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OPTIMAL CONTROL OF ELLIPTIC EQUATIONS WITH POSITIVE MEASURES

Christian Clason1 and Anton Schiela2

Abstract. Optimal control problems without control costs in general do not possess solutions due
to the lack of coercivity. However, unilateral constraints together with the assumption of existence of
strictly positive solutions of a pre-adjoint state equation, are sufficient to obtain existence of optimal
solutions in the space of Radon measures. Optimality conditions for these generalized minimizers can
be obtained using Fenchel duality, which requires a non-standard perturbation approach if the control-
to-observation mapping is not continuous (e.g., for Neumann boundary control in three dimensions).
Combining a conforming discretization of the measure space with a semismooth Newton method allows
the numerical solution of the optimal control problem.
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1. Introduction

This work is concerned with the following optimal control problem, stated formally as

inf
y,u

1
2
‖Ey − yd‖2

L2(ωo) s. t. Ay − Bu = 0, u ≥ 0, (1.1)

where A is a second-order elliptic differential operator and yd is a given target. Furthermore, ωo ⊂ Ω ⊂ R
d is the

observation domain with corresponding restriction operator E, and the control is defined on a control domain
ωc ⊂ Ω with corresponding extension operator B. (This setting includes boundary control and observation; for
details we refer to Sect. 2).

Problem (1.1) differs from standard control-constrained optimal control problems by the fact that no control
cost term, e.g., of the form α‖u‖2

U or ‖u‖U with α > 0 and a suitable Banach space U , appears in the functional.
This term is usually necessary to guarantee existence of an optimal solution (ȳ, ū), since it provides us with
coercivity of the objective functional in the appropriate topology. Consequently, one of the major issues in this
work will be the discussion of existence of minimizers of this problem. As we will show, the non-negativity
together with the tracking term is sufficient (under an appropriate assumption on the operator A) to obtain
coercivity with respect to u, albeit only in the space of measures. Intuitively, boundedness of y = A−1Bu in L2

implies boundedness of Bu only in H−2, which is all one can expect in general without control constraints. It
is thus surprising that in many cases optimal controls exist in the more regular space M of Radon measures
if merely unilateral constraints are present, thus allowing to formulate, analyze and numerically solve the limit
problem as α → 0 in the above-mentioned standard problems with unilateral constraints, which is the main
motivation of this work.
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Once existence of optimal controls is established, first-order optimality conditions can be derived via Fenchel
duality. This is relatively straightforward in those cases where the control-to-observation mapping u → Ey is
continuous as a mapping M(ωc) → L2(ωo). However, due to the low regularity of the control, this assumption
is not satisfied for all relevant applications (e.g., Neumann-control in three dimensions; similar difficulties are
to expected for parabolic problems). These cases require special care since they involve unbounded operators.
A second motivation of this work is therefore to extend the Fenchel duality theorem to this setting.

Let us remark on some related problems. Recently, a class of elliptic problems came into the focus of interest,
where control costs of the form α‖u‖L1 were used and which possess generalized solutions u ∈ M; see [4–7].
In particular, we rely on the first three works for the numerical computation of our optimal measure space
controls using a semismooth Newton method and a conforming finite element discretization of M. Often such
functionals are still augmented by an additional L2-type control cost as well as bilateral control constraints,
and the limit β → 0 is considered; see, e.g., [18, 23]. A second related problem class is that of so-called bang-
bang-problems [8], where no control costs are present, but the control constraints are bilateral, so that optimal
solutions exist in L∞. Finally, due to the presence of measure-valued controls, we will have to define the operator
A in a way that Ay = μ has a unique solution for each μ ∈ M. This requires an extension of the usual variational
setting in H1. In this respect, our paper draws from results in the literature; see [15] and the references therein.
It also provides a link to the study of state-constrained problems [3], where measure-valued right-hand sides
appear in first-order optimality conditions.

This work is organized as follows. Section 2 discusses well-posedness of the state equation for measure-
valued right-hand sides. In Section 3, we give a rigorous statement of problem (1.1) and show that under a
strict positivity assumption on the adjoint control-to-observation mapping, a minimizer to (1.1) exists in the
space of Radon measures; we discuss the validity of this assumption in the context of second-order elliptic
equations in Section 3.1. Section 3.2 gives some examples as well as a counterexample that shows the necessity
of our assumption. Optimality conditions for these minimizers are derived in Section 4 based on a Fenchel
duality theorem for an unbounded operator. In Section 5, we remark on the relation of problem (1.1) to the
corresponding problems including additional L2 or measure-space control costs. The numerical solution based
on a variational discretization and a semismooth Newton method is discussed in Section 6. Finally, numerical
examples are presented in Section 7.

