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ON THE QUANTITATIVE ISOPERIMETRIC INEQUALITY IN THE PLANE ∗, ∗∗

Chiara Bianchini1, Gisella Croce2 and Antoine Henrot3

Abstract. In this paper we study the quantitative isoperimetric inequality in the plane. We prove
the existence of a set Ω, different from a ball, which minimizes the ratio δ(Ω)/λ2(Ω), where δ is the
isoperimetric deficit and λ the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric
inequality. Some new properties of the optimal set are also shown.
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1. Introduction

The last few years have seen several remarkable breakthroughs in the study of quantitative isoperimetric
inequalities. These are refinements of the classical isoperimetric inequality, since they control the area distance
to the ball with a function of the perimeters difference, and can be viewed as stability results. In this paper we
will deal with the so called Fraenkel asymmetry and the isoperimetric deficit.

Let Ω ⊂ R
N be a Borel set, with Lebesgue measure |Ω|. Its isoperimetric deficit is defined as

δ(Ω) =
P (Ω) − P (B)

P (B)
, |B| = |Ω|,
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rearrangement, shape derivative, optimality conditions.

∗ We thank B. Kawohl for very useful discussions on the topic of this paper, in particular we thank him for having suggested
the idea of Proposition 2.11.
∗∗ This work started while CB was at the Institut Elie Cartan Nancy supported by the ANR CNRS project GAOS (Geometric
Analysis of Optimal Shapes), and the research group INRIA CORIDA (Contrôle robuste infini-dimensionnel et applications).
The research of CB is supported by the Fir Project 2013 “Geometrical and Qualitative Aspects of PDEs”. The work of GC was
partially done during her “délégation CNRS” at University of Lorraine. AH is supported by the project ANR-12-BS01-0007-01-
OPTIFORM Optimisation de formes financed by the French Agence Nationale de la Recherche (ANR). The three authors have
been supported by the Fir Project 2013 “Geometrical and Qualitative Aspects of PDEs” in their visitings. All these institutions
are gratefully acknowledged.
1 Dipartimento di Matematica ed Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy.
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where B is a ball and P (Ω) is the perimeter of Ω in the sense of De Giorgi. The isoperimetric inequality
guarantees that δ(Ω) is positive and null only if Ω is a ball. The Fraenkel asymmetry of the set Ω is defined as

λ(Ω) = min
x∈RN

{ |ΩΔBx|
|Ω| , |Bx| = |Ω|

}
,

where Bx is a ball centered at x. It is a natural L1 distance between Ω and its closest ball. The quantitative
isoperimetric inequality, first proved by N. Fusco, F. Maggi and A. Pratelli in [9], affirms the existence of a
constant CN , depending only on the dimension, such that for every Ω ⊂ R

N one has

λ2(Ω) ≤ CNδ(Ω). (1.1)

See [5, 7, 13] for alternative proofs of the same result. For more on the surrounding literature, in particular for
variants or generalizations of inequality (1.1), we refer to [8] and [14] and the references therein.

Despite this recent progress, the optimal value C∗
N of the constant in (1.1) is still not known, even in dimension

two. The value of C∗
N can be defined as

1
C∗
N

= inf
{
δ(Ω)
λ2(Ω)

, Ω ⊂ R
N , Ω �= B

}
. (1.2)

This can be seen as a non-standard shape optimization problem, since the class of admissible domains is the
class of all measurable sets but the balls. In this paper we prove existence of a minimizer for this problem in
the plane:

Theorem 1.1. There exists a set Ω0 which minimizes the shape functional

F(Ω) =
δ(Ω)
λ2(Ω)

,

among all the subsets of R
2 (the ball excluded).

This existence result in fact provides a new proof of the quantitative isoperimetric inequality in the plane.
In [2, 3, 10, 11] (see also [1, 4]), the minimization problem (1.2) was studied in the restricted class of planar

convex sets. In particular, one may find the following result in [2].

Theorem 1.2 ([2]). Let C be the class of planar convex sets; then

inf
Ω∈C

F(Ω) = 0.405585 ,

and the minimum is attained at a particular “stadium”.

This optimal stadium will be useful for us in excluding possible minimizing sequences converging to the ball.
In [6], Cicalese and Leonardi addressed the same question, among all the subsets of R

N , by considering the
functional F̂(Ω) (extended by relaxation to the ball B) defined by:

F̂(Ω) =
{F(Ω) if Ω �= B,

inf{lim inf F(Ωn), λ(Ωn) > 0, |ΩnΔB| → 0} if Ω = B.

By using an iterative selection principle and by applying Bonnesen’s annular symmetrization, they showed that
a minimizing sequence for the above infimum is made up of ovals, that is, C1 convex sets, with two orthogonal
axes of symmetry, whose boundary is the union of two congruent arcs of circle. They proved this result using
properties of this family of sets established in [2, 3].

In this paper we present a different approach based on a new kind of symmetrization. We replace any set Ω
by a new set Ω∗ having two orthogonal axes of symmetry and whose boundary is composed by four arcs of
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circle. This is done in such a way that the areas of B \Ω and Ω \B, where B is an optimal ball, are conserved.
The key point in our construction is Proposition 2.9 where we prove that, for sets converging to the ball, this
symmetrization decreases the functional F asymptotically. It suffices then to explicitly compute F for this
family of sets and to prove that the limit of the symmetrized minimizing sequence is greater than the quantity

π
8(4−π) . This is done in Theorem 2.8, Section 2. Finally, Theorem 1.2 shows that any sequence converging to the
ball is excluded from being a minimizing sequence for F , thereby concluding the argument.

In Section 3, we prove the existence result, Theorem 1.1. Once we know that a minimizing sequence {Ωn}
cannot converge to the ball, we need to prove that it is uniformly bounded in a sufficiently large set R. This
is done by proving that we can replace the sequence {Ωn} by a new sequence with a fixed finite number
of connected components, see Proposition 3.3. We conclude in a classical way, using the compact embedding
BV (R) ↪→ L1(R).

In Section 4 we establish some qualitative properties of the optimal set. Our main contribution is the proof
that the optimal set has at least two balls realizing the Fraenkel asymmetry. The case by case proof we provide
is lengthy, but rather simple. We also give a bound on the number of connected components of an optimal set
in Theorem 4.1.

In the last section, we present in detail a possible (non convex) candidate for the optimal set for which the
value of the functional F approximatively equals 0.3931. This would give a value of 2.5436 for the optimal
constant C∗

2 . Notice that the same value C∗
2 was conjectured in [6], where it was also shown that it corresponds

to a certain shape referred to as a mask. We will keep this denomination. We also explain what remains to show
that the mask is an optimal set for F .

2. Sequences converging to a ball and a new rearrangement

Since the class of admissible domains for F is composed of any domains but the balls, a convergent minimizing
sequence has two possible behaviours: either it converges to a ball or it converges to a domain Ω0 different to
a ball and this will provide a minimizer of F . Notice that, since we are dealing with the Fraenkel asymmetry,
the convergences of sets that we consider are convergences of the measure of the symmetric difference to zero.

In this section we are going to study the behaviour of sequences of sets converging to a ball. To do that,
we will define a new kind of symmetrization of sets which turns out to decrease (at least asymptotically) the
functional F . Since our functional is scale invariant, without loss of generality, we can fix the area of admissible
domains equal to π, if not differently stated.

In the sequel a special class of sets, named transversal, will be useful for our pourposes.

Definition 2.1. We say that a set Ω is transversal to a ball B if the number of intersection points Mi ≡
(xi, yi), i ∈ {1, . . . , 2p}, between ∂Ω and ∂B is finite.

Definition 2.2. Let Ω be a planar set and let B be a ball such that |Ω| = |B| and Ω transversal to B. We
define the rearranged set Ω∗ as follows. Let

ΩOUT = Ω \B , ΩIN = B \Ω.

Let us now consider the parts of the circle which bound ΩIN and ΩOUT . Let γIN = H1(∂ΩIN \ ∂Ω) and
γOUT = H1(∂ΩOUT \ ∂Ω) = H1(∂B) − γIN .

Let A1, A2, A3, A4 be four points on ∂B defined as follows. The length of the arcs of circle σ12 and σ34,
with endpoints A1, A2, and A3, A4, respectively, equals γOUT /2. The length of the arcs of circle σ23 and σ41,
with endpoints A2, A3, and A4, A1, respectively, equals γIN/2. We next consider another arc of circle, σ̃12, with
endpoints A1, A2, outside B, such that the measure of the surface a12 between σ̃12 and σ12 is equal to |ΩOUT |/2.
In an analogous way we define σ̃34. We consider an arc of circle σ̃23 with endpoints A2, A3, inside B, such that
the measure of the surface a23 between σ̃23 and σ23 is equal to |ΩIN |/2. We define σ̃41 in an analogous way.
Ω∗ is the set whose boundary is the union of the arcs σ̃12, σ̃23, σ̃34, σ̃41.
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Figure 1. A set Ω and its symmetrization Ω∗.

Remark 2.3. The previous rearrangement can be extended to non-transversal sets in a natural way. In this
general case, the boundary of Ω∗ will contain 4 congruent arcs of the boundary of the ball with length (2π −
γIN − γOUT )/4 each. We point out that we will use this rearrangement for domains Ω such that |ΩΔB| will be
small enough, in such a way that the above construction is always possible.

Remark 2.4. The previous symmetrization does not coincide with the circular Bonnesen symmetrization, used
in [4, 6]. This can be easily seen by noticing that the circular Bonnesen symmetrization of a set Ω necessarily
intersects the largest ball containing Ω (at least at one point). This is not the case for the symmetrized set Ω∗.
Moreover the boundary of the set Ω∗ is in general not of class C1, even in the convex case.

The first order optimality condition satisfied by a ball which realizes the Fraenkel asymmetry gives a constraint
on the coordinates of the intersections points. More precisely we prove the following.

Proposition 2.5. Let Ω be a transversal set to an optimal ball B. Then the intersection points Mi ≡ (xi, yi), i ∈
{1, . . . , 2p} between ∂Ω and ∂B satisfy

x1 + x3 + . . .+ x2p−1 − (x2 + x4 + . . .+ x2p) = 0,
y1 + y3 + . . .+ y2p−1 − (y2 + y4 + . . .+ y2p) = 0.

Remark 2.6. The assumption that Ω is transversal to the ball B will be used to prove that the function
ψ(x, y) = |B(x,y)ΔΩ| is differentiable. Moreover, if Ω is a transversal set to an optimal ball B, then by previous
result, the intersection points between the boundary of a minimizing set ∂Ω and ∂B are at least four.

Proposition 2.5 is in fact a corollary of the following differentiability result.

Lemma 2.7. Assume that Ω is transversal to a ball B(x,y) centered in (x, y). Then the function ψ(x, y) =
|ΩΔB(x,y)| is differentiable and

∂ψ

∂y
= −2

(
x1 + x3 + . . .+ x2p−1 − (x2 + x4 + . . .+ x2p)

)
. (2.1)

Proof. Notice that

|ΩΔB(x,y)| =
∫

R2
|χΩ − χB(x,y) |2 dxdy =

∫
R2
χΩ dxdy − 2

∫
R2
χΩχB(x,y) dxdy +

∫
R2
χB(x,y) dxdy,
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Figure 2. The parametrization of a set Ω∗
ε in the proof of Theorem 2.8.

that is, ψ((x, y)) = 2π − 2
∫
B(x,y)

χΩ. Moreover

∫
B(x,y)

χΩ =
∫ x+1

x−1

∫ y+
√

1−(u−x)2

y−
√

1−(u−x)2
χΩ(u, v) dv du.

Now, the number of points where
∫
B(x,y)

χΩ is not differentiable is finite, due to the assumption that Ω is

transversal to B(x,y). Therefore one can compute the derivative:

∂

∂y

∫
B(x,y)

χΩ =
∫ x+1

x−1

(
χΩ(u, y +

√
1 − (u− x)2) − χΩ(u, y −

√
1 − (u− x)2)

)
du.

Notice that these two integrals measure the length of the projection on the horizontal axis of ∂B ∩Ω (counted
positively on the upper half plane, negatively on the lower half plane). This entails (see Fig. 3)

∂

∂y

∫
B(x,y)

χΩ = (x1 − x2) + (x3 − x4) + . . .+ (x2k+1 − x2k) + (x2p−1 − x2p)]. �

In the following theorem, we study the asymptotic behaviour of F(Ω∗
ε ), where Ωε is a sequence of sets

converging to a ball. In particular, we prove that the limit value is always greater than the value of F for the
optimal stadium of Theorem 1.2. We will work in the general case where the boundary of Ω∗

ε may contain arcs
of the ball (see Fig. 2), even if we will use later this theorem only for transversal domains.

