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COMPENSATOR DESIGN FOR THE MONODOMAIN EQUATIONS
WITH THE FITZHUGH−NAGUMO MODEL

Tobias Breiten
1

and Karl Kunisch
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Abstract. The problem of finite-dimensional compensator design for the monodomain equations with
the FitzHugh−Nagumo model is investigated. Exponential stabilizability and detectability of the lin-
earized infinite-dimensional control system is studied. It is shown that the system is not exactly null-
controllable but still can be exponentially stabilized by finite-rank input and output operators pro-
vided the desired stability margin is small enough. Based on existing results on model order reduction
of infinite-dimensional systems, a finite-dimensional compensator is obtained by LQG-balanced trun-
cation. Using partial measurements, the compensator produces a feedback control that is shown to
be locally stabilizing for the infinite-dimensional nonlinear control system. Examples motivated by
cardiophysiology are used to illustrate these results in a numerical setup.
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1. Introduction

Optimal treatment of human heart diseases is one of the central research topics in cardiac electrophysiology,
see [35]. While certain problems can already be tackled by feedback-type control mechanisms, e.g., cardiac
pacemakers, diseases such as cardiac arrhythmia still require the application of an external stimulus (defib-
rillation) to the heart issue. This circumstance has caused the study of feedback control methodologies from
a mathematical point of view. The so-called monodomain equations represent a well-analyzed mathematical
model of the electrical potential of the human heart, see, e.g., [23]. The dynamics are modeled by a parabolic
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reaction-diffusion equation that is coupled to a linear ordinary differential equation:

∂v

∂t
= Δv − Iion(v, w) + f + Bu, in Ω × (0,∞),

∂w

∂t
= γv − δw, in Ω × (0,∞),

∂v

∂ν
= 0, on Γ × (0,∞),

v(x, 0) = v0(x) and w(x, 0) = w0(x), in Ω,

(1.1)

where Ω ⊂ Rn, n ∈ {2, 3}, denotes a bounded open set with smooth boundary Γ = ∂Ω. Here, v = v(x, t)
describes the transmembrane electrical potential, w = w(x, t) is a so-called gating variable, f = f(x, t) is an
external forcing term and u = u(x, t) ∈ L2(0,∞; L2(ωcon)), denotes the control. Here ωcon ⊂ Ω, is a nonempty
open subset. As a model for the ionic current, we choose the FitzHugh−Nagumo model

Iion(v, w) = av3 − bv2 + cv + dw,

where a, b, c, d are positive real constants. Many other choices for the model of the ionic current are of importance,
see, e.g., [1,22,30]. We further assume that γ, δ > 0 and denote by ν the outer unit normal to Γ. In applications
it is of importance to model the heterogeneity of the issue and to replace Δv by div(a∇v). Our results can be
extended to handle this case if a is positive definite and W 1,∞(Ω). For fixed t, we define the linear operator
B ∈ L(L2(ωcon), L2(Ω)) as

(Bu)(x) =

{
u(x), x ∈ ωcon,

0, x ∈ Ω\ωcon.

Its adjoint B∗ is the restriction operator from Ω to ωcon. With slight abuse of notation, we also use B as
operator from L2(0,∞; L2(ωcon)) → L2(0,∞; L2(Ω)) with (Bu)(t) = (Bu(t)) and analogously for B∗. In a
realistic scenario, we do not have access to the whole state (v, w) but only to certain measurements. An exact
modeling of the physical processes would involve the photon diffusion equation [9], rendering indirect (sparse)
measurements on the boundary. Since the study of feedback or closed-loop techniques for the monodomain
equations has attracted attention only recently, for now we assume some simplifications. In particular, we
consider partial observations of the transmembrane potential in some nonempty open subsets ωobs ⊂ Ω. Hence,
for fixed t we define C ∈ L(L2(Ω), L2(ωobs)) as the restriction operator from Ω to ωobs. In case ωobs = ωcon,
we have that C = B∗. Recent technological developments allow devices which act as controllers and observers
essentially on the same subsets of the physiological domain, see [26].

For a given stationary but possibly unstable solution (v̄, w̄) of system (1.1), the goal of this paper is to design
a finite-dimensional linear controller such that the original nonlinear system is locally stabilized around this
stationary solution. We build our results upon the theory of infinite-dimensional control systems of the form


̇y(t) = A
y(t) + F(
y) + Bu(t), 
y(0) = 
y0,

yobs(t) = C
y(t) + μ(t),
(1.2)

where A is the infinitesimal generator of an analytic semigroup on a Hilbert space Y, B ∈ L(U ,Y) and C ∈
L(Y,Z) are bounded finite-rank input and output operators with U = Rm and Z = Rp, respectively. Moreover,
the nonlinear non-monotone operator F models the ionic current Iion. For the measurement error we assume
that μ ∈ L2(0,∞; Rp).

We now consider a class of compensators of the form

ż(t) = Acz(t) + Bcyobs(t), z(0) = z0, u(t) = Ccz(t), (1.3)
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and study the possibility of choosing (Ac,Bc, Cc) such that the closed-loop system characterized via (1.2)
and (1.3) admits a unique solution that converges to zero. We first address local exponential stabilization
in the case that (1.3) is infinite-dimensional. Subsequently it is shown that one can achieve local exponential
stabilization even by finite-dimensional control systems. For linear infinite-dimensional control systems, the
design of finite-dimensional stabilizing controller is well-known and has been studied in, e.g., [14, 16, 17, 32].
Stabilization results for nonlinear infinite-dimensional systems based on compensator design of the underlying
linearized system were analyzed in [29] for the case of the Burgers’ equation, for example.

The structure of the paper is as follows. In Section 2 we reformulate system (1.1) as an abstract Cauchy
problem of the form (1.2). We give an explicit expression for the spectrum of the linearized control system which
we will use to show that the system cannot be null-controllable. For a stabilization margin β < δ, we investigate
the applicability of finite-rank input and output operators for local exponential stabilization. Based on classical
results from linear quadratic Gaussian (LQG) control theory, in Section 3 we design a linear compensator for
the nonlinear system. Section 4 recapitulates existing results from [15] that allow for the design of a finite-
dimensional compensator by using the LQG-balanced truncation (BT) model reduction method. In Section 5,
we study a concrete example resulting from a finite element discretization of (1.1). We verify stabilizability and
detectability assumptions for the linearized system. Numerical simulations show the feasibility of the classical
LQG as well as the LQG-BT approach. We end the paper with some conclusions in Section 6.

Notation: For p ≥ 1 and s ≥ 0, we denote by Lp(Ω) and Hs(Ω) the usual Lebesgue and Sobolev spaces. We

define Hs
ν(Ω) :=

{
y ∈ D(Ω)

∣∣∣ ∂y
∂ν = 0 on Γ

}
, where D(Ω) denotes the space of infinitely differentiable functions

with compact support in Ω and where the closure is taken with respect to the ‖y‖Hs(Ω), s ≥ 0, norm. For s > 3
2 ,

we have Hs
ν =

{
y ∈ Hs(Ω)

∣∣∣ ∂y
∂ν = 0 on Γ

}
and for s ∈ [0, 3

2 ), we have Hs
ν(Ω) = Hs(Ω) (see, e.g., [8], Sect. II-1).