2. State equation

We first discuss well-posedness of the control-to-observation mapping u �→ Ey. Since u is only a Radon
measure and E need not be continuous, this requires some technicalities. In particular, due to the presense of
the non-reflexive spaces C and M it will be useful to start with defining the pre-adjoint operators of A and B.

Elliptic differential operator A

Consider a bounded domain (i.e., an open connected subset) Ω ⊂ R
d with Lipschitz boundary ∂Ω, so that the

trace operator H1(Ω) → L2(∂Ω) is well-defined. Let a(·, ·) : H1(Ω) × H1(Ω) → R be a continuous and elliptic
bilinear form, defined by

a(y, p) :=
∫

Ω

⎡
⎣ d∑

i,j=1

aij(x)yxipxj + c(x)yp

⎤
⎦ dx +

∫
∂Ω

r(x)yp ds. (2.1)

where subsequently we assume that the coefficients are symmetric (i.e., aij = aji) and bounded on Ω, and that
c and r are non-negative bounded functions in Ω and ∂Ω, respectively. Furthermore, assume that there exists
a0 > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2 for all ξ ∈ R
d and almost all x ∈ Ω.
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We assume further that not both c and r are identically 0. As usual, it follows by the Poincaré inequality that
a is coercive, i.e., there exists c1 > 0 such that

a(y, y) ≥ c1‖y‖2
H1(Ω) for all y ∈ H1(Ω).

Alternatively, we could impose Dirichlet boundary conditions on (part of) ∂Ω to obtain coercivity. However, in
the following discussion we stick to the case H1(Ω), mainly for simplicity of presentation.

It then follows from the Lax–Milgram theorem that for each � ∈ H1(Ω)∗, there is a unique y ∈ H1(Ω), such
that a(y, p) = �(p) for all p ∈ H1(Ω). In this way, the well-known isomorphism AH1 : H1(Ω) → H1(Ω)∗ is
constructed via (AH1y)(p) := a(y, p).

Extension to measure-valued right-hand sides

Our next aim is to define a version of this operator that covers elliptic PDEs with measure-valued right-
hand sides. For d ≥ 2, this does not fit into the classical variational framework. Following the method of
Stampacchia [19], we will therefore first construct an unbounded pre-dual operator ∗A with domain C(Ω), and
then consider its adjoint A := (∗A)∗ whose co-domain is then – by definition – the dual of C(Ω), which can
be identified by the Riesz representation theorem with the space of Radon measures M(Ω). The following
construction is similar to the one given in [15]; our main reference concerning unbounded operators is [11].

Consider an index q > d (the spatial dimension), so that W 1,q(Ω) ↪→ C(Ω), and its dual index q′ which
satisfies q−1+q′−1 = 1. By Hölder’s inequality applied to the derivatives, a(·, ·) is still well-defined and continuous
as a bilinear form

a(·, ·) : W 1,q′
(Ω) × W 1,q(Ω) → R. (2.2)

Let us define a domain dom ∗A ⊂ H1(Ω) (often called “maximal domain of definition”) and a bijective
mapping ∗A : dom ∗A → W 1,q′

(Ω)∗ in the following way:

dom ∗A :=
{

p ∈ H1(Ω) : ∃ cp ∈ R with a(y, p) ≤ cp‖y‖W 1,q′ (Ω) ∀ y ∈ H1(Ω)
}

. (2.3)

Let us stress that here (and in similar occasions) the bound cp may depend on p but not on y.
By (2.2), we conclude that H1(Ω) ⊃ dom ∗A ⊃ W 1,q(Ω), and under relatively mild assumptions on the

smoothness of the coefficients and on the domain, regularity theory even yields dom ∗A = W 1,q(Ω) ↪→ C(Ω) if q
is sufficiently close to d (see, e.g., [20], Thm. 3.16). This is called the case of “maximal regularity”. In fact, for
d = 2, it is always possible to find an appropriate q. In this case we can define ∗A as follows:

∗A : C(Ω) ⊃ W 1,q(Ω) → W 1,q′
(Ω)∗,

p �→ ∗Ap : (∗Ap)(y) := a(y, p) for all y ∈ W 1,q′
(Ω).

