(t − s)−1/2‖f‖∞ for any
t ∈ (s, s + 1), x ∈ DR, where gnj = −wnjÃϑ − 2Jxwnj (Q∇ϑ) + ϑΨnj (nj > M) and ϑ is a smooth function
such that χDR−1 ≤ ϑ ≤ χDR . The term Ψnj can be estimated using the proof of Theorem 5.4, which shows that
‖un(t, ·)‖Cb(Dn;Rm) +

√
t− s‖ϑnJxun(t, ·)‖Cb(Dn;Rm) ≤ K‖f‖∞ for any t ∈ (s, T ) and n ∈ N, and implies that

‖Ψnj (t, ·)‖Cb(Dnj
;Rm) ≤ K(t− s)−1/2‖f‖∞ for any j ∈ N. As far as the function wnj is concerned, we observe

that the operator Ã satisfies Hypotheses 5.1. Therefore,
√
t− s‖ϑn∇xG

D
nj

(t, s)g‖Cb(Dn;Rm) ≤ K‖g‖Cb(Dn;Rm)

for any t ∈ (s, T ) and any g ∈ Cc(Dn). Differentiating formula (6.5) with respect to x, taking the sup norm in
DR of both sides, and using the previous two estimates, we conclude that

‖Jxwnj (t, ·)‖Cb(BR) ≤
d∑

i=1

‖∇xG
D
nj

(t, s)fi‖Cb(DR) +
d∑

i=1

∫ t

s

‖∇xG
D
nj

(t, r)Ψnj ,i(r, ·)‖Cb(DR)dr

≤ K

( ‖f‖∞√
t− s

+
∫ t

s

‖Ψnj (r, ·)‖Cb(Dnj
;Rm)√

t− r
dr

)
≤ K

‖f‖∞√
t− s

for any t ∈ (s, T ] and nj > R. The wished estimate on gnj follows. Since the above arguments can be applied
to any convergent subsequence of (wn), the sequence (wn) itself converges to u.

We now fix i = k̄ in (6.5) and let n → +∞. Since Ψn,i converges to SG(·, s)f , locally uniformly in (s,+∞)×R
d,

as n → +∞, and ‖Ψn,i(t, ·)‖Cb(Dn) ≤ K(t − s)−1/2‖f‖∞ for any t ∈ (s, T ), we can repeat the same arguments
as in Step 1, with GN

n (t, s) replaced by the operator GD
n (t, s), and complete the proof of (1.5).

Step 3. Let (fj) ⊂ Cb(Rd) be a bounded sequence and set fj = fjek̄ for any j ∈ N. Without loss of generality, we
assume that ‖fj‖∞ ≤ 1 for any j ∈ N. We fix (t, s) ∈ ΣJ and s0 ∈ [s, t] satisfying s0−s ≤ (8K)−2, where K0 is the
constant in (6.1). Since G(s0, s) is compact in Cb(Rd; Rm), there exists a subsequence (G(s0, s)fj0

n
) converging

uniformly in R
d, as n → +∞, to some function gs0 ∈ Cb(Rd; Rm). Clearly, (G(t, s)fj0

n
)k̄ converges uniformly to

the k̄th component of G(t, s0)gs0 . Moreover, recalling that G(t, s) is a contractive evolution operator, we can
estimate

sup
x∈Rd

∣∣∣∣
∫ t

s

(G(t, r)(SG(·, s)(fj0
n
− fj0

m
))(r, ·))(x)dr

∣∣∣∣ ≤
∫ s0

s

‖(SG(·, s)(fj0
n
− fj0

m
))(r, ·)‖∞dr

+
∫ t

s0

‖(SG(·, s)(fj0
n
− fj0

m
))(r, ·)‖∞dr. (6.6)
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Estimate (6.1) and our choice of s0 imply that the first term in the right-hand side of (6.6) does not exceed
1/2. On the other hand, Sf(r, ·) = SG(·, s0)G(s0, s)(fj0

n
− fj0

m
) and applying (6.1), with G(·, s) replaced by

G(·, s0), we estimate the last term in the right-hand side of (6.6) from above by K‖G(s0, s)(fj0
n
− fj0

m
)‖∞.

Putting everything together, we conclude that

sup
x∈Rd

∣∣∣∣
∫ t

s

(G(t, r)(SG(·, s)(fj0
n
− fj0

m
))(r, ·))(x)dr

∣∣∣∣ ≤ 1
2

+ K‖G(s0, s)(fj0
n
− fj0

m
)‖∞, (6.7)

which, combined with (1.5), (3.1), shows that ‖G(t, s)(fj0
n
− fj0

m
)‖∞ ≤ 1

2 + K‖G(s0, s)(fj0
n
− fj0

m
)‖∞. The last

term in (6.7) vanishes as n,m → +∞. Therefore, there exists N0 ∈ N such that ‖G(t, s)(fj0
n
− fj0

m
)‖∞ ≤ 1 for

any n,m ≥ N0.
Now, we fix s1 ∈ (s, t) such that s1 − s ≤ (16K)−2 and repeat the same construction as above with s1

replacing s0. We thus determine N1 ∈ N and a subsequence (fj1
n
) of (fj0

n
) such that ‖G(t, s)(fj1

n
−fj1

m
)‖∞ ≤ 1/2

for any m,n ≥ N1. Iterating this argument, for any h ∈ N we can determine a subsequence (fjh
n
) ⊂ (fjh−1

n
) and

an integer Nh such that
‖G(t, s)(fjh

n
− fjh

m
)‖∞ ≤ 2−h, m, n ≥ Nh. (6.8)

To conclude the proof, we consider the diagonal sequence (ψn) with ψn = fjn
n

for any n ∈ N. We claim
that G(t, s)ψn converges uniformly in R

d. For this purpose, we fix ε > 0 and h ∈ N such 2−h ≤ ε. We also set
N = max{h,Nh}. Recalling that ψn, ψm ∈ (fjh

p
) if n,m ≥ h, from (6.8) we deduce that ‖G(t, s)(ψn−ψm)‖∞ ≤ ε

for any m,n ≥ N , and we are done. �

6.2. Semilinear systems and systems of markovian forward backward stochastic
differential equations

At first, we consider a Cauchy problem for a semilinear system of parabolic equations and we show that,
under suitable assumptions, it admits a mild solution u. The special form of the nonlinear part allows us to
connect the Cauchy problem with a system of Markovian backward stochastic differential equations (BSDEs
for short); in particular, we prove that a solution (Y,Z) to the system of BDSEs exists and it can be written
in terms of the function u. Hereafter, we assume Hypotheses 2.3.

6.2.1. Semilinear systems

In this subsection we deal with the backward semilinear Cauchy problem

{
Dtu(t, x) + (Au)(t, x) = (Ψ (u))(t, x), t ∈ [0, T ), x ∈ R

d,

u(T, x) = g(x), x ∈ R
d,

(SL-CP)

where A is the operator in (1.1) and (Ψ (u))(t, x) = ψ(t, x,
√
Q(t, x)Jxu(t, x)) for any t ∈ [0, T ) and x ∈ R

d.
Throughout this subsection, we assume Hypotheses 5.1 with M =

√
Q and the following conditions on g and ψ.

Hypotheses 6.4. The functions g and ψ belong to Cb(Rd; Rm) and C([0, T ] × R
d × R

dm; Rm) respectively.
Further, there exist positive constants Θ and β ∈ (0, 1) such that

|ψ(t, x1, z1) −ψ(t, x2, z2)| ≤ Θ(1 + |z1| + |z2|)(|x1 − x2|β + |z1 − z2|β), (6.9)

|ψ(t, x, z)| ≤ Θ(1 + |z|), (6.10)

for any t ∈ [0, T ], x, x1, x2 ∈ R
d and z, z1, z2 ∈ R

md.
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Example 6.5. The conditions (6.9) and (6.10) are satisfied, e.g., when:

(i) the function ψ belongs to C([0, T ]; Lip(Rd × R
md; Rm)) and |ψ(·, ·, 0)| is bounded in [0, T ] × R

d. Indeed,
we can estimate

|ψ(t, x, z)| ≤ |ψ(t, x, z) −ψ(t, x, 0)| + |ψ(t, x, 0)| ≤ K0|z| + sup
(s,y)∈[0,T ]×Rd

|ψ(s, y, 0)|, (6.11)

for any (t, x, z) ∈ [0, T ]×R
d×R

md where K0 = supt∈[0,T ][ψ(t, ·, ·)]Lip(Rd×Rmd), and (6.10) follows. Moreover,
for any β ∈ (0, 1),

|ψ(t, x, z2) −ψ(t, x, z1)| ≤K0|z2 − z1|1−β|z2 − z1|β ≤ K0(1 + |z1| + |z2|)|z2 − z1|β , (6.12)

|ψ(t, x2, z) −ψ(t, x1, z)| = |ψ(t, x2, z) −ψ(t, x1, z)|1−β|ψ(t, x2, z) −ψ(t, x1, z)|β
≤Kβ