Given a Hilbert space X, we denote with L2(0,∞; X) (Bochner) square integrable functions on (0,∞) with
values in X. For Q∞ = Ω × (0,∞) and r ≥ 0, s ≥ 0, we will need the spaces

Hr,s(Q∞) = L2(0,∞; Hr(Ω)) ∩ Hs(0,∞; L2(Ω)),

which are Hilbert spaces when endowed with the norm

‖u‖r,s =
(∫ ∞

0

‖u(t)‖2
Hr(Ω)dt + ‖u‖2

Hs(0,∞;L2(Ω))

) 1
2

.

The space of bounded linear operators between two Hilbert spaces X and Y will be denoted by L(X, Y ). For a
closed densely defined linear operator A : D(A) ⊂ X → X, the resolvent set and the spectrum A are denoted
by ρ(A) and σ(A), respectively. Further σp(A) denotes the point spectrum of the operator A. The adjoint of A
is denoted by A∗. Finally S(t) stands for the semigroup determined by its infinitesimal generator A.

2. Control-theoretic properties of the monodomain equations

In this section we provide some details on the formulation of (1.1) as an abstract Cauchy problem of the
form (1.2). Following the setting in [11], let us assume that a possibly unstable stationary solution (v̄, w̄) ∈
H

n
2 +s(Ω) × L∞(Ω), s > 0 is given such that

0 = Δv̄ − Iion(v̄, w̄) + f, in Ω × (0,∞),
0 = γv̄ − δw̄, in Ω × (0,∞),

∂v̄

∂ν
= 0, on Γ × (0,∞),

v̄(x, 0) = v̄0(x) and w̄(x, 0) = w̄0(x), in Ω,

(2.1)
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holds. We now define the state variable as the difference between (1.1) and (2.1), i.e.,


y := (yv, yw) = (v − v̄, w − w̄)

and obtain the infinite-dimensional control system


̇y(t) = A
y(t) + F(
y) + Bu(t), 
y(0) = 
y0,

where the operators are given as

A
y =
(

Δyv − (3av̄2 − 2bv̄ + c)yv − dyw

γyv − δyw

)
, F(
y) =

(
−ay3

v − (−b + 3av̄)y2
v

0

)
, Bu =

(
Bu
0

)
. (2.2)

As we have shown in [11], the linearized operator A is the infinitesimal generator of an analytic semigroup on
Y = L2(Ω) × L2(Ω). Moreover, for β < δ, the linearized control system


̇y(t) = A
y(t) + Bu(t), 
y(0) = 
y0, (2.3a)

is β-exponentially stabilizable by a feedback control of the form u(t) = −B∗P
y(t), where P is the solution of
an algebraic operator Riccati equation. In contrast to [11], we are interested in the situation where only parts
of the system rather than the complete state can be observed. For this reason, we extend (2.3a) by including
an output equation

yobs(t) = C
y(t) + μ(t). (2.3b)

For the measurement error assume that μ ∈ L2(0,∞; Rp) and, further, that C ∈ L(Y, Rp) is a finite-rank output
operator such that for fixed t, we have

C
y(t) =
(

1
|ω1|

∫
ω1

yv(t), . . . , 1
|ωp|

∫
ωp

yv(t)
)
∈ R

p,

where ωi ⊂ Ω are non-empty open subsets.

2.1. The spectrum of A
As has been pointed out in [10, 11], very little is known about controllability properties of system (2.3). In

fact, so far it has only been shown that the system is approximately controllable, see [10]. Let us now focus on
the precise location of the spectrum of the linearized operator A. This will lead to some new insights into the
properties of null controllability and stabilizability by finite-rank operators, respectively.

For what follows, we have to define the essential spectrum of a closed (possibly unbounded) operator A. We
follow [19,21] and define

σess(A) := {λ ∈ C|A − λ is not Fredholm} ,

where an operator is called Fredholm if it is closed, its kernel is finite-dimensional and its range is finite co-
dimensional. We further need the notion of relative boundedness and relative compactness as defined in [19].

Definition 2.1 (Relative boundedness/compactness).

(i) Let A and T be operators with D(A) ⊂ D(T ) and

‖T u‖ ≤ a‖u‖ + b‖Au‖, u ∈ D(A),

where a, b are nonnegative constants. Then T is called relatively bounded with respect to A or simply
A-bounded. The greatest lower bound b0 of all possible constants b will be called the A-bound of T .
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(ii) Let A and T be operators with D(A) ⊂ D(T ). Assume that for any sequence un ∈ D(A) with both {un}
and {Aun} bounded, {T un} contains a convergent subsequence. Then T is called relatively compact with
respect to A or simply A-compact.

From [21], we have the following result on the perturbation of the essential spectrum of 2 × 2 block operator
matrices as follows.

Theorem 2.2 ([21], Thm. 2.2). Let H1,H2 be Hilbert spaces. For i = 0, 1, let Ai : D(Ai) ⊂ H1 → H1, Bi :
D(Bi) ⊂ H2 → H1, Ci : D(Ci) ⊂ H1 → H2, Di : D(Di) ⊂ H2 → H2 be closed and (possibly) unbounded
operators, and define

A0 :=
(

A0 B0

C0 D0

)
, A1 :=

(
A1 B1

C1 D1

)
.

Suppose

(i) that the domain inclusions D(A0) ⊂ D(A1),D(A0) ⊂ D(Ci), i = 0, 1, D(D0) ⊂ D(D1), and D(D0) ⊂
D(Bi), i = 0, 1, all hold;

(ii) that A1 and C1 are A0-compact, B1 and D1 are D0-compact, C0 is A0-bounded with A0-bound bC, and B0

is D0-bounded with D0-bound bB.

If bBbC < 1, then A1 is A0-compact. If, in addition, A0 is closed, then A0 +A1 is closed, and σess(A0 +A1) =
σess(A0).

With the previous result, the spectrum of the linearized monodomain operator can be described as follows.

Proposition 2.3. The operator

A : D(A) ⊂ L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω),

D(A) =
{


y ∈ H2(Ω) × L2(Ω)
∣∣∣∣∂yv

∂ν
= 0 on Γ

}
,

with action

A
y =
(

Δyv − (3av̄2 − 2bv̄ + c)yv − dyw

γyv − δyw

)
,

is closed and σess(A) = σc(A) = {−δ}. Moreover, its point spectrum is given as

σp(A) =
{

λ ∈ C

∣∣∣∣λ = −δ − μ

2
± 1

2

√
(δ + μ)2 − 4γd, μ ∈ σp(Δ − (3av̄2 − 2bv̄ + c)I)

}
.

The corresponding eigenfunctions are complete in L2(Ω) × L2(Ω) and are given as 
y = (yv,
γ

δ+λyv), where, yv

are the eigenfunctions associated with the operator Δ − (3av̄2 − 2bv̄ + c)I.

Proof. Using the splitting

A =
(

Δ − (3av̄2 − 2bv̄ + c) −d
0 −δI

)
︸ ︷︷ ︸

A0

+
(

0 0
γI 0

)
︸ ︷︷ ︸

A1

,

the assumptions in Theorem 2.2 (i) trivially hold. Moreover, for the boundedness constants we have bBbC = 0.
By ([12], Thm. B (ii)), we have the relative Δ-compactness of the constant multiplication operator γI and we
can conclude that

σess(A) = σess (A0) .
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Since the self-adjoint operator Δ − (3av̄2 − 2bv̄ + c)I has compact resolvent its spectrum is discrete, implying
that σess(A) = {−δ}. For the derivation of the point spectrum, we have to find λ and 
y �= 0 satisfying(

Δyv − (3av̄2 − 2bv̄ + c)yv − dyw − λyv

γyv − δyw − λyw

)
=

(
0
0

)
.