Otherwise, if dom ∗A is a proper superset of W 1,q(Ω), the bilinear form a(y, p) is not defined anymore for all
y ∈ W 1,q′

(Ω) and p ∈ dom ∗A due to lack of integrability of the principal part. However, by the definition of
dom ∗A in (2.3), we can extend a(·, ·) to a bilinear form a(·, ·) : W 1,q′

(Ω) × dom ∗A via the unique continuous
extension

a(y, p) := lim
n→∞ a(yn, p) for all (y, p) ∈ W 1,q′

(Ω) × dom ∗A,

where {yn}n∈N is a sequence in H1(Ω) such that yn → y in W 1,q′
(Ω). By density of H1(Ω) in W 1,q′

(Ω), such
a sequence always exists, and by definition of dom ∗A in (2.3), the limit of a(yn, p) always exists and depends
only on the limit y.

Under very mild assumptions, it is still possible to show dom ∗A ⊂ C(Ω) (see, e.g., [12], Thm. 3.3, Cors. 3.5
and 3.6), so that we obtain:

∗A : C(Ω) ⊃ dom ∗A → W 1,q′
(Ω)∗,

p �→ ∗Ap : (∗Ap)(y) := a(y, p) for all y ∈ W 1,q′
(Ω).



220 CH. CLASON AND A. SCHIELA

In both cases ∗A is a bijective, closed, unbounded operator (cf. [15]) and thus has continuous inverse ∗A−1 by
the open mapping theorem for closed operators (see, e.g., [11], II.1.8). In what follows only this – more general
– setting is required, keeping in mind, however, that ∗A (and thus also its adjoint, defined next) corresponds to
a(·, ·), which only coincides with a(·, ·) if dom ∗A = W 1,q(Ω), cf. [15].

Since dom ∗A ⊃ W 1,q(Ω) is dense in C(Ω), the Banach space adjoint (also called conjugate) A := (∗A)∗ of ∗A
is well-defined as a linear operator (cf., e.g., [11], Def. II.2.2)

A : W 1,q′
(Ω) ⊃ dom A → M(Ω),

where domA is canonically defined as

dom A :=
{
y ∈ W 1,q′

(Ω) : ∃ cy ∈ R with (∗Ap)(y) = a(y, p) ≤ cy‖p‖C(Ω) ∀ p ∈ dom ∗A
}

.

Then for any y ∈ dom A, the mapping p �→ a(y, p) defines a continuous linear functional on the dense subspace
dom ∗A ⊂ C(Ω). It can thus be extended uniquely to a continuous functional Ay on C(Ω) satisfying (Ay)(p) =
a(y, p) for all p ∈ dom ∗A. By the Riesz representation theorem, Ay can be identified with an element of M(Ω).
We stress that this is the standard construction of the Banach space adjoint of an unbounded, densely defined
operator. By Theorems II.2.6 and II.4.4 in [11], the operator A is also closed and continuously invertible, because
∗A is.

We even obtain the following compactness property:

Lemma 2.1 ([15], Lem. 2.15). Consider a sequence {μn}n∈N that converges weakly-∗ in M(Ω) to μ. Then the
sequence {A−1μn}n∈N converges strongly in W 1,q′

(Ω) to A−1μ.

Control operator B

Next, consider a compact set ωc ⊂ Ω such that there exists a continuous trace or embedding operator ∗BH1 :
H1(Ω) → L2(ωc). Here L2(ωc) is defined with respect to an appropriate positive and bounded measure ν on ωc;
e.g., ωc = Ω with the Lebesgue measure for distributed control, and ωc = ∂Ω with the boundary measure for
boundary control. Technically, we will require in the following that ν(ωc ∩ O) > 0 for any open subset O ⊂ R

d

such that ωc ∩ O is non-empty. This guarantees applicability of Theorem A.3 (see Appendix).
We introduce the linear and continuous restriction operator

∗B : C(Ω) → C(ωc), (∗Bv)(x) = v(x) ∀x ∈ ωc,

which coincides with the above mentioned restriction operator ∗BH1 on C(Ω) ∩ H1(Ω), this space being dense
in both C(Ω) and H1(Ω).

Its adjoint B := (∗B)∗ can be interpreted (via the Riesz representation theorem) as a mapping

B : M(ωc) → M(Ω)

acting as the extension by 0 of a measure on ωc to a measure on Ω. On L2(ωc) it coincides with the operator
BH1 := (∗BH1)∗ : L2(ωc) → H1(Ω)∗. Moreover, by Theorem A.3 the space L2(ωc) is weakly-∗ sequentially
dense in M(ωc).

Observation operator E

For the operator E, which will be defined on reflexive spaces, it is most convenient to start with the primal
operator. Let ωo ⊂ Ω, equipped with a suitable measure, and assume that there exists a closed (possibly
unbounded) operator

E : W 1,q′
(Ω) ⊃ domE → L2(ωo),
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where domE ⊃ H1(Ω) is dense in W 1,q′
(Ω). By this assumption, the restriction of E to H1(Ω), i.e.,

EH1 := E|H1 : (H1(Ω), ‖ · ‖H1) → L2(ωo),

is defined on all of H1(Ω). It is readily verified that EH1 is closed as well. Thus, by the closed graph theorem
(see, e.g., [11], II.1.9), EH1 is even a continuous operator.