0 (1 + |ψ(t, x1, z)| + |ψ(t, x1, z)|)|x2 − x1|β, (6.13)

for any t ∈ [0, T ], x, x1, x2 ∈ R
d, z, z1, z2 ∈ R

md. Using (6.11), from (6.12) and (6.13), estimate (6.9)
follows. In this case, we recover the regularity assumptions considered in [34];

(ii) the components of ψ are defined by ψi(t, x, z) := (1+|z|)hi(t)fi(x)gi(z) for any (t, x, z) ∈ [0, T ]×R
d×R

md,
i = 1, . . . ,m and some functions fi ∈ Cβ

b (Rd), gi ∈ Cβ
b (Rmd) and hi ∈ C([0, T ]). In this case,

|ψi(t, x2, z2) − ψi(t, x1, z1)|
≤ |ψi(t, x2, z2) − ψi(t, x1, z2)| + |ψi(t, x1, z2) − ψi(t, x1, z1)|
≤ ‖hi‖∞‖gi‖∞[fi]Cβ(Rd)(1 + |z2|)|x2 − x1|β + ‖hi‖∞‖fi‖∞|(1 + |z2|)gi(z2) − (1 + |z2|)gi(z1)|

+ ‖hi‖∞‖fi‖∞|(1 + |z2|)gi(z1) − (1 + |z1|)gi(z1)|
≤ ‖hi‖∞‖gi‖∞[fi]Cβ

b (Rd)(1 + |z2|)|x2 − x1|β + (1 + |z2|)‖hi‖∞‖fi‖∞[gi]Cβ
b (Rmd)|z2 − z1|β

+ ‖hi‖∞‖fi‖∞‖gi‖∞|z2 − z1|
≤ ‖hi‖∞‖gi‖∞[fi]Cβ

b (Rd)(1 + |z2|)|x2 − x1|β + (1 + |z2|)‖hi‖∞‖fi‖∞[gi]Cβ
b (Rmd)|z2 − z1|β

+ ‖hi‖∞‖fi‖∞‖gi‖∞|(1 + |z1| + |z2|)|z2 − z1|β ,
for any t ∈ [0, T ], x1, x2 ∈ R

d, z1, z2 ∈ R
md and i = 1, . . . ,m. Hence, condition (6.9) is satisfied with

Θ2 =
∑m

i=1 ‖hi‖2
∞‖fi‖2

Cβ
b (Rd)

‖gi‖2
Cβ

b (Rmd)
. Clearly, also condition (6.10) is satisfied.

Without loss of generality, we can suppose that α (see Hypotheses 2.1) and β coincide, and hereafter we
simply denote them by α.

Let us prove the existence of a mild solution u of (SL-CP), i.e., a function u ∈ KT which satisfies the
equation

u(t, x) = (Ĝ(T − t, 0)g)(x) −
∫ T

t

(Ĝ(T − t, T − s)(Ψ (u))(s, ·))(x)ds, (t, x) ∈ [0, T ]× R
d, (6.14)

Here, KT is the set of all functions u ∈ Cb([0, T ] × R
d; Rm) ∩ C0,1([0, T ) × R

d; Rm) such that ‖u‖KT
:=

‖u‖∞ + [u]KT
:= ‖u‖∞ + supt∈[0,T )

√
T − t‖√Q(t, ·)(Jxu(t, ·))T ‖∞ < +∞. Moreover, Ĝ(t, s) is the evolution

operator associated with the elliptic operators
∑d

i,j=1 Qij(T − ·, ·)D2
ij +

∑d
j=1 Bj(T − ·, ·)Dj + C(T − ·, ·).

We first approximate g and ψ by two sequences (gn) and (ψ(n)) of globally Lipschitz continuous
functions with respect to x and the pair (x, z), respectively, defined as follows: gn(x) := (�n � g)(x) and
ψ(n)(t, x, z) := ϑ(n−1|z|)(�n � ψ(t, ·, ·))(x, z) for any n ∈ N, t ∈ [0, T ], x ∈ R

d and z ∈ R
md, where � denotes

the convolution operator, �n(x, z) = ϑ(n−1|x|)ϑ(n−1|z|) for any (x, z) ∈ R
d × R

md, and ϑ : R → R is smooth
and satisfy χD1 ≤ ϑ ≤ χD2 .
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Remark 6.6.

(i) Since we are assuming Hypotheses 5.1 with M =
√
Q, the evolution operator Ĝ(t, s) satisfies the estimate√

t− s‖√Q(T − t, ·)(JxĜ(t, s)f)T ‖∞ ≤ KT ‖f‖∞ for any 0 ≤ s < t ≤ T , f ∈ Cb(Rd; Rm) and some positive
constant KT . From Hypothesis 2.1, we also deduce that

√
t− s‖(JxĜ(t, s)f)T ‖∞ ≤ KTλ

−1/2
0 ‖f‖∞ for the

same s and f .
(ii) The choices of gn andψ(n) are also connected with the application to systems of forward backward stochastic

differential equations (FBSDEs in short) of the next subsection, where we show that the convergence of the
subsequence (ukn) implies that a sequence of solutions (Ykn ,Zkn) to a family of approximated systems of
FBSDEs converges to a pair of processes (Y,Z).

Proposition 6.7. For any n ∈ N there exists a unique mild solution un ∈ KT to the Cauchy problem (SL-CP),
with (ψ,g) replaced by (ψ(n),gn). Moreover, there exists a positive constant L, independent of n, such that
‖un‖KT

≤ L for any n ∈ N.

Proof. The proof is classical, hence we do not enter too much in details. To enlighten the notation, throughout
the proof, we denote by K a positive constant, depending at most on T , which may vary from line to line. Since
each function ψ(n)(t, x, ·) is Lipschitz continuous in R

md, uniformly with respect to (t, x) ∈ [0, T ]×R
d, classical

arguments, based on the Banach fixed-point theorem and the generalized Gronwall lemma, allow us to show that
equation (6.14) admits a unique solution, which is defined in [0, T ]×R

d. To prove that supn∈N
‖un‖KT

< +∞,
we observe that |ψ(n)(t, x, z)| ≤ K(1+ |z|) and ‖gn‖∞ ≤ K‖g‖∞ for any t ∈ [0, T ], x ∈ R

d, z ∈ R
md and n ∈ N.

From equation (6.14), with ψ(n) replacing ψ, and Remark 6.6(i) we thus deduce that

√
T − t‖

√
Q(t, ·)(Jxun(t, ·))T ‖∞ ≤ KT (T − t)−

1
2 ‖g‖∞ + K + K

∫ T

t

‖√Q(t, ·)(Jxun(t, ·))T ‖∞√
s− t

ds

for any t ∈ [0, T ). The generalized Gronwall lemma shows that
√
T − t‖√Q(t, ·)(Jxun(t, ·))T ‖∞ is uniformly

bounded for any t ∈ [0, T ) by a positive constant independent of n ∈ N. Now, taking the sup-norm (with respect
to x ∈ R

d) of both the sides of the equation

un(t, x) = (Ĝ(T − t, 0)gn)(x)−
∫ T

t

(Ĝ(T − t, T − s)(Ψ (n)(un))(s, ·))(x)ds, (t, x) ∈ [0, T )× R
d (6.15)

and using this last estimate, we deduce that the sup-norm of un in [0, T ] × R
d is bounded from above by a

positive constant independent of n ∈ N. This completes the proof. �

To go further and prove that a subsequence (ukn) ⊂ (un) converges to a mild solution to (SL-CP), we need
an intermediate result. For any n ∈ N, we introduce the space XT,n := Cb([0, T −n−1

T ]×BnT ; Rm)∩C0,1([0, T −
n−1

T ] ×Bn̂; Rm), where nT := [1/T ] + n, and the operator Γ (n), defined by

(Γ (n)(u))(t, x) := (Ĝ(T − t, 0)gn)(x) −
∫ T

t+n−1
T

(Ĝ(T − t, T − s)(Ψ (n)(u))(s, ·))(x)ds

for any k, n ∈ N, any (t, x) ∈ [0, T − n−1
T ] × R

d and any u ∈ KT .

Proposition 6.8. The operator Γ (n) is compact from KT in XT,n.