For the second equation, we get yw = γ
δ+λyv, which, inserting into the first equation, leads to

Δyv − (3av̄2 − 2bv̄ + c)yv − d
γ

δ + λ
yv − λyv = 0. (2.4)

Assume now that yv is an eigenfunction of Δ − (3av̄2 − 2bv̄ + c)I for the eigenvalue μ. By multiplying (2.4)
with δ + λ, we thus find λ as a solution of the quadratic equation

λ2 + λ(δ − μ) + dγ − μδ = 0.

The statement follows by a simple computation of the roots for the latter equation. Completeness of
{(yv,

γ
δ+λyv)} in L2(Ω) × L2(Ω) follows from completeness of {yv} in L2(Ω) as eigenfunctions of Δ − (3av̄2 −

2bv̄ + c)I. �

Remark 2.4. A similar derivation for A∗ yields the same point spectrum with eigenfunctions 
y = (yv,
d

−δ−λyv).

2.2. Lack of null controllability of the linearized system

Note that the spectrum of A has two accumulation points at −∞ and −δ. We are going to use this property
to show that the system is not null-controllable, even when B = I, i.e. ωcon = Ω. First, we recall some concepts
of infinite-dimensional control theory. We call a system β-stabilizable if it is exponentially stabilizable with rate
β > 0.

Definition 2.5 ([36], Def. 3.1). The pair (A,B) is optimizable if for every y0 ∈ Y, there exists a u ∈
L2([0,∞),U) such that y ∈ L2([0,∞),Y), where

y(t) = S(t)y0 +
∫ t

0

S(t − τ)Bu(τ)dτ.

The pair (A, C) is estimatable if (A∗, C∗) is optimizable.

Following [36], we have the following sufficient condition for the pair (A, C) to be estimatable. Note that a
similar condition has already been given in ([31], Thm. 1.2).

Proposition 2.6 ([36], Prop. 4.8). If (A, C) is estimatable, then there exist α > 0 and m > 0 such that, for all
s ∈ C with Re(s) > −α,

‖(sI −A)z‖ + ‖Cz‖ ≥ m‖z‖ ∀z ∈ D(A).

We now can show that the pair (A,B) in (2.3) cannot be null-controllable.

Theorem 2.7. For β ≥ δ, system (2.3) is not β-stabilizable. In particular, the pair (A,B) is not exactly null-
controllable.

Proof. Assume that the system is β-exponentially stabilizable with β ≥ δ. This implies that the pair (A∗ +
βI,B∗) is estimatable. Due to Proposition 2.6, there exist α > 0 and m > 0 such that, for all s ∈ C with
Re(s) > −α,

‖(sI −A∗ − βI)
y‖ + ‖B∗
y‖ ≥ m‖
y‖ ∀
y ∈ D(A∗). (2.5)
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Now choose λ̃ ∈ σp(A∗ + βI) with corresponding eigenfunction ỹ = (yv,
d

−δ+β−λ̃
yv). We then obtain that

‖(λ̃I −A∗ − βI)ỹ‖ + ‖B∗ỹ‖ = ‖B∗yv‖, m‖ỹ‖ = m

√
1 +

∣∣∣∣ d

−δ + β − λ̃

∣∣∣∣2 ‖yv‖.

Since the spectrum of A∗ + βI has an accumulation point at ε = −δ + β ≥ 0, we can find λ̃ such that

eventually Re(λ̃) > −α as well as m

√
1 +

∣∣∣ d
ε−λ̃

∣∣∣2 > ‖B∗‖. This contradicts (2.5) and, hence, (A∗+βI,B∗) is not

estimatable and (A+βI,B) is not optimizable. Since stabilizability ([36], Rem. 1) as well as null-controllability
imply optimizability (see e.g. [25], Thm. 3.14), we conclude that (A+βI,B) can neither be null-controllable nor
stabilizable. The latter means (A,B) is not β-stabilizable. Finally, null-controllability of (A+βI,B) is equivalent
to null-controllability of (A,B) (see e.g. [34], Rem. 11.4), which proves the assertion. �

2.3. Stabilization by finite-rank input and output operators

While we have seen that the linearized system is only β-exponentially stabilizable as long as β < δ, for these
values of β, we now investigate stabilizability by finite-rank input and output operators, respectively. Hence, we

assume that B =
(

B
0

)
∈ L(Rm,Y) and, for fixed t, it has the form

Bu(t) =
[∑m

i=1 χ|ω̃i
ui(t)

0

]
,

where χ|ω̃i
denotes the characteristic function for the set ω̃i ⊂ Ω.

Following [17], in order to study exponential stabilizability of (A,B) and exponential detectability of (A, C),
for α ∈ R we decompose the spectrum of A into two disjoint sets:

σ+
α (A) := σ(A) ∩ C

+
α ; C

+
α = {λ ∈ C|Re(λ) > α},

σ−
α (A) := σ(A) ∩ C

−
α ; C

−
α = {λ ∈ C|Re(λ) < α}.

As in [17,19,28], our goal is to decompose the state space Y into a stable part Y− and an unstable part Y+.
Provided that the dimension of Y+ is finite, stabilizability and detectability can then be checked by means of
well known finite-dimensional criteria.

Definition 2.8 ([17], Def. 5.2.5). A satisfies the spectrum decomposition assumption at α if σ+
α (A) is bounded

and separated from σ−
α (A) in such a way that a rectifiable, simple, closed curve, Γα, can be drawn so as to

enclose an open set containing σ+
α (A) in its interior and σ−

α (A) in its exterior.

We now define the spectral projection

Pα
y =
1

2πı

∫
Γα

(λI −A)−1
y dλ

and decompose our system (A,B, C) into the sum of the two subsystems (A+
α ,B+

α , C+
α ) and (A−

α ,B−
α , C−

α ), where
A+

α = PαA,A−
α = (I − Pα)A,B+

α = PαB,B−
α = (I − Pα)B, C+

α = CPα and C−
α = C(I − Pα). Since this approach

is quite common in the literature, for more details, we refer to, e.g., [17, 19, 28].
For our purposes, it is important to note that, by Proposition 2.3, A indeed satisfies the spectrum decompo-

sition assumption at −β for β < δ. Moreover, since the only accumulation points of σ(A) are −∞ and −δ, we
conclude that σ+

−β(A) is finite. For the rest of the paper, we make the following two assumptions:

(A1) ran(sI −A) + ran(B) = Y, for s ∈ C
+
−β .
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(A2) ker(sI −A) ∩ ker(C) = {0}, for s ∈ C
+
−β .

With theorem ([17], Thm. 5.2.11), we find that the linearized system (A,B, C) is β-exponentially stabilizable
by finite-rank input operators as long as β < δ. Similarly it is exponentially detectable for finite-rank output
operators. In Section 5, we show that assumptions (A1) and (A2) are actually fulfilled for our numerical examples.

