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ON THE CONDITION OF TETRAHEDRAL POLYCONVEXITY, ARISING
FROM CALCULUS OF VARIATIONS ∗
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Abstract. We study geometric conditions for integrand f to define lower semicontinuous functional
of the form If (u) =

∫
Ω

f(u)dx, where u satisfies certain conservation law. Of our particular interest is
tetrahedral convexity condition introduced by the first author in 2003, which is the variant of maximum
principle expressed on tetrahedrons, and the new condition which we call tetrahedral polyconvexity.
We prove that second condition is sufficient but it is not necessary for lower semicontinuity of If ,
tetrahedral polyconvexity condition is non-local and both conditions are not equivalent. Problems we
discuss are strongly connected with the rank-one conjecture of Morrey known in the multidimensional
calculus of variations.
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1. Introduction

One of the most challenging problems in the modern multidimensional calculus of variations is the so-called
rank-one conjecture of Morrey which reads as follows. Let us consider the classical functional of the calculus of
variations:

If (u) =
∫

Ω

f(Du)dx,

where Ω ⊆ R
n, u : Ω → R

m, u = (u1, . . . , um), ui ∈ W 1,∞(Ω), i = 1, . . . , m, Du = (∇u1, . . . ,∇um) ∈
R

n×m. One asks about the characterization of the space of admitted functions f such that the functional If is
sequentially lower semicontinuous with respect to the sequential weak-∗ convergence of its arguments (gradients)
in L∞(Ω, Rn×m) (to abbreviate let us call this property shortly sw ∗ −lsc). In the paper [30] Morrey proved
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that If is sw∗ − lsc if and only if it satisfies the following condition called the quasiconvexity condition:

1
|Q|
∫

Q

f(A + Dφ)dx ≥ f(A), (1.1)

whenever φ ∈ C∞
0 (Ω, Rm), A ∈ R

n×m is an arbitrary matrix and Q is an arbitrary cube in R
n. The quasi-

convexity condition seems to be impossible to be verified in practice. Therefore it is natural to ask if there
are some geometric conditions which are equivalent to the quasiconvexity condition (1.1). It was proven by
Morrey in 1952 [30] that every quasiconvex function is convex in the directions of rank-one matrices and this
property is called nowadays rank-one property. He conjectured (to be more precise he had expressed his doubts)
that rank-one property is equivalent to the quasiconvexity condition. Since that time this conjecture is called
rank one conjecture of Morrey. It required 40 years when this conjecture was disproved by Šverák [44] in cases
m ≥ 3, n ≥ 2, while up to nowadays the conjecture is open in the remaining cases, which reduce to m = n = 2.

Many authors contributed further to that challenging question. We refer to e.g. [1, 4–6, 8, 11–15, 18, 26–
28, 30, 31, 33–35, 37–39, 41–44, 48, 49]. Iwaniec in [19] has pointed out the strong relation between Morrey’s
conjecture and some important open problems in the theory of quasiconformal mappings (see also the paper
by Astala [3]). Šverák has shown in [45] that quasiconvexity is strongly related to compactness properties of
approximate solutions of the system Du ∈ K.

We are interested in geometric conditions which could be helpful for better understanding the quasiconvexity
condition.

For this, we consider the case m = n = 2 and the special subset in the space of gradients, namely

u(z) = ξ1R(ξ1 · z) + ξ2S(ξ2 · z) + ξ3T (ξ3 · z) =: u1(z) + u2(z) + u3(z), where
ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (1, 1)

and R, S, T : R → R are Lipschitz functions, R
′
= r, S

′
= s, T

′
= t. We observe that

Du =
3∑

i=1

Dui = r(x)

[
1 0

0 0

]
+ s(y)

[
0 0

0 1

]
+ t(x + y)

[
1 1

1 1

]

∼ (r(x), s(y), t(x + y)).

This way the function f defined on 2 × 2 symmetric matrices can be identified with the function f̃ defined on
R

3 and our original functional reduces to the simpler one

If̃ (v) =
∫

Q

f̃
(
v1(x), v2(y), v3(x + y)

)
dxdy (1.2)

(here v1 = r, v2 = s, v3 = t). Note that the function v(x, y) = (v1(x), v2(y), v3(x + y)) belongs to the kernel of
differential operator P = (P1, P2, P3), i.e. Pv = 0, where

P1v =
∂v1

∂y
, P2v =

∂v2

∂x
, P3v =

∂v3

∂x
− ∂v3

∂y
· (1.3)

In particular this reduction step links the problem of quasiconvexity with the problem in the compensated
compactness theory (originated by the pioneering works [32, 46], see also [47]), where one investigates the
sw∗−lsc-property of functionals defined on functions which lie in the kernel of the given differential operator P .
In the special case when P is the rotation operator one deals with gradients. The rather well understood case
is the case when operator P satisfies the so-called constant rank condition [7, 16, 17]. For the cases when the
constant rank condition might not be satisfied we refer to [20,21] and their further extensions (involving many
applications), as well to first author’s works [22, 23]. For recent works in this direction we refer also to [2, 40]



ON THE CONDITION OF TETRAHEDRAL POLYCONVEXITY 477

and to references enclosed therein. We emphasize that our operator P given by (1.3) does not satisfy constant
rank condition, i.e. it deals with the case which is less understood.

Let us skip this general approach and concentrate on the very special functional given by (1.2) which will
be called the functional of the type (2, 3). Integrands which define sw ∗ −lsc functional will be called (2, 3)
quasiconvex.

As there are no constraints on the involved functions v1, v2, v3 in (1.2), we thought that similarly as in the
case of the classical unconstrained functional, one could expect that the sw ∗ −lsc property of this functional
can be expressed by the purely geometric constraints. The candidate for such geometric condition was found by
first author in the paper [24] (Thm. 3.1, see also [10,36] for the related issues). The condition has to be verified
on three dimensional oriented simplex’es (oriented tetrahedrons) by the purely geometric means. To be more
precise, in Theorem 3.1 in [24] it was shown that if f̃ defines the functional (1.2) with the sw ∗ −lsc property
then it necessarily must satisfy the two conditions and one of the conditions has purely geometric interpretation.
We omit the formulation of the second one, which is not that directly geometric, and focus on first one only. It
says the following. Having given an arbitrary tetrahedron D ⊆ R

3 with three edges paralel to the axis and the
polynomial Pf̃ from seven dimensional space of polynomials A = span{1, x1, x2, x3, x1x2, x1x3, x2x3} such that
f̃ = Pf̃ in every corner of D and its three neighbours (we omit their definition, such Pf̃ is defined uniquely),
one has

f̃ ≤ Pf̃ inside D.

This property serves as the version of the maximum principle for f̃ . We will call this condition weak tetrahedral
convexity condition.

We address the following questions:

Question A. Is the weak tetrahedral convexity condition equivalent to the (2, 3) quasiconvexity condition, i.e.
lower semicontinuity of the related functional?

Question B. Are there some other simple geometric conditions which guarantee sw ∗ −lsc property of the
related functional (1.2), i.e. (2, 3) quasiconvexity?