In many cases E is continuous for suitable q′, and domE = W 1,q′
(Ω) holds, but there are also important

cases where E lacks continuity. Typical examples (e.g., embedding or trace operators) are discussed in detail
below.

By reflexivity, we can define its adjoint ∗E := E∗ as a closed operator

∗E : L2(ωo) ⊃ dom ∗E → W 1,q′
(Ω)∗,

since in this case (∗E)∗ = E∗∗ = E. Like all adjoints of closed operators in reflexive spaces, ∗E has a dense
domain (see, e.g., [11], Thm. II.2.14). Comparison with ∗EH1 := E∗

H1 yields that ∗EH1h = ∗Eh for every h for
which the latter is defined, i.e., for h ∈ dom ∗E. Thus, the continuous operator ∗EH1 can be considered as the
unique continuous extension of ∗E after the co-domain space has been extended from W 1,q′

(Ω)∗ to H1(Ω)∗

(and renormed).

Control-to-observation mapping S

Finally, we define
∗S : L2(ωo) ⊃ dom ∗S → C(ωc), h �→ ∗B∗A−1∗Eh,

where dom ∗S := dom ∗E is dense in L2(ωo) by our above assumptions. This mapping is well-defined, since
∗B∗A−1 : W 1,q′

(Ω)∗ → C(ωc) is a continuous operator, defined on all of W 1,q′
(Ω)∗. Since the adjoint of a

densely defined (unbounded) linear operator is closed (see, e.g., [11], Thm. II.2.6), S := (∗S)∗ is a closed
operator

S : M(ωc) ⊃ domS → L2(ωo).

Since E may be unbounded, the following assertion is not obvious.

Lemma 2.2. It holds that

dom EA−1B :=
{
u ∈ M(ωc) : A−1Bu ∈ dom E

}
= domS ⊃ L2(ωc). (2.4)

and S = EA−1B. Furthermore, S is weakly-∗ closed, i.e., if un ⇀∗ u in M(ωc) and hn ⇀ h in L2(ωo) with
Sun = hn, then Su = h.

Proof. By purely algebraic arguments we have for u ∈ domS ∩ domEA−1B that Su = EA−1Bu since then
both sides of the equality are well-defined. Thus, we have to prove the equality of their domains, using the
definition of domEA−1B in (2.4). By continuity of ∗B∗A−1 we conclude

〈u, ∗Sh〉M(ωc),C(ωc) = 〈A−1Bu, ∗Eh〉W 1,q′ (Ω),W 1,q′ (Ω)∗ for all h ∈ dom ∗S, u ∈ M(ωc). (2.5)

By definition of domains of adjoints, u ∈ dom S iff 〈u, ∗Sh〉M(ωc),C(ωc) ≤ cu‖h‖L2(ωo), and A−1Bu ∈ domE iff
〈A−1Bu, ∗Eh〉W 1,q′ (Ω),W 1,q′ (Ω)∗ ≤ cA−1Bu‖h‖L2(ωo). By (2.5), cu = cA−1Bu, and hence the domains coincide.

The last inclusion in (2.4) follows from the fact that for u ∈ L2(ωc), we have A−1Bu ∈ H1(Ω) ⊂ dom E.
This in turn is a consequence of Bu ∈ H1(Ω)∗, so that A−1Bu coincides with the variational solution of the
state equation.

By Lemma 2.1, weak-∗ convergence of un implies strong convergence of A−1Bun in W 1,q′
(Ω). Since E is

closed, it is also weakly closed (since its graph is a convex closed set, thus weakly closed). Hence, A−1Bun →
A−1Bu and hn ⇀ h with Sun = hn imply Su = EA−1Bu = h. �
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We remark for later reference that by definition of adjoints, we have that

〈Su, h〉L2(ωo) = 〈u, ∗Sh〉M,C for all u ∈ dom S, h ∈ dom ∗S,

where here and in the following, we have omitted the domains from the spaces appearing in duality pairings if
they are clear from the context. Also, by definition of domS, for u /∈ dom S there exists a bounded sequence
hn in dom ∗S such that 〈u, ∗Shn〉M,C → ∞.