Theorem 2.8. Let {Ωε}ε>0, be a sequence of sets, such that |Ωε| = π = |B| where B is a ball. Assume that
|BΔΩε| = 4ε. Then

lim inf
ε→0

F(Ω∗
ε ) ≥

π

8(4 − π)
≈ 0.45.

From now on we will use the following functions:

g(t) = t− sin(t) cos(t), h(t) =
g(t)

sin2(t)
· (2.2)

Proof. Let us fix some notations for Ω∗
ε ; let us consider the case (a) of Figure 2. According to the figure,

Rε1 = sin(ηε
1)

sin(θε
1) and Rε2 = sin(ηε

2)
sin(θε

2) are the radii of the arcs A1B1, A2B2, respectively. We observe that

0 ≤ ηε1 + ηε2 ≤ π/2, ηε1 ≤ θε1 ≤ π, θε2 ≤ ηε2 ≤ π/2.
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Notice that, by construction, it holds

λ(Ω∗
ε ) =

|Ω∗
εΔB|
π

=
4ε
π
,

and hence

ε = (Rε1)
2g(θε1) − g(ηε1) = sin2(ηε1)h(θε1) − g(ηε1),

ε = −(Rε2)
2g(θε2) + g(ηε2) = − sin2(ηε2)h(θε2) + g(ηε1). (2.3)

Moreover λ(Ωε) ≤ 4ε
π and

δ(Ω∗
ε ) =

1
2π

[
4Rε1θ

ε
1 + 4Rε2θ

ε
2 + 4

(π
2
− ηε1 − ηε2

)
− 2π

]
=

2
π

(
sin(ηε1)

θε1
sin(θε1)

− ηε1 + sin(ηε2)
θε2

sin(θε2)
− ηε2

)
.

We deduce from (2.3) that

ε

sin2(ηε1)
= h(θε1) − h(ηε1) ,

ε

sin2(ηε2)
= h(ηε2) − h(θε2). (2.4)

Hence

δ(Ω∗
ε ) =

2
π

[
F

(
ηε1,

ε

sin2(ηε1)

)
+ F

(
ηε2,

−ε
sin2(ηε2)

)]
, (2.5)

where

F (x, y) = sin(x)
h−1(h(x) + y)

sin(h−1(h(x) + y))
− x.

Observe that h−1 exists, since h′(x) = 2 sin(x)−x cos(x)
sin3(x) is positive in (0, π). In the sequel we will omit the

dependence of ηi, θi, Ri on ε. Notice that the angles η1, θ1, η2, θ2 may have the following behaviours (up to
sub-sequences), as ε→ 0:

Ai: ηi → η̂i > 0;
Bi: ηi → 0 and ε

sin2(ηi)
→ li > 0;

Ci: ηi → 0 and ε
sin2(ηi)

→ 0;
Di: ηi → 0 and ε

sin2(ηi)
→ +∞.

In each case, we are going to compute the Taylor expansion of
1
ε2
F

(
η1,

ε

sin2(η1)

)
and

1
ε2
F

(
η2,

−ε
sin2(η2)

)
.

This will help us to estimate from below the limit of F(Ω∗
ε ).

Notice that the analysis of case (b) of Figure 2 is analogous to that one of case (a). Indeed we have

h(η2) + h(θ2) =
ε

sin2(η2)
,

which entails

θ2 = −h−1

(
h(η2) − ε

sin2(η2)

)
,

since h is an odd function. Hence in case (b) we obtain the same expression (2.5) for δ(Ωε).

Case A1. Since F is analytic, we can write

F (x, y) =
∑
k,l

ak,l
k!l!

(x− x̂)kyl , ak,l =
∂k+l

∂xk∂yl
F (x̂, 0) ,
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where x̂ > 0. Observe that ak,0 = 0 for every k, since F (x, 0) ≡ 0. Moreover a0,1 = sin2(x̂)/2 and

ak,1 =

{
cos(2x̂)(−1)m+122m−2, k = 2m

sin(2x̂)(−1)m22m−1, k = 2m+ 1.

Therefore

F (x, y) = cos(2x̂)
∑
m≥0

(−1)m+122m−2(x− x̂)2m
y

(2m)!
+ sin(2x̂)

∑
m≥0

(−1)m22m−1(x− x̂)2m+1 y

(2m+ 1)!

+
y

4
+ y2

∑
k≥0,l≥2

ak,l
k!l!

(x− x̂)kyl−2,

that is,

F (x, y) =
y

4
[− cos(2x̂) cos(2(x− x̂)) + 1 + sin(2x̂) sin(2(x− x̂))] + y2 a0,2

2
+ y3

∑
l≥0

a0,l+3

(l + 3)!
yl + y2(x− x̂)

∑
k≥0,l≥0

ak+1,l+2

(k + 1)!(l + 2)!
(x− x̂)kyl,

where

a0,2 =
cos(x̂) sin4(x̂)

4(sin(x̂) − x̂ cos(x̂))
·

We note that the last two series are convergent for |x − x̂| and |y| sufficiently small, since the Taylor series of
F at (x̂, 0) is absolutely convergent. Therefore, if η1 = η̂1 + ε1, one has

1
ε2
F

(
η1,

ε

sin2(η1)

)
=

1
4 sin2(η1)ε

[− cos(2η̂1) cos(2ε1) + 1 + sin(2η̂1) sin(2ε1)] +
1

sin4(η1)
a0,2

2

+
ε

sin6(η1)

∑
l≥0

a0,l+3

(l + 3)!
εl

sin2l(η1)
+

ε1

sin4(η1)

∑
k≥0,l≥0

ak,l+3

k!(l + 3)!
εk1

εl

sin2l(η1)
·

When ε, ε1 → 0, the first term is equivalent to 1
2ε , the second one is equal to cos(η̂1)

8(sin(η̂1)−η̂1 cos(η̂1)) and the third
and the fourth ones go to 0. This implies that

1
ε2
F

(
η1,

ε

sin2(η1)

)
=

cos(η̂1)
8(sin(η̂1) − η̂1 cos(η̂1))

+
1
2ε

+ o(1), (2.6)

and the first term is positive.

Case A2. As in case A1, one can write the series expansion of F (x, y). Since η2 = η̂2 + ε2, it holds

1
ε2
F

(
η2,− ε

sin2(η2)

)
= − 1

4 sin2(η2)ε
[− cos(2η̂2) cos(2ε2) + 1 + sin(2η̂2) sin(2ε2)] +

1
sin4(η2)

a0,2

2

− ε

sin6(η2)

∑
l≥0

a0,l+3

(l + 3)!
(−ε)l

sin2l(η2)
+

ε2

sin4(η2)

∑
k≥0,l≥0

ak,l+3

k!(l + 3)!
εk2

(−ε)l
sin2l(η2)

·

When ε, ε2 → 0, the first term is equivalent to − 1
2ε , the second one is equal to cos(η̂2)

8(sin(η̂2)−η̂2 cos(η̂2))
and the third

and the fourth ones go to 0. This implies that

1
ε2
F

(
η2,

ε

sin2(η2)

)
=

cos(η̂2)
8(sin(η̂2) − η̂2 cos(η̂2))

− 1
2ε

+ o(1) (2.7)

and the first term is positive.
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Case B1. The angle η1 tends to zero, while θ1 = h−1(h(η1) + ε
sin2(η1)

) converges to h−1(l1) �= 0. Hence it holds

1
ε2
F

(
η1,

ε

sin2(η1)

)
=
η1
ε2

[
sin(η1)
η1

h−1(h(η1) + ε
sin2(η1)

)

sin(h−1(h(η1) + ε
sin2(η1)

))
− 1

]
.

We observe that η1
ε2 → +∞ and

lim inf
ε→0

sin(η1)
η1

θ1
sin(θ1)

− 1 > 0.

Case B2. In this case θ2 = h−1(h(η2) − ε
sin2(η2)

), so that, as in case B1,

1
ε2
F

(
η2,− ε

sin2(η2)

)
=
η2
ε2

[
sin(η2)
η2

h−1(h(η2) − ε
sin2(η2) )

sin(h−1(h(η2) − ε
sin2(η2)

))
− 1

]
.

As before, η2ε2 → +∞ and

lim inf
ε→0

sin(η2)
η2

θ2
sin(θ2)

− 1 > 0,

since η2 tends to zero, while θ2 tends to h−1(l2) �= 0.

Case C1. Since F is analytic, we can write

F (x, y) =
∑
k,l

ak,l
k!l!

xkyl , where ak,l =
∂k+l

∂xk∂yl
F (0, 0).

We need the exact value of some of the coefficients ak,l. Observe that ak,0 = 0 for every k, since F (x, 0) ≡ 0; as
well, a0,l = 0 for every l, since F (0, y) ≡ 0. Moreover a0,1 = 0 and for k ≥ 1

ak,1 =

{
0, k = 2m+ 1

(−1)m+122m−2, k = 2m

and a1,2 = 3/4. Hence F can be written as

F (x, y) = y
∑
k≥1

(−1)k+1 22k−2

(2k)!
x2k + y2

∑
k≥0,l≥0

ak,l+2

k!(l + 2)!
xkyl =

y sin2(x)
2

+ y2
∑

k≥1,l≥0

ak,l+2

k!(l + 2)!
xkyl,

that is,

F (x, y) =
y sin2(x)

2
+ xy2 3

8
+ xy3

∑
l≥0

a1,l+3

(l + 3)!
yl + x2y2

∑
k≥0,l≥0

ak+2,l+2

(k + 2)!(l + 2)!
xkyl.

We observe that the last two terms are convergent for |x| and |y| sufficiently small, since the Taylor series of F
at (0, 0) is absolutely convergent. Therefore

1
ε2
F

(
η1,

ε

sin2(η1)

)
=

1
2ε

+
η1

sin4(η1)

⎡⎣3
8

+
ε

sin2(η1)

∑
l≥0

a1,l+3

k!(l + 3)!
εl

sin2l(η1)
+η1

∑
k≥0,l≥0

ak+2,l+2

(k + 2)!(l + 2)!
ηk1ε

l

sin2l(η1)

⎤⎦ ,
and the last term tends to 3

8 . This implies that

1
ε2
F

(
η1,

ε

sin2(η1)

)
=

1
2ε

+
3
8

η1

sin4(η1)
+ o(1).
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Case C2. In this case, θ2 = h−1(h(η2) − ε
sin2 η2

). Using the same argument as in case C1, we have

1
ε2
F

(
η2,− ε

sin2(η2)

)
=

−1
2ε

+
3
8

η2

sin4 η2
+ o(1).

Case D1. We claim that
h(π − α) ≥ π

α2
≥ h(π − α− α2) , 0 ≤ α < 0.9.

This can be easily proved recalling that

t− t3

6
≤ sin(t) ≤ t− t3

6
+

t5

120
· (2.8)

Indeed the first inequality to prove is equivalent to α2(π−α+ sin(2α)/2)− π sin2(α) ≥ 0 and by (2.8) a bound
from below of the left hand side is π

3α
4 − 2

3α
5 − 2π

45α
6 + π

360α
8 − π

14400α
10 which is positive for α < 1. On the

other hand, the second inequality is equivalent to α2(π− β + sin(2β)/2)− π sin2(β) ≤ 0, where β = α+α2 and
by (2.8) a bound from above of the left hand side is α2

(
π − 2

3β
3 + 2

15β
5
) − π(β − β3

6 )2 which is negative for
α < 0.9.
Let us set π

α2 = h(η1) + ε
sin2(η1) . The hypotheses on η1 imply that α→ 0. Therefore

lim
ε→0

F

(
η1,

ε

sin2(η1)

)
= lim

ε→0
sin(η1)

h−1(π/α2)
sin(h−1(π/α2))

− η1 = lim
ε→0

sin(η1)
π − α

sin(α)
− η1.

Since α is equivalent to
√
π√
ε

sin(η1), one has

F

(
η1,

ε

sin2(η1)

)
=
π − α√

π

√
ε− η1 + o(

√
ε).

The hypotheses on η1 imply that

F

(
η1,

ε

sin2(η1)

)
=

√
π
√
ε+ o(

√
ε).

Case D2. Set − π
α2 = h(η2) − ε

sin2 η2
. Since h(t) is an odd function, we have

F

(
η2,− ε

sin2 η2

)
= sin η2

h−1( πα2 )
sin(h−1( πα2 ))

− η2,

which is analogous to case D1. Hence

F

(
η2,− ε

sin2 η2

)
=

√
πε+ o(

√
ε).