In this paper we try to approach them. We did not succeed in answering Question A. However, when looking
for some other simple geometric conditions, we have introduced another geometric condition called tetrahedral
polyconvexity condition, similarly as one deals with polyconvexity condition in the calculus of variations [5].
Trying to approach both questions, we have shown that tetrahedral polyconvexity condition is not equivalent
to (2, 3) quasiconvexity. For this we use the tool known in the calculus of variations, namely fourth order poly-
nomial constructed by Alibert and Dacorogna in [1] and embedding of our special functions v in (1.2) into the
space of gradients. Main statement in this direction, where we compared several convexity type conditions useful
for understanding Question A, is formulated in Theorem 3.3. Moreover, we have shown that weak tetrahedral
polyconvexity condition is the non-local one, i.e. it cannot be expressed by conditions which hold in an arbitrary
small neighbourhoods of points. This is done by adapting to our setting the technique of Kristensen from [26],
which is known in the calculus of variations, showing that polyconvexity is not the local condition. The adapta-
tion required perhaps not so automatic modification of the Carathéodory Theorem (Thm. 4.4). Main statement
about the non-locality is formulated as Theorem 5.2.

We hope that the presented issue will contribute to the discussion of the quasiconvexity condition in the
calculus of variations, as well as will indicate on some new interesting questions in pure geometry.

2. Preliminaries and basic notation

2.1. Functions of the type (2,3)

In this section we will be dealing with the following set of functions.
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Definition 2.1 (Function of the type (2, 3)). Let Ω be an arbitrary open subset of R
n. Function u : Ω → R

3

having the form

u(z) =
(

r
(
z · ξ1

)
, s
(
z · ξ2

)
, t
(
z · ξ3

))
,

where (ξi)3
i=1 is a triple of vectors from R

n which is pairwise independent, but dependent as a triple, a · b stays
for scalar product of the vectors a, b and r, s, t are scalar functions of one variable, will be called function of
the type (2,3) defined on Ω.

Justification of this notion comes from the fact that we deal with two variables (z may be here a vector from
R

n, however a function is dependent only on its projection to a two dimensional plane: span {ξ1, ξ2, ξ3}) and
three functions. As an example of such function we may consider function

v(x, y) =
(

r(x), s(y), t(x + y)
)

, where (x, y) ∈ Ω ⊆ R
2.

Functions of the form v(x, y) = (r(x), s(y), t(x + y)) and Ω ⊆ R
2 will be called a special (2,3) functions.

However not defined so far, functions of that type appear in several papers in calculus of variations as a tool
to investigate quasiconvexity condition [10, 37].

In our considerations we will use the fact that functions of the type (2, 3) can be canonically embedded into
the space of symmetric gradients. Let us explain how it is done.

For this we will use the convention:

Dv =

⎛
⎜⎝

∂v1
∂x1

. . . ∂v1
∂xn

...
. . .

...
∂vm

∂x1
. . . ∂vm

∂xn

⎞
⎟⎠,

where v = (v1, . . . , vm) : Ω → R
m is vector-valued function and Ω ⊆ R

n.
Let r, s, t : R → R be given scalar one-variable bounded functions and R, S, T be their absolutely continuous

primitives (so Lipschitz), i.e. R′ = r, S′ = s, T ′ = t. Consider u : Ω → R
n such that for any z ∈ Ω

u(z) = ξ1R(ξ1 · z) + ξ2S(ξ2 · z) + ξ3T (ξ3 · z) =: u1(z) + u2(z) + u3(z).

Then we obtain

Du(z) = ξ1 ⊗ ξ1r(ξ1 · z) + ξ2 ⊗ ξ2s(ξ2 · z) + ξ3 ⊗ ξ3t(ξ3 · z) =
3∑

i=1

Dui(z). (2.1)

Taking n = 2 and

ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (1, 1),

we may consider the special subsets in the space of gradients:

Du = Du1 + Du2 + Du3, where

u1(x, y) := (R(x), 0), u2(x, y) := (0, S(y)), u3(x, y) := (T (x + y), T (x + y)), (2.2)

Du = r(x)

[
1 0

0 0

]
+ s(y)

[
0 0

0 1

]
+ t(x + y)

[
1 1

1 1

]
. (2.3)

In particular, function of the type (2, 3) is embedded into the space of symmetric gradients. We arrive at a
following observation.
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Proposition 2.2. Any special function of the type (2, 3) may be uniquely identified with a gradient of a certain
function u : Ω → R

3, u = u1 + u2 + u3 defined by (2.2) via expression (2.3).

We will consider r, s, t ∈ L∞(R), so that R, S, T are Lipschitz. In fact, for the definition of a function of a
type (2, 3) we only need to know the values on projections of Ω into three lines along ξ1, ξ2, ξ3 respectively. Note
that any Lipschitz function defined on a closed subset may be extended to a Lipschitz function on whole R

N

with no change of Lipschitz constant by the Kirszbraun theorem.

2.2. Functionals of the type (2,3)

We start with recalling the definition of special functionals from [24].

Definition 2.3 (Functional of the type (2, 3)). Let Ω be an open subset of R
n, ξ = (ξi)3

i=1 be a triple of vectors
belonging to R

n which are linearly dependent and pairwise independent. Let

v(z) =
(

r
(
z · ξ1

)
, s
(
z · ξ2

)
, t
(
z · ξ3

))
be given function of the type (2, 3).

A functional of the form
If (v, ξ) =

∫
Ω

f
(
r(z · ξ1), s(z · ξ2), t(z · ξ3)

)
dz

will be called a functional of the type (2,3), while a functional of the form

If (v) =
∫

Ω

f
(
r(x), s(y), t(x + y)

)
dxdy, where (x, y) ∈ Ω ⊆ R

2

will be called the special functional of the type (2,3).

A crucial problem for us is the investigation of lower semicontinuity property of such functionals with respect
to weak-∗ convergence of v′s in L∞(Ω, R3). For this we use the following definition.

Definition 2.4 (weak-∗ lower semicontinuity, weak-∗ continuity).

(i) A functional of the type (2, 3) is lower semicontinuous with respect to the sequential weak-∗ convergence in
L∞(Ω, R3) whenever for any sequence vν ∗

⇀ v (i.e. vν weak-∗ converges to v in L∞(Ω, R3)) of the functions
of the type (2, 3) we have

lim inf
ν→+∞ If (vν , ξ) ≥ If (v, ξ).

To abbreviate we will call this condition the (2,3) LSC property. Those integrands which define functionals
having the (2, 3) LSC property will be called (2,3) quasiconvex.

(ii) If lim inf
ν→+∞ If (vν , ξ) = If (v, ξ) whenever vν ∗

⇀ v, we say that If is weakly* continuous with respect to the

sequential weak-∗ convergence in L∞(Ω, R3) of the functions of the type (2, 3). Integrands defining such
functionals will be called (2,3) quasiaffine.

The weak-∗ convergence of the vν ’s is equivalent to convergence of functions building their coordinates:
rν , sν , tν with respect to weak-∗ convergence in L∞ on the respective projections of set Ω onto the lines.
Moreover, the limiting function v is also of the type (2, 3).

Let us note that the non-abstract description of set of (2, 3) quasiconvex functions has not been systematically
investigated.

From the following fact stated below, it follows that the lower semicontinuity of any functional of the type
(2, 3) reduces to the case of Ω = [0, 1]2 and ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (1, 1).