Proof. Fix n ∈ N and prove that the integral term Γ̃ (n) in the definition of Γ (n) is a compact operator. For this
purpose, let W be a bounded subset of KT . We claim that the families Ih,i = {Dh

i Γ̃
(n)(w) : w ∈ W} (h = 0, 1,

i = 1, . . . , d) are equibounded and equicontinuous. Throughout the proof, we denote by Kn positive constants,
which may vary from line to line and depend on n. The equiboundedness of the families Ih,i follows easily from
estimates (3.1) and Remark 6.6(i), taking into account that |ψ(n)(t, x, z)| ≤ K(1+ |z|) for any t ∈ [0, T ], x ∈ R

d,
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z ∈ R
md and some positive constant K independent of n. To prove the equicontinuity of Ih,i, we fix w ∈ W,

r, t ∈ [0, T − n−1
T ], with t > r, x, y ∈ DnT and observe that

|(Dh
i Γ̃

(n)(w))(t, x) − (Dh
i Γ̃

(n)(w))(r, y)| ≤ |(Dh
i Γ̃

(n)(w))(r, x) − (Dh
i Γ̃

(n)(w))(r, y)|

+
∣∣∣∣
∫ t+n−1

T

r+n−1
T

(Dh
i (Ĝ(T − r, T − s)(Ψ (n)(w))(s, ·)))(x)ds

∣∣∣∣
+

∣∣∣∣
∫ T

t+n−1
T

(Dh
i (Ĝ(T − t, T − s) − Ĝ(T − r, T − s))(Ψ (n)(w)))(s, ·))(x)ds

∣∣∣∣ (6.16)

for h = 0, 1 and i = 1, . . . , d. To estimate the right-hand side of (6.16) we use several times the inequality

‖G(·, t1)(Ψ (n)(w))(s, ·)‖C1+α/2,2+α([t2,T ]×E0;Rm) ≤ Kδ,E0(T − s)−1/2, (6.17)

which holds true for any t1, t2 ∈ [0, T ) such that t2 − t1 ≥ δ and any convex compact set E0 ⊂
R

d, with proper choices of t1 and t2. This estimate follows from Theorem A.2 which shows that
‖G(·, t1)f‖C1+α/2,2+α([t2,T ]×E0;Rm) ≤ K ′

E0,δ‖f‖∞ for any f ∈ Cb(Rd; Rm) and any t1, t2 as above and the es-
timate ‖(Ψ (n)(w))(s, ·)‖Cb(Rd;Rm) ≤ K(T − s)−1/2, which holds true for any s ∈ [0, T ), w ∈ W and follows
from (6.10) and the definition of the function Ψ (n)(w) (see the beginning of this subsection). Using (6.17) we
can estimate

|(Dh
i Γ̃

(n)(w))(r, x) − (Dh
i Γ̃

(n)(w))(r, y)| ≤

KDnT
,n−1

T
|x− y|

∫ T

r+n−1
T

‖D2
xĜ(T − r, T − s)(Ψ (n)(u))(s, ·)‖∞ds ≤ 2KDnT

,n−1
T

√
T |x− y|.

The other two terms in the right-hand side of (6.16) can be estimated likewise. Summing up, we thus conclude
that |(Dh

i Γ̃
(n)(w))(t, x) − (Dh

i Γ̃
(n)(w))(r, y)| ≤ Kn((t− r)α/2 + |x− y|). This estimate shows that the families

Ih,i (h = 0, 1, i = 1, . . . , d) are equicontinuous in [0, T − n−1
T ] × DnT . Arzelà–Ascoli Theorem allows us to

conclude that Γ̃ (n) is compact from KT to XT,n. �

Proposition 6.9. Up to a subsequence, (un) and (Jxun) converge locally uniformly in [0, T ]×R
d and [0, T )×R

d,
respectively. If we denote by u the limit of (un), then u belongs to KT and is a mild solution of (SL-CP).

Proof. Since each operator Γ (n) is compact and the sequence (un), defined in Proposition 6.7 is bounded in KT

by a positive constant K, using a diagonal argument, we can define a subsequence (ukn) ⊂ (un) such that, for
any m ∈ N, Γ (m)(ukn) converges to some function ζ(m) in XT,m, as n → +∞.

Being rather long, we split the rest of the proof in some steps.

Step 1. Here, we prove that the sequences (Γ (kn)(ukn)) and (JxΓ
(kn)(ukn)) converge. Fix h ∈ N, (t, x) ∈

[0, T − h−1
T ) × BhT , and l, n,m ∈ N such that n,m ≥ l > h. Then, for γ = 0, 1 and i = 1, . . . , d we estimate

|Dγ
i Γ

(kn)(ukn) −Dγ
i Γ

(km)(ukm)| ≤ B
(l,γ)
m,n,i + C

(l,m)
i,γ + C

(l,n)
i,γ + D

(l,m)
i,γ + D

(l,n)
i,γ + E

(m,n)
i,γ , where

B
(l,γ)
m,n,i(t, x) = |(Dγ

i Γ
(kl)(ukn))(t, x) − (Dγ

i Γ
(kl)(ukm))(t, x)|,

C
(l,p)
i,γ (t, x) =

∣∣∣∣
∫ T

t+1/k̂l

(Dγ
i Ĝ(T − t, T − s)[Ψ (kl)(ukp) − Ψ (kp)(ukp)])(s, x)ds

∣∣∣∣,
D

(l,p)
i,γ (t, x) =

∣∣∣∣
∫ t+1/k̂l

t+1/k̂p

(Dγ
i Ĝ(T − t, T − s)Ψ (kp)(ukp))(s, x)ds

∣∣∣∣,
E

(m,n)
i,γ (t, x) = |(Ĝ(T − t, 0)(gkn − gkm))(x)|.
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Fix ε > 0. Clearly, from the first part of the proof, we conclude that, for any l ∈ N, there exists Nl ∈ N such
that B

(l,γ)
m,n,i(t, x) ≤ ε/5, for any n,m ≥ Nl.

As far as the term C
(l,p)
i,γ (p = m,n) is concerned, we observe that from Remark 6.6(i) we obtain

C
(l,p)
i,γ ≤KT

∫ T

T−δ

‖(Ψ (kl)(ukp))(s, ·) − (Ψ (kp)(ukp))(s, ·)‖∞
(s− t)γ/2

ds

+ KT

∫ T−δ

t

‖(Ψ (kl)(ukp))(s, ·) − (Ψ (kp)(ukp))(s, ·)‖∞
(s− t)γ/2

ds (6.18)

for any δ > 0. Using the estimate |ψ(n)(t, x, z)| ≤ K(1 + |z|), which holds for any t ∈ [0, T ], x ∈ R
d, z ∈ R

md,
n ∈ N and some positive constant K, we get ‖Ψ (kl)(ukp(s, ·))−Ψ (kp)(ukp(s, ·))‖∞ ≤ K(1+

√
T − s). Therefore,

KT

∫ T

T−δ

‖(Ψ (kl)(ukp))(s, ·) − (Ψ (kp)(ukp))(s, ·)‖∞
(s− t)γ/2

ds ≤K(h−1
T − δ)−

γ
2
√
δ(2 +

√
δ),

for any t ∈ [0, T − h−1
T ], provided that δ < h−1

T .
As far as the second term in the right-hand side of (6.18) is concerned, we first observe that

|ψ(n)(t, x, z) −ψ(t, x, z)| ≤ K(1 + |z|)n−α, t ∈ [0, T ], x ∈ R
d, z ∈ Dn, (6.19)

for any n ∈ N, as it easily follows from the equality

ψ(n)(t, x, z) − ψ(t, x, z) =
∫

Rd

dy1

∫
Rmd

�n(y1, y2)(ψ(x − y1, z − y2) −ψ(x, z))dy2,

for any t ∈ [0, T ], x ∈ R
d, z ∈ Dn, and Hypotheses 6.4. Splitting Ψ (kp) −Ψ (kl) = (Ψ (kp) −Ψ )− (Ψ (kl) −Ψ ) and

using (6.19), we can estimate

‖(Ψ (kl)(ukp))(s, ·) − (Ψ (kp)(ukp))(s, ·)‖∞ ≤ Kk−α
l (1 + δ−1/2),

for any s ∈ [t, T − δ] and kp ≥ kl ≥ Kδ−γ/2, and we thus conclude that∫ T−δ

t

‖(Ψ (kl)(ukp)(s, ·) − (Ψ (kp)(ukp))(s, ·)‖∞
(s− t)γ/2

ds ≤ Kk−α
l (1 + δ−

1
2 )(T − δ − t)1−

γ
2 .

It is easy to check that we can fix δ small and l1 large such that C
(l,m)
i,γ ≤ ε/5 and C

(l,n)
i,γ ≤ ε/5 for m,n > l ≥ l1.

Now we consider D
(l,p)
i,γ , which, thanks again to Remark 6.6(i), we estimate as follows:

D
(l,p)
i,γ (t, x) ≤ KTλ

−γ/2
0

∫ t+ 1
kl

t+ 1
kp

(t− s)−
γ
2 (1 + K(T − s)−1/2)ds ≤ Kλ

− γ
2

0 (1 +
√
hT )k

γ
2 −1

l

for any p > l. Hence, there exists l2 ∈ N such that C
(l,p)
i,γ ≤ ε/5 in [0, T − h−1

T ) ×BhT for any p > l2.