Finally, we remark that domS is weak-∗ sequentially dense in M(ωc). This follows via dom S ⊃ L2(ωc), using
Theorem A.3, which states that L2(ωc) is weakly-∗ sequentially dense in M(ωc). In particular, 〈u, ϕ〉M,C = 0
for all u ∈ domS implies 〈u, ϕ〉M,C = 0 for all u ∈ M(ωc) and thus ϕ = 0 as an element of C(ωc).

Using BH1 and EH1 , we complement the measure-space operators S and ∗S by their “standard” counterparts,
i.e., the continuous mappings

SH1 := EH1A−1
H1BH1 : L2(ωc) → L2(ωo) and ∗SH1 := S∗

H1 : L2(ωo) → L2(ωc).

The operator SH1 is a restriction of S and coincides with it on L2(ωc). In contrast, ∗SH1 is an extension of ∗S
and is defined on all of L2(ωo) and not only on dom ∗S. This is possible because ∗SH1 has a larger co-domain
L2(ωc) ⊃ C(ωc).

3. Existence of minimizers

Using the control-to-observation operator, we can state problem (1.1) in reduced form as

min
u∈M(ωc)

1
2
‖Su − yd‖L2(ωo) + δM(ωc)+(u), (P)

where δM(ωc)+ denotes the indicator function of the positive cone in M(ωc), i.e.,

M(ωc)+ := {u ∈ M(ωc) : 〈u, ϕ〉M,C ≥ 0 for all ϕ ∈ C(ωc), ϕ ≥ 0} .

We now address existence of minimizers to (P), which requires an assumption on the control-to-observation
operator which we call a pre-dual Slater condition. Since this operator is defined via duality, it will be seen that
it is natural to formulate this assumption in terms of the pre-adjoint ∗S.

Assumption 3.1 (Pre-dual Slater condition). There exists a function h ∈ dom ∗S ⊂ L2(ωo) such that ∗Sh ∈
C(ωc) is strictly positive, i.e., there is ε > 0 such that

(∗Sh)(x) ≥ ε > 0 for all x ∈ ωc. (3.1)
Since ∗S = ∗B∗A−1∗E, Assumption 3.1 claims the existence of a function h ∈ L2(ωo) such that the solution p of
the equation ∗Ap = ∗Eh is a continuous function and satisfies ∗Bp ≥ ε > 0. We are thus looking for solutions of
elliptic equations that are strictly positive (on parts of the domain).

Using this assumption, we can show that a minimizing sequence is bounded in a sufficiently strong topology.

Lemma 3.2. If Assumption 3.1 holds, then any minimizing sequence {un}n∈N ⊂ M(ωc) for (P) is bounded in
M(ωc) with {Sun}n∈N bounded in L2(ωo).

Proof. First, note that the non-negativity constraint and coercivity of the tracking term imply, respectively,
that un ≥ 0 for all n ∈ N and that {Sun}n∈N is bounded in L2(ωo) (and in particular, that {un}n∈N ⊂ dom S).
Using Assumption 3.1 and identifying ε > 0 with the constant function ε�(x) ∈ C(ωc), we thus deduce from
the definition of the total variation norm of a non-negative measure that

ε‖un‖M(ωc) = ε

∫
ωc

dun = 〈un, ε〉M,C ≤ 〈un, ∗Sh〉M,C = 〈Sun, h〉L2(ωo)

≤ ‖Sun‖L2(ωo)‖h‖L2(ωo) ≤ C,

and hence the claimed boundedness follows. �

With this, we obtain existence of a minimizer by Tonelli’s direct method.
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Theorem 3.3. Under the above assumptions, there exists a minimizer ū ∈ M(ωc) of (P) such that Sū ∈ L2(ωo).
If S is injective, ū is unique.

Proof. Let {un}n∈N ⊂ M(ωc) be a minimizing sequence for (P), which is bounded in M(ωc) by Lemma 3.2.
Since C(ωc) is separable, the Banach–Alaoglu theorem yields existence of a subsequence converging weakly-∗ to
some ū ∈ M(ωc). By boundedness of Sun, we may then extract another subsequence such that Sun converges
weakly to some z ∈ L2(ωo). By Lemma 2.2 we obtain z = Sū. From weak-∗ sequential closedness of the
non-negative cone in M, we deduce that ū is feasible and thus a minimizer of (P). Finally, strict convexity of
the tracking term implies that any pair of minimizers u1, u2 satisfies Su1 = Su2 and hence, if S is injective,
u1 = u2. �

3.1. Verification of the pre-dual Slater condition

We now discuss situations in which Assumption 3.1 can be verified. Recall that we have to show for some
h ∈ dom ∗E the existence of a solution p ∈ dom ∗A to the equation

a(y, p) = 〈h, Ey〉L2(ωo) for all y ∈ dom E

such that ∗Bp is strictly positive on ωc. Although it is well-known that elliptic PDEs have non-negative solutions
for non-negative right-hand sides and boundary data, existence of a strictly positive solution is not a trivial
matter and of course not satisfied in general (consider the homogenous Dirichlet problem and ωc = Ω). Moreover,
the literature – although quite exhaustive for the Dirichlet problem – is much scarcer in the case of Neumann,
Robin or even mixed boundary conditions.