3. LQG compensator design

For the linearized system (2.3), let us define the quadratic cost functional

J(
y0; u) =
∫ ∞

0

‖yobs(t)‖2
Rp + 〈u(t), Ru(t)〉Rm dt, (3.1)

with weight matrix R = RT � 0 and yobs(t) as in (2.3b). Under the assumptions (A1) and (A2), it is well-known
([17], Thm. 6.2.7) that the optimal control minimizing (3.1) is determined by the unique nonnegative solution
P = P∗ ∈ L(Y) to the algebraic operator Riccati equation

A∗P + PA + C∗C − PBR−1B∗P = 0. (3.2)

Similarly, we have the existence of a unique solution Q = Q∗ � 0 to

AQ + QA∗ + BB∗ −QC∗CQ = 0. (3.3)

Denoting K = −R−1B∗P ∈ L(Y, Rm) and H = −QC∗ ∈ L(Rp,Y) it moreover follows that A+BK and A+HC
are infinitesimal generators of exponentially stable semigroups. Hence, with ([17], Thm. 5.3.3) we obtain an
exponentially stabilizing compensator of the form


̇y(t) = A
y(t) + BK
z(t),


̇z(t) = (A + BK + HC)
z(t) −Hyobs(t).
(3.4)

In particular, K
z(t) can be interpreted as a feedback control law driven by partial measurements yobs(t) obtained
from the original system.

3.1. Local stabilization of the nonlinear system

Following [29,33], let us consider the effect of the feedback law obtained by the linearized system when applied
to the full nonlinear system. We have the nonlinear closed-loop system


̇y(t) = A
y(t) + BK
z(t) + F(
y(t)), 
y(0) = 
y0,


̇z(t) = (A + BK + HC)
z(t) −Hyobs(t), 
z(0) = 
z0,
(3.5)

with F denoting the nonlinearity from (2.2). In order to obtain the (local) existence of a unique solution to (3.5),
we need to consider the nonhomogeneous equation


̇y(t) = A
y(t) + BK
z(t) + 
f(t), 
y(0) = 
y0,


̇z(t) = (A + BK + HC)
z(t) −Hyobs(t), 
z(0) = 
z0,
(3.6)

where 
f =
(

f1

0

)
. With similar arguments as in [11], we have the following result.
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Lemma 3.1. Let Ω ⊂ R2 (Ω ⊂ R3) with ε ∈ (1
2 , 1] (ε = 1). If f1 ∈ L2(0,∞; Hε−1(Ω)), μ ∈ L2(0,∞; Rp), 
y0 ∈

Hε(Ω) × H1+ε(Ω) and 
z0 ∈ Hε(Ω) × Hε(Ω), then (3.6) has a unique solution

(
y, 
z) ∈
(
H1+ε, 1+ε

2 (Q∞)
)
×

(
Cb([0,∞); H1+ε(Ω)) ∩ H1(0,∞; H1+ε(Ω))

)
×

(
H1+ε, 1+ε

2 (Q∞)
)
×

(
H1(0,∞; L2(Ω))

)
satisfying

‖(
y, 
z)‖(
H1+ε,

1+ε
2 (Q∞)

)
×(H1(0,∞;H1+ε(Ω)))×

(
H1+ε,

1+ε
2 (Q∞)

)
×(H1(0,∞;L2(Ω)))

≤ C2

(
‖
y0‖Hε(Ω)×H1+ε(Ω) + ‖
z0‖Hε(Ω)×Hε(Ω) + ‖f1‖L2(0,∞;Hε−1(Ω)) + ‖μ‖L2(0,∞;Rp)

)
.

Proof. The proof follows to a large extent the arguments provided for analogous results obtained in, e.g., [11,33].
There are, however, some differences to the latter references. In [11] only state feedback rather than output
feedback based on the observer equation was considered. The analysis in [33] is concerned with the Burgers
equation. We thus briefly recapitulate the most important steps. The analysis of the involved interpolation
spaces ([11], Thm. 4.7, Step 1) can be transferred to our setting. The role of the operator A in [11] is now
taken by

Aex =
[
A 0
0 A

]
.

As mentioned above, the operator

ALQG =
[

A BK
−HC A + BK + HC

]
is the infinitesimal generator of an exponentially stable semigroup. It moreover is a bounded perturbation of Aex

and thus the semigroup is analytic. With ([33], Lem. 4.2) we first conclude that (
y, 
z) ∈ L2(Q∞) × L2(Q∞) ×
L2(Q∞) × L2(Q∞). Based on the splitting 
y = 
y1 + 
y2 and 
z = 
z1 + 
z2, where


̇y1 = (A− λ0I)
y1 + 
f + λ0
y, 
y1(0) = 
y0,


̇z1 = (A− λ0I)
z1 −Hμ + λ0
z, 
z1(0) = 
z0,


̇y2 = (A− λ0I)
y2 + BK
z, 
y2(0) = 0,


̇z2 = (A− λ0I)
z2 + (BK + HC)
z −HC
y, 
z2(0) = 0,

we conclude that

y, 
z ∈ L2(0,∞; H1+ε

ν (Ω) × L2(Ω)) ∩ H1(0,∞; Hε−1(Ω) × L2(Ω)).

As we did in step 4 in [11], we can utilize the special structure of B =
(

B
0

)
. Note that we assumed the control

to be restricted to the PDE variable. Hence, by using the explicit solution formula for yw and yw(0) ∈ H1+ε(Ω),
we even get that yw ∈ Cb([0,∞); H1+ε(Ω)) ∩ H1(0,∞; H1+ε(Ω)). �

Remark 3.2. Note that we cannot obtain more regularity for zw due to the properties of the operator HC
which involves Q ∈ L(Y).

Combining the local Lipschitz continuity properties ([11], Lem. 4.4/4.5) of the nonlinear operator F , a fixed
point argument can be employed in order to show local asymptotic stability of (3.5).

Theorem 3.3. Let Ω ⊂ R2(Ω ⊂ R3) and ε ∈ (1
2 , 1] (ε = 1). Then there exist C0 < 0 and a nondecreasing

function η from R+ into itself, such that if C ∈ (0, C0) and

‖(
y0, 
z0)‖Hε(Ω)×H1+ε(Ω)×Hε(Ω)×Hε(Ω) + ‖μ‖L2(0,∞;Rp) ≤ η(C),
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then (3.5) admits a unique solution satisfying

‖(
y, 
z)‖
H1+ε,

1+ε
2 (Q∞)×H1(0,∞;H1+ε(Ω))×H1+ε,

1+ε
2 (Q∞)×H1(0,∞;L2(Ω))

≤ C.

Having established local asymptotic stability, we now extend the results to the case of exponential
stabilization.

3.2. Local exponential stabilization

Instead of (3.5), assume that the following closed-loop system is given

˙̃y(t) = (A + βI)ỹ(t) + BK̃z̃(t) + F̃(ỹ(t)), ỹ(0) = ỹ0,

˙̃z(t) = (A + BK̃ + H̃C + βI)z̃(t) − H̃ỹobs(t), z̃(0) = z̃0,
(3.7)

where

F̃ (ỹ(t)) =
(
−e−2βtaỹ3

v − e−βt(−b + 3av̄)ỹ2
v

0

)
, ỹobs(t) = Cỹ(t) + μ̃(t), μ̃(t) = eβtμ(t)

and the feedback and observer gains K̃ and H̃ are implicitly determined by the shifted operator Riccati equations

(A∗ + βI)P̃ + P̃(A + βI) + C∗C − P̃BR−1B∗P̃ = 0,

(A + βI)Q̃ + Q̃(A∗ + βI) + BB∗ − Q̃C∗CQ̃ = 0.