We are now able to compute lim inf
ε→0

F(Ω∗
ε ), by observing that

lim inf
ε→0

F(Ω∗
ε ) = lim inf

ε→0

δ(Ω∗
ε )

λ2(Ω∗
ε )

≥ lim inf
ε→0

δ(Ω∗
ε )π

2

16ε2
≥ π

8
lim inf
ε→0

[
1
ε2
F

(
η1,

ε

sin2(η1)

)
+

1
ε2
F

(
η2,

−ε
sin2(η2)

)]
·

The technique consists in combining the behaviour of the function F (x, y) for x = ηi and y = ± ε
sin2 ηi

. This
obviously depends on the behaviour of the angles ηi, θj (i, j ∈ {1, . . . , 4}). Hence all the different possible
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A2p−1

A2p

area ε1area ε2area ε3

area ε4
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· · ·

· · ·
O
ϕ1 ϕ2

2η1

x

Figure 3. The points Ai, the angles ϕi and the areas εi in the proof of Proposition 2.9.

situations have to be considered. In all the cases, except the case (A1, A2), lim infε→0 F(Ω∗
ε ) is infinite. In the

case (A1, A2), the liminf is finite, but larger than π
8(4−π) . Indeed thanks to (2.6) and (2.7), it holds

lim inf
ε→0

δ(Ω∗
ε )

λ2(Ω∗
ε )

≥ π

8

[
cos(η̂1)

8(sin(η̂1) − η̂1 cos(η̂1))
+

cos(η̂2)
8(sin(η̂2) − η̂2 cos(η̂2))

]
, (2.9)

since the terms in ε cancel each other. Now, by the convexity of the function x 
→ cos x
8(sin x−x cosx) , it is easy to

see that the minimum of the above function of (η̂1, η̂2) is attained for (η̂1, η̂2) = (π/4, π/4), that is,

lim
ε→0

δ(Ω∗
ε )

λ(Ω∗
ε )2

≥ π

4
cos(π/4)

8(sin(π/4) − π/4 cos(π/4))
=

π

8(4 − π)
> 0.44. (2.10)

�

In the following proposition we prove that the symmetrization of Definition 2.2 makes F asymptotically
decreasing. This is the key point of our approach.

Proposition 2.9. For every α > 0 there exists β > 0 such that for every Ω transversal to an optimal ball B
with λ(Ω) ≤ β, one has F(Ω∗) ≤ F(Ω) + α.

Proof. Let 0 ≤ ϕ1 < ϕ2 < . . . < ϕ2p ≤ 2π be the angles determined by the intersection points A1, . . . , A2p

between ∂Ω and ∂B defined as ϕi = (Ox,OAi) as shown in Figure 3. Define ηj = (ϕj+1 − ϕj)/2.
Let ΓOUT = (A1, A2)∪(A3, A4)∪. . .∪(A2p−1, A2p) ⊂ ∂B and ΓIN = (A2, A3)∪(A4, A5)∪. . .∪(A2p, A1) ⊂ ∂B.

According to the figure, let us denote by εi, for i = 1, . . . , 2p, the area of the connected component of ΩΔB
whose boundary contains the points Ai, Ai+1. Using the solution of the Dido problem on each of these connected
components (where the arc Ai, Ai+1 is fixed), we can replace all components of ΩΔB by a set of same measure,
bounded by two arcs of circle, then it holds

F(Ω) ≥ π2

4ε2

(∑2p
i=1 H1(Ci)

2π
− 1

)
, (2.11)

where 4ε = |ΩΔB| =
∑2p
i=1 εi and Ci are arcs of circles with end-points Ai, Ai+1 such that the area of the

region enclosed by the arc Ci and the ball B equals εi. Since the area of Ω is π, we have

2ε =
p∑
i=1

ε2i−1 =
p∑
i=1

ε2i. (2.12)
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We are going to minimize the perimeter of Ω over each of the sets Ω \B and B \Ω, separately. We will prove
that the minimizer is Ω∗, in both cases. This will imply that the minimizer of F is Ω∗.

Notice that the set Ω satisfies the following conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑p
i=1(ϕ2i − ϕ2i−1) = H1(ΓOUT ) = γOUT ,∑p−1
i=1 (ϕ2i+1 − ϕ2i) + ϕ1 − ϕ2N = H1(ΓIN ) = γIN ,∑p
i=1(cos(ϕ2i) − cos(ϕ2i−1)) = 0,∑p
i=1(sin(ϕ2i) − sin(ϕ2i−1)) = 0,

(2.13)

where the last two constraints are a consequence of Proposition 2.5 and

λ(Ω) =
4ε
π
·

Let us consider the set Ω \ B. Let f(x) = cos x
sin x−x cosx ; according to the analysis of Case A1 in the proof of

Theorem 2.8, we have to study the minimization problem

min

{
p∑
i=1

[
ε2i−1

2
+
ε22i−1

8
f(η2i−1) + o(ε22i−1)

]}
, (2.14)

under the constraints in (2.12), (2.13). Instead of solving the complete minimization problem we are going to
consider only the first two terms of the developement in (2.14) that is, we minimize the function

G(ε1, ε3, . . . , ε2p−1, η1, η3, . . . , η2p−1) =
p∑
i=1

ε22i−1f(η2i−1),

under constraints (2.12) and (2.13).
Observe that the εi’s are in a compact set. Let us first solve the minimization problem with respect to the εi.

If we compute the derivative of G with respect to εi, by constraint (2.12), we get, for every i = 1, . . . , p

2ε2i−1f(η2i−1) = λ0, (2.15)

where λ0 is a Lagrange multiplier, that is,

λ0 =
4ε∑p

i=1
1

f(η2i−1)

· (2.16)

If we replace ε2i−1 in the expression of G, problem (2.14) reduces to find max
∑p
i=1

1
f(η2i−1) , that is,

max
p∑
i=1

tan η2i−1, (2.17)

due to constraint (2.13).
We are going to prove that η1, η3 . . . , η2p−1 are in a compact set contained in [0, π2 ) and the existence of

a maximizer for (2.17) will follow. First of all, we observe that η2i−1 <
π
2 for every i ∈ {1, . . . , p}. Indeed, if

η2i−1 >
π
2 for some i, then λ0 would be negative by (2.15). If η2i−1 = π

2 for some i, then λ0 = 0 and we would
find one arc. Notice that this is a contradiction, as observed in Remark 2.6.

Since the problem is rotations invariant, we can assume that (A1, A2) is the longest arc and A1 ≡ (x1, y),
A2 ≡ (−x1, y), with y > 0, that is, ϕ2 = π − ϕ1. Let us assume that

π

2
< ϕ3 ≤ ϕ4 ≤ . . . ≤ ϕm < π, 0 < ϕq+1 ≤ ϕq+2 ≤ . . . ≤ ϕ2p <

π

2
,
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for some m, q ∈ N. We claim that if H1(ΓIN ∩ {y > 0}) ≥ H1(ΓIN )/2, then ϕ1 ≥ H1(ΓIN )/4. Indeed,
constraints (2.13) imply that

−2 cosϕ1 = cosϕ2 − cosϕ1 = (cosϕ3 − cosϕ4) + . . .+ (cosϕ2p−1 − cosϕ2p). (2.18)

We are going to estimate from below the right hand side. We will divide our analysis according to the parity
of m and q.

If m is even, then in the right hand side of (2.18) all the terms involving indices less or equal to m are positive.
Assume that m is odd. Then in the right hand side of (2.18) the terms cosϕ3 − cosϕ4, . . . , cosϕ2j−1 − cosϕ2j ,
. . . , cosϕm−2 − cosϕm−1 are positive. We rewrite cosϕm − cosϕm+1 = (cosϕm − cosπ) + (cosπ − cosϕm+1).
The first term is positive and the second one will be treated later. In conclusion, the sum of these terms is
greater than −1.

The points in the first quadrant {x ≥ 0} ∩ {y ≥ 0} will be treated in the same way. For the other points, we
have to estimate the measure of the projection on the x line of ΓIN ∩ {y ≤ 0}. To do that, we observe that if Γ
is an arc in {y ≤ 0}, then the measure of its projection Px on the x line is greater or equal to 2

(
1 − cos H1(Γ )

2

)
.

Since we are assuming that H1(ΓIN ∩ {y ≤ 0}) ≤ H1(ΓIN )
2 , then

H1(Px(ΓIN ∩ {y ≤ 0})) ≥ 2
[
1 − cos

(H1(ΓIN ∩ {y ≤ 0})
2

)]
≥ 2
(

1 − cos
H1(ΓIN )

4

)
·

The above estimates imply that cosϕ1 ≤ cos(H
1(ΓIN )

4 ) and then

ηi ≤ η1 =
ϕ2 − ϕ1

2
≤ π

2
− H1(ΓIN )

4
·

If H1(ΓIN ∩ {y > 0}) ≤ H1(ΓIN )/2, then ϕ1 ≥ H1(ΓIN )/4. Indeed, we get the same estimate as in the
previous case:

H1(Px(ΓIN ∩ {y ≤ 0})) ≥ 2
[
1 − cos

(H1(ΓIN ∩ {y ≤ 0})
2

)]
≥ 2
(

1 − cos
H1(ΓIN )

4

)
·

We now study problem (2.17). Let us write the optimality conditions, we get

−1
2
(1 + tan2 η2i−1) = −λ0 + λ1 sinϕ2i−1 − λ2 cosϕ2i−1,

1
2
(1 + tan2 η2i) = λ0 − λ1 sinϕ2i + λ2 cosϕ2i, (2.19)

where λ0, λ1, λ2 are Lagrange multipliers.
Assume now (λ1, λ2) �= (0, 0). Let a =

√
λ2

1 + λ2
2. Then λ1 = a sin θ0 and λ2 = a cos θ0. Summing up in (2.19),

we get for any i cos(θ0+ϕ2i) = cos(θ0+ϕ2i−1). The only possibility is θ0+ϕ2i = −θ0−ϕ2i−1, that is, ϕ2i+ϕ2i−1

constant. Since ϕ1 +ϕ2 = π, we have ϕj +ϕj−1 = π, for j = 1, . . . , k; this implies that k ≤ 4. In particular, due
to the constraints in (2.13), it necessarily holds k = 4. Notice that the case k = 4 corresponds to a geometric
configuration which coincides with the symmetrized set Ω∗.

Assume (λ1, λ2) = (0, 0). For every i ∈ {1, . . . , p}, tan2 η2i−1 = 2λ0 − 1. Therefore η2i−1 = π
2 ± h. Since∑p

i=1 η2i−1 < π, there exist l elements ηi equal to π
2 − h and either 0 or 1 element equal to π

2 + h. The last case
is impossible, since l(π2 − h) + π

2 + h < π is in contradiction with h ≤ π
2 . Therefore we have∑2p

i=1 H1(Ci)
2π

− 1 = l tan
(H1(ΓOUT )

2l

)
,
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as seen in the previous case. We thus find that the minimum is attained for l = 2 and a similar conclusion holds
true.

The analysis of B \Ω is analogous. Therefore Ω∗ is a minimizer of (2.17).
Hence, in every cases, by (2.14) it holds

2p∑
i=1

H1(Ci) ≥ P (Ω∗) − α̃,

for some α̃ > 0. By coupling the above inequality with (2.11), and recalling that λ(Ω∗) = λ(Ω) = 4ε
π , we obtain

that
F(Ω) ≥ F(Ω∗) − α (2.20)

for some α > 0. �

We now describe the possible behaviour of any sequence converging to a ball. A consequence of the previous
results is

Corollary 2.10. Let {Ωε}ε>0 be a sequence of sets converging to a ball B such that |BΔΩε| = 4ε. Then

lim inf
ε→0

F(Ωε) ≥ π

8(4 − π)
· (2.21)

Proof. Let α > 0 and let β be the corresponding value to α/2 given by Proposition 2.9. Let Bε be an optimal
ball for Ωε so that λ(Ωε) ≤ 4ε/π. We choose ε sufficiently small such that λ(Ωε) < β/2. We can modify Ωε into
a transversal set Ω̂ε to its optimal ball Bε such that

|Ω̂ε| = π,∣∣∣∣∣ δ(Ω̂ε)λ2(Ω̂ε)
− δ(Ωε)
λ2(Ωε)

∣∣∣∣∣ ≤ α

2
,

λ(Ω̂ε) ≤ β.

Since Ω̂ε is transversal to Bε, by Proposition 2.9 one has

δ(Ω̂∗
ε )

λ2(Ω̂∗
ε )

− δ(Ω̂ε)

λ2(Ω̂ε)
≤ α

2
,

and summing up we get
δ(Ω̂∗

ε )

λ2(Ω̂∗
ε )

≤ δ(Ωε)
λ2(Ωε)

+ α.