Fact 2.5 (Lem. 2.2 in [24]). Let f be a continuous function f : R
3 → R. The following conditions are equivalent.
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(i) For Q = [0, 1]2 the special functional

If (v) =
∫

Q

f
(
r(x), s(y), t(x + y)

)
dxdy (2.4)

is lower semicontinuous with respect to weak-∗ convergence of r, s, t in L∞(R).
(ii) For any domain Ω ⊂ R

N and arbitrary triple of vectors ξ = (ξi)3
i=1 which are pairwise independent,

but linearly dependent as a triple, the functional If (v, ξ) is lower semicontinuous with respect to weak-∗
convergence of r, s, t in L∞(R).

In formulation of part (i) Lemma 2.2 in [24] one dealt with certain cube, however easy translation and dilation
argument shows that this is equivalent to the statement above.

According to Proposition 2.2 an arbitrary special functional of the type (2, 3) can be uniquely identified with
certain functional defined on the subset of gradients given by (2.3):

If (v) =
∫

Ω

f(r(x), s(y), t(x + y))dxdy =
∫

Ω

f̃(Du1 + Du2 + Du3),

where the ui’s were defined in (2.2) and

f(r, s, t) = f̃

(
r

[
1 0

0 0

]
+ s

[
0 0

0 1

]
+ t

[
1 1

1 1

])
def
=: f̃

([
r + t t

t s + t

])
,

f̃ is defined on span

{[
1 0

0 0

]
,

[
0 0

0 1

]
,

[
1 1

1 1

]}
= M2×2

sym (2.5)

and we use the standard notation M2×2 ∼= R
4 to denote 2 × 2 matrices and M2×2

sym to denote symmetric 2 × 2
matrices.

2.3. Convexity-type conditions

It is not obvious whether there is a geometric interpretation of (2, 3) quasiconvex functions. To understand
it better we discuss here several convexity-type conditions of geometric type for functions f : R

3 → R.
For this we will start with introducing some geometric and algebraic objects we will deal with.

Definition 2.6 (Regular symplex). Let p be a point in R
3 and {ti}3

i=1 be nonzero real numbers and (ei)3
i=1

the standard R
3 basis. We will call a symplex D regular, whenever D is the convex hull of four points:

p, {p + tiei}3
i=1, for some p, {ti}3

i=1.

Such a D is obviously a tetrahedron with vertices p, {p + tiei}3
i=1, in particular having three edges parallel

to the axis.
Every regular symplex D defines a cuboid, which has eight vertices, i.e. p, {p+tiei}3

i=1, {p+tiei+tjej}i�=j , p+∑
tiei. For any vertex q of that cuboid let us define the neighbours of q – that is those vertices which are

linked with q by a single edge.
We introduce the subspace of polynomials

A def= span {1, r, s, t, rs, rt, st}.
Folowing [24], having given regular symplex D, we define the projection operator PD : C(R3) → A by choosing
for any continuous function f such PDf ∈ A that the equality

PDf(r, s, t) = f(r, s, t),

holds in every vertex in D and all its neighbours.
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Note that vertices p, {p+tiei}3
i=1 and their neighbours {p+tiei+tjej}i�=j form a set of seven points – vertices

of the cuboid defined by D apart from p +
∑3

i=1 tiei. As A is seven-dimensional and those seven points are
affinely independent, Kronecker–Capelli theorem shows that PDf is uniquely defined.

We will deal with the following convexity-type conditions, which contribute to the understanding of (2,3)
quasiconvexity condition.

Definition 2.7 (Convexity-type conditions). The function f : R
3 → R will be called

(i) tetraaffine, whenever f is a polynomial belonging to the linear space A;
(ii) weakly tetrahedrally convex, whenever the inequality

f(r, s, t) ≤ PDf(r, s, t)

holds for every point (r, s, t) ∈ D and any regular symplex D.
(iii) tetrahedrally polyconvex if there exists convex function g : R

6 → R such that

f((x1, x2, x3)) = g ◦ e((x1, x2, x3))

where e : R
3 → R

6 is an embedding given by

e((x1, x2, x3)) = (x1, x2, x3, x1x2, x1x3, x2x3);

(iv) reduced polyconvex if there exists convex function g : R
4 → R such that

f((x1, x2, x3)) = g ◦ i((x1, x2, x3))

where i : R
3 → R

4 is an embedding given by

i((x1, x2, x3)) =

(
x1, x2, x3, det

[
x1 + x3 x3

x3 x2 + x3

])
.

For any convexity type condition C a class of C−affine functions is understood as functions f such that both f
and −f satisfy C. This way we will deal with weakly tetrahedrally affine, tetrahedrally polyaffine and reduced
polyaffine functions, respectively.

The following remark is in order.

Remark 2.8.

(i) Tetraaffine functions have appeared in the paper [24]. The following Proposition has been obtained there.

Proposition 2.9 (Cor. 3.4). The function f : R
3 → R is tetraaffine if and only if it is (2, 3) quasiaffine.

(ii) The weak tetrahedral convexity was one of the two conditions established in [24], which together were
called “tetrahedral convexity”. That is the motivation of adding the word “weak” in the above definition.
The following statement follows from Theorem 3.2 obtained in [24]. In the formulation we omit the second
condition obtained there.

Proposition 2.10. If f is (2, 3) quasiconvex then f is weakly tetrahedrally convex.

(iii) The notions of tetrahedral polyconvexity and reduced polyconvexity are related to the classical notion
of polyconvexity condition due to Ball [5]. In case of functions defined on 2 × 2 matrices, function F is
called polyconvex, if there exist the convex function G : M2×2 × R → R such that F = G ◦ E and
E(X) = (X, detX) for any matrix X ∈ M2×2.
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Define I : R
3 → M2×2

sym be the isomorphism given by

I(x1, x2, x3) =

(
x1

[
1 0

0 0

]
+ x2

[
0 0

0 1

]
+ x3

[
1 1

1 1

])
=

[
x1 + x3 x3

x3 x2 + x3

]
.

Let us now define another isomorphism J : M2×2
sym × R → R

4 by

J

([
r + t t

t s + t

]
, x

)
= (r, s, t, x).

For any symmetric matrix M and real number x we have

J(M, x) = (I−1(M), x) and J ◦ E ◦ I(r, s, t) = i(r, s, t).

Therefore, when f is reduced polyconvex, we have f(r, s, t) =

g ◦ i(r, s, t) = (g ◦ J) ◦ E ◦ (I(r, s, t)
)

= G ◦ E
(
I(r, s, t)

)
= F ◦ I(r, s, t),

involving convex function g, where G = g ◦ J is convex and F = G ◦ E is polyconvex in the classical
sense. As I was a linear isomorphism between R

3 and M2×2
sym, f is identified through I with the classical

polyconvex function reduced to the space of symmetric matrices.
(iv) The equality

det

[
r + t t

t s + t

]
= rs + rt + st (2.6)

shows that det ◦I is a tetraaffine function. It is also a reduced polyaffine function, i.e. such function f
that both f and −f are reduced polyconvex.

The following proposition characterises tetrahedrally polyconvex functions as supremas of tetraaffine poly-
nomials. Its rather standard proof is left to the reader.

Proposition 2.11. Function f is tetrahedrally polyconvex if and only if it is equal to supremum of some family
of tetraaffine functions.

Our next statement compares the introduced convexity conditions.

Lemma 2.12. Let f : R
3 → R be the given continuous function. Then the following implications hold:

f is reduced polyconvex
(1)⇒ f is tetrahedrally polyconvex

(2)⇒ f is (2, 3) quasiconvex
(3)⇒ f is weakly tetrahedrally convex

(4)⇒ f is convex along the axis.