As far as E
(m,n)
i,γ is concerned, we observe that, since gkn converges to g locally uniformly in R

d, from

Proposition 3.2(ii) and Theorem A.2, we conclude that there exists l3 ∈ N such that E
(m,n)
i,γ ≤ ε for any

n,m ≥ l3. Summing up, if m,n ≥ max{Nl1∨l2 , l1, l2, l3}, then ‖Γ (kn)(ukn) − Γ (km)(ukm)‖Xh
≤ ε, and we are

done.

Step 2. Here, we show that also (ukn) converges in XT,h, for any h ∈ N. For this purpose, we observe that,
from (6.15) it follows that ukn = Γ (kn)(ukn) − Fn, where

Fn(t, x) :=
∫ t+1/kn

t

(Ĝ(T − t, T − s)(Ψ (kn)(ukn)))(s, x)ds, t ∈ [0, T − h−1
T ] ×BhT .
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Arguing as we did to estimate the term D
(l,p)
i,γ , we conclude that Fn and JxFn vanish uniformly in [0, T −h−1

T ]×
BhT , as n → +∞. By the arbitrariness of h, we conclude that there exists a function u such that ukn and Jxukn

converges locally uniformly in [0, T )× R
d to u and Jxu, respectively, as n → +∞.

Step 3. Here, we conclude the proof, by showing that u is a mild solution of (SL-CP) and u ∈ KT . Since the
sequence (un) is bounded in KT , u belongs to KT as well. On the other hand, since

ukn(t, x) = (Ĝ(T − t, 0)gkn)(x) −
∫ T

t

(Ĝ(T − t, T − s)(Ψ (kn)(ukn)))(s, x)ds (6.20)

and Jxukn(s, ·) converges to Jxu(s, ·) locally uniformly in [0, T )×R
d, using Proposition 3.2 and the properties

of ψ(kn) we deduce that Ĝ(T − t, T − s)((Ψkn(ukn))(s, ·)) converges pointwise in [0, T ) × R
d to Ĝ(T − t, T −

s)((Ψ (u))(s, ·)). Moreover, due again to the estimate |ψ(n)(t, x, z)| ≤ K(1 + |z|), we can let n tend to +∞
in (6.20) and conclude that u satisfies (SL-CP) in [0, T ) × R

d. Finally, we extend u by continuity in T setting
u(T, ·) = g. This completes the proof. �

6.2.2. Systems of markovian FBSDEs

Here, we study a system of forward-backward stochastic differential equations and show that its solution can
be written in terms of the mild solution to a semilinear Cauchy problem of the type considered in the previous
subsection.

Let (Ω,E,P) be a complete probability space and let (Wt) be a d-dimensional Wiener process. By (FW
t ) we

denote its natural filtration augmented with the negligible sets in E.
For any p ∈ [1,+∞), we denote by H

p and K, respectively, the space of progressively measurable with
respect to FW

t random processes (Xt) such that ‖X‖Hp := E supt∈[0,T ] |Xt|p < +∞, and the space of all the
FW

t -progressively measurable processes (Y,Z) such that

‖(Y,Z)‖2
cont := E sup

t∈[0,T ]

|Yt|2 + E

∫ T

0

|Zσ|2dσ < +∞.

We consider the system (1.6), with H = (H1, . . . , Hm) and

Hj(t, x, z) :=
d∑

i=1

m∑
k=1

(B̃i(t, x)(P (t, x))−1)jkzki + ψj(t, x, z), j = 1, . . . ,m,

under the following assumptions.
Hypotheses 6.10.

(i) Pij = Pji ∈ C
α/2,α
loc ([0, T ]×R

d)∩C1,2+α
loc ([0, T ]×R

d) for some α ∈ (0, 1) and any i, j = 1, . . . , d; moreover,
the function λP is bounded from below by a positive constant;

(ii) The entries of the vector-valued function b = (b1, . . . , bd) in Hypothesis 2.3 and of the matrices-valued
functions B̃i (i = 1, . . . , d) belong to C

α/2,α
loc ([0, T ]× R

d) ∩ C0,1+α
loc ([0, T ]× R

d); moreover g ∈ Cb(Rd; Rm);
(iii) b and P grow at most linearly as |x| → +∞, uniformly with respect to t ∈ [0, T ]. Moreover,

• the function ΛH+HT is bounded from above in [0, T ]× R
d, where

H := P (Jxb)TP−1 −
d∑

j=1

bj(DjP )P−1 − 1
2

d∑
i,j=1

(P 2)ij(DijP )P−1,

and 〈b(t, x), x〉 ≤ b0(t, x)|x| for any (t, x) ∈ [0, T ]× R
d and some negative function b0;

• sup(t,x)∈[0,T ]×Rd |B̃i(t, x)|(λP (t, x))−1 < +∞;
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• The functions

sup
t∈[0,T ]

|ΛP 2(t, ·)|DkP (t, ·)|2 + (ΛP (t, ·)|DkP
2(t, ·)|)2 + (λP 2(t, ·)|B̃i(t, ·)|)2

λP 2(t, ·)(λP (t, ·))2|ΛH+HT (t, ·)|

sup
t∈[0,T ]

ΛP (t, ·)|DkB̃i(t, ·)| + λP (t, x)|(P (t, ·))−1DtP (t, ·)(P (t, ·))−1|
λP (t, ·)|ΛH+HT (t, ·)|

inf
t∈[0,T ]

ΛP 2(t, ·)|DkP (t, ·)|
b0(t, ·)

vanish as |x| tends to +∞ for any i, k = 1, . . . , d;
(iv) The function ψ : [0, T ]× R

d × R
md → R

m satisfies (6.9) and (6.10) with β = α.

Remark 6.11. Hypotheses 6.10(i)–(iii) guarantee that the operator A = 1
2

∑d
i,j=1(P

2)ij(t, x)D2
x +∑d

j=1 Bj(t, x)Dj , where Bj(t, x) = −bj(t, x)Im + B̃i satisfies the assumptions of Theorem 5.4 with M = P .

Example 6.12. Hypotheses 6.10 are satisfied for instance if we consider an arbitrary function g ∈ Cb(Rd; Rm),
the functions ψ in Example 6.5 and the operator A in Example 5.2, where now we take p = 0, C ≡ 0 and
M(t, x) = P (t, x) =

√
2q(t)

√
Q0(1 + |x|2)k/2 for any (t, x) ∈ I ×R

d. In this case the conditions (5.8) (where we
disregard (c) since C ≡ 0) reduce to requiring that 2r < k < 2/3.

We now denote by u the mild solution to (SL-CP) with C ≡ 0, provided by Proposition 6.9, and state the
main result of this subsection.

Theorem 6.13. For any 0 ≤ t ≤ τ ≤ T and x ∈ R
d, set Y(τ, t, x) := u(τ,X(τ, t, x)) and Z(τ, t, x) :=

P (τ,X(τ, t, x))(Jxu(τ,X(τ, t, x)))T . Then, (Y,Z) ∈ K and (X,Y,Z) is an adapted solution to (1.6).

Proof. Throughout the proof, (ukn) is the subsequence of (un) provided by Proposition 6.9, i.e., ukn is the
unique mild solution to (SL-CP), with C ≡ 0 and g and Ψ replaced by gkn and Ψ (kn), respectively.

Now we fix t ∈ [0, T ], x ∈ R
d, set Xτ := X(τ, t, x) and, for any τ ∈ [t, T ], define Yτ = u(τ,Xτ ),

Ykn
τ = ukn(τ,Xτ ), Zτ = P (τ,Xτ )(Jxu(τ,Xτ ))T and Zkn

τ = P (τ,Xτ )(Jxukn(τ,Xτ ))T . Under Hypotheses 6.10,
there exists a unique adapted process (Xt) with continuous trajectories such that Xτ = x +

∫ τ

t b(σ,Xσ)dσ +∫ τ

t
P (σ,Xσ)dWt (see [24], Thm. 3.4.6). By [17], (Ykn ,Zkn) satisfies the equation (recall that gkn and ψ(kn) are

smooth approximations of g and ψ)

Ykn
τ +

∫ T

τ

Zkn
σ dWσ = gkn(XT ) +

∫ T

τ

Hkn(σ,Xσ,Zkn
σ )dσ, P-a.s., τ ∈ [t, T ]. (6.21)

Our aim consists in showing that we can let n tend to +∞ in both the sides of (6.21) obtaining

Yτ +
∫ T

τ

ZσdWσ = g(XT ) +
∫ T

τ

H(σ,Xσ,Zσ)dσ P-a.s., τ ∈ [t, T ]. (6.22)