By Theorem 2.8, one has

lim inf
ε→0

δ(Ωε)
λ2(Ωε)

+ α ≥ π

8(4 − π)
,

and this entails the result, as α is arbitrary. �

We underline that, although inequality (2.21) is sufficient to prove that the sequences converging to the ball
are not “competitive”, we prove also that the value π

8(4−π) is sharp, in the sense that there exists a sequence {Ωn}
such that F(Ωn) gives this value at the limit. For that purpose, we need a preliminary result for optimal balls
which has, however, its own interest.
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Figure 4. The intersection points of a minimizing set Ω and its optimal ball, in the proof of
Proposition 2.11.

Proposition 2.11. Assume that Ω ⊂ R
2 has a symmetry axis Π and is convex in the perpendicular direction.

Then there exists an optimal ball centered on Π.
If, moreover, the domain is transversal to its optimal balls and it does not contain segments which are

orthogonal to Π, then all the optimal balls are centered on Π.

Proof. We first prove the result for a transversal domain Ω to an optimal ball and we assume that its boundary
does not contain segments which are orthogonal to the axis of symmetry. We can assume that Π lies on the x
axis. The boundary of Ω will then be given by y = ±f(x) for some function f : R → R such that f ≥ 0 in an
interval [a, b], and f(x) ≡ 0 if x ≤ a or x ≥ b. Set

ψ(M) = ψ(x, y) = |ΩΔBM |,
where M = (x, y) and BM denotes the unitary ball of center M . Let M1,M2, . . . ,M2p be the intersection points
between ∂Ω and ∂BM in an counter-clockwise order such that the boundary of Ω comes into the disk following
the standard orientation of the curve (see Fig. 4a). By Lemma 2.7 we have

∂ψ

∂y
= −2

(
x1 + x3 + . . .+ x2p−1 − (x2 + x4 + . . .+ x2p)

)
.

Hence in the case where BM is an optimal ball for Ω, we have that x1+x3+. . .+x2p−1−(x2+x4+. . .+x2p) = 0.
In particular we denote by ui the x-coordinate of the point Mi belonging to the half plane Π+ = {(x, y) :

y ≥ 0} and by zj the x-component of the point Mj belonging to Π− = {(x, y) : y < 0}. For simplicity we
can assume b ≥ √

1 − t2 in such a way that u1 > u2 > . . . > uk and zk+1 < zk+2 < . . . < z2p. The case
u2p > u1 > u2 > . . . > uk corresponds to Figure 4b and can be treated in an analogous way.

Assume by contradiction that the center of the optimal ball is (0, t), t > 0. We are going to prove that ∂ψ
∂y > 0

which leads to a contradiction.
Define

g1(x) = x2 + (f(x) − t)2 − 1; g2(x) = x2 + (f(x) + t)2 − 1.

Notice that the intersection points of the optimal ball with Ω, in Π+, satisfy g1(u) = 0, while the intersection
points of the optimal ball with Ω in Π−, satisfy g2(z) = 0. Observe that g2(x) ≥ g1(x) for every x ∈ R since
g2(x)−g1(x) = 4f(x)t ≥ 0. Hence there cannot exist zeros of g2 in an interval where g1 is non-negative. Moreover
for x ∈ (a, b), g2(x) > g1(x), while for x ≤ a or x ≥ b, g1(x) = g2(x) = x2 + t2 − 1 and hence g1, g2 → +∞ if
x→ ±∞. Let ui > ui+1 be two consecutive zeros of g1 and assume that g1 < 0 in (ui+1, ui). Since we assumed
b ≥ √

1 − t2, necessarily i is an even index. We now focus the analysis of g2 in the interval (ui+1, ui).
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Three different situations may occur: (i) the function g2 has no zero in the interval (ui+1, ui); (ii) there exists
exactly two zeros of g2 belonging to (ui+1, ui); (iii) there exist more than four zeros of g2 belonging to (ui+1, ui).
We analyse each situation in order to study the sign of the function x1 + . . .+ x2p−1 − (x2 + . . .+ x2p).

In situation (i), the function g2 is strictly positive, and ui− ui+1 > 0, that is, xi − xi+1 > 0. In situation (ii),
let zl < zl+1 be the only two consecutive zeros of g2 belonging to (ui+1, ui), that is g2 < 0 in (zl, zl+1) and
positive elsewhere. Hence the index l is even as well as i. We can say that ui − ui+1 ≥ zl+1 − zl and hence,
xi + zl − (xi+1 + zl+1) > 0.

In situation (iii), g2 changes its sign more than three times in (ui+1, ui). Let zl < zl+1 < . . . < zl+q be the
zeros of g2; again the indices l, q are even. We can say that ui − ui+1 > zl+1 − zl + . . . + zl+q − zl+q−1 which
can be rewritten as xi + xl + . . .+xl+q−1 − (xi+1 + xl+1)+ . . .+xl+q) > 0. This argument implies that ∂ψ

∂y > 0,
which leads to a contradiction. Hence the center of the optimal ball is at (0, 0). We have thus proved that all
the optimal balls must be centered on Π for such domains.

For the general case, we proceed by approximation. Let now Ω be an arbitrary domain: either if Ω is not
transversal to an optimal ball or if its boundary contains vertical segments, one can find a sequence of sets Ωn
transversal to their optimal ball or without vertical segments and converging to Ω in the L1 norm. Let Bcn be
a sequence of corresponding optimal balls for Ωn of center cn; necessarily cn belongs to Π according to the first
part of the proof. Up to a subsequence cn converges to some c ∈ Π . By definition of optimal ball,

|BcnΔΩn| ≤ |B(x,y)ΔΩn|, (2.22)

for every (x, y) ∈ R
2. Now,

|BcnΔΩn| = ||χBcn
− χΩn ||L1(R2) → ||χBc − χΩ||L1(R2).

In the same way
|B(x,y)ΔΩn| = ||χB(x,y) − χΩn ||L1(R2) → ||χB(x,y) − χΩ||L1(R2).

Therefore, passing to the limit in (2.22), we obtain that Bc is an optimal ball for Ω. �

By applying Proposition 2.11 in two orthogonal directions, we easily deduce the following corollary. It will
be useful to characterize the optimal ball of the symmetrized sets Ω∗ defined in Section 2.
Corollary 2.12. Assume that Ω ⊂ R

2 is transversal to its optimal balls, it has two perpendicular axes of
symmetry Π1, Π2, it is convex in both perpendicular directions to Π1, Π2 and it has no segments on its boundary
parallel to one of these directions. Then there exists an optimal ball centered at the intersection of the two
axes Π1, Π2. Moreover, if ∂Ω does not contain segments parallel to directions of symmetry, necessarily it has
only one optimal ball which is centered at the intersection of the two axes.

We use now the previous corollary and Theorem 2.8 to compute the infimum of lim infε→0 F(Ωε).

Theorem 2.13. Let ε > 0. Let Ωε be a sequence of planar regular sets converging to a ball B. Then

inf
{
lim inf
ε→0

F(Ωε)
}

=
π

8(4 − π)
·

Proof. According to Corollary 2.10, it suffices to exhibit a sequence of domains for which we have equality
in (2.21). We choose a particular sequence Ω∗

ε . If Ω∗
ε is convex, Corollary 2.12 guarantees that the center of its

optimal ball is the center of symmetry of Ω∗. Let Ωε be a sequence of transversal sets to a ball B, converging to
B and such that Ω∗

ε is convex. This corresponds to the cases A1 and A2 of the proof of Theorem 2.8 for which
we have, see (2.9)

lim inf
ε→0

δ(Ω∗
ε )

λ2(Ω∗
ε )

=
π

8

[
cos(η̂1)

8(sin(η̂1) − η̂1 cos(η̂1))
+

cos(η̂2)
8(sin(η̂2) − η̂2 cos(η̂2))

]
·

Now the minimal value of the right-hand side is achieved for η̂1 = η̂2 = π/4 for which we get π
8(4−π) , as seen

in (2.10). �
Remark 2.14. Notice that the same result has been proved in [6] by using the so called ovals sets.
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3. Existence theorem

In this section we are going to prove the existence of a minimizer Ω for the functional F . We have proved
that sequences of sets converging to a ball cannot be minimizing. For the other sequences, we are going to prove
that they are contained in a fixed bounded domain R. This will allow us to get the existence of a limit set Ω.
More precisely in Proposition 3.3 below we prove a uniform bound on the number of connected components of
a minimizing sequence. Notice that a similar uniform boundedness was proved in ([9], Lem. 5.1) in a different
way.

We start with a natural result in this context.

Lemma 3.1. Let Ω = ∪iωi ⊂ R
2, where ωi are connected components. Let Ω̃ be any set composed by the same

ωi translated in such a way that the Euclidean distance between them is more than one. Then λ(Ω) ≤ λ(Ω̃).

Proof. We will prove the statement for a set Ω composed by two connected components E1 and E2; the general
case is similar.

Assume |Ω| = π and let B be an optimal ball for Ω, that is, λ(E1 ∪E2) = 2(π − |E1 ∩B| − |E2 ∩B|)/π. We
denote by Ω̃ the set obtained by translating far away the component E2. Up to rename E1, E2, we can assume
that λ(Ω̃) = 2(π − |Bx ∩E1|)/π, for some ball Bx �= B of radius one and center at x. Assume by contradiction
that λ(Ω) > λ(Ω̃), that is, |E1 ∩B|+ |E2 ∩B| < |E1 ∩Bx|. Hence |E1 ∩B|+ |E2 ∩B| < |E1 ∩Bx|+ |E2 ∩Bx|,
which contradicts the fact that B is an optimal ball for the Fraenkel asymmetry of Ω. �
Lemma 3.2. Let ω ⊂ R

2 be a connected set which is not contained in a ball of radius 1. Then its perimeter is
greater than 4.

Proof. The convex hull of ω, denoted by co(ω), is connected and is not contained in a ball of radius 1. Hence
the circumradius of co(ω) is greater than 1. Therefore the perimeter of co(ω) is greater or equal to 4. Since
ω ⊂ R

2 is connected, its perimeter is greater or equal the perimeter of its convex hull. Thus, the perimeter of
ω is greater than 4. �
Proposition 3.3. Let Ω be a planar set whose perimeter is less than 20. Then there exists a planar set Ω̃
composed by at most 7 connected components, such that

F(Ω̃) ≤ F(Ω).

Proof of Proposition 3.3. Assume that Ω is the union of m (possible infinite) connected components ωi. By
Lemma 3.1, we can assume that only one connected component ωk has a non-empty intersection with an
optimal ball B, since one can translate far away each connected component and this procedure decreases the
value of the functional F (since λ increases and δ keeps equal).

By Lemma 3.2, there exist at most 4 connected components ω1, ω2, ω3, ω4 which are not contained in a ball
B1 of radius 1. The first step consists in replacing all the other components ωi, i ≥ 5 by a ball: this decreases
the perimeter without changing the Fraenkel asymmetry. We relabel all these balls by choosing a decreasing
order with respect to the corresponding radii r0 ≥ r1 ≥ r2 . . .

The optimal ball is either on one of the four first components ωj , j = 1, . . . , 4 or on the ball with the largest
radius ω5 = Br0 . So we deal with a domain Ω̂ defined as

Ω̂ =
4⋃
j=1

ωj ∪
⋃
i≥0

Bri ,

for which F(Ω̂) ≤ F(Ω). Moreover λ(Ω̂ = λ̂(Ω̂), where

λ̂(Ω̂) = min
{

2(1 − r20);
|ωjΔB1| + π − |ωj|

π
, j = 1, . . . , 4

}
.

Notice that, since λ̂(Ω̂) ≤ 2(1 − r2i ), it holds ri ≤ a :=
√

1 − λ̂(Ω̂), for every i ≥ 1.
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Let πα be the area of ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪Br0 and 2πP0 its perimeter. Let K be the following compact set:

K :=

⎧⎨⎩r = (r1, r2, . . .) :
∑
i≥1

r2i = 1 − α, 0 ≤ ri ≤ a

⎫⎬⎭ .