Moreover, the inverse implications to (1) and (4) do not hold.

In the following section we will show that the inverse implication to (2) also does not hold.
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Proof.

“
(1)⇒” Assume there exists a convex function G : M2×2

sym × R → R such that, under the notation from Remark
2.8 we have

G(A, detA) = G ◦ E(A) = F (A) and f = F ◦ I.

We construct the projection π : R
3 × R

3 → M2×2
sym × R by

π([r, s, t], [x, y, z]) def=

([
r + t t

t s + t

]
, x + y + z

)
.

Function π is affine and π ◦ e(r, s, t) =

π(r, s, t, rs, rt, st) =

([
r + t t

t s + t

]
, det

[
r + t t

t s + t

])
= E ◦ I(r, s, t),

because of (2.6). Thus g := G ◦ π is a convex function and

g ◦ e = G ◦ π ◦ e = G ◦ E ◦ I = F ◦ I = f,

as required for tetrahedral polyconvexity.

“
(1)

�⇐” Let f(r, s, t) = rs. To verify tetrahedral polyconvexity condition for f it is sufficient to consider
g(r, s, t, x, y, z) := x. Then g is convex and g ◦ e(r, s, t) = rs = f(r, s, t). However f is not reduced
polyconvex. We will proceed with a contradiction. Assume there exists a convex function G : R

4 → R

such that G ◦ E = f. Therefore G(r, s, t, rs + rt + st) = rs. As G is convex, it is bounded from below by
an affine function h : R

4 → R,

h(r, s, t, x) = h0 + h1r + h2s + h3t + h4x.

We have then for every r, s, t, that

h ◦ E(r, s, t) = h(r, s, t, rs + rt + st) ≤ rs = G ◦ E(r, s, t) = f(r, s, t).

in particular we have that h(r, 0, t, rt) = h0 + h1r + h3t + h4rt ≤ rs. Taking r = 0, from arbitrariness of t
it follows that h0 ≤ 0, h3 = 0. Furthermore, h(r, s, 0, rs) = h0 +h1r+h2s+h4rs ≤ rs. Taking s = 0 shows
that h1 = 0. Analogously taking r = 0 shows that h2 = 0. We obtain now that h0 + h4rs ≤ rs for any r, s
and thus h4 = 1. So, if there exists such a function h, it is h(r, s, t, x) = h0 + x for some nonpositive h0.
Thus

h ◦ E(r, s, t) = h0 + rs + rt + st ≤ rs

for any r, s, t. Taking now however r = s = t we obtain h0 + 3r2 ≤ r2 which obviously doesn’t hold for
any h0.

“
(2)⇒” It’s easy to check that if {fj}j∈J is a family (2, 3) quasiconvex functions, then sup

j∈J
fj is also (2, 3) qua-

siconvex. From Proposition 2.11 any tetrahedrally polyconvex is a supremum of some family {pj}j∈J of
tetraaffine functions. As any tetraaffine function pj is (2, 3) quasiconvex, the proof is done.

“
(3)⇒” This implication is just Proposition 2.10.

“
(4)⇒” For simplicity let us show the convexity of weakly tetrahedrally convex function f along the axis e1. Let

p1 = (r1, s, t), p2 = (r2, s, t) be two point spanning the line parallel to e1 axis. Let us prescribe any regular
symplex D on the segment connecting points pi. Now we obtain f ≤ PDf in D, so also on the segment.
As PDf is affine along every axis, we have shown that f is subaffine along e1.
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“
(4)

�⇐” Note that the function f(r, s, t) = rst is indeed convex along every axis. It is not however weakly tetrahe-
drally convex. To prove that, take simplex D with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) and note
that PDf ≡ 0, however p = (1

4 , 1
4 , 1

4 ) ∈ D and f(p) = 1
64 > 0. �

More precise statement holds for respective affinity conditions.

Theorem 2.13. Let f : R
3 → R be the given continuous function. Then the following implications hold:

f is reduced polyaffine
(1)⇒ f is tetrahedrally polyaffine

(2)⇐⇒ f is (2, 3) quasiaffine
(3)⇐⇒ f is weakly tetrahedrally affine

(4)⇒ f is affine along the axis.

Moreover, the inverse implications to (1) and (4) do not hold.

Remark 2.14. Theorem 2.13 shows that the classes of tetrahedrally polyaffine, (2, 3) quasiaffine and weakly
tetrahedrally affine functions are the same and equal to the class of tetraaffine functions.

Proof of Theorem 2.13. Implications to the right are already proven in Lemma 2.12. Also the inverse to (1) is
contradicted. Let us here remind that the class of (2, 3) quasiaffine functions coincide with the class of tetraaffine
functions (see Prop. 2.9). We will prove the following implications.

“
(2)⇐” Tetraaffine functions are tetrahedrally polyaffine because any p ∈ A satisfies p = g ◦ e for certain affine g.

“
(3)⇐” We will prove that a weakly tetrahedrally affine function f must be equal to certain tetraaffine p on every

regular symplex D. This is the case indeed, because on such D we have f ≤ PDf and −f ≤ −PDf. This
however finishes the proof because two tetraaffine functions equal on any open set are equal in every point.

“
(4)

�⇐” Consider f(r, s, t) = rst. It is affine in the directions of the axis and not tetraaffine. �

3. Tetrahedral polyconvexity condition is not equivalent to (2,3)

quasiconvexity

In our analysis we are interested in functions defined on R
3 and the respective integrands, which define

functionals of the type (2, 3). We are now to prove that the inverse implication to (2) in Lemma 2.12 does not
hold. For that we benefit from the well-known result in calculus of variations due to Alibert and Dacorogna [1]
(see also [4] for related results). This is possible due to the canonical embedding of functions of the type (2, 3)
into the special subspace of gradients (see Prop. 2.2).

The authors of [1] have introduced the following function f̃γ : M2×2 → R, defined by

f̃γ(A) = |A|2(|A|2 − 2γ detA), (3.1)

where |A| stays for the Euclidean norm of A, i.e.
∣∣∣∣
[

a b
c d

]∣∣∣∣
2

= a2 + b2 + c2 + d2.

The following theorem holds.

Theorem 3.1 (Alibert, Dacorogna [1]). The following statements hold.

(a) Function f̃γ defined in (3.1) is convex ⇐⇒ |γ| ≤ 2
3

√
2.

(b) Function f̃γ defined in (3.1) is polyconvex ⇐⇒ |γ| ≤ 1 (see Rem. 2.8 point (iii)).
(c) Function f̃γ defined in (3.1) is rank-one convex (i.e. the function t �→ f̃γ(A + tB) is convex for any matrix

A and any rank-one matrix B) ⇐⇒ |γ| ≤ 2√
3
·
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(d) There exists ε > 0 such that If̃γ
is lower semicontinuous with respect to the sequential weak-∗ convergence

of gradients of Lipschitz functions in L∞(Ω, R2)
(

i.e. it has the property: when {uν} ⊆ W 1,∞(Ω, R2) is a

bounded sequence and Duν ∗
⇀ Du in L∞(Ω, M2×2), uν → u in L1(Ω, R2) then lim inf

ν→+∞ If̃γ
(Duν) ≥ If̃γ

(Du)
)

⇐⇒ |γ| ≤ 1 + ε.