As we already indicated in [11], as long as β < δ, all previous arguments can be utilized to show local
asymptotic stability of (3.7). In particular, this implies local exponential stability of (3.5). We summarize the
precise result as follows.

Theorem 3.4. Let Ω ⊂ R2(Ω ⊂ R3) and ε ∈ (1
2 , 1] (ε = 1). Then for β < δ there exist C0 < 0 and a

nondecreasing function η from R+ into itself, such that if C ∈ (0, C0) and

‖(
y0, 
z0)‖Hε(Ω)×H1+ε(Ω)×Hε(Ω)×Hε(Ω) + ‖eβtμ‖L2(0,∞;Rp) ≤ η(C),

then (3.5) admits a unique solution satisfying

‖eβt(
y, 
z)‖
H1+ε,

1+ε
2 (Q∞)×H1(0,∞;H1+ε(Ω))×H1+ε,

1+ε
2 (Q∞)×H1(0,∞;L2(Ω))

≤ C.

With regard to practical applicability of a locally exponentially stabilizing compensator, the question of
finite-dimensional compensator arises. Below we address this problem by using the method of LQG-balanced
truncation.

4. Finite-dimensional and reduced order compensators

The practical realization of the LQG approach is still impeded by the infinite-dimensionality of the system.
An obvious first step consists in introducing a finite-dimensional approximation based on finite elements, for
example. The resulting system, however, is still high dimensional. For this reason we propose the use of reduced
order compensator dynamics. To start with the FEM approximation, consider the finite-dimensional control
system of the form

ẏn(t) = Anyn(t) + Bnu(t), yn
obs(t) = Cnyn(t), (4.1)

with (An, Bn, Cn) to be defined below. Proceeding in this manner, the next step might consist in designing
a stabilizing compensator for the finite-dimensional system. However, the approximation step has to be done
carefully such that the finite-dimensional compensator is still stabilizing for the original infinite-dimensional
system. With this in mind, we have to specify a uniform structure preserving approximation. The following
properties have been shown to be essential when designing a robust finite-dimensional controller, see [15].
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(A3) Y n is a sequence of finite-dimensional subspaces of Y and Πn is the orthogonal projection of Y onto Y n

such that

Πn
y → 
y as n → ∞ for all 
y ∈ Y,

Bn = ΠnB, Cn = C|Y n ;

(A4) An ∈ L(Y n) and for each 
y ∈ Y there holds
(i) eAntΠn
y → S(t)
y,
(ii) (eAnt)∗Πn
y → S(t)∗
y
uniformly in t on bounded intervals as n → ∞.

(A5) (An, Bn) is uniformly exponentially stabilizable; i.e., there exists a uniformly bounded sequence of oper-
ators Kn ∈ L(Y n, Rm) such that∥∥∥e(An−BnKn)tΠn
y

∥∥∥
Y
≤ M1e

−α1t‖
y‖Y

for some positive constants M1 ≥ 1 and α1;
(A6) (An, Cn) is uniformly exponentially detectable; i.e., there exists a uniformly bounded sequence of operators

Hn ∈ L(Rp, Y n) such that ∥∥∥e(An−HnCn)tΠn
y
∥∥∥
Y
≤ M2e

−α2t‖
y‖Y

for some positive constants M2 ≥ 1 and α2.

The applicability of FEM discretizations has been discuseed in [3]. We can therefore construct an LQG-based
compensator for the linearized finite-dimensional system (4.1) by solving the two finite-dimensional Riccati
equations

(An)T Pn + PnAn + Cn(Cn)T − PnBnR−1(Bn)T Pn = 0,

AnQn + Qn(An)T + Bn(Bn)T − Qn(Cn)T CnQn = 0,
(4.2)

for the unknowns Pn and Qn.
Unfortunately, finite-element discretizations often result in finite-dimensional but very large scale systems

making the computation of Pn and Qn a formidable task on its own. Moreover, the simulation time for the
resulting n-dimensional LQG compensator

żn(t) = (An + BnKn + HnCn)zn(t) − HnCnyobs(t), u(t) = Knzn(t), (4.3)

where Kn = −R−1(Bn)T Pn and Hn = −Qn(Cn)T might exceed reasonable time scales due to the large system
dimension. We are thus interested in constructing an r-dimensional reduced compensator

żn
r (t) = An

r zn
r (t) + Bn

r yobs(t), u(t) = Cn
r zn

r (t), (4.4)

such that r � n. There are two issues that have to be addressed to obtain (4.4). First, how does one compute the
reduced compensator? Second, how to ensure that it is indeed stabilizing the infinite-dimensional system? Both
question have been investigated in [15] and we briefly recapitulate the necessary concepts presented therein.

The design procedure from [15] basically consists of a model order reduction step, followed by a compensator
design step for the already reduced system. For finite-dimensional linear control systems, the topic of model order
reduction can be considered well understood. For a detailed overview of different reduction techniques, we refer
to [2]. Many of these finite-dimensional concepts have been generalized to the infinite-dimensional setting, see
e.g. [5,15,18,24]. Since we allow the linearized system (2.3a) to be (possibly) unstable, the method of balanced
truncation is in general not applicable. Instead, we want to construct a reduced system approximating (2.3a)
by the LQG-balanced truncation method.

For this, we first have to define an important class of infinite-dimensional systems.
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Definition 4.1 ([15], Def. 4.2). A system (A,B, C) is a Pritchard−Salamon system with respect to the Hilbert
spaces V, W if the following hold:

(i) W ↪→ V.
(ii) A is the infinitesimal generator of a strongly continuous semigroup S(t) on V which restricts to a strongly

continuous semigroup on W.
(iii) B ∈ L(Cm, V ) and there exist t1, α such that∫ t1

0

S(t1 − τ)Bu(τ)dt ∈ W and∥∥∥∥
∫ t1

0

S(t1 − τ)Bu(τ)dt

∥∥∥∥
W

≤ α‖u‖L2(0,t1;Cm) for all u ∈ L2(0, t1; Cm).

(iv) C ∈ L(W, Cp) and there exist t2, β > 0 such that

‖CS(·)z‖L2(0,t2;Cp) ≤ β‖z‖V for all z ∈ W.

The central idea behind LQG-balanced truncation is to balance certain system Gramians in the following sense.

Definition 4.2 ([15], Def. 4.5). A Pritchard−Salamon system (Ã, B̃, C̃) is called an LQG-balanced realization
of (A,B, C) if there exist bounded, self-adjoint, nonnegative solutions P̃ , Q̃ to its control and filter Riccati
equations

Ã∗P̃ + P̃Ã − P̃B̃B̃∗P̃ + C̃∗C̃ = 0,

ÃQ̃ + Q̃Ã∗ − Q̃C̃∗C̃Q̃ + B̃B̃∗ = 0.
(4.5)

such that P̃ = Q̃ = Λ is a diagonal operator.