We construct the set Ω̃ by replacing the balls Br1 , Br2 , . . . of Ω0 by two balls, at most, in such a way that δ
λ2

decreases. To do that, we minimize over K the quantity

j(r) =
P0 − 1 +Σi≥1ri

λ̂2(Ω0)
·

The minimizer has at most one element rk verifying 0 < rk < a. Indeed, if there exists ri �= rj such that
0 < ri < a, 0 < rj < a, then we can replace ri by ri + h1 and rj by rj − h2 for some h1 < h2, in such a way that
the strict inequalities are still satisfied. We still have an element of K, because

1 − α =
∑

k �=i,k �=j
r2k + (ri + h1)2 + (rj − h2)2 ,

if and only if (h1, h2) belongs to the cercle centered in (−ri, rj) of radius
√
r2i + r2j . It is easy to see that such

(h1, h2) exist: this implies that ri + h1 and rj − h2 give a smaller value of the minimum of the quantity j(r).
This is absurd. Hence the minimum of j(r) over K is attained for r = (a, a, a, . . . , a, b, 0, 0, . . .) where a is
repeated m times and b < a. The minimizer satisfies |r|2 = ma2 + b2 = 1−α, that is, m ≤ 1−α

a2 . Notice that the

quantity j(r) is minimal for the values of a,m which minimize a(m +
√

1−α
a2 −m). It is not difficult to prove

that the minimum is realized by m = 1. Therefore, the set Ω̃ = ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ Br0 ∪ Br1 ∪ Br2 satisfies
F(Ω̃) ≤ F(Ω). �

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Let {Ωn} be a minimizing sequence for F and assume |Ωn| = π. By Corollary 2.10 and
Theorem 1.2 the sequence {Ωn} does not converge to a ball. Since δ(Ωn) ≤ 0.41λ2(Ωn) and λ(E) ≤ 2, for any
planar set E,it holds δ(Ωn) ≤ 1.64. This implies that P (Ωn) ≤ 2π + 2π 1.64 ≤ 16.6.

By Proposition 3.3 we can replace Ωn by another minimizing sequence (still denoted Ωn) with at most 7
connected components and each component has a diameter less or equal to 8.4 (because the total perimeter is
less than 16.6). Therefore, it is possible to enclose all the connected components, with mutual distance between 1
and 2 in a large, but fixed, rectangle R.

By recalling that P (Ωn) = |DχΩn(R)|, the sequence χΩn is bounded in BV (R). By the compact embedding
BV (R) ↪→ L1(R), there exists Ω ⊂ R such that, up to a subsequence, χΩn → χΩ weakly-∗ in BV (R). Thus
χΩn → χΩ in L1(R) and |Ω| = π. Notice that λ(Ω) > 0 since Ω is not a ball. Moreover lim inf

n→∞ P (Ωn) ≥ P (Ω)

by lower semicontinuity and thus lim inf
n→∞ δ(Ωn) ≥ δ(Ω).

We finally prove that λ(Ωn) → λ(Ω). Let Bx, Bxn be optimal balls, with respect to the Fraenkel asymmetry,
of Ω,Ωn, respectively and let x, xn be their centers. Therefore |Ωn| = |Bxn | = |Ω| = |Bx| = π and P (Bx) =
P (Bxn) = 2π. It holds

λ(Ωn) ≤ |ΩnΔBx|
|Bx| =

||χΩn − χBx ||L1(R)

π

≤ ||χΩn − χΩ||L1(R)

π
+

||χΩ − χBx ||L1(R)

π
= εn + λ(Ω).
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On the other hand,

λ(Ω) ≤ |ΩΔBxn |
|Bxn |

≤ ||χΩ − χΩn ||L1(R)

π
+

||χΩn − χBxn
||L1(R)

π
= εn + λ(Ωn),

and hence we have
lim

n→+∞λ(Ωn) = λ(Ω).

Thus Ω provides a solution of the minimization problem. �

4. Properties of the optimal set

In this section we gather some analytic and geometric properties of an optimal set for F .

Proposition 4.1. Let Ω0 be a minimizer of the functional F . Then,

(1) ∂Ω0 is of class C1,1;
(2) the boundary of Ω0 is composed of arcs of circle. More precisely, in any connected component of the set

R
2 \ ∪x∈Z(Ω0)(x+ ∂B) (where Z(Ω0) is the set of the centers of the optimal balls for Ω0), ∂Ω0 is an union

of arcs of circle with the same radius;
(3) P (Ω0) ≤ 16.16;
(4) Ω0 is not convex;
(5) Ω0 is composed by at most 6 connected components;
(6) Ω0 has at least two optimal balls realizing the Fraenkel asymmetry.

The first two statements have been proved in [5]. Statement (3) follows from the fact that λ(Ω) ≤ 2 for every
Ω and F(Ω0) ≤ 0.41 by Theorem 1.2, so that P (Ω0) ≤ 2π(4 × 0.41 − 1) = 16.16. Statement (4) follows from
the existence of a non convex set M0, shown in Section 5, for which F(M0) ≈ 0.39 (see Conjecture 2).

We sketch the proof of statement (5). Assume that the optimal domain has several connected components:
Ω0 = ∪mi=1ωi (m possibly infinite) and assume |Ω0| = π. Necessarily, if a component ω is not contained in a
unit ball, then |ωΔBx| > 0, as Bx is an optimal ball for the Fraenkel asymmetry; otherwise, we could replace
it by a ball strictly decreasing the perimeter. Therefore, we can use an analogous argument to that one of
the proof of Proposition 3.3, noticing moreover that the optimal ball is positioned on one of the four first
components ωi, i = 1, . . . , 4 (and actually on all) and that P (Ω0) < 20 by statement (3). Thus we can perform
the minimization procedure shown in the proof of Proposition 3.3 and we are able to replace the collection of
balls by at most two balls (the biggest one which could also be in contact with an optimal ball).

Property (6) is proved in Section 4.2, by using some optimality conditions satisfied by an optimal set for F .
We will compute the shape derivative of the Fraenkel asymmetry to prove these conditions.

4.1. Differentiability of the Fraenkel asymmetry

We are going to compute the shape derivative of the functional Ω 
→ λ(Ω). Since λ is defined as a minimum,
we first present a general lemma on differentiability of such functional in topological spaces.

Let A,B be two topological spaces. We consider a function j(x, ζ) : A × B → R and we assume that the
derivative of j with respect to the second variable ζ exists and is continuous with respect to x. For each
fixed ζ, we define x̂(ζ) as a solution of minx∈A j(x, ζ). Let λ be defined on B as the value of the minimum:
λ(ζ) = j(x̂(ζ), ζ).

Lemma 4.2. Assume that for some ζ0 ∈ B there exists a unique x̂(ζ0) ∈ A where j(·, ζ0) attains its minimum.
Then the function ζ 
→ j(x̂(ζ), ζ) is differentiable at ζ0 and its derivative is ∂j

∂ζ (x̂(ζ0), ζ0).

Even if the previous result is classical in variational analysis, we prove it for sake of completeness.
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Proof. Fix ζ0, h ∈ B and let t > 0 (the proof works as well for t < 0). We are going to compute the derivative
of λ(ζ) = j(x̂(ζ), ζ) along the direction h. By definition of x̂(ζ) it holds

λ(ζ0 + th) = j(x̂(ζ0 + th), ζ0 + th) ≤ j(x̂(ζ0), ζ0 + th).

This implies that
λ(ζ0 + th) − λ(ζ0)

t
≤ j(x̂(ζ0), ζ0 + th) − j(x̂(ζ0), ζ0)

t

and hence, passing to the limit as t→ 0, we get

lim sup
t→0

λ(ζ0 + th) − λ(ζ0)
t

≤
〈
∂j

∂ζ
(x̂(ζ0), ζ0);h

〉
.

The reverse inequality is obtained in an analogous way by observing that

λ(ζ0) = j(x̂(ζ0), ζ0) ≤ j(x̂(ζ0 + th), ζ0),

which implies
λ(ζ0 + th) − λ(ζ0)

t
≥ j(x̂(ζ0 + th), ζ0 + th) − j(x̂(ζ0 + th), ζ0)

t
·

By the uniqueness of x̂(ζ0), we have x̂(ζ0 + th) → x̂(ζ0) as h→ 0. The continuity of the function x 
→ ∂j
∂ζ (x, ζ)

implies

lim inf
t→0

λ(ζ0 + th) − λ(ζ0)
t

≥
〈
∂j

∂ζ
(x̂(ζ0), ζ0);h

〉
,

which gives the desired result. �

We are going to apply the previous lemma to j(X,Ω) := |BXΔΩ|/π in such a way that X̂(Ω) is the center of
an optimal ball and λ(Ω) = j(X̂(Ω), Ω) is the Fraenkel asymmetry. Notice that in this way we make an abuse
of language, since Ω in fact does not belong to a topological space. Instead we should consider the classical
shape derivative, as explained in ([12], Chap. 5) and replace the set Ω by a space of diffeomorphisms acting on
a fixed domain. Since no confusion can occur, we keep this convenient way to present the derivative. In that
context, what we denote by dλ(Ω;V ) is the limit, as t→ 0, of the ratio

λ((Id + tV )(Ω)) − λ(Ω)
t

,

where V : R
2 → R

2 is any regular vector field and Id+ tV a small perturbation of the identity operator.

Proposition 4.3. Let Ω be a planar regular (Lipschitz) set of area π and assume that it has a unique optimal
ball for the Fraenkel asymmetry λ, whose center is at X∗. Denote by ΩOUT = Ω \ BX∗ and ΩIN = BX∗ \ Ω.
Then the shape derivative of λ exists and is given by

dλ(Ω;V ) =
∫
∂ΩOUT \∂BX∗

〈V ;n〉ds−
∫
∂ΩIN\∂BX∗

〈V ;n〉ds, (4.1)

where n is the exterior normal unit vector to the boundary of Ω.

Proof. Assumptions of Lemma 4.2 are satisfied since the measure is differentiable (see for example [12],
Thm. 5.2.2). Notice that the opposite sign of the two terms in (4.1) is due to the fact that the measure of
Ω is counted positively outside BX∗ and negatively inside. Moreover, it is clear that the derivative given in
formula (4.1) is continuous with respect to X . �
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Figure 5. (a) Connected case, N ≥ 4. (b) Non-connected case, N ≥ 3.

4.2. The optimal set has at least two optimal balls

In this section we are going to prove that an optimal set for F cannot have only one optimal ball for the
Fraenkel asymmetry.

Theorem 4.4. Let Ω be a minimizing domain for the functional F . Then Ω has at least two optimal balls for
the Fraenkel asymmetry.

The proof argues by contradiction. Notice that if Ω, whose area equals π, has just one optimal ball B, then
its boundary is composed by arcs of circles of radius R0 outside B and of radius R1 inside B. Since ∂Ω is of
class C1, each connected component ω of Ω has a rotational symmetry of order N ≥ 2. Let x, y be two points on
the boundary of ω such that the angle x̂Oy = π

N and the part of ∂ω between x, y generates the whole boundary
of ω. Since F is rotational invariant, we can assume the point x to belong to the horizontal axis. The strategy
consists in using a simple parametrization of the boundary of Ω with two angles α, θ as described below and to
eliminate all possible values of these parameters by contradicting either a first order or second order optimality
condition or proving that the value of the functional F is greater than 0.406 (see Props. 4.5 and 4.16).

We will distinguish the case where Ω is connected from the case where Ω is not connected in the next two
subsections. Figure 5 summerizes the structure of the proof in the two cases, in terms of the range of the
parameters α, θ.

4.2.1. Connected case

First of all, let us remark that, by statement (4) of Proposition 4.1, we can restrict the analysis to non-convex
domains. Let M be an intersection point between ∂Ω and ∂B, A be the center of the arc Γ0 of radius R0 and B
be the center of the arc Γ1 of radius R1. Since Ω is of class C1, the points A,M,B belong to a straight line.

Let θ ∈ (0, πN ) be the angle between Ox and OM and α ∈ ( πN , π) be the angle between Ax and AM . Notice
that, by construction, 0 ≤ θ ≤ π

N ≤ α ≤ π. The parametrization of the straight line passing through A,M,B is
x(t) = cos θ + t cosα, y(t) = sin θ + t sinα, for t ∈ R. Therefore the point A can be obtained for tA = − sin(θ)

sin(α)

and B for tB = − sin(π/N−θ)
sin(α−π/N) . Therefore

R0 = |tA| =
sin(θ)
sin(α)

, R1 = |tB| =
sin( πN − θ)
sin(α− π

N )
, (4.2)
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Figure 6. Connected case. A set Ω with one optimal ball, N = 3.

and so

|Γ0| = α
sin(θ)
sin(α)

, |Γ1| =
(
α− π

N

) sin( πN − θ)
sin(α− π

N )
·

The perimeter of Ω equals 2N(|Γ0| + |Γ1|). Therefore

δ(Ω) =
2N
[
α sin θ

sinα +
(
α− π

N

) sin( π
N −θ)

sin(α− π
N )

]
− 2π

2π
·

We are going to compute λ(Ω) = N
π (A0 + A1), where NA0 is the area of Ω \B and NA1 is the area of B \Ω.