Defining A(r, s, t) =
[

r + t t
t s + t

]
and using identification (2.5) and (3.1) we obtain

fγ(r, s, t) := f̃γ(A(r, s, t)) =
(
r2 + s2 + 4t2 + 2(r + s)t

)(
r2 + s2 + 4t2 + 2(r + s)t − 2γ(rs + rt + st)

)
.

We will investigate tetrahedral polyconvexity condition for function fγ : R
3 → R.

Theorem 3.2. Function fγ(r, s, t), is tetrahedrally polyconvex if and only if |γ| ≤ 1.

Proof.

“⇐” At first we note that fγ is reduced polyconvex for |γ| ≤ 1 as we have f̃γ = G ◦ E under the notation of
Remark 2.8 point (iii), where G is convex. We have then that

fγ = G ◦ E ◦ I = G ◦ J−1 ◦ J ◦ E ◦ I =
(
G ◦ J−1

) ◦ i =: G̃ ◦ i,

where G̃ is convex. As reduced polyconvexity implies tetrahedral polyconvexity (see Lem. 2.12) the proof
is done.

“⇒” Assume on the contrary that there exists γ such that |γ| > 1 and fγ is tetrahedrally polyconvex. Then
there exists an affine function p : R

6 → R,

p(r, s, t, x, y, z) := p0 + v · (r, s, t, x, y, z),

where (v1, v2, v3, v4, v5, v6) ∈ R
6 is a constant vector and p is such that fγ(r, s, t) ≥ p ◦ e(r, s, t) for any

r, s, t. We compute that

fγ(r, cr, 0) = r4(1 + 2c2 + c4 − 2γ(c + c3)),
p(r, cr, 0, cr2, 0, 0) = p0 + v1r + cv2r + cv4r

2.

This implies the inequality

r4(1 + 2c2 + c4 − 2γ(c + c3)) ≥ p0 + (v1 + cv2)r + cv4r
2,

holding for every r, c ∈ R. We obviously need a coefficient κγ(c) := (1+2c2+c4−2γ(c+c3)) to be nonegative
for every c. For γ > 1 we obtain that κγ(1) = 4 − 4γ < 0, for γ < −1 we get κγ(−1) = 4 + 4γ < 0.
Therefore fγ cannot be tetrahedrally polyconvex. �

We end up with the following statement, which is one of our main results.

Theorem 3.3. Let f : R
3 → R be the given continuous function. Then the following implications hold:

f is reduced polyconvex
(1)⇒ f is tetrahedrally polyconvex

(2)⇒ f is (2, 3) quasiconvex
(3)⇒ f is weakly tetrahedrally convex

(4)⇒ f is convex along the axis.

Moreover, the inverse implications to (1), (2), (4) do not hold.
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Proof. Implications
(1)⇒,

(2)⇒,
(3)⇒,

(4)⇒, as well as
(1)

�⇐ and
(4)

�⇐ have been already established in Lemma 2.12. For the

proof of the property
(2)

�⇐ we have to show that there exists a (2, 3) quasiconvex function that is not tetrahedrally
polyconvex. Let γ = 1 + ε as in point d) of Theorem 3.1. Now fγ is (2, 3) quasiconvex due to embedding (2.3).
Theorem 3.2 shows however, that fγ is not tetrahedrally polyconvex. �

We address the following problem.

Open problem 3.4. We do not know whether the inverse implication to (3) holds.

However the problem is open, let us note that the case is much simpler with bilinear forms.

Fact 3.5. A bilinear form P is convex along each axis if and only if P is tetrahedrally polyconvex.

Proof. Of course we only need to prove to prove the implication “⇒”. Let x = (x1, x2, x3) ∈ R
3 and P (x) =∑3

i=1 aix
2
i +
∑

i<j aijxixj =: Q+T be convex along the axis. As T is affine along the axis, it follows that Q must
be convex along the axis. It shows that ai ≥ 0 for any 1 ≤ i ≤ 3. Thus P is equal to the sum of tetrahedrally
polyaffine form T and convex form Q. It is obvious that any convex function is tetrahedrally polyconvex and
thus P is tetrahedrally polyconvex. �

4. Carathéodory type theorem for the class of tetrahedrally polyconvex

functions

Our goal now is to obtain a variant of Carathéodory theorem for tetrahedrally polyconvex functions. This
statement will be needed later to discus the locality properties of tetrahedral polyconvexity condition. For our
analysis we have to define and investigate the tetrahedral polyconvex envelope of the given function f .

Let us start by recalling the definitions of convex hulls of sets, as well as the classical Carathéodory theorem.

Definition 4.1 (Convex hull, convex envelope). For any subset X of a linear space V we define convex hull
of X as

CH X
def=
⋂

{C | C is convex and X ⊆ C}.
For any function f : V → R ∪ {+∞} we define convex envelope of f as

Cf
def= sup{g(x) | g is convex and g ≤ f}.

We use the convention that sup ∅ = −∞.

Theorem 4.2 (Carathéodory theorem, 1911, [9]). Let X be a subset of R
n and f : R

n → R ∪ {+∞}. Then

(i) CH X = {x ∈ R
n | x =

∑n+1
i=1 λixi, xi ∈ X,

∑n+1
i=1 λi = 1, λi ∈ [0, 1]},

(ii) Cf(x) = inf
{∑n+1

i=1 λif(xi) | ∑n+1
i=1 λixi = x,

∑n+1
i=1 λi = 1, λi ∈ [0, 1]

}
.

To proceed further we require the following definition.

Definition 4.3 (Tetrahedral polyconvex envelope). For function f : R
3 → R the tetrahedral polyconvex

envelope is defined by

TPEf(r, s, t) def= sup{g(r, s, t) | g is tetrahedrally polyconvex and g ≤ f}.
It is clear that if TPEf �= −∞, it is then a tetrahedrally polyconvex function. This is because at the same time
TPEf(·, ·, ·) is a supremum of tetraaffine functions.

We are now to prove the variant of part (ii) in Carathéodory theorem dealing with tetrahedral polyconvex
envelopes of functions. Our arguments are based on variants of Carathéodory Theorem similar as presented
in [12], Chapter 5. For readers convenience we present the proof in detail, as it contains not so trivial arguments.
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Theorem 4.4 (Carathéodory theorem with tetrahedrally polyconvex envelope). Let f : R
3 → R be a given

function. Then the following statements hold.

(i) The function gf : R
6 → R ∪ {−∞} given by

gf (r, s, t, x, y, z)
def
= inf

{
7∑

i=1

λif(ri, si, ti) |
7∑

i=1

λie(ri, si, ti) = (r, s, t, x, y, z)

where {λi}7
i=1 : such that

7∑
i=1

λi = 1, λi ∈ [0, 1]

}
,

is well defined and convex.
(ii) If f is tetrahedrally polyconvex, then

f(r, s, t) = gf (e(r, s, t)) for any (r, s, t) ∈ R
3.

Moreover, for any f we have

gf ◦ e(r, s, t) = gf (r, s, t, rs, rt, st) = TPEf.

Proof. Part (i):
We begin with constructing desired convex function gf . For integers N ≥ 7 we define

gf
N (r, s, t, x, y, z) def= inf SN (r, s, t, x, y, z), where we set

SN =

{
N∑

i=1

λif(ri, si, ti) |
N∑

i=1

λie(ri, si, ti) = (r, s, t, x, y, z), λi ∈ [0, 1],
N∑

i=1

λi = 1

}
.