We first remark that under the stated assumptions, a(·, ·) given by (2.1) is uniformly elliptic and hence defines
a positive operator, i.e., for all p ∈ H1(Ω),

a(y, p) ≥ 0 for all y ∈ H1(Ω), y ≥ 0 ⇒ p ≥ 0.

This already implies strict positivity on compact subsets of Ω.

Lemma 3.4. Let Ω ⊂ R
d be a domain. Assume that p ≥ 0 ∈ H1(Ω) ∩ C(Ω) satisfies p �≡ 0 and

a(y, p) ≥ 0 for all y ∈ H1
0 (Ω), y ≥ 0.

If K ⊂ Ω is compact, there is a δ > 0 such that p ≥ δ on K, and in particular, p > 0 on Ω.

Note the discrepancy between p ∈ H1(Ω) and y ∈ H1
0 (Ω); we choose this setting because it fits to the setting

in Chapter 8 of [10], from which we cite a crucial result the Harnack inequality. Unfortunately, a Harnack
inequality for the setting y ∈ H1(Ω) (covering Robin, Neumann, or mixed boundary conditions explicitly) is
hard to find in the literature.

Proof. The result is a consequence of the weak Harnack inequality (cf. [10], Thm. 8.18), which holds for non-
negative supersolutions of a(p, ·) = 0. Let x ∈ Ω be given and denote by Br(x) a ball around x of radius r. If
B4R(x) ⊂ Ω, then there exists a C > 0 such that

C inf
BR(x)

p ≥ R−d‖p‖L1(B2R(x)). (3.2)

With this result, we will show that either p ≡ 0 or p > 0 on Ω for any supersolution p ≥ 0. Since Ω is a
domain, and thus open and connected, we merely have to assert that Ω0 := {x ∈ Ω : p(x) = 0} is open and
closed, because then either Ω0 = Ω (i.e., p ≡ 0) or Ω0 = ∅ (i.e. p > 0). Indeed, by continuity of p, Ω0 is
(relatively) closed in Ω and by (3.2), every x ∈ Ω0 is contained in a ball B2R(x) ⊂ Ω0 as long as B4R(x) ⊂ Ω.
Hence, Ω0 is open. Thus, if p �≡ 0 on Ω, we have Ω0 = ∅ and so p > 0 on Ω.

Finally, if K ⊂ Ω is compact, then p > 0 has a minimizer x on K, i.e., p(x) ≥ δ := p(x) > 0 for all x ∈ K. �
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In what follows we denote Ls(Ω) := Ls(Ω) × Ls(∂Ω), where the first factor is equipped with the Lebesgue
measure, and the second with the boundary measure; we denote the corresponding product measure by dν :=
dx × ds. If M is any subset of Ω, the space Ls(M) is taken relatively to Ls(Ω).

Lemma 3.4 already yields a first result. In the following, χM denotes the characteristic function of M , which
is identically 1 on M ⊂ Ω and 0 on Ω \ M .

Corollary 3.5. If ωc is a compact subset of Ω and ωo ⊂ Ω has positive measure (i.e., ν(ωo) > 0), then
Assumption 3.1 is satisfied.

Proof. Set h := χωo > 0 in (3.1). Since h ∈ L∞(Ω × ∂Ω) ⊂ W 1,q′
(Ω)∗, we have ∗A−1h ∈ C(Ω) and thus

h ∈ dom ∗S ⊂ L2(ωo). Hence, Lemma 3.4 can be applied and yields the desired result. �

Next, we want to cover the general case ωc ⊆ Ω.

Lemma 3.6. Assume that p ∈ H1(Ω) satisfies p �≡ 0 as well as

a(y, p) =
∫

Ω

χωoy dν for all y ∈ H1(Ω), (3.3)

and assume moreover that there is δ > 0 such that for (c, r) ∈ L∞(Ω) × L∞(∂Ω) it holds that

{
c = 0 on (Ω \ ωo) ∩ {x ∈ Ω : p(x) < δ}
r = 0 on (∂Ω \ ωo) ∩ {x ∈ ∂Ω : p(x) < δ}.