For exponentially stabilizable systems with finite-rank input and output-operators, ([15], Thm. 4.8) shows that
there always exists an LQG-balanced realization (Ã, B̃, C̃) of (A,B, C). Moreover, partitioning the transformed
LQG-balanced system as follows

Ã =
[
Ãr ∗
∗ ∗

]
, B̃ =

[
B̃r

∗

]
, C̃ =

[
C̃r ∗

]
(4.6)

yields a reduced order system that converges to the infinite-dimensional system in the gap topology. Here, Ãr, B̃r

and C̃r are operators that allow for a matrix representation of dimension r.

Theorem 4.3 ([15], Thm. 4.9). The transfer functions Gr of the LQG-balanced truncations (Ãr, B̃r, C̃r) con-
verge in the gap topology as r → ∞ to G, the transfer function of (Ã, B̃, C̃) and (A,B, C).

Remark 4.4. Convergence in the gap topology has to be understood in terms of normalized left-coprime
factorizations of the system G(s) in the form of G(s) = M(s)−1N(s). As in [15, 17], this means that instead
of an exponentially stabilizable and detectable linear system (A,B, C), we consider the exponentially stabilized
system

(A− PC∗C, [B,−PC∗], C, [0, I]).

The latter system has the transfer function [N(s), M(s)] with

N(s) = C(sI −A + PC∗C)−1B, M(s) = I − C(sI −A + PC∗)−1PC∗

and M(s), N(s) further satisfy a Bezout identity and a normalization property. For more details on left-coprime
factorizations (see [17], Chap. 7). The convergence result from Theorem 4.3 can be interpreted as convergence
of ‖[Nr, Mr] − [N, M ]‖∞.
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A realization of the above procedure requires the solutions of the operator Riccati equations (4.5) in order to
perform the balancing step. Numerically, this is achieved by a discretization of the system such that assumptions
(A3)−(A6) are fulfilled. We then have to solve the finite-dimensional Riccati equations (4.2) and compute an
LQG-balanced reduced-order system. For the precise computation of the required projection matrices, we refer
to [7], where a similar approach has been studied for the linearized Navier–Stokes equations.

4.1. Robust finite-dimensional controller design

After having obtained the finite-dimensional reduced-order system (Ãr , B̃r, C̃r), we have to find a controller
(An

r , Bn
r , Cn

r ) such that the closed-loop system

˙̃yr(t) = Ãr ỹr(t) + B̃rC
n
r zn

r (t),

żn
r (t) = An

r zn
r (t) + Bn

r C̃r ỹr(t),

is (robustly) stabilized. Again, for finite-rank input and output operators as considered here, in [15], it was
shown that this can be done in such a way that (An

r , Bn
r , Cn

r ) is stabilizing (A,B, C) as well. The precise result
is as follows.

Theorem 4.5 ([15], Thm. 4.12). Under the assumptions (A3)−(A6), given a positive ε <
√

1 − σ2
1 , we can

always find two integers r � n such that there is a controller (An
r , Bn

r , Cn
r ) that stabilizes the system (A,B, C)

with a robustness margin with respect to left-coprime factor perturbations of
√

1 − σ2
1 .

Note that in [15], stabilizing is meant in the sense of input-output stability as in ([17], Def. 9.1.2). For the
special situation considered here, this also implies exponential stability of the closed-loop semigroup generated
by its infinitesimal generator

Acl =
[

A BCn
r

CBn
r An

r

]
.

Moreover, an explicit numerical procedure for computing (An
r , Bn

r , Cn
r ) is given (see [15], Sect. 4.5.1).

4.2. Local exponential stabilization

Finally, we consider the reduced r-dimensional controller from Theorem 4.5 when used as a compensator for
the nonlinear system


̇y(t) = A
y(t) + BCn
r zn

r (t) + F(
y(t)), 
y(0) = 
y0,

żn
r (t) = An

r zn
r (t) + Bn

r yobs(t), zn
r (0) = zn

r,0,
(4.7)

Theorem 4.6. Let Ω ⊂ R2(Ω ⊂ R3) and ε ∈ (1
2 , 1] (ε = 1). Then for β < δ there exist C0 < 0 and a

nondecreasing function η from R+ into itself, such that if C ∈ (0, C0) and

‖(
y0, z
n
r,0)‖Hε(Ω)×H1+ε(Ω)×Rr + ‖eβtμ‖L2(0,∞;Rp) ≤ η(C),

then (4.7) admits a unique solution in the set{
(
y, zn

r ) ∈
(
H1+ε, 1+ε

2 (Q∞)
)
×

(
Cb([0,∞); H1+ε(Ω)) ∩ H1(0,∞; H1+ε(Ω))

) (
Cb([0,∞); Rr) ∩ H1(0,∞; Rr)

)
∣∣∣∣‖eβt(
y, zn

r )‖
H1+ε,

1+ε
2 (Q∞)×H1(0,∞;H1+ε(Ω))×H1(0,∞;Rr)

≤ C

}
.

Proof. The arguments required to show the assertion follow the lines of those used for similar results in,
e.g., [11, 27, 33]. In contrast to those works, the closed loop system (4.7) here is based on a finite-dimensional
controller. However, we have seen that the linearized system is exponentially stable and we thus can still use a
contraction principle in combination with local Lipschitz continuity of the nonlinear operator F . �
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5. Numerical examples

In our numerical examples, we consider the following version of the monodomain equations

∂v

∂t
= αΔv − Iion(v, w) + Bu, in Ω × (0, T ),

∂w

∂t
=

η2

vpk
v − η2η3w, in Ω × (0, T ),

∂v

∂ν
= 0, on Γ × (0, T ),

v(x, 0) = v0(x) and w(x, 0) = w0(x), in Ω,

(5.1)

where Ω = (0, 1) × (0, 1). For the ionic current we use the FitzHugh−Nagumo model

Iion(v, w) = η0v + η1w − η0

(
1

vth
+

1
vpk

)
v2 +

η0

vthvpk
v3·

The parameters are α = 0.0015, η0 = 1.614, η1 = 215.6, η2 = 0.015, η3 = 1, vth = 13 and vpk = 100. The control
operator is chosen as

Bu(t) =
8∑

i=1

χ|ω̃i
ui(t), (5.2)

with control domains

ω̃1 =
{

(x1, x2) ∈
[

5
32

,
9
32

]
×

[
4
32

,
8
32

]}
, ω̃2 =

{
(x1, x2) ∈

[
4
32

,
8
32

]
×

[
23
32

,
27
32

]}
,

ω̃3 =
{

(x1, x2) ∈
[

3
32

,
7
32

]
×

[
14
32

,
18
32

]}
, ω̃4 =

{
(x1, x2) ∈

[
24
32

,
28
32

]
×

[
14
32

,
18
32

]}
,

ω̃5 =
{

(x1, x2) ∈
[
14
32

,
18
32

]
×

[
4
32

,
8
32

]}
, ω̃6 =

{
(x1, x2) ∈

[
14
32

,
18
32

]
×

[
24
32

,
28
32

]}
,

ω̃7 =
{

(x1, x2) ∈
[
24
32

,
28
32

]
×

[
4
32

,
8
32

]}
, ω̃8 =

{
(x1, x2) ∈

[
25
32

,
29
32

]
×

[
24
32

,
28
32

]}
·

For system (5.1) we use the observation operator

vobs(t) = C(v(t), w(t)) = Cv(t) :=
(

1
|ω1|

∫
ω1

v(t), . . . , 1
|ω8|

∫
ω8

v(t)
)
∈ R

8, (5.3)

where ωi are squares covering ω̃i with an extra 1
32 margin all around. The control and observation configurations

are also shown in Figure 1. We point out that using observation domains on or next to the control domains
highly improved the stabilization results compared to using non overlapping control and observation domains.
For the classical LQG approach we were also able to stabilize all of the presented scenarios even with disjoint
control and observation domains.