We divide the proof into steps.

Step 1. We show that
CH e(R3) = R

6.

Step 2. We prove that gf
7 is well defined (and thus also gf

N whenever N ≥ 7) and for any N ≥ 7 we have

gf
N = gf

7
def= gf .

Step 3. We prove that gf is convex.

Proof of Step 1: Assume than CH e(R3) �= R
6. Thus CH e(R3), as a convex set, lies in some halfspace of the

form
H = {v ∈ R

6 | α · v < β}
for some nonzero α ∈ (R6)∗ ∼= R

6 and real β. Now e(R3) ⊆ CH e(R3) ⊆ H. To show a contradiction we will find
a triple (r, s, t) such that α · (r, s, t, rs, rt, st) is not less then β. Let α = (αi)6

i=1 and i0 be the smallest index i
such that αi �= 0. Assume first that i0 ≤ 3. Let then (r̄, s̄, t̄) be equal to the ith0 vector of the standard basis of R

3.
Now e(r̄, s̄, t̄) = (ei0 , 0, 0, 0) (which is the i0th vector of the standard basis of R

6) and for (r, s, t) = ( β
αi0

(r̄, s̄, t̄))
we arrive at

α · e(r, s, t) = β,

which contradicts the inclusion e(R3) ⊆ H. For the case where i0 = 4 take (r, s, t) = β
α4

(1, 1, 0) (so that α and
e(r, s, t) meet only in fourth place). Similar reasoning holds for i0 = 5, 6, which finishes the proof of Step 1.
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Proof of Step 2: To begin let us note that from Carathéodory theorem (Thm. 4.2) and Step 1 we see that

CH e(R3) = {
7∑

i=1

λie(ri, si, ti),
7∑

i=1

λi = 1, λi ∈ [0, 1]} = R
6

and thus gf
7 is well defined, that is S7 �= ∅.

Now let us introduce two substeps.

Substep 2A: We prove that for N ≥ 8 we have SN = S8.
Let us recall the definition of the epigraph of a function f :

epif
def= {(r, s, t, x) ∈ R

4 | f(r, s, t) ≤ x}
and define

ê(epif) def= {(e(r, s, t), x) | f(r, s, t) ≤ x} ⊆ R
7.

Note that (e(r, s, t), f(r, s, t)) ∈ ê(epif), therefore any convex combination of such points belongs to CH ê(epif).
As ê(epif) ⊆ R

7, from Carathéodory theorem (Thm. 4.2) it follows that

CH ê(epif) =

{
8∑

i=1

λi(e(ri, si, ti), f(ri, si, ti) | λi ∈ [0, 1],
8∑

i=1

λi = 1

}
.

It implies that SN ⊆ S8. Indeed, let f̄ =
∑N

i=1 λif(ri, si, ti) ∈ SN (r, s, t, x, y, z) i.e.
∑N

i=1 λie(ri, si, ti) =
(r, s, t, x, y, z), λi ∈ [0, 1],

∑N
i=1 λi = 1. Hence

N∑
i=1

λi(e(ri, si, ti), f(ri, si, ti)) ∈ CH ê(epif).

Therefore there exist {λ̄i}8
i=1 and {(r̄i, s̄i, t̄i)}8

i=1 such that

8∑
i=1

λ̄i(e(r̄i, s̄i, t̄i), f(r̄i, s̄i, t̄i)) =
N∑

i=1

λi(e(ri, si, ti), f(ri, si, ti)).

We obtain f̄ ∈ S8. As sequence of sets SN is nondecreasing, we see that for N ≥ 8 we have SN = S8. As
gf

N (r, s, t, x, y, z) = inf SN (r, s, t, x, y, z), we establish gf
N = gf

8 for any N ≥ 8.

Substep 2B: We show that gf = gf
7 = gf

8 . It suffices to prove gf
7 ≤ gf

8 .
Take any v ∈ R

6 = CH e(R3), a sequence {αi}8
i=1 satisfying αi ∈ [0, 1],

∑8
i=1 αi = 1 and points {(ri, si, ti)}8

i=1

such that
8∑

i=1

αie(ri, si, ti) = v.

From Carathéodory theorem (Thm. 4.2) applied to the set {(ri, si, ti)}8
i=1, there exists a sequence {βi}8

i=1

satisfying βi ∈ [0, 1],
∑8

i=1 βi = 1 such that at least one of βi vanishes and

8∑
i=1

βie(ri, si, ti) = v.

To finish the proof of this substep it suffices to show that

8∑
i=1

αif(ri, si, ti) ≥
8∑

i=1

βif(ri, si, ti). (4.1)
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We may assume that all αis are positive, as otherwise we could take {βi}8
i=1 = {αi}8

i=1. Assume that this
inequality does not hold, i.e.

8∑
i=1

αif(ri, si, ti) <
8∑

i=1

βif(ri, si, ti). (4.2)

In particular the set C := {i ∈ {1, 2, . . . , 8} | βi > αi} is nonempty, because {αi} and {βi} are two different
sequences with equal sum of coefficients. Set now

γ
def= min

i∈C

{
αi

βi − αi

}
·

Note that γ is positive from the definition of C. Moreover, let

λi
def= αi + γ(αi − βi).

We have now
8∑

i=1

λi =
8∑

i=1

αi + γ

8∑
i=1

(αi − βi) = 1

and from the definition of γ we have λi ≥ 0 for every i. It follows that every λi ≤ 1 for every i ∈ {1, . . . , 8}.
From the definition of γ it also follows that there exists i such that λi = 0 – this is exactly index i on which we
obtain a minimum in the definition of γ. Furthermore,

8∑
i=1

λie(ri, si, ti) = (1 + γ)v − γv = v,

and
8∑

i=1

λif(ri, si, ti) =
8∑

i=1

αif(ri, si, ti) + γ(
8∑

i=1

(αi − βi)f(ri, si, ti))
(4.2)
<

8∑
i=1

αif(ri, si, ti),

because we assumed
∑

(αi−βi)f(ri, si, ti) < 0 and dealt positive γ. We have shown that when the inequality (4.1)
did not hold with coefficients {βi}, it holds with coefficient {λi}. This finishes Step 2.

Proof of Step 3: From Step 2 we already know gf = gf
7 . We are now to show that for λ ∈ [0, 1] and any vectors

v, w ∈ R
6 we have inequality

λgf (v) + (1 − λ)gf (w) ≥ gf (λv + (1 − λ)w).

From the definition of gf we have that for any ε > 0 there exist (μi)7
i=1, (νi)7

i=1 satisfying μi, νi ∈ [0, 1],
∑7

i=1 μi =∑7
i=1 νi = 1 and (ri, si, ti)7

i=1, (r̄i, s̄i, t̄i)7
i=1 such that

7∑
i=1

μie(ri, si, ti) = v,

7∑
i=1

νie(r̄i, s̄i, t̄i) = w,

and

λgf (v) + (1 − λ)gf (w) + ε ≥ λ

7∑
i=1

μif(ri, si, ti) + (1 − λ)
7∑

i=1

νif(r̄i, s̄i, t̄i).