Let g be defined by (2.2); notice that

A0 = R2
0g(α) − g(θ), A1 = R2

1g
(
α− π

N

)
+ g
( π
N

− θ
)
. (4.3)

The proof will be splitted into several parts, according to the values θ, α,N . For every part, the contradiction
will be given by the fact that Ω does not satisfy one of the conditions expressed in the next proposition.

Proposition 4.5. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a
unique optimal ball and let N ≥ 2 be the order of its rotational symmetry. Then the following conditions hold.

(i) A0 = A1 ≤ π
N , where A0 and A1 are defined in (4.3).

(ii)
1
R0

+
1
R1

=
8δ(Ω)
λ(Ω)

, where R0 and R1 are defined in (4.2).

(iii) F(Ω) < 0.406.
(iv) Q ≥ 0 where Q := 1

sin3(θ)H(α) − 1
sin3( π

N −θ)H(α− π
N ) − 32N

π
δ(Ω)
λ2(Ω) , with H(x) = sin3(x)

tan(x)−x ·
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Proof.
(i) The equality follows from the fact that π = |Ω| = |Ω \B| + |B \Ω| = |B \Ω| + |B \Ω| = |B|.
(ii) This condition comes from the first order optimality condition. Indeed, the general optimality condition
is d( δ

λ2 , V ) = μ d(Area, V ), where μ is a Lagrange multiplier due to the fact that the areas are fixed, and
V : R

2 → R
2 is any regular vector field. This gives

1
λ2

[
1
2π

∫
Γ0

1
R0

V · n− 1
2π

∫
Γ1

1
R1

V · n
]
− 2
π

δ

λ3

[∫
Γ0

V · n−
∫
Γ1

V · n
]

= μ

[∫
Γ0

V · n+
∫
Γ1

V · n
]
.

Since this is true for every V , we obtain

1
R0

= 4
δ

λ
+ 2πμλ2,

1
R1

= 4
δ

λ
− 2πμλ2,

and hence 1
R0

+ 1
R1

= 8δ
λ .

(iii) This is a consequence of Theorem 1.2.
(iv) This is actually a second order optimality condition. We are going to modify Ω by replacing α by α + ε0
in Ω \B1 and by replacing α by α− ε1 in B1 \Ω in such a way that the area of Ω is preserved. We have

Rε00 =
sin θ
sinα

+ ε0 cosα− ε20
sinα

= R0[1 − ε0 cotα+ ε20(1/2 + cot2 α)],

and
(Rε00 )2 = R2

0[1 − 2ε0 cotα+ ε20(1 + 3 cot2 α)].

Moreover Aε0
0 = (Rε00 )2g(α+ ε0) − g(θ) and g(α+ ε0) = g(α) + ε0(1 − cos(2α)) + ε20 sin(2α). Therefore

Aε0
0 = A0 + ε0R

2
02(1 − α cotα) + ε20R

2
0(α + 3α cot2 α− 3 cotα).

By using an analogous argument we obtain

Aε1
1 = A1 + ε1R

2
12(1 − β cotβ) − ε21R

2
1(β + 3β cot2 β − 3 cotβ),

where β = α− π
N . Keeping the total area constant, it holds

2R2
0(1 − α cotα)ε0 +R2

0ε
2
0[α+ 3α cot2 α− 3 cotα] = 2R2

1(1 − β cotβ)ε1 −R2
1ε

2
1[β + 3β cot2 β − 3 cotβ].

Notice that we can express ε1 as a function of ε0, in the form ε1 = aε0 + bε20, with

a =
R2

0

R2
1

1 − α cotα
1 − β cotβ

,

b =
R2

0(α+ 3α cot2 α− 3 cotα) +R2
1(β + 3β cot2 β − 3 cotβ)a2

2R2
1(1 − β cotβ)

·

Let us consider the variations of the perimeter, that is, ΔP = ΔPe +ΔPi, where

ΔPe = 2Rε00 (α+ ε) − 2R0α

= 2R0ε0(1 − α cotα) +R0ε
2
0(α+ 2α cot2 α− 2 cotα),

ΔPi = 2Rε1(β − ε1) − 2R1β

= 2R1ε1(1 − β cotβ) −R1ε
2
1(β + 2β cot2 β − 2 cotβ).

Recalling that ε1 = aε0 + bε20, we get

ΔPi = 2
R2

0

R1
(1 − α cotα)ε0 +

[
R2

0

R1
(α+ 3α cot2 α− 3 cotα) +R1a

2 cotβ(β cotβ − 1)
]
ε20.

Regarding the variation of the area of the symmetric difference, we have |ΩεΔB| = |ΩΔB|+2ΔAe, where ΔAe
is the variation of the external area.
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Therefore

F(Ωε) =

P +ΔP − 2π
2π( |ΩΔB| + 2ΔAe
π

)2 = F(Ω)
1 +N

ΔP

2πδ(
1 +

2NΔAe
πλ

)2 ,

and Ω is a minimizer of F if
ΔP

2πδ
− 4

ΔA

πλ
− 4N

ΔAe
πλ2

≥ 0.

It is easy to see that the ε0 term of the previous quantity is null, by using the optimality condition (ii). Moreover
the ε20 term is

1
2πδ

[
R0(α+ 2α cot2 α− 2 cotα) +

R2
0

R1
(α+ 3α cot2 α− 3 cotα) −R1a

2 cotβ(1 − β cotβ)
]

− 4
πλ

R2
0(α+ 3α cot2 α− 3 cotα) − 16NR4

0

π2λ2
(1 − α cotα)2.

Using again condition (ii), we can say that the above quantity is positive if and only if Q ≥ 0. �
Lemma 4.6. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N be the order of its rotational symmetry. If N ≥ 4, π

2N ≤ θ ≤ π
N and π

N ≤ α ≤ π, then
A0 −A1 > 0.

Proof. Let us set z(θ, α) := A0 − A1. It is easy to prove that ∂z
∂α > 0; therefore z(θ, α) ≥ z(θ, π/N). It is

sufficient to prove that Z(θ) := z(θ, π/N) ≥ 0. We observe that Z( πN ) = 0 and Z( π
2N ) > 0. Notice that Z ′ has

only one zero θ0 in (0, πN ), is positive in (0, θ0) and negative in (θ0, πN ), therefore Z is positive. �

In the sequel we will often use the following formula:

1
R0

+
1
R1

=
sin
(
π
N

)
sin(α− θ)

sin(θ) sin
(
π
N − θ

) ·
Notice that

A0 = sin2 θh(α) − g(θ), A1 = sin2
(
θ − π

N

)
h
(
α− π

N

)
+ g
( π
N

− θ
)
,

where g, h have been defined in (2.2).

Lemma 4.7. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N be the order of its rotational symmetry. If N ≥ 4, 0 ≤ θ ≤ π

2N and π
N ≤ α ≤ π

2 , then
F(Ω) > 0.406.

Proof. We observe that
1
R0

+
1
R1

=
sin
(
π
N

)
sin(α− θ)

sin(θ) sin
(
π
N − θ

) ≥ 2 cos
( π

2N

)
·

Proposition 4.5 implies that
δ(Ω)
λ(Ω)

≥ 1
4

cos
( π

2N

)
, (4.4)

and λ(Ω) = N
π (A0 + A1) = 2N

π A0. Notice that

λ(Ω) =
2N
π

A0 ≤ 2N
π

[
sin2(θ) h

(π
2

)
− θ + sin(θ) cos(θ)

]
≤ 2N

π

[
sin2

( π

2N

) π
2
− π

2N
+ sin

( π

2N

)
cos
( π

2N

)]
· (4.5)

By (4.4) and (4.5) one has F(Ω) > 0.406, since N ≥ 4. �



540 C. BIANCHINI ET AL.

Remark 4.8. In the sequel we will often use the above technique to get a contradiction.

Lemma 4.9. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N be the order of its rotational symmetry. If N ≥ 4, 0 ≤ θ ≤ π

2N and π
2 ≤ α ≤ π

2 + π
N , then

Q < 0,where Q is defined in Proposition 4.5.

Proof. Since H(α) ≤ 0 and H(α− π
N ) ≥ 0, the quantity Q is negative. �

Lemma 4.10. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N be the order of its rotational symmetry. If N ≥ 17, 0 ≤ θ ≤ π

2N and 3π
4 ≤ α ≤ π, then

F(Ω) > 0.406.

Proof. One has δ = N
π d(α, θ) − 1, where

d(α, θ) := sin(θ)
α

sin(α)
+ sin

( π
N

− θ
) α− π

N

sin(α − π
N )

· (4.6)

Observe that d(α, θ) ≥ d(α, 0), since ∂d
∂θ ≥ 0, and

d(α, 0) ≥ sin
( π
N

) 3
4π − π

N

sin(3
4π − π

N )
·

By Proposition 4.5, and the fact that λ(Ω) ≤ 2, we have

F(Ω) ≥ m1 :=
1
4

[
N

π
sin
( π
N

) 3
4π − π

N

sin(3
4π − π

N )

]
, (4.7)

and m1 > 0.406 for N ≥ 17. �

Lemma 4.11. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N be the order of its rotational symmetry. If N ≥ 8, 0 ≤ θ ≤ π

2N and π
2 + π

N ≤ α ≤ 3π
4 ,

then F(Ω) > 0.406.

Proof. As in the previous lemma, δ(Ω) = N
π d(α, θ) − 1, where d(α, θ) has been defined in (4.6) and d(α, θ) ≥

d(α, 0) ≥ π
2 sin( πN ). Moreover λ(Ω) ≤ 2N

π [sin2( π
2N )h(3π

4 ) − g( π
2N )]. Hence

F(Ω) =
δ(Ω)
λ2(Ω)

≥ m2 :=
N
2 sin( πN ) − 1

4N2

π2 [sin2( π
2N )h(3π

4 ) − g( π
2N )]2

, (4.8)

and m2 > 0.406 for N ≥ 8. �

Remark 4.12. Notice that estimates (4.7) and (4.8) for F hold for everyN ≥ 4. However they are not sufficient
to conclude for any N ≥ 3.

Lemma 4.13. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N be the order of its rotational symmetry. If either

(i) 4 ≤ N ≤ 16, 0 ≤ θ ≤ π
2N and 3π

4 ≤ α ≤ π,
or

(ii) 5 ≤ N ≤ 7, 0 ≤ θ ≤ π
2N and π

2 + π
N ≤ α ≤ 3π

4 ,

then Q < 0, where Q is defined in Proposition 4.5.
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Proof. We are assuming, in both cases, that α ≥ π
2 + π

N . If H(α) ≤ H(α− π
N ) < 0, then Q is negative, because

the sum of its first two terms is negative. Therefore we can assume that H(α − π
N ) < H(α) < 0. The mean

value theorem and the estimate |H ′| ≤ 0.3 on the interval (1.973, π) imply that −H(α − π
N ) ≤ 0.3 πN −H(α).

Therefore, dropping negative terms in the expression of Q, we get

Q ≤ H(α)

[
1

sin3 θ
− 1

sin3( πN − θ)

]
+

0.3π
N sin3( π

2N )
− 32N

π

δ(Ω)
λ2(Ω)

≤ 0.3π
N sin3( π

2N )
− 32N

π

δ(Ω)
λ2(Ω)

·

We are now going to use estimates (4.7) and (4.8). If assumption (i) holds we have Q ≤ 0.3π
N sin3( π

2N )
− 32N

π m1 < 0

for 4 ≤ N ≤ 16. If assumption (ii) holds true, we have Q ≤ 0.3π
N sin3( π

2N )
− 32N

π m2 < 0 for 5 ≤ N ≤ 7. �

We are now left with the cases N = 2, 3.

Lemma 4.14. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N = 3 be the order of its rotational symmetry.

(1) If 0 ≤ θ ≤ π
6 and π

3 ≤ α ≤ π
2 , then F(Ω) > 0.406.

(2) If 0 ≤ θ ≤ π
6 and π

2 ≤ α ≤ 5π
6 , then Q < 0.

(3) If 0 ≤ θ ≤ π
12 and 5π

6 ≤ α ≤ π, then A1 >
π
3 .

(4) If π
12 ≤ θ ≤ π

6 and 5π
6 ≤ α ≤ π, then Q < 0.

(5) If π
6 ≤ θ ≤ π

3 and π
3 ≤ α ≤ π, then A0 −A1 > 0.