We emphasize that the above setup constitutes a highly simplified version of models used in realistic electro-
physiological applications. This not only concerns the academic computational domain used here, but also the
anisotropic electrical properties of the heart that would lead to an additional conductivity tensor acting on the
gradient of the transmembrane potential. As we mentioned at the beginning of this paper, observation patches
as shown in Figure 1 are often not available and one rather has to rely on indirect (boundary) measurements
based on the photon diffusion equation [9]. Moreover, while controllers and observers may act on the same sub-
sets of the physiological domain, their simultaneous access is hardly possible. Including (some of) the previous
comments in a numerical setup explains the need for reduced-order controllers and poses a challenge on its own.
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Figure 1. Control (red) and observation (yellow) domains. (Color online).

5.1. Stabilizability and detectability properties

For the underlying ODE of (5.1), consider a stationary solution to

0 = η0v + η1w − η0

(
1

vth
+

1
vpk

)
v2 +

η0

vthvpk
v3,

0 =
η2

vpk
v − η2η3w.

(5.4)

One easily verifies that one solution (v̄, w̄) to (5.4) is given as

v̄ =
vpk + vth

2
+

1
2

√
(vpk − vth)2 − 4

η1vth

η0η3
≈ 68.98, w̄ ≈ 0.0698. (5.5)

For the stabilization concepts from Theorems 3.4 and 4.6 we are particularly interested in unstable stationary
solutions. In order to investigate stability of (v̄, w̄), we thus need the spectrum of A as in (2.2). According to
Proposition 2.3, we can analytically specify σp(A) by means of the point spectrum of

Av := αΔ − 3
η0

vthvpk
v̄2I + 2η0

(
1

vth
+

1
vpk

)
v̄I − η0I.

Since v̄ is constant, we conclude that

σp(Av) =
{

μ ∈ C

∣∣∣∣μ = −απ2(i2 + j2) − 3
η0

vthvpk
v̄2 + 2η0

(
1

vth
+

1
vpk

)
v̄ − η0, i, j ∈ N0

}
.

Considering now the rightmost eigenvalue

μ̄ = −3
η0

vthvpk
v̄2 + 2η0

(
1

vth
+

1
vpk

)
v̄ − η0,

by Proposition 2.3, the associated eigenvalues λ̄± of A are

λ̄± = −δ − μ̄

2
± 1

2

√
(δ + μ̄)2 − 4γd ≈ 0.0019± 0.1790ı.
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The stationary solution (v̄, w̄) thus is unstable. These two eigenvalues are the only ones with positive real
part. As a consequence, stabilizability of (5.1) can be investigated by checking assumptions (A1) and (A2)
for λ̄±.

Proposition 5.1. The pair (A,B) with B as in (5.2) is stabilizable.

Proof. Instead of stabilizability of (A,B), we are going to show detectability of (A∗,B∗). Since the eigenvectors
of Av are of the form y(x1, x2) = cos(iπx1) cos(jπx2), by Remark 2.4, the eigenvectors associated with the
unstable eigenvalues λ̄± are 
z± =

(
1, d

−δ−λ̄±
1
)

. Hence, we obtain that

B∗
z± =
(∫

ω̃1
1 dx, . . . ,

∫
ω̃8

1 dx
)

=
(

1
64

, . . . ,
1
64

)
�= 0

showing that ker(λ̄±I −A∗) ∩ ker(B∗) = 0.
�

Proposition 5.2. The pair (A, C) with C as in (5.2) is detectable.

Proof. Similar as in Proposition (5.1), for the eigenvectors associated with λ̄±, it holds that

C
z± =
(

1
|ω1|

∫
ω1

1 dx, . . . , 1
|ω8|

∫
ω8

1 dx
)

= (1, . . . , 1) �= 0

showing that ker(λ̄±I −A) ∩ ker(C) = 0. �
Remark 5.3. The benefit of stabilizing the system around the stationary solution (5.5) is given in an implicit
way. From a practical point of view, the desired “resting state” corresponds to the zero solution which allows
the heart to return to its natural pace. It is however known from applications point of view that if a sufficiently
large part of the domain is excited above the threshold value, the system will only shortly remain at this point
before it collapses to the resting state. With this in mind, for initial states close to (v̄, w̄), it can be advantageous
to stabilized around (5.5) and wait for this collapse instead of investing more energy to control the system to
the zero state. Of course the question of when to stop the stabilization around (v̄, w̄) remains to be addressed.

5.2. Discretization and numerical solution of AREs

All simulations are generated on an Intel r©Xeon(R) CPU E31270 @ 3.40 GHz x 8, 16 GB RAM, Ubuntu
Linux 14.04, MATLAB r© Version 8.0.0.783 (R2012b) 64-bit (glnxa64). The solutions of the ODE systems are
always obtained by the MATLAB routine ode45.

The FEM discretization used in the numerical experiments was obtained by the PDE toolbox from MATLAB.
All results correspond to a 64 × 64 regular grid with n = 2 · 4225 = 8450 degrees of freedom.

Due to the mass matrix M obtained from the FEM discretization, the generalized Riccati equations are of
the form

(An)T PnMn + (Mn)T PnAn + (Cn)T Cn − (Mn)T PnBnR−1(Bn)T PnMn = 0,

AnQn(Mn)T + MnQn(An)T + Bn(Bn)T − MnQn(Cn)T (Cn)Qn(Mn)T = 0,

with An, Mn = (Mn)T ∈ R8450×8450, Bn, (Cn)T ∈ R8450×8 and R ∈ R8×8. Since we were not able to compute
the solutions Pn and Qn with the MATLAB routine care, we used a Kleinman−Newton iteration as described
in, e.g., [4,6,13,20]. The Lyapunov equations arising in every Newton step where solved by an appropriate low
rank implementation of the BiCGstab method.

5.3. LQG compensator design

We first report on the results obtained for the classical LQG approach from Section 3. We chose the weight
matrix R = 10−4I. In accordance with Theorem 3.4, the desired decay rate was set to β = 0.01. For the shifted
linearized system from Section 3.2, we have 6 unstable eigenvalues. Similar as in Propositions 5.1 and 5.2, one
can show exponential stabilizability of the pairs (A + βI,B) and (A + βI, C), respectively.
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(a) Evolution of v(x, t) (uncontrolled). (b) Evolution of v(x, t) (controlled).
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(c) Comparison of L2(Ω)-norm evolutions.
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(d) Feedback control u1(t).

Figure 2. Stabilization of perturbed initial state by LQG compensator.