Then p ≥ ε := min
{
δ, ‖r‖−1

L∞(Ω), ‖c‖−1
L∞(Ω)

}
.

Proof. We insert y := p− := min{p, ε} − ε ≤ 0, which is in H1(Ω), into (2.1) and show that p− = 0 and thus
p ≥ ε. Observe that p ≤ ε implies p = p− + ε and that p > ε implies p− = 0 and p−xi

= 0 for i = 1 . . . d. With
this we compute:

∫
Ω

χωop
− dν = a(p−, p) =

∫
Ω

d∑
i,j=1

aijp
−
xi

vxj + cp−p dx +
∫

∂Ω

rp−p ds

=
∫

Ω

d∑
i,j=1

aijp
−
xi

p−xj
+ cp−(p− + ε) dx +

∫
∂Ω

rp−(p− + ε) ds

= a(p−, p−) + ε

(∫
Ω

cp− dx +
∫

∂Ω

rp− ds

)
and obtain

0 ≤ a(p−, p−) =
∫

Ω

χωop
− dν − ε

(∫
Ω

cp− dx +
∫

∂Ω

rp− ds

)

=
∫

ωo∩Ω

(1 − ε c)p− dx +
∫

ωo∩∂Ω

(1 − ε r)p− ds − ε

(∫
Ω\ωo

cp− dx +
∫

∂Ω\ωo

rp− ds

)
.

Since p ≥ δ ≥ ε implies that p− = 0, the last two integrals vanish by our assumption on c and r. Moreover,
since 1 − ε c ≥ 1 − ε ‖c‖L∞(Ω) ≥ 0 and 1 − ε r ≥ 1 − ε ‖r‖L∞(∂Ω) ≥ 0, the first two integrals are non-positive
(recall that p− ≤ 0). It follows that a(p−, p−) = 0, implying p− = 0. �

From this we can deduce the following sufficient criterion for the pre-dual Slater condition.

Proposition 3.7. If r = 0 on ∂Ω \ ωo, then Assumption 3.1 is fulfilled for any compact ωc ⊂ Ω.
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Proof. We show that the solution p of (3.3) is strictly positive. By Lemma 3.4, we already know that p > 0 on
Ω. For δ > 0, let Ωδ := {x ∈ Ω : p(x) ≤ δ}. Note that |Ωδ| → 0 as δ → 0 since p > 0 on Ω.

Define aδ(·, ·) like a(·, ·) but with c replaced by cδ := (1 − χΩδ
)c, and pδ as the solution of

aδ(y, pδ) =
∫

Ω

χωoy dν for all y ∈ H1(Ω).

Then pδ ≥ 0 and

a(y, pδ) = aδ(y, pδ) +
∫

Ω

χΩδ
cpδ dx =

∫
Ω

χωoy dν +
∫

Ω

χΩδ
cpδ dx

= a(y, p) +
∫

Ω

χΩδ
cpδ dx

≥ a(y, p).

Hence, pδ ≥ p, and thus pδ(x) < δ implies that p(x) < δ and thus cδ(x) = 0. Hence, Lemma 3.6 yields (after
choosing δ ≤ min

{
‖c‖−1

L∞(Ω), ‖r‖−1
L∞(Ω)

}
) that pδ ≥ δ.

Furthermore,

a(y, p − pδ) =
∫

Ω

χΩδ
cpδy dx,

and for any 1 ≤ s < ∞,
‖χΩδ

cpδ‖Ls(Ω) ≤ |Ωδ|1/s‖c‖L∞(Ω)‖pδ‖L∞(Ωδ),

so that by Theorem 4.1 in [19], there exists a C > 0 such that for any s > d,

C‖p − pδ‖L∞(Ω) ≤ ‖χΩδ
cpδ‖Ls(Ω) ≤ |Ωδ|1/s‖c‖L∞(Ω)‖pδ‖L∞(Ωδ).

Since |Ωδ| → 0 for δ → 0, we can choose δ sufficiently small such that for adequately chosen s ∈ (d,∞), we have

C−1‖c‖L∞(Ω)|Ωδ|1/s ≤ 1
4
·

Hence, we can estimate

‖pδ‖L∞(Ωδ) ≤ ‖p‖L∞(Ωδ) + ‖p − pδ‖L∞(Ω) ≤ δ +
1
4
‖pδ‖L∞(Ωδ),

i.e., ‖pδ‖L∞(Ωδ) ≤ 4
3δ. We conclude that ‖p− pδ‖L∞(Ω) ≤ 1

4
4
3δ = 1

3δ, and therefore

p ≥ pδ − ‖p − pδ‖L∞(Ω) ≥ δ − 1
3
δ > 0

as claimed. �

3.2. Examples

To illuminate our abstract framework further, let us discuss in the following a couple of examples. All of
them have in common the generic definition of