Defining new sequence as
λi

def= λμi, λ7+i
def= (1 − λ)νi,
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and new points as

(ri, si, ti)
def= (ri, si, ti), (r7+i, s7+i, t7+i)

def= (r̄i, s̄i, t̄i), where i = 1, . . . , 7,

we arrive at

λgf (v) + (1 − λ)gf (w) + ε ≥
14∑

i=1

λif(ri, si, ti), where

14∑
i=1

λie(ri, si, ti) = λv + (1 − λ)w.

Using the definition of gf and the fact that gf = gf
14 we get

λgf (v) + (1 − λ)gf (w) + ε ≥ gf (λv + (1 − λ)w)

and arbitrariness of ε finishes the proof of Step 3 and of Part (i).

Part (ii):
At first we will show that if f is tetrahedrally polyconvex, then f = gf ◦ e.

For this let us consider a convex function g : R
6 → R such that g ◦ e = f. As g is convex we have that for

any choice of points vi ∈ R
6

7∑
i=1

λig(vi) ≥ g

(
7∑

i=1

λivi

)
,

where λi ∈ [0, 1] and
∑7

i=1 λi = 1. Taking {λi}7
i=1 and {(ri, si, ti)}7

i=1 such that

7∑
i=1

λie(ri, si, ti) = e

( 7∑
i=1

λi(ri, si, ti)
)

= e(r, s, t) (4.3)

shows that
7∑

i=1

λif(ri, si, ti) ≥ f

(
7∑

i=1

λi(ri, si, ti)

)
= f(r, s, t). (4.4)

Taking infimum over all possible coefficients {λi}7
i=1 and points {(ri, si, ti)}7

i=1 satisfying (4.3), (4.4) and using
the definition of gf we obtain gf (e(r, s, t)) ≥ f(r, s, t). As we obviously have gf (e(r, s, t)) ≤ f(r, s, t), we obtain
gf ◦ e = f.

To prove the second statement note that gf ◦ e is tetrahedrally polyconvex, because gf is convex. What is
left is to establish that gf = TPEf. From the definition of TPEf and tetrahedral polyconvexity of gf ◦ e, we
have that gf ◦ e ≤ TPEf, because gf ◦ e ≤ f. Observe that the following monotonicity property holds: when
h ≤ f we have gh ≤ gf . Moreover, from the already established first statement in this part, h �→ gh ◦ e is a
projection onto tetrahedrally polyconvex functions. Therefore we have h = gh ◦ e ≤ gf ◦ e, whenever h ≤ f and
h is tetrahedrally polyconvex. Taking h = TPEf finishes the proof. �

We end this section with the following characterisation of tetrahedrally polyconvex functions, which is the
consequence of the Theorem 4.4.

Corollary 4.5. Let f : R
3 → R be the given function. The following conditions are equivalent:

(a) f is tetrahedrally polyconvex;
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(b) for any (r, s, t) ∈ R
3, any coefficients {λi}7

i=1 such that
∑7

i=1 λi = 1, λi ∈ [0, 1] and any triples of real
numbers {(ri, si, ti)}7

i=1 such that
∑7

i=1 λie(ri, si, ti) = e(r, s, t) the following Jensen-type inequality holds:

f(r, s, t) ≤
7∑

i=1

λif(ri, si, ti).

Proof.

“(a) ⇒ (b)” We proceed exactly like in the proof of Part (ii) of Theorem 4.4.
“(a) ⇐ (b)” Having a function f satisfying (b), from the definition of the gf in Theorem 4.4, Part (i), we see

that gf ◦ e = f (while we always have gf ◦ e ≤ f and the converse inequality follows from (b)). As
a function gf is convex (see Thm. 4.4, Part (i), Step 3) the proof is done. �

5. Non-locality of tetrahedral polyconvexity

In this section we are going to prove, that there exist no local condition for tetrahedral polyconvexity. We
proceed in a similar way to Kristensen in [26]. We begin with some definitions, useful in the reasoning.

For f – a function of class C2(R3; R) recall the Taylor formula

f(z + w) = f(z) + Df(z)w +
1
2
D2f(z)(w; w) + ρ(z, w),

where ρ(z, w) is given by

ρ(z, w) =
∫ 1

0

(1 − t)
(
D2f(z + tw)(w; w) − D2f(z)(w; w)

)
dt.

We also define function

Λ(r, s) = sup{|D2f(z + w) − D2f(z)| : |z| ≤ r, |w| ≤ s}. (5.1)

The function Λ is defined in such a way that we obtain an obvious estimate, for |z| ≤ r and any w we have

|ρ(z, w)| ≤ 1
2
Λ(r, |w|)|w|2. (5.2)

We start with the following result.

Lemma 5.1. Let f be any function of class C2(R3; R) such that D2f(z)(w; w) ≥ 0 for any z, w such that

|z| ≤ r and w is parallel to one of the axis. Take any ε > 0 and define δ
def
= 1

2 sup{t ∈ (0, r) : ε ≥ Λ(r, t)}. Then
there exists a tetrahedrally polyconvex function g such that

g(z) = f(z) + ε|z|2 for |z| < δ.

Proof. Define
fε(z) = f(z) + ε|z|2,

G(z) :=

{
fε(z) for |z| ≤ δ.

sup|w|<δ

(
fε(w) + Dfε(w)(z − w) + 1

2D2fε(w)(z − w; z − w)
)

for |z| > δ

and g = TPE(G). It’s now obvious that g is tetrahedrally polyconvex and that g ≤ fε for |z| < δ. To check that
g = fε for |z| < δ take any z such that |z| ≤ δ. By Theorem 4.4 for any σ we may choose a convex combination
{λjzj}7

i=1 of z such that
e(z) =

∑
λje(zj) (5.3)
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and

g(z) + σ >

7∑
j=1

λjG(zj).

From the definition of G it follows that

g(z) + σ >
∑

|zj|≤δ

λjfε(zj) +
∑

|zj |>δ

λj

(
fε(z) + Dfε(z)(zj − z) +

1
2
D2fε(z)(zj − z; zj − z)

)

=
∑

|zj|≤δ

. . . +
∑

|zj |>δ

. . . =: A + B.

Applying Taylor’s formula to fε(zj) in A yields

A =
∑

|zj|≤δ

λjfε(z) +
∑

|zj |≤δ

λjDfε(z)(zj − z) +
1
2

∑
|zj|≤δ

λjD
2fε(z)(zj − z; zj − z) +

∑
|zj |≤δ

λjρ(z, zj − z),

hence

g(z) + σ >
∑

|zj|≤δ

λjρ(z, zj − z) +
∑

j

λj

(
fε(z) + Dfε(z)(zj − z) +

1
2
D2fε(z)(zj − z; zj − z)

)
.

From linearity of Df(z) and the fact that z =
∑

λjzj we obtain

g(z) + σ >
∑

|zj |≤δ

λjρ(z, zj − z) + fε(z) +
∑

j

λj

(
1
2
D2fε(z)(zj − z; zj − z)

)

=
∑

|zj |≤δ

. . . + fε(z) +
∑

j

. . . =: C + fε(z) + D. (5.4)

Having in mind (5.2) we have

|ρ(z; zj − z)| ≤ 1
2
Λ(r, |zj − z|)|zj − z|2.