5.3.1. Stabilization of perturbed initial state

In the first example, we initialize the system with a constant perturbation around the unstable stationary
solution (5.5) (see Fig. 2a at t = 0). This perturbed initial state is given as (v0, w0) = 0.9·(v̄, w̄). As a consequence
of the Neumann boundary conditions, the state remains constant in space as time evolves. The transmembrane
potential v(t) of the uncontrolled system first is increased up to a value v(t) ≈ 80 before it quickly becomes
negative. From here, it then approaches the (stable) zero state. For the LQG approach, we initialize the state
of the steady-state Kalman estimator with zv,0 = zw,0 = 0. We further incorporate a noisy observation of the
form

vobs(t) = Cnv(t) + e−0.011trandn(8, 1),

where randn() denote normally distributed numbers generated with MATLAB. Similarly to the uncontrolled
system, the state v(t) is first increased above the unstable stationary solution v̄. As can be seen in Figure 2c,
from here the control then drives it to v̄. The described behavior of uncontrolled and controlled system are also
reflected in Figure 2b which shows the deviation of v(t) from v̄. For the evolution of the discrete L2(Ω)-norm,
the M -inner product

‖v(t) − v̄‖M =
√
〈v(t) − v̄, M(v(t) − v̄)〉
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(a) Evolution of v(x, t) (uncontrolled). (b) Evolution of v(x, t) (controlled).

Figure 3. Termination of a reentry wave by LQG compensator.

is used. As shown in the figure, the error of the uncontrolled system converges to the value ‖v̄‖L2(Ω) while the
error of the controlled system approaches zero. For numerical evidence of the decay rate, we compare the error
with the function e−0.01t. Figure 2 shows the feedback control for the control domain ω1. Interestingly, despite
the choice of R = 10−4I, the amplitude of u1(t) is only moderate.

5.3.2. Termination of a reentry wave

The second example deals with the termination of a reentry wave. As already mentioned in the introduction,
these reentry phenomena model fibrillation processes of the heart. As a consequence, one is typically interested
in terminating the wave, i.e., controlling the state to zero. In contrast to the first example, we thus consider
(v̄, w̄) = 0. It now easily follows that the corresponding linearized system is stable. However, the system is
not globally stable. As seen in Figure 3a, certain initial configurations require the use of external controls for
stabilization. While the results from Theorem 3.4 do not guarantee an extension of the radius of attraction, the
performance of feedback-based control laws is still of interest. As in the previous example, the Riccati solutions
are obtained for the parameters R = 10−4I and β = 0.01. Figure 2b shows the dynamics of the corresponding
closed-loop system. The control first forces the transmembrane potential below zero and from there it steers it
to zero.

5.4. Reduced compensator design

We now turn to the concepts investigated in Section 4. For successful stabilization we had to introduce weights
into the control and observation operators which were chosen as

Bu(t) =
8∑

i=1

1
|ω̃i|

χ|ω̃i
ui(t), vobs(t) = 50 ·

(
1

|ω1|
∫

ω1
v(t), . . . , 1

|ω8|
∫

ω8
v(t)

)
.

Since in our case 1
|ω̃i| > 1, proceeding in this way we expect the control to have more influence. Similarly,

deviations from the desired output experience higher penalization. Note that the assertions in Propositions 5.1
and 5.2 are not affected by these modifications. We briefly summarize the method from [15] in order to explain
how the reduced compensator is actually obtained and. In a first step, we solve the algebraic Riccati equations

(An)T PnMn + (Mn)T PnAn + (Cn)T Cn − (Mn)T PnBn(Bn)T PnMn = 0,

AnQn(Mn)T + MnQn(An)T + Bn(Bn)T − MnQn(Cn)T (Cn)Qn(Mn)T = 0.
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Figure 4. Decay of the first 150 Hankel singular values.

Due to the Kleinman−Newton scheme and the low rank implementation of BiCGstab, we obtain numerical
approximations of the form Pn ≈ UUT and Qn ≈ LLT , where U ∈ R2n×q and L ∈ R2n×
 are appropriate
low rank factors. For the computation of the LQG reduced model, we first compute the Hankel singular values

σi =
√

μ2
i

1+μ2
i
, where μ2

i denote the eigenvalues of the matrix (Mn)T PnMnQn. Based on the decay of the
first 150 Hankel singular values (see Fig. 4), for the dimension of the reduced model we choose r = 40. The

required projection matrices to generate (Ãr, B̃r, C̃r) as in (4.6) are given as Wr = UZrS
− 1

2
r and Vr = LYrS

− 1
2

r

where Zr, Sr, Yr are obtained as the first r components of the singular value decomposition of UT MnL =
ZSY T ≈ ZrSrY

T
r . Following ([15], Sect. 4.5.1) and ([17], Thm. 9.4.16), the transfer function of the final

reduced compensator is given as

Gn
r (s) =

1
ε2 − 1

B̃rΛr(sI − Âr)−1FrC̃
T
r ,

with

Λr = diag{μi}r
i=1, Fr = diag

{
(1 − ε2)μi

1 − ε2 − ε2μ2
i

}r

i=1

, Âr = Ãr − B̃rB̃
T
r Λr +

1
ε2 − 1

FrC̃
T
r C̃r.

For the robustness margin, we choose ε = 1

2
√

1+μ2
1

. Again we consider the unstable stationary solution (v̄, w̄)

from (5.5). As a first example, assume that the following perturbed initial state is given:

v0(x1, x2) = v̄ + 5 cos(2πx1) cos(3πx2), w0(x1, x2) = w̄ +
5

100
cos(2πx1) cos(3πx2).

5.4.1. Stabilization of perturbed initial state

We implement the reduced compensator with the same noisy observation as for the classical LQG approach.
In Figure 5a we show the evolution of v(x, t) for the closed-loop system at different time steps. The dynamics
can be summarized as follows. First the transmembrane potential collapses and briefly remains below zero. It
it then pushed back close to the peak value vpk = 100 from where it is then controlled to v̄. Without control,
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(a) Evolution of v(x, t) (controlled).
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Figure 5. Stabilization of perturbation around stationary solution.

(a) Evolution of v(x, t) (controlled).
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Figure 6. Stabilization of a reentry wave.

the system converges to the stable zero state from below. This is seen in Figure 5b where the error for the
uncontrolled system almost stagnates after very few time steps. On the other hand, the controlled system again
converges exponentially to the unstable solution. Comparing the results from Figures 2c and 5b for the L2(Ω)-
error of the controlled system, we note that the reduced order compensator appears to be insensitive to the
noisy observations.

5.4.2. Stabilization of a reentry wave

The final example is a reentry wave which, in contrast to the LQG approach, should be controlled to the
unstable solution (v̄, w̄). The results shown in Figure 6 are qualitatively similar to those obtained for the
perturbed initial state.
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6. Conclusions

We have studied compensator design for a coupled PDE-ODE reaction diffusion system that arises in the
context of cardiac electrophysiology. For the monodomain equations with the FitzHugh−Nagumo model, an
explicit characterization of the spectrum of the linearized system allowed for some new controllability results.
In particular, due to a finite accumulation point of the spectrum, we have seen that the system is not exactly
null controllable. On the other hand, for stabilizability margins below a certain value (determined by the ODE),
the system is locally exponentially stabilizable by finite-rank input and output operators. Besides the classical
LQG approach this opened up the possibility to use reduced order compensators obtained by the method of
LQG-balanced truncation. Numerical examples for both approaches illustrate the applicability of the theoretical
results.

Since our results so far do not allow for a concrete specification of the radius of attraction for the compensators,
we want to further study the use of other types of feedback mechanisms. Moreover, extending the method of
LQG-balanced truncation to allow for weight matrices seems to deserve closer attention.
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