Clearly, gkn converges to g locally uniformly in R
d. Moreover, since ukn and Jxukn converge locally uniformly

in [0, T )×R
d to u and Jxu, respectively, Ykn

τ and Zkn
τ converge almost surely in Ω to Yτ and Zτ , respectively,

as n → +∞. As far as the integral term in the right-hand side of (6.21) is concerned, we begin by observing
that

|ψkn(t, x, z1) −ψ(t, x, z2)| ≤ K(1 + |z1| + |z2|)
(
k−α

n + |z1 − z2|α
)
, (6.23)
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for any t ∈ [0, T ], x ∈ R
d, z1 ∈ Dkn and z2 ∈ R

md. Moreover, by (5.1) it follows that |B̃i| ≤ KλP . Hence, from
the identification formula for Zkn

σ , the definition of Z, Proposition 6.7 and (6.23) we conclude that

|Hkn,i(σ,Xσ,Zkn
σ ) −Hi(σ,Xσ ,Zσ)|

≤
d∑

j=1

m∑
k=1

|(B̃j(t, x)(P (t, x))−1)ik(Zkn
σ ) − Zσ)kj | + |ψi(t, x,Zkn

σ ) − ψi(t, x,Zσ)|

≤
d∑

j=1

|(B̃j(t, x)(Jx(ukn(σ,Xσ) − u(σ,Xσ))T )ij | + |ψi(t, x,Zkn
σ ) − ψi(t, x,Zσ)|

≤ KλP (t, x)|Jx(ukn(σ,Xσ) − u(σ,Xσ))|
+ K(1+|Zkn

σ |+|Zσ|)
(
k−α

n +|P (σ,Xσ)[(Jx(ukn − u))(σ,Xσ)]T |α)
≤ K|Zkn

σ − Zσ| + K(1+|Zkn
σ |+|Zσ|)

(
k−α

n +|Zkn
σ − Zσ|α

)
P-almost surely, for almost every σ ∈ (τ, T ) and any i = 1, . . . ,m and that the last side of the previous inequality
vanishes dσ ⊗ P-almost surely, as n → +∞. Moreover, |ψkn(t, x, z)| ≤ K(1 + |z|) for any t ∈ [0, T ], x ∈ R

d, any
z ∈ R

md and some positive constant K, independent of n, and this shows that

|Hkn(σ,Xσ ,Zkn
σ )| ≤ K|Zkn

σ | + |ψkn(σ,Xσ ,Zkn
σ )| ≤ K(T − σ)−

1
2 .

By dominated convergence, we conclude that the integral term in the right-hand side of (6.21) converges P-
almost surely to

∫ T

τ H(σ,Xσ,Zσ)dσ.
It remains to prove the convergence of

∫ T

τ
Zkn

σ dWσ to
∫ T

τ
ZσdWσ. First, we prove that

∫ T

τ
ZσdWσ makes

sense, since this is not guaranteed by the previous estimates, which show only that the growth of Zσ can be
estimated by (T − σ)−1/2, which is not square integrable in (τ, T ). For this purpose, we show that (Zkn

τ ) is a
Cauchy sequence L2((0, T ) × Ω). This is enough to conclude that Zτ is a square integrable process since Zkn

τ

pointwise tends to Zτ . Let us set Y
n,m

σ := Ykn
σ − Ykm

σ , Z
n,m

σ := Zkn
σ − Zkm

σ , gn,m
T := gkn(XT ) − gkm(XT ),

H
n,m

σ := Hkn(σ,Xσ ,Zkn
σ ) − Hkm(σ,Xσ ,Zkm

σ ) for any n,m ∈ N and σ ∈ [0, T ]. Integrating the Itô formula
d|Yn,m

τ |2 = −2〈Yn,m

τ ,H
n,m

τ 〉dτ + 2〈Yn,m

τ ,Z
n,m

τ 〉dWτ + |Zn,m

τ |2dτ , we obtain

|Yn,m

τ |2 +
∫ T

τ

|Zn,m

σ |2dσ = |gn,m
T |2 + 2

∫ T

τ

〈Yn,m

σ ,H
n,m

σ 〉dσ − 2
∫ T

τ

〈Yn,m

σ ,Z
n,m

σ 〉dWσ . (6.24)

Since (Ykn ,Zkn), (Ykm ,Zkm) ∈ K, the processes {∫ τ

0 〈Y
n,m

σ ,Z
n,m

σ 〉dWσ : τ ∈ [0, T ]} are martingales. Hence,
from (6.24) it follows that

E

∫ T

τ

|Zn,m

σ |2dσ = E|gn,m
T |2 − E|Yn,m

τ |2 + 2E

∫ T

τ

〈Yn,m

σ ,H
n,m

σ 〉dσ. (6.25)

Since the sequence (Ykn
τ ) is bounded and converges P-almost surely to Yτ , it is a Cauchy sequence in L2(Ω,P).

A similar argument can be applied to the sequence (gkn). Finally, we note that∣∣∣∣E
∫ T

τ

〈Yn,m

σ ,H
n,m

σ 〉dσ
∣∣∣∣ ≤E

(
sup

τ∈[0,T ]

|Yn,m

τ |
∫ T

τ

|Hn,m

σ |dσ
)

≤ 2LE

∫ T

τ

|Hn,m

σ |dσ

and, since Hkn(σ,Xσ ,Zkn
σ ) converges to H(σ,Xσ,Zσ) (dσ ⊗ P)-almost everywhere in (0, T ) ×Ω and

Hkn(σ,Xσ,Zkn
σ ) ≤ K(T − σ)−1/2

for any σ ∈ (0, T ), (Hkn(σ,Xσ ,Zkn
σ )) is a Cauchy sequence in L1((τ, T )×Ω, dσ⊗P). From (6.25) it now follows

that (Zkn) is a Cauchy sequence in L2((τ, T ) ×Ω, dσ ⊗ P). This implies that
∫ T

τ ZσdWσ makes sense and that
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Zkn converges to Z in L2((0, T ) × Ω). Thus, E|∫ T

τ (Zkn
σ − Zσ)dWσ|2 tends to 0 as n → +∞. We conclude that∫ T

τ Zkn
σ dWσ tends to

∫ T

τ ZσdWσ in P-almost surely. Hence, we can let n → +∞ in (6.21) and deduce that (Y,Z)
is a solution to (6.22). Clearly, we have also proved that (Y,Z) ∈ K. �

Corollary 6.14. For any t ∈ [0, T ], the law of the process {Yτ}τ∈[t,T ], obtained as the limit of the sequence
{Ykn

τ }τ∈[t,T ], is uniquely determined, i.e., if (Ω,F, {Ft},P) and (Ω̃, F̃, {F̃t}, P̃) are two probability spaces, and
{Yτ}τ∈[t,T ], {Ỹτ}τ∈[t,T ] are the random processes of Theorem 6.13, related respectively to (Ω,F, {Ft},P) and
(Ω̃, F̃, {F̃t}, P̃), then {Yτ}τ∈[t,T ], {Ỹτ}τ∈[t,T ] have the same law.

Proof. The result is a straightforward consequence of the uniqueness in law of the solutions (Ykn) of the
approximated problems (6.21), and the P-a.s. convergence of (Ykn) to Y. �

6.3. Nash Equilibrium for a non-zero stochastic differential game

In this last subsection, we adapt our results to obtain the existence of a Nash equilibrium to a non-zero
sum stochastic differential game. Let (Ω,E,P) be a complete probability space and let (Wt) be a d-dimensional
Wiener process. By (FW

t ) we denote its natural filtration augmented with the negligible sets in E. Let T > 0,
t ∈ [0, T ) and x ∈ R

d. As in the previous subsection, by (Xτ = X(τ, t, x)) we denote the unique adapted and
continuous solution of the stochastic equation

Xτ = x +
∫ T

t

b(σ,Xσ)dσ +
∫ T

t

P (σ,Xσ)dWσ, P−a.s., τ ∈ [t, T ].

We notice that, exactly as in the previous subsection, the assumptions on b = (b1, . . . , bd) (see Hypotheses 2.3)
and P , formulated below (see Hypotheses 6.16), imply existence and uniqueness of the solution to the above
equation.