Proof.
(1) Assume 5π

12 ≤ α ≤ π
2 . Then

8δ
λ

=
1
R0

+
1
R1

=
sin(π3 ) sin(α− θ)
sin(θ) sin(π3 − θ)

≥
√

6.

Moreover,

λ(Ω) =
6
π
A0 ≤ 6

π

[
sin2

(π
6

)
h
(π

2

)
− g
(π

6

)]
·

Therefore, by Proposition 4.5, F(Ω) > 0.406.
Now assume π

3 ≤ α ≤ 5π
12 . Then

8δ
λ

=
1
R0

+
1
R1

=
sin(π3 ) sin(α− θ)
sin(θ) sin(π3 − θ)

≥
√

3.

Moreover,

λ(Ω) =
6
π
A0 ≤ 6

π

[
sin2

(π
6

)
h

(
5π
12

)
− g
(π

6

)]
·

Therefore, by Proposition 4.5, F(Ω) > 0.406.
(2) With the same arguments of the proof of Lemma 4.9, one obtains Q < 0.
(3) A1 = sin2(θ − π

3 )h(α − π
3 ) + g(π3 − θ) ≥ sin2(π3 − π

12 )h(5π
6 − π

3 ) + g(π3 − π
12 ) > π

3 .
(4) Let d(α, θ) be defined by (4.6). As in Lemma 4.10, we have d(α, θ) ≥ d(α, 0) ≥ d(5π

6 ,
π
12 ). Using that

λ(Ω) ≤ 2, one gets Q ≤ 0.3π
3 sin3(π/6)

− 32·3
π

1
4 ( 3
πd(

5π
6 ,

π
12 ) − 1) < 0.

(5) The proof is completely analogous to that one of the case N ≥ 4. �
Lemma 4.15. Let Ω be a connected planar set which minimizes the functional F . Assume that Ω has a unique
optimal ball and let N = 2 be the order of its rotational symmetry. Then Q < 0, where Q is defined in
Proposition 4.5.

Proof. Notice that H(α) ≤ 0 for π
2 ≤ α < π and H(α− π/2) > 0 for α < π. Therefore Q < 0. �
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4.2.2. Non-connected case

Let us first remark that we can assume that the optimal domain has, in this case, only two connected
components. Indeed, let E1 be the connected component which intersects the optimal ball and assume we
have several other connected components E2, E3, . . .. First, we can assume that all these components have
an empty intersection with the optimal ball B, since otherwise one can translate the components far away,
increasing the value of λ and keeping the value of δ, by Lemma 3.1. Moreover, by the isoperimetric inequality,
we can obviously assume that all of these components Ek, k ≥ 2 are balls. Then, we can apply the optimization
procedure explained in the proof of Proposition 3.3 for which we have seen that the optimal configuration is
composed of one or two balls. But if there are two balls, they must have different radii which is not possible since
the optimality condition (2) of Proposition 4.1 claims that the radii outside the optimal balls must be equal.
Thus, the optimal domain must have only two connected components E1, E2 and E2 is a ball not intersecting B.

If the set E1 is contained into B, then E1 is a ball. Hence, by a direct computation for the union of two balls,
it holds F(Ω) ≥ 0.406, and so Ω cannot be optimal.

We therefore assume that E1 is not contained into B. In this case, the parametrization of its boundary is the
same as in the connected case (see Fig. 2), and we have 0 ≤ θ ≤ π

N and θ < α ≤ π. Indeed, the condition

1 < xA +R0 =
sin(α− θ)

sinα
+

sin θ
sinα

,

where A is defined as in Figure 2, is equivalent to α > θ. Moreover we observe that

R1 =
sin( πN − θ)
sin( πN − α)

, R0 =
sin(θ)
sin(α)

· (4.9)

We remark that E2 is a ball with radius R0. Notice that

A0 = R2
0g(α) − g(θ), A1 = R2

1g

(
α− N

π

)
+ g

(
N

π
− θ

)
, (4.10)

and

λ(Ω) =
2NA0

π
+ 2R2

0, δ(Ω) =
N

π

[
α

sin θ
sinα

+
(
α− N

π

)
sin(Nπ − θ)
sin(α− N

π )

]
+R0 − 1.

As in the above subsection, the proof will be splitted into several parts, according to the values θ, α,N . For
every part, the contradiction will be given by the fact that Ω does not satisfy one of the conditions expressed
in the next proposition.

Proposition 4.16. Let Ω be a non-connected planar set which minimizes the functional F . Assume that Ω has
a unique optimal ball B. Let w be the unique connected component which intersects B and let N be the order of
its rotational symmetry. Then the following conditions hold.

(i) A0 −A1 + π
NR

2
0 = 0, where A0 and A1 are defined in (4.10);

(ii) 1
R0

+ 1
R1

= 8δ(Ω)
λ(Ω) , where R0 and R1 are defined in (4.9);

(iii) F(Ω) < 0.406;
(iv) Q ≥ 0, where Q := 1

sin3(θ)
H(α) − 1

sin3(π/N−θ)H(α− π/N) − 32N
π

δ
λ2 , H(x) = sin3(x)

tan(x)−x ;
(v) Φ(α) ≥ 0, where Φ(α) := NR0[1 − α cot(α)][cot(α) − N

π (1 − α cot(α))].

Proof. Statements in (i)–(iv) are analogous to those of the connected case (see Prop. 4.5). Let us prove state-
ment (v). We consider the following perturbation of Ω: we reduce the area of the second component E2,
increasing that one of E1 \B in order to keep the total area equal to π. Therefore α is modified into α+ ε and
R0 into Rε0. Observe that R1 keeps unchanged. Now,

Rε0 =
sin θ
sinα

+ ε cosα− ε2

sinα
= R0[1 − ε cotα+ ε2(1/2 + cot2 α)],
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and
(Rε0)

2 = R2
0[1 − 2ε cotα+ ε2(1 + 3 cot2 α)].

Moreover Aε
0 = (Rε0)2g(α+ ε) − g(θ) and g(α+ ε) = g(α) + ε(1 − cos(2α)) + ε2 sin(2α). Therefore

Aε
0 = A0 + εR2

02(1 − α cotα) + ε2R2
0[α+ 3α cot2 α− 3 cotα].

Since we are keeping the total area unchanged, we have πR2
0 −N(Aε

0 −A0) = π(Rε0)2 which gives

Rε0 = R0 − 1
2
N(Aε

0 −A0)
πR0

− 1
8
N2(Aε

0 −A0)2

πR3
0

,

and hence

2π(Rε0 −R0) = −N
[
2ε(1 − α cotα) + ε2((α+ 3α cot2 α− 3 cotα) +

N

π
(1 − α cotα)2)

]
.

The variation of the perimeter equals to

2N(α+ ε)R0

[
1 − ε cotα+ ε2(1/2 + cot2 α)

]− 2NαR0

−N

[
2ε(1 − α cotα) + ε2(α+ 3α cot2 α− 3 cotα+

N

π
(1 − α cotα)2)

]
.

Observe that the previous expression is a second order polynomial in ε. In particular the terms in ε vanish
according to (ii). The terms in ε2 equal to NR0Φ(α) = NR0[1 − α cot(α)][cot(α) − N

π (1 − α cot(α))] and must
be positive by the optimality of the set Ω. �

Lemma 4.17. Let Ω be a non-connected planar set which minimizes the functional F . Assume that Ω has a
unique optimal ball B. Let w be the unique connected component which intersects B and let N ≥ 2 be the order
of its rotational symmetry. Hence the function Φ(α) defined in Proposition 4.16 has a zero α(N) > π

N such that
Φ(α) < 0 for α(N) < α ≤ π. In particular α(2) ≈ 1.22 and α(N) < 1 for N ≥ 6.

Lemma 4.18. Let Ω be a non-connected planar set which minimizes the functional F . Assume that Ω has a
unique optimal ball B. Let w be the unique connected component which intersects B and let N be the order of
its rotational symmetry.

If N ≥ 3, π
2N ≤ θ ≤ π

N and θ ≤ α ≤ π, then A0 −A1 + π
NR

2
0 > 0.

Proof. We divide the proof into two parts, according to the values of α. If π
N ≤ α ≤ π, one proves, as in the

connected case, that A0 −A1 > 0. If θ < α ≤ π
N we have

A0 −A1 = sin2 θh(α) − g(θ) + sin2
( π
N

− θ
)
h
( π
N

− α
)
− g
( π
N

− θ
)
.

Let us set z(θ, α) the right hand of the last equality. The derivative with respect to α of z is positive. Therefore
A0 −A1 > z(θ, θ) = 0. �

Lemma 4.19. Let Ω be a non-connected planar set which minimizes the functional F . Assume that Ω has a
unique optimal ball B. Let w be the unique connected component which intersects B and let N be the order of
its rotational symmetry.

If N ≥ 3, 0 ≤ θ ≤ π
2N and π

N ≤ α ≤ α(N), then F(Ω) > 0.406.
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Proof. The proof is composed by several steps.

Step 1. Assume that π
N ≤ α ≤ 1 and N ≥ 10. By Proposition 4.16

8δ(Ω)
λ(Ω)

=
1
R0

+
1
R1

≥ 2 cos
( π

2N

)
.

Moreover

λ(Ω) =
2N
π

A0 + 2R2
0 ≤

[
sin2

( π

2N

)
h(1) − π

2N
+

1
2

sin
( π

2N

)] 2N
π

+
1

2 cos2( π
2N )

,

and hence F(Ω) > 0.406.

Step 2. Assume that π
N ≤ α ≤ π

N−1 and N = 7, 8, 9. By Proposition 4.16,

8δ(Ω)
λ(Ω)

=
1
R0

+
1
R1

≥ 2 cos
( π

2N

)
·

Moreover,

λ(Ω) =
2N
π

A0 + 2R2
0

≤
[
sin2

( π

2N

)
h

(
π

N − 1

)
− π

2N
+

1
2

sin
( π

2N

)] 2N
π

+
1

2 cos2( π
2N )

,

and hence F(Ω) > 0.406.

Step 3. Assume that π
N−1 ≤ α ≤ 1 and N = 7, 8, 9. By Proposition 4.16,

8δ(Ω)
λ(Ω)

=
1
R0

+
1
R1

≥ 2 cot
( π

2N

)
sin
(

π

N − 1
− π

2N

)
·

Moreover,

λ(Ω) =
2N
π

A0 + 2R2
0

≤
[
sin2

( π

2N

)
h

(
π

N − 1

)
− π

2N
+

1
2

sin
( π

2N

)] 2N
π

+
1

2 cos2( π
2N )

,

therefore F(Ω) > 0.406.

Step 4. Assume that π
N ≤ α ≤ α(N), 0 ≤ θ ≤ π

2N+2 and N = 3, 4, 5, 6. By Proposition 4.16,

8δ(Ω)
λ(Ω)

=
1
R0

+
1
R1

≥ sin( πN )
sin( π

2N+2 )
·

Moreover,

λ(Ω) =
2N
π

A0 + 2R2
0

≤
[
sin2

(
π

2N + 2

)
h

(
π

2N + 2

)
− g

(
π

2N + 2

)]
2N
π

+ 2
sin2

(
π

2N+2

)
sin2

(
π
N

) ,

therefore F(Ω) > 0.406.

Step 5. Assume that π
N ≤ α ≤ α(N), π

2N+2 ≤ θ ≤ π
2N and N = 3, 4, 5, 6. Then

δ(Ω) ≥ N

π

[
sin
(

π

2N + 2

) π
N

sin
(
π
N

) + sin
(
π

N
− π

2N + 2

)]
+

sin
(

π
2N+2

)
sin(α(N))

− 1.
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Moreover,

λ(Ω) =
2N
π

A0 + 2R2
0 ≤

[
sin2

( π

2N

)
h (α(N)) − g

( π

2N

)] 2N
π

+
2 sin2( π

2N )
sin2( πN )

,

therefore F(Ω) > 0.406. �

Lemma 4.20. Let Ω be a non-connected planar set which minimizes the functional F . Assume that Ω has a
unique optimal ball B. Let w be the unique connected component which intersects B and let N be the order of
its rotational symmetry.

If N ≥ 3, 0 ≤ θ ≤ π
2N and θ ≤ α ≤ π

N , then F(Ω) > 0.406.

Proof. Let us estimate δ(Ω) and λ(Ω); for every N we have

δ(Ω) ≥ N

π

[
θ + sin

( π
N

− θ
)]

+R0 − 1 ≥ N

π
sin
( π
N

)
+ R0 − 1,

λ(Ω) =
2N
π

A0 + 2R2
0 ≤ 2N

π

[
sin2 θ

sin2 α
g(α) − g(θ)

]
+ 2R2

0 ≤ 2N
π
R2

0g
( π
N

)
+ 2R2

0.