Note that for |zj | ≤ δ

|zj − z| ≤ |z|+ |zj |
|z|<δ
< 2δ = sup{t ∈ (0, r) : ε ≥ Λ(r, t)}

and therefore |zj −z| ∈ {t ∈ (0, r) : ε ≥ Λ(r, t)}. Consequently Λ(r, |zj −z|) ≤ ε and ρ(z; |zj −z|) ≥ − 1
2 ε|zj −z|2.

It follows that
C ≥ − ε

2

∑
|zj |≤δ

λj |zj − z|2 ≥ − ε

2

∑
j

λj |zj − z|2.

We also notice that D2fε(z) = D2f(z) + 2εId and so

D =
∑

j

λj

(
1
2
D2f(z)(zj − z; zj − z)

)
+ ε
∑

j

λj |zj − z|2.

Therefore

C + D ≥
∑

j

λj

(
1
2
D2f(z)(zj − z; zj − z)

)
+

ε

2

∑
j

λj |zj − z|2.

What we need is to show that C + D ≥ 0, so that from (5.4) we get

g(z) + σ > fε(z).
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Take now any bilinear symmetric form P and note that P (x − y; x − y) = P (x; x) + P (y; y) − 2P (x; y). This
shows however that

∑
j

λj

(
1
2
D2f(z)(zj − z; zj − z)

)
=
∑

j

λj

(
1
2
D2f(z)(zj ; zj)

)

+
∑

j

λj

(
1
2
D2f(z)(z; z)

)
− 2
∑

j

λj

(
1
2
D2f(z)(zj ; z)

)

=
∑

j

λj

(
1
2
D2f(z)(zj ; zj)

)
+

1
2
D2f(z)(z; z)− D2f(z)(z; z)

=
∑

j

λj

(
1
2
D2f(z)(zj ; zj)

)
− 1

2
D2f(z)(z; z).

From our assumptions P (v) = D2f(z)(v; v) is the bilinear form convex along each axis. Therefore, from the
Fact 3.5, it is tetrahedrally polyconvex. According to Corollary 4.5 and (5.3) we get the following Jensen-type
inequality ∑

j

λj

(
D2f(z)(zj; zj)

)
=
∑

j

λjP (zj) ≥ P (
∑

j

λjzj) = P (z) = D2f(z)(z; z),

which concludes the proof. �

We end this section with the following result.

Theorem 5.2. There exists a function that is not tetrahedrally polyconvex such that its restriction to any ball
of radius one may be extended to a tetrahedrally polyconvex function.

Proof. Let h(r, s, t) = −rst : R
3 → R. We note that h is not tetrahedrally polyconvex, but convex in the

direction of each axis (see Lem. 2.12). Take now two functions α, β : [0,∞) → R, α, β ∈ C1(0,∞) such that

α(t) =

⎧⎪⎨
⎪⎩

1 for t < 4,

cos2
(
(t − 4)π

2

)
for t ∈ [4, 5]

0 for t > 5,

β(t) =

{
0 for t < 3, 5

(t − 7
2 )2 for t ≥ 3, 5

We consider trunk function ϕδ(t) = δ−1ϕ( t
δ ), where ϕ ∈ C∞

0 (R), 0 ≤ ϕ ≤ 1,
∫

ϕ = 1, ϕ ≡ 1 in some neighbour-
hood of 0 and supp ϕ ⊆ [−1, 1]. Then we set αδ := α ∗ ϕδ, βδ := β ∗ ϕδ.

It is easy to check that there exist k > 0, δ ∈ (0, 1
2 ) such that the function g given by

g(z) def= h(z)αδ(|z|) + kβδ(|z|)

is smooth and convex in the direction of each axis. It is not tetrahedrally polyconvex. To confirm that, we use the
argument from paper by Šverák [44] and substitute the sequence uν(x, y) = (cos(2πxν), cos(2πyν), cos(2π(x +
y)ν)), Ω = [0, 1]2. Applying the Riemann–Lebesgue Lemma (see [12], Thm. 1.5) we see immediately that
uν ⇀ u = 0 weakly-∗ in L∞(Ω, R3). However, a direct computation shows that

lim inf
ν→∞ Ig(uν) = −1

4
< Ig(u) = 0, (5.5)
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which shows that h is not (2, 3) quasiconvex and consequently it is not tetrahedrally polyconvex as well. Fur-
thermore, we may find ε > 0 such that

gε(z) = g(z) + ε|z|2

is not tetrahedrally polyconvex because of minor modification of (5.5). Take now Λ defined in (5.1) for function
f = gε. As gε is smooth and its third derivative has a compact support, we get that∣∣∣∣ ∂2

∂zi∂zj
gε(z + w) − ∂2

∂zi∂zj
gε(z)

∣∣∣∣ =
∣∣∣∣
∫ 1

0

∇ ∂2

∂zi∂zj
gε(z + θw) · wdθ

∣∣∣∣ ≤ ||∇3gε||∞|w|

and it follows that there exists a constant C such that Λ(r, t) ≤ Ct, where C is independent on r. In particular,
ε ≥ Λ(r, ε

C ) and so for any r
ε

2C
≤ 1

2
sup{t ∈ (0, r) : ε ≥ Λ(r, t)}.

We claim that for fixed z0 there exists a tetrahedrally polyconvex extension of gε from a ball with center in
z0 and of radius ε

2C . Note that the radius does not depend on z0. The existence of such extension follows from
Lemma 5.1, when we substitute gε by a shifted function

gz0
ε (z) def= gε(z0 + z),

so that we extend the function gz0
ε from the ball centred at 0. Defining now

f(z) def= gz0
ε

(
2C

ε
z

)

provides the radius 1 in the extension property and finishes the proof of existence of the function which is not
tetrahedrally polyconvex, having however a tetrahedrally polyconvex extension from any ball of radius 1. �
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[16] I. Fonseca and M. Kruž́ık, Oscillations and concentrations generated by A-free mappings and weak lower semicontinuity of
integral functionals. ESAIM: COCV 16 (2010) 472–502.

[17] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999)
1355–1390.

[18] S. Heinz, Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM: COCV 14 (2008) 795–801.

[19] T. Iwaniec, Nonlinear Cauchy-Riemann operators in R
n. Trans. Amer. Math. Soc. 354 (2002) 1961–1995.

[20] J.-L. Joly, G. Métivier and J. Rauch, Trilinear compensated compactness and nonlinear geometric optics. Ann. Math. 142
(1995) 121–169.

[21] J.-L. Joly, G. Métivier and J. Rauch, Diffractive nonlinear geometric optics with rectification. Indiana Univ. Math. J. 47
(1998) 1167–1241.

[22] A. Ka�lamajska, On the condition of Λ-convexity in some problems of weak continuity and weak lower semicontinuity. Colloq.
Math. 89 (2001), 43–78.

[23] A. Ka�lamajska, On Λ-convexity conditions in the theory of lower semicontinuous functionals. J. Convex. Anal. 10 (2003)
419–436.

[24] A. Ka�lamajska, On new geometric conditions for some weakly lower semicontinuous functionals with applications to the
rank-one conjecture of Morrey. Proc. R. Soc. Edinb. A 133 (2003) 1361–1377.

[25] C.-F. Kreiner and J. Zimmer, Topology and geometry of nontrivial rank-one convex hulls for two-by-two matrices. ESAIM:
COCV 12 (2006) 253–270.

[26] J. Kristensen, On condition for polyconvexity. Proc. Amer. Math. Soc. 128 (2000) 1793–1797.
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