We suppose that m players intervene on a system and, for any player i = 1, . . . ,m, we introduce the space of
admissible controls Ui := {u : [0, T ] × Ω → Vi : u is a predictable process}, where Vi ⊂ R are prescribed sets.
Moreover, we introduce the space of admissible strategies U := ⊗m

i=1Ui. Given u ∈ U, we define

W (u)
τ := Wτ −

∫ τ

t

r1(σ,Xσ)dσ −
∫ τ

t

r2(Xσ,uσ)dσ, P
(u) := ρ(u)

P, (6.26)

where ρ(u) = exp
(∫ τ

t (r1(σ,Xσ) + r2(Xσ,uσ))dσ − 1
2

∫ τ

t (r1(σ,Xσ) + r2(Xσ,uσ))2dσ
)
. Note that W (u) is a d-

dimensional Wiener process with respect to P
(u) and that X satisfies

Xτ =x +
∫ T

t

b(σ,Xσ)dσ +
∫ T

t

P (σ,Xσ)r1(σ,Xσ)dσ

+
∫ T

t

P (σ,Xσ)r2(Xσ,uσ)dσ +
∫ T

t

P (σ,Xσ)dW (u)
σ , (6.27)

P-almost surely. For any u ∈ U, to any player i, a cost functional Ji is associated, which depends on the
strategies of the whole players. More precisely,

Ji(u) = E
(u)

[ ∫ T

0

hi(Xs,us)ds + gi(XT )
]
, i = 1, . . . ,m, (6.28)

where E
(u) is the expectation with respect to P

(u) and h : R
d × U → R

m, the running cost, and g : R
d → R

m,
the terminal cost, are bounded Borel measurable functions.

Definition 6.15. The strategy U � ũ = (ũ1, . . . , ũm) is a Nash equilibrium to problem (6.27)−(6.28), if
Ji(ũ) ≤ Ji(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũm) for any ui ∈ Ui and any i = 1, . . . ,m.
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If ũ is a Nash equilibrium for i = 1, . . . ,m, then the player i has no earn changing its control ũi, if the other
m − 1 players choose the strategy (ũ1, . . . , ũi−1, ũi+1, . . . , ũm). The Hamiltonian function H̃ associated to this
system is defined by H̃i(t, x, z,u) := 〈zi, r1(t, x) + r2(x,u)〉+ hi(x,u) for any x ∈ R

d, z ∈ R
md, u ∈ U (U being

the set of all the controls) and i = 1, . . . ,m. We assume the following assumptions on r1, r2, h = (h1, . . . , hm)
and H̃.

Hypotheses 6.16.

(i) h ∈ Cγ
b (Rd × U; Rm) for some γ ∈ (0, 1), r1 ∈ C0,1+γ

loc ([0, T ] × R
d; Rd) ∩ Cb([0, T ] × R

d; Rd) and r2 ∈
Cγ

b (Rd × U; Rd);
(ii) The functions P , b, B̃i := (Pr1)iIm (i = 1, . . . , d) and Q = 1

2P
2 satisfy Hypotheses 6.10;

(iii) H̃ satisfies the generalized minimax condition, i.e., for any i = 1, . . . ,m there exists a function ũ ∈
C([0, T ]×R

d×R
md; U), with supt∈[0,T ] ‖ũ(t, ·)‖Cβ

b (Rd×Rmd;U) < +∞ for some β ∈ (0, 1), such that for any

t ∈ [0, T ], x ∈ R
d, z ∈ R

md and ui ∈ Ui, with (i = 1, . . . ,m), it holds that

H̃i(t, x, z, ũ(t, x, z)) ≤ H̃i(t, x, z, ũ1(t, x, z), . . . , ũi−1(t, x, z), ui, ũi+1(t, x, z), . . . , ũm(t, x, z)),

P-almost surely in Ω.

Remark 6.17.

(i) Since B̃i := (Pr1)iIm, the differential operator A in (SL-CP) is uncoupled. We stress that this is the
classical setting: indeed, comparing our situation with the classical literature (see e.g., [10,11,14,15,32], it
is possible to see that, in view of applications to differential games, the equations of the system of PDE’s
are coupled only in the semilinear term, while the linear part is the same for any component.

(ii) The functionψ, whose components areψi(t, x, z) := 〈zi, r2(x, ũ(t, x, z))〉+hi(x, ũ(t, x, z)) for any t ∈ [0, T ],
x ∈ R

d, z ∈ R
md and i = 1, . . . ,m, satisfies Hypothesis 6.10(iv) with α := βγ.

(iii) Under Hypotheses 6.16, Theorem 6.13 holds true.

Example 6.18. Suppose that the operator A is as in Example 6.12 with b̃ ≡ 0, i.e., (Au)h = q(t)(1 +
|x|2)kTr(Q0D

2
xuh) − b(t)〈x,∇xuh〉 for any h = 1, . . . ,m and any smooth enough function u, where q, b ∈

Cα/2([0, T ]), q0 has positive infimum, Q0 is a constant positive definite matrix, 0 < k < 2/3. Further, assume,
for simplicity that r1 = 0 and

r2,j(t, x,u) =
m∑

s=1

fjs(us), hi(x,u) = hi(x, ui), i = 1, . . . ,m, j = 1, . . . , d,

where fis : Us → R and hi : R
d × Ui → R are smooth functions, for any i = 1, . . . , d and s = 1, . . . ,m. Then,

Hypothesis 6.16(i), (ii) are satisfied and the minimax condition reduces to

d∑
j=1

zi
jfji(ũi(t, x, z)) + hi(t, x, ũi(t, x, z)) ≤

d∑
j=1

zi
jfji(ui) + hi(t, x, ui(t, x, z)),

for any ui ∈ Ui, t ∈ [0, T ], x ∈ R
d, z ∈ R

md and i = 1, . . . ,m.
If we take fis(us) = us, hi(x,u) = |ui|2, Ui = D1 ⊂ R

d and we define φ(η) := |η|η−1((|η|/2) ∧ 1) and
wi :=

∑d
j=1 z

i
j for any i, s = 1, . . . ,m, then the function ũ = (−φ(w1), . . . ,−φ(wm)) has the claimed smoothness

and satisfies the minimax condition. Indeed, let us fix i ∈ {1, . . . ,m}. If |wi| ≥ 2, then ũi(t, x, z) = −|wi|/wi

and the minimax condition becomes −|wi| + 1 − wiui − (ui)2 ≤ 0 which is satisfied since

−|wi| + 1 − wiui − u2
i ≤− |wi| + |wi||ui| + 1 − u2

i = (1 − |ui|)(1 + |ui| − |wi|) ≤ 0.

On the other hand, if |w1| ≤ 2, then ũi(t, x, z) = −wi/2 and the minimax condition is −(wi)2/4−wiui−u2
i ≤ 0,

which is clearly satisfied. Note that φ is a Lipschitz continuous map.
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Theorem 6.19. There exists a Nash equilibrium for problem (6.27)–(6.28).

Proof. We begin by proving that J1(ũ) ≤ J1(u1, ũ2, . . . , ũm) for any u1 ∈ U1, where ũ is as in Hypothesis 6.16.
For this purpose, we fix (u1)t arbitrarily in Ui, set û1

t := ((u1)t, (ũ2)t, . . . , (ũm)t) and observe that Xτ satisfies
the equation

Xτ =x +
∫ τ

t

b(σ,Xσ)dσ +
∫ τ

t

P (σ,Xσ)r1(σ,Xσ)dσ

+
∫ τ

t

P (σ,Xσ)r2(Xσ, û1
σ)dσ +

∫ τ

t

P (σ,Xσ)dW (û1)
σ ,

for any τ ∈ [t, T ], where W̃
(û)
τ is as in (6.26), with u replaced by û1. We now introduce the backward system

Yτ +
∫ τ

t

ZσdW̃σ = g(XT ) +
∫ τ

t

H̃(σ,Xσ,Zσ, û1
σ)dσ,

where H̃ has been introduced after Definition 6.15. By Theorem 6.13, this system admits a solution (X,Y,Z).
Writing the backward system with respect to W (û1), we get

Yτ +
∫ T

τ

ZσdW (û1)
σ +

∫ T

τ

Zσr1(σ,Xσ)dσ +
∫ T

τ

Zσr2(Xσ, û1
σ)dσ = g(XT ) +

∫ T

τ

H(σ,Xσ ,Zσ)dσ. (6.29)

Note that E
(û1)

(∫ T

0
|Zt|2dt

)1/2

< +∞. Indeed,

∣∣∣∣
∫ T

τ

ZσdW (û1)
σ

∣∣∣∣ ≤ 2 sup
τ∈[0,T ]

|Yτ | +
∫ T

τ

(|Zσ| + |H(σ,Xσ,Zσ)|)dσ.
Taking into account the Burkholder–Davis–Gundy inequalities (see [22], Thm. 3.28) and using the estimate

|H(σ,Xσ ,Zσ)| ≤ |H(σ,Xσ, 0)| + |Zσ|1+α, which follows from Hypothesis 6.16 and Remark 6.17, we get

E
(û1)

(∫ T

0

|Zt|2dt
) 1

2

≤KE
(û1) sup

τ∈[0,T ]

|Yτ | + KE
(û1)

∫ T

τ

(|Zσ|+|H(σ,Xσ, 0)|)dσ+KE
(û1)