Let aN = 1 + N
π g(

π
N ), bN = N

π sin( πN ) − 1. One has

λ(Ω) ≤ 2R2
0aN , (4.11)

and hence

F(Ω) =
δ(Ω)
λ2(Ω)

≥ bN +R0

4R4
0a

2
N

·

Notice that the function
x 
→ bN + x

4x4a2
N

,

attains its maximum at x = − 4
3bN . Therefore F(Ω) > 0.406 if R0 ≥ − 4

3bN and N ≥ 5.
Now, let N = 3, 4 and R0 ≥ − 4

3bN . We divide the analysis in two parts, according to the values of α.
Assume that α < π

N . We can write δ(Ω) = N
π d(α, θ) +R0 − 1, where d has been defined in (4.6). We observe

that ∂d
∂α < 0. Therefore

d(α, θ) ≥ d
( π

2N
, θ
)
≥ π

N
cos
( π

2N

)
·

By estimate (4.11) of λ(Ω) we get

F(Ω) ≥ cos( π
2N ) − 1 +R0

4R4
0a

2
N

·

Notice that the right hand side is a decreasing function of R0 on [− 4
3 bN ,

√
2

2 ] and its value at R0 =
√

2
2 is greater

than 0.406.
Assume now that α ≥ π

N . We have ∂d
∂θ ≥ 0. Since we are studying R0 ≥ − 4

3bN , we are reduced to compute
the minimum of d(arcsin( sin θ

− 4
3 bN

), θ). The minimum of this function is equal to 0.9918 if N = 3 and 0.7630 if
N = 4. Therefore

δ(Ω) ≥ −4
3
bN − 1 +

N

π
×
{

0.9918, N = 3,

0.7630, N = 4.

We are now going to estimate λ(Ω). Since R0 ≥ − 4
3bN and α ≥ π

2N , then θ ≥ θ̂N , where θ̂N is defined by

sin θ̂N
sin π

2N

= −4
3
bN .
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Therefore
λ(Ω) =

2N
π

A1 ≤ 2N
π
g
( π
N

− θ̂N

)
.

One can easily verify that F(Ω) > 0.406.
We are now going to study the case R0 ≤ − 4

3 bN . Let b < 1 and assume that R0 < b. Then sin(α − θ) ≥
sin θ cos θ(1

b − 1). Therefore

8
δ(Ω)
λ(Ω)

≥ sin( πN ) sin(α− θ)
sin θ sin( πN − θ)

≥ 1
b
− 1 ∀N. (4.12)

For b = − 4
3bN , one has F(Ω) > 0.406, by estimate (4.11); that is, for N ≥ 3, if R0 ≤ − 4

3bN , then δ(Ω)
λ2(Ω) >

0.406. �

Lemma 4.21. Let Ω be a non-connected planar set which minimizes the functional F . Assume that Ω has a
unique optimal ball B. Let w be the unique connected component which intersects B and let N = 2 be the order
of its rotational symmetry.

(1) If α > α(2), then Φ(α) < 0, where Φ(·) is defined in Proposition 4.16.
(2) If π

4 ≤ θ ≤ π
2 and θ ≤ α ≤ π

2 , then A0 −A1 + π
2R

2
0 > 0.

(3) If α ≤ π
6 , then F(Ω) > 0.406.

(4) If 0 ≤ θ ≤ π
4 , π

6 ≤ α ≤ α(2) and R0 ≤ 0.45, then A0 −A1 + π
2R

2
0 < 0.

(5) If 0 ≤ θ ≤ π
4 , π

6 ≤ α ≤ α(2) and R0 ≥ 0.45, then F(Ω) > 0.406.

Proof.

(1) This follows from Proposition 4.17.
(2) The proof is analogous to that of the case N ≥ 3, see Lemma 4.18.
(3) Let θ ≤ α ≤ π

2 and let R0 < 0.3670. One can use estimates (4.11) and (4.12) with b = 0.3670 to prove that
δ
λ2 > 0.406. We now assume that R0 ≥ 0.3670. Let us estimate δ(Ω): using the function d defined in (4.6) we
get

δ(Ω) =
2
π
d(α, θ) +R0 − 1 ≥ 2

π
d
(π

6
, θ
)

+R0 − 1 ≥ 2
π

π
3

sin π
3

+R0 − 1,

because the derivative of d with respect to α is negative. On the other hand,

λ(Ω) =
4
π
A0 + 2R2

0 ≤ 4
π
R2

0g
(π

6

)
+ 2R2

0,

therefore
δ(Ω)
λ2(Ω)

≥
2
π

π
3

sin π
3

+R0 − 1
4
πR

2
0g(

π
6 ) + 2R2

0

.

The function on the right hand side being decreasing with respect to R0, if R0 ∈ (0.3670,
√

2
2 ), it holds

F(Ω) =
δ

λ2
≥

2
π

π
3

sin π
3

+
√

2
2 − 1

2
π g(

π
6 ) + 1

> 0.406.

(4) We are going to prove that A0 −A1 + π
2R

2
0 < 0, that is,

G(α, θ) :=
sin2 θ

sin2 α

[
g(α) +

π

2

]
+ sin(2θ) + cos2(θ)h

(π
2
− α
)
<
π

2
·

Since ∂G
∂θ > 0, we have

G(θ, α) ≤ G(arcsin(0.45 sinα), α) ≤ max
α∈[ π

6 ,α(2)]
G(arcsin(0.45 sinα), α) <

π

2
·
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(5) We can write δ in the following way:

δ(Ω) =
2
π
d(α, θ) +R0 − 1,

where d has been defined in (4.6). Observe that d is concave with respect to θ. Therefore

min d(θ, α) = min
α

{d(α, arcsin(0.45 sinα)), d(α, arcsin(
√

2/2 sinα))} ≈ 1.4169.

On the other hand,

λ(Ω) =
4
π
A1 =

4
π
L(α, θ),

where

L(α, θ) = g
(π

2
− θ
)
− cos2 θ

cos2 α
g
(π

2
− θ
)
.

Now, it is easy to see that L is decreasing with respect to θ. Therefore L(α, θ) ≤ L(α, arcsin(0.45 sinα)). This
implies that

λ(Ω) ≤ 4
π

max
α

L(α, arcsin(0.45 sinα)) ≈ 0.7081.

The estimates above on δ(Ω) and λ(Ω) entail F(Ω) = δ(Ω)
λ2(Ω) > 0.406. �

5. Conjecture on the optimal set

In this section, we describe a set that we conjecture to be optimal for F . This conjecture would follow from
these two properties:

Conjecture 1.

(i) The optimal set Ω0 is connected and has two perpendicular axes of symmetry.
(ii) The optimal set has exactly two optimal balls B1 and B2 realizing the Fraenkel asymmetry.

Once these properties (which seem to be difficult) are proved, the problem becomes finite dimensional. More
precisely, the optimal set belongs to a class of sets named masks in [6] (see Fig. 7). Three parameters are
sufficient to describe the family of masks M in competition. For that purpose, we will use the C1 regularity of
the optimal domain which allows us to consider only C1 competitors. Moreover the volume constraint allows us
to get rid of one of these parameters, leading to a simple unconstrained optimization problem in two variables.
We point out that the solution of this minimization problem is a non convex domain M0 such that F(M0) <
infΩ∈C F(Ω) = 0.405585, where C be the class of planar convex sets (see Thm. 1.2).

We recall that by Proposition 4.1, statement (2), the boundary of the optimal domain is composed of arcs
of circle, the radius of each arc is the same in any connected component of the complementary of the union of
boundaries of the two optimal balls. This holds true since small variations of the boundary far from the optimal
balls do not change these balls (and then the Fraenkel asymmetry). Therefore, the problem is locally equivalent
to minimizing the perimeter with a volume constraint. Thanks to the symmetry assumption, a mask is thus
composed of 8 arcs of circle with three different radii.

Let us fix the notations (see Fig. 7). We will explain later what are the parameters that we use to completely
describe the sets. We choose to work with sets of area π in an orthonormal frame centered at O. The two optimal
(unit) balls B1 and B2 are respectively centered at P1 = (x0, 0) and P2 = (−x0, 0). By symmetry, it suffices
to describe the boundary of M in {x ≥ 0, y ≥ 0}. In this quadrant, the boundary is composed of three arcs of
circle:

• an arc γ1 of center O1 = (0, y1) and radius R1 in the intersection of the two optimal balls,
• an arc γ2 of center O2 = (x2, y2) and radius R2 inside the ball B1 and outside the ball B2,
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θ
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Figure 7. Parametrization of a mask M with α, θ, x0.

• an arc γ3 of center O3 = (x3, 0) and radius R3 outside the two balls.

We also introduce the intersection points of the boundary of M with the boundary of the optimal balls in
the upper half-plane, A = (xA, yA) and B = (xB , yB) being in the first quadrant and A′ = (−xA, yA), B′ =
(−xB , yB) their symmetric with respect to the y axis:

∂M ∩ ∂B1 = {B,A′} and ∂M ∩ ∂B2 = {A,B′}.
Moreover, by Corollary 2.5 these points have same height: yA = yB. We finally introduce the angles α =
(
−−→
O1O,

−−→
O1A) and θ = (

−−−→
P1O3,

−−→
P1B).

The C1 regularity of ∂M implies that O1, A,O2 and O2, O3, B are on the same line. By elementary trigono-
metric calculus the following relations hold:

R1 =
cos θ − x0

sinα
, R2 =

x0

sinα
, R3 =

sin θ
cosα

,

O1 =
(

0,
cos(θ − α) − x0 cos(α)

sinα

)
, O2 =

(
cos θ, sin θ − x0 cosα

sinα

)
, O3 =

(
x0 +

cos(α+ θ)
cos(α

)
,

that is, all these quantities can be expressed in term of the three parameters α, θ, x0.
With all these formulae in hand, it becomes easy to compute the perimeter P (M) of M, its area A(M) and

its Fraenkel asymmetry λ(M). More precisely we have:

P (M) = 4
(
α(x0 + cos θ)

sinα
− α sin θ

cosα
+
π sin θ
2 cosα

)
, (5.1)

and, by definition, δ(M) = P (M)/2π − 1,

A(M) = 4
(
x2

0 − cos2 θ
2

h(α) + x0(sin θ + h(α) cos θ) + cos θ sin θ +
sin2 θ

2
h
(π

2
− α
))

, (5.2)

where h is defined in (2.2), and finally

λ(M) = 2 − 4
π

(
2x0h(α) cos θ + θ + cos θ sin θ − h(α) cos2 θ

)
. (5.3)
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Notice that the boundary of an optimal domain is composed by arcs of cercles whose radius changes depending
on the mutual position of ∂M and the boundary of an optimal ball. That is ∂M changes curvature at the
intersection points of the boundary with the optimal circle, and hence we do not need to check that B1 and B2

are indeed optimal balls. More precisely, we are now looking for the best domain, namely the best parameters α,
θ, x0 for the ratio δ/λ2 with the constraint A(M) = π. It turns out that the area is a quadratic polynomial in x0,
therefore, the constraint A(M) = π allows us to eliminate the variable x0, by expressing it as a function of θ, α.
By construction, the three parameters must satisfy

0 ≤ α ≤ π

2
, −x0 + cos θ ≥ 0, α+ θ ≤ π

2

the second inequality expresses the fact that the point A must be in the first quadrant and the third one that
the radius R3 ≤ 1, otherwise the arc γ3 would not be outside the ball B1. Thus the second inequality just means
that we will look for the root of the quadratic which is between 0 and cos θ.

Finally, the problem reduces to minimize the function of two variables J(α, θ) := (P (M) − 2π)/λ2(M) where
P (M) and λ(M) are defined respectively in (5.1) and (5.3) and x0 is expressed by A(M) = π with A(M) defined
in (5.2). We just have to assume 0 ≤ α, 0 ≤ θ, α + θ ≤ π

2 . We observe that in the configuration where the sign
of the curvatures inside the optimal balls is opposite, the parameters satisfy 0 ≤ α ≤ π/2 and 0 ≤ θ ≤ π.

A numerical computation provides the explicit values of the optimal parameters; Figure 7 has been drawn by
using such values. For the corresponding set the value of the functional F is approximately 0.3931. This entails
that the optimal set for F cannot be convex by Theorem 1.2.

Conjecture 2. The value of the optimal constant is c∗ = 2.5436249 and the set which saturates is the “mask”
M0 described above with the following values of the parameters:

α = 0.2686247, θ = 0.5285017, x0 = 0.3940769.

The value of F for the set M0 is 1/c∗ = 0.3931397.
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