∫ T

τ

|Zσ|1+αdσ

≤K(Ẽ�2)
1
2

(
Ẽ sup

τ∈[0,T ]

|Yτ | + Ẽ

∫ T

τ

(|Zσ|2 + |H(σ,Xσ, 0)|2)dσ) 1
2

+ K(Ẽ�
2

1−α )
1−α

2

(
Ẽ

∫ T

τ

|Zσ|2dσ
) 2

1+α

,

for some positive constant K, which may vary from line to line, and the last side of the previous chain of
inequalities is finite. Hence, taking the conditional expectation in (6.29) with respect to P

(û1) and τ = t, we
obtain

Yt = E
(û1)[ϕ(XT )|Ft] + E

(û1)

[ ∫ T

t

[H(σ,Xσ ,Zσ, û1
σ) − Zσ(r1(σ,Xσ) + r2(Xσ, û1

σ))]dσ
∣∣∣∣Ft

]
.
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Adding and subtracting E
(û1)

[∫ T

t

h(Xσ, û1
σ)dσ

∣∣∣∣Ft

]
and setting t = 0, we get

Y0 = J(û1) + E
(û1)

[∫ T

0

[H(σ,Xσ,Zσ, ) − Zσ(r1(σ,Xσ) + r2(Xσ, û1
σ)) − h(Xσ, û1

σ)]dσ
]

= J(û1) + E
(û1)

[∫ T

0

(H(σ,Xσ,Zσ) − H̃(σ,Xσ,Zσ, û1
σ))dσ

]
, (6.30)

where J = (J1, . . . , Jm). Considering the first component of the first and last side of (6.30) and using the
minimax condition in Hypothesis 6.16(iii), we conclude that Y0,1 ≤ J1(û1). Applying the same argument with
û1 replaced by ũ, we get Y0,1 = J1(ũ). Moreover, the same procedure yields that Jk(ũ) = Y0,k ≤ Jk(ûk) for any
k = 1, . . . ,m. �

Appendix A. A priori estimates for solutions to parabolic systems

In this appendix we prove some a priori estimates for classical solutions to nonautonomous parabolic equa-
tions associated with systems of elliptic operators as in (1.1) which satisfy Hypotheses 2.1. To enlighten the
notation, we set ‖ · ‖h,R = ‖ · ‖Ch

b (DR;Rk) for any h ∈ N ∪ {0} and k ∈ N, R > 0. Moreover, for any α > 0, we
denote by ‖ · ‖α the Euclidean norm in Cα

b (Rh) when h ∈ {1, d}. Finally, the open disk with center at x0 and
radius R > 0 is denoted by DR(x0).

We recall that, for any 0 ≤ α < θ and any bounded domain Ω of class Cθ, there exists a positive constant K
such that

‖f‖Cα(Ω;Rk) ≤ K‖f‖1−α
θ∞ ‖f‖α

θ

Cθ(Ω;Rk)
, (A.1)

for any f ∈ Cθ(Ω; Rk) (k ≥ 1). (The same estimate holds true with Ω = R
k.) Moreover, if T belongs to

L(C(Ω; Rk);Cβ(Ω; Rk)) ∩ L(Cθ
0 (Ω; Rk);Cβ(Ω; Rk)) for some β, θ > 0, then T is bounded from Cα

0 (Ω; Rk) to
Cβ(Ω; Rk), for any α ∈ (0, θ) \ N, and

‖T‖L(Cθ
0(Ω;Rk);Cβ(Ω;Rk)) ≤ ‖T‖1−α

θ

L(C(Ω;Rk);Cβ(Ω;Rk))
‖T‖L(Cθ

0(Ω;Rk);Cβ(Ω;Rk)). (A.2)

Proposition A.1. Let Ω ⊂ R
d be an open set, T > s ∈ I and u ∈ Cb([s, T ] × Ω; Rm) ∩ C1,2((s, T ) × Ω; Rm)

satisfy the equation Dtu = Au + g in (s, T ) × Ω for some g ∈ Cα/2,α((s, T ) × Ω; Rm). Further, assume that
the function t �→ (t− s)‖u(t, ·)‖C2

b (Ω;Rm) is bounded in (s, T ). Then, for any R1 > 0 and any x0 ∈ Ω, such that
DR1(x0) � Ω, there exists a positive constant K0 = K0(R1, λ0, s, T ) such that, for any t ∈ (s, T ),

(t− s)‖D2
xu(t, ·)‖L∞(DR1(x0);Rm) +

√
t− s ‖Jxu(t, ·)‖L∞(DR1(x0);Rm) ≤

K0(‖u‖Cb([s,T ]×Ω;Rm) + ‖g‖Cα/2,α((s,T )×Ω;Rm)). (A.3)

Proof. Throughout the proof, we denote by K a positive constant, which can vary from line to line, may depend
on R1 and T , but it is independent of n. Up to a translation, we can assume that x0 = 0. We fix R1 as in the
statement and R2 such that DR2 � Ω. Then, we define rn := 2R1−R2 +(2−2−n)(R2−R1) for any n ∈ N∪{0}.
Further, we consider a sequence (ϑn) ⊂ C∞

c (Rd) of functions satisfying χDrn
≤ ϑn ≤ χDrn+1

for any n ∈ N and
‖ϑn‖Ck

b (Rd) ≤ 2knc for any k = 0, 1, 2, 3. Let us set un := ϑnu and observe that each function un vanishes on
[s, T ] × ∂Drn+1 and Dtun = Aun + gn in (s, T ) × Drn+1 , where gn = ϑng − Tr(QD2ϑn)u − 2(Jxu)Q∇ϑn −∑d

j=1 DjϑnBju. In view of the variation-of-constants-formula it thus follows that

u(t, x) = (GD
n+1(t, s)ϑnu(s, ·))(x) +

∫ t

s

(GD
n+1(t, r)gn(r, ·))(x)dr, t ∈ [s, T ], x ∈ Drn .
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It is well known that (t− s)‖GD
n+1(t, s)h‖2,rn+1 ≤ K‖h‖0,rn+1 and

√
t− s‖GD

n+1(t, s)k‖2,rn+1 ≤ K‖k‖1,rn+1 for
any t ∈ (s, T ), any n ∈ N and any h ∈ C(Drn+1 ; Rm), k ∈ C1

0 (Drn+1; Rm), respectively. Note that the constant
K in the previous two estimates is independent of n since it depends on the ellipticity constant of the operator
A and on the Hölder norms of its coefficients in (s, T ) ×Drn+1, which can be estimated in terms of the same
norms taken in (s, T ) ×DR2 .

Estimate (A.2), with θ = 1, β = 2, T = GD
n+1(t, s), yields that (t− s)1−

α
2 ‖GD

n+1(t, s)ϕ‖2,rn+1 ≤ K‖ϕ‖α,rn+1

for any ϕ ∈ Cα
0 (Drn+1; Rm) and t ∈ (s, T ). Since gn(σ, ·) ∈ Cα

0 (Drn+1; Rm) for any σ ∈ (s, s + 1), we can
estimate

(t− s)‖un(t, ·)‖2,rn ≤ K‖u‖∞ + K

∫ t

s

(t− σ)−1+ α
2 ‖gn(σ, ·)‖α,rn+1dσ, t ∈ (s, T ). (A.4)

Note that ‖gn(σ, ·)‖α,rn+1 ≤ K‖ϑn‖2+α,rn+1(‖u(σ, ·)‖1+α,rn+1 + ‖g(σ, ·)‖α,rn+1) for any σ ∈ (s, T ). Using (A.1)
and Young inequality, for any σ ∈ (s, T ), ε > 0 and n ∈ N we get

‖u(σ, ·)‖1,rn+1 ≤ K(σ − s)−
1
2 ‖u‖ 1

2∞ζ
1
2
n+1 ≤ (σ − s)−

1
2 (Kε−1‖u‖∞ + εζn+1),

‖Jxu(σ, ·)‖α,rn+1 ≤ K(σ − s)−
α+1

2 ‖u‖
1−α

2∞ ζ
1+α

2
n+1 ≤ (σ − s)−

α+1
2 (Kε−

1+α
1−α ‖u‖∞ + εζn+1),

where ζn := supσ∈(s,T )(σ − s)‖u(σ, ·)‖2,rn . Since ‖ϑn‖C2+α
b (Rd) ≤ K8n for any n ∈ N, from these last three

estimates we conclude that

‖gn(σ, ·)‖α,rn+1 ≤ 8n(σ − s)−
α+1

2 (Kε−
1+α
1−α ‖u‖∞ + εζn+1) + K8n‖g(σ, ·)‖α,rn+1 , (A.5)

for any σ ∈ (s, s + 1) and ε > 0. Replacing (A.5) into (A.4) yields

ζn ≤K‖u‖∞ + 8nK
(
ε−

1+α
1−α ‖u‖∞ + εζn+1 + |||g|||α/2,α

)
, n ∈ N, ε ∈ (0, 1), (A.6)

where |||g|||α/2,α = ‖g‖Cα/2,α((s,T )×Ω;Rm). Let us fix η ∈ (0, 64−1/(1−α)) and ε = 8−nK−1η. Multiplying both
sides of (A.6) by ηn and summing from 1 to N ∈ N, we get

ζ0 − ηN+1ζN+1 ≤ K‖u‖∞
N∑

j=0

64
j

1−α ηj + K|||g|||α/2,α

N∑
j=0

(8η)j ≤ K(‖u‖∞ + |||g|||α/2,α),

since both the two series converge, due to the choice of η. To conclude, we observe that ηN+1ζN+1 tends to
0 as N → +∞. Indeed, by assumptions, ζN+1 is bounded, uniformly with respect to N . It thus follows that
ηn+1ζn+1 vanishes as n → +∞. We have so proved that (t − s)‖u(t, ·)‖2,R1 ≤ K(‖u‖∞ + |||g|||α/2,α) for any
t ∈ (s, T ). Again, estimate (A.1) implies that ‖Jxu(t, ·)‖0,R1 ≤ K‖u(t, ·)‖1/2

0,R1
‖u(t, ·)‖1/2

2,R1
for any t ∈ (s, T ), and

this allows us to complete the proof of (A.3). �

Theorem A.2. Fix T > s ∈ I and let u ∈ C
1+α/2,2+α
loc ((s, T ] × R

d; Rm) satisfy the differential equation
Dtu = Au + g in (s, T ] × R

d, for some g ∈ C
α/2,α
loc ((s, T ] × R

d; Rm). Then, for any τ ∈ (0, T − s) and any
pair of bounded open sets Ω1 and Ω2 such that Ω1 � Ω2, there exists a positive constant K, depending on
Ω1, Ω2, τ, s, T , but being independent of u, such that

‖u‖C1+α/2,2+α((s+τ,T )×Ω1;Rm) ≤ K(‖u‖Cb((s+τ/2,T )×Ω2;Rm) + ‖g‖Cα/2,α((s+τ/2,T )×Ω2;Rm)). (A.7)

Moreover, for any bounded set J ⊂ I and any δ0 > 0, the constant K depends on δ0 but is independent of
s, T ∈ J such that T − s ≥ δ0.
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Proof. The main step of the proof consists in showing that, for any x0 ∈ Ω1 and any r > 0 such that D2r(x0) �
Ω2, estimate (A.7) is satisfied with Ω1 = Dr(x0) and Ω2 = D2r(x0). Indeed, once this latter estimate is proved,
a covering argument will allow us to obtain easily estimate (A.7). So, let us prove (A.7) with Ω1 and Ω2 as
above and x0 = 0 (indeed, up to a translation, we can reduce to this case). Throughout the proof, we denote by
K a positive constant, independent of u, g and n, which may vary from line to line. Moreover, for any α, β ≥ 0,
we denote by ||| · |||α,β the Euclidean norm of the space Cα,β([s, T ] × R

d; Rm).
For any n ∈ N, t ∈ R and x ∈ R

d, set

ϕn(t) = ϕ

(
1 +

t− s− tn+1

tn − tn+1

)
, ϑn(x) = ϑ

(
1 +

|x| − rn

rn+1 − rn

)
,

where ϕ, ϑ ∈ C∞(R) satisfy χ[2,∞) ≤ ϕ ≤ χ[1,∞) and χ(−∞,1] ≤ ϑ ≤ χ(−∞,2], rn = (2 − 2−n)r and tn =
(2−1 + 2−n−1)τ , for any n ∈ N. Each function vn := uϕnϑn vanishes at t = s and satisfies Dtvn = Âvn + gn,
where gn = ϕnϑng−ϕnuTr(QD2ϑn)−ϑn

∑d
j=1 DjϑnBju−2ϕn(Jxu)Q∇ϑn+ϕ′

nϑnu and Â is a nonautonomous
elliptic operator with bounded and smooth coefficients, which coincide with the coefficients of the operator A

in [s, T ] ×D2r (recall that vn is compactly supported in [s, T ]×D2r).
By well known results, |||vn|||1+α/2,2+α ≤ K|||gn|||α/2,α and, for any J and δ0 as in the statement, the constant

K is independent of s, T ∈ J such that T − s ≥ δ0. Estimating ‖gn‖α/2,α we get

|||vn|||1+α/2,2+α ≤K‖ϑn‖3‖ϕ‖2

(‖u‖Cα/2,1+α((s+tn+1,T )×Drn+1 ;Rm) + ‖g‖Cα/2,α((s+tn+1,T )×Drn+1 ;Rm)

)
≤25nK

(|||vn+1|||α/2,α + |||Jxvn+1|||α/2,α + ‖g‖Cα/2,α((s+τ/2,T )×D2r;Rm)

)
. (A.8)

Using (A.1) we get ‖ζ‖α ≤ K(ε−j− (j+1)α
2 ‖ζ‖∞ + ε‖ζ‖2+α) (j = 1, 2) and ‖ϕ‖α/2 ≤ K(ε−

α
2 ‖ϕ‖∞ + ε‖ϕ‖1+α/2)

for any ζ ∈ C2+α
b (Rd; Rm), ϕ ∈ C

1+α/2
b ([s, T ]; Rm), ε(0, 1) and some positive constant K independent of ε.

Applying these estimates to vn+1, we deduce that

|||vn+1|||α/2,α + ‖Jxvn+1‖0,α ≤ K(ε|||vn+1|||1+α/2,2+α + ε−(1+α)‖vn+1‖∞), ε ∈ (0, 1) n ∈ N. (A.9)

To estimate the α/2-Hölder norm of the function Jxvn+1(·, x) for any x ∈ R
d, we observe that vn+1 ∈

Lip([s, T ], Cα
b (Rn; Rm)) and ‖vn+1‖Lip ≤ K|||vn+1|||1+α/2,2+α. Indeed, writing

vn+1(t2, x) − vn+1(t1, x) =
∫ t2

t1

Dtvn+1(σ, x)dσ, t1, t2 ∈ [s, T ], x ∈ R
d,

we deduce that ‖vn+1(t2, ·) − vn+1(t1, ·)‖α ≤ K|||Dtvn+1|||0,α|t2 − t1| for any t1, t2 ∈ [s, T ]. Since the function
vn+1 is bounded in [s, T ] with values in C2+α

b (Rd), by interpolation we get

‖vn+1(t2, ·) − vn+1(t1, ·)‖1 ≤K‖vn+1(t1, ·) − vn+1(t2, ·)‖
1+α

2
α ‖vn+1(t2, ·) − vn+1(t1, ·)‖

1−α
2

2+α

≤K|||vn+1|||1+α/2,2+α|t2 − t1| 1+α
2

for any t1, t2 ∈ [s, T ]. This shows that Jxvn+1 ∈ C(1+α)/2,0((s, T ) × R
d; Rmd) and

|||Jxvn+1|||(1+α)/2,0 ≤ K|||vn+1|||1+α/2,2+α. (A.10)

Using the interpolative estimate ‖ϕ‖α/2 ≤ K(ε‖ϕ‖(1+α)/2 + ε−α‖ϕ‖∞), which holds for any ε ∈ (0, 1) and
any ϕ ∈ C

(1+α)/2
b ([s, T ]; Rm), (A.9) and (A.10), we obtain that

|||Jxvn+1|||α/2,α ≤ K(ε|||vn+1|||1+α/2,2+α + ε−(1+α)‖vn+1‖∞ + ε−α‖Jxvn+1‖∞). (A.11)
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Now, ‖Jxvn+1‖∞ ≤ δ‖vn+1‖0,2+α + δ−
1

1+α ‖vn+1‖∞ for any δ ∈ (0, 1). Choosing δ = ε1+α and replacing this
estimate in (A.11), we get |||Jxvn+1|||α/2,α ≤ K(ε|||vn+1|||1+α/2,2+α + ε−(1+α)‖vn+1‖∞). This estimate, (A.8)
and (A.9) yield

|||vn|||1+α/2,2+α ≤ 25nK(ε|||vn+1|||1+α/2,2+α + ε−(1+α)‖vn+1‖∞ + ‖g‖Cα/2,α((s+τ/2,T )×D2r ;Rm)),

for any ε ∈ (0, 1). We fix η ∈ (0, 2−5(2+α)) and choose ε = εn = 2−5nK−1η; from the previous estimate we
obtain

ζn ≤ (ηζn+1 + 25n(2+α)K‖u‖Cb((s+τ/2)×D2r) + 25nK‖g‖Cα/2,α((s+τ/2,T )×D2r;Rm)),

where ζn = |||vn|||1+α/2,2+α. Now, we can proceed as in the proof of Proposition A.1 and complete the proof. �
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