A : W 1,q′
(Ω) ⊃ dom A → M(Ω),

where q′ ≤ 2 is chosen appropriately as stated in the beginning of Section 2. However, the examples will cover
different definitions of E and B and the corresponding spaces, i.e., different types of control and observation.
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3.2.1. Distributed control for a Neumann problem

As a first example, consider a homogeneous Neumann problem with distributed control (i.e., r = 0 and
ωc = Ω), such that

B = Id : M(Ω) → M(Ω)

is the control operator with pre-adjoint ∗B = Id : C(Ω) → C(Ω).
Let us first consider boundary observation, i.e., ωo = ∂Ω. We start with recalling that there exists a continuous

trace operator
τq′ : W 1,q′

(Ω) → Ls(∂Ω)

for suitably chosen s depending on q′ and the spatial dimension d of Ω. In particular, for q′ = 2 we may always
choose s = 2. In the general case, we may define

dom E :=
{
y ∈ W 1,q′

(Ω) : τq′y ∈ L2(∂Ω)
}

(which implies domE ⊃ H1(Ω) if q′ ≤ 2), and then

E : W 1,q′
(Ω) ⊃ dom E → L2(∂Ω)

as the restriction of τq′ to domE. Since the norm of the co-domain space has been strengthened, E is in general
not continuous anymore. It is, however, a closed operator: Assume that yn → y in W 1,q′

(Ω) and Eyn → h in
L2(∂Ω). By continuity of τq′ , we conclude that Eyn → τq′y in Ls(∂Ω); but from Eyn → h in L2(∂Ω) we deduce
that τq′y = h ∈ L2(∂Ω) and thus y ∈ domE and Ey = τq′y = h.

We summarize that E satisfies all our assumptions, and note that for d = 2 we may choose q′ sufficiently
close to 2 such that E := τq′ : W 1,q′

(Ω) → L2(∂Ω) is well-defined as a continuous operator. However, the same
is impossible for d = 3, so that we have to work with unbounded E in this case.

For the case of observation on the whole domain (i.e., ωo = Ω) and d ≤ 3, we may simply define E :
W 1,q′

(Ω) → L2(Ω) as the Sobolev embedding which exists for suitably chosen q′. In the “exotic” case d > 3, a
similar effect as for boundary control with d = 3 appears, and E has to be defined as an unbounded operator.

By Lemma 3.7 and by our assumption r = 0, we see that we can choose ωo ⊂ Ω arbitrarily as long as it has
positive measure with respect to the measure dν on Ω.

3.2.2. Robin or Neumann boundary control

In this case, our control operator is defined as the extension by zero

B : M(∂Ω) → M(Ω),

i.e., ∗B : C(Ω) → C(∂Ω) denotes the trace operator from Ω to ωc = ∂Ω. Again, we take ∗E as the identity. To
verify the pre-dual Slater condition, we then need to find h ∈ L2(Ω), such that the solution p ∈ W 1,q(Ω) of the
problem

a(y, p) = 〈h, Ey〉L2(ωo) for all y ∈ W 1,q′
(Ω)

has a strictly positive boundary trace, i.e., ∗Bp ≥ ε > 0. According to Proposition 3.7 this can be achieved for
Neumann boundary conditions if ωo is arbitrary (of non-zero measure), and for Robin boundary conditions if
ωo ⊃ ∂Ω.

3.2.3. Distributed control for a Dirichlet problem

We close this section with a simple example for which Assumption 3.1 is violated. Consider the problem{
min J(y) := ‖y − (1 − x)‖2

L2([0,1]) s. t. u ≥ 0,

− y′′ = u, y(0) = y(1) = 0.
(3.4)
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Due to the homogemous Dirichlet boundary conditions and by continuity, there cannot be any solutions of
the predual problem which are larger than some ε > 0 on the whole domain, which coincides with the control
domain. So Assumption 3.1 is clearly violated.

To show that also the conclusions of Theorem 3.3 do not hold, let us take for n ≥ 2 the sequence of measures
un = nδ1/n, which is contained in M([0, 1]) but unbounded.

Lemma 3.8. The weak solution yn ∈ H1
0 (0, 1) of y′′ = nδ1/n is given by

yn =

{
(n − 1)x x ≤ 1/n,

1 − x x ≥ 1/n.

Proof. We have to find yn such that
∫

Ω
y′

np′ dx = n p(1/n) for all p ∈ H1
0 ((0, 1)) and yn(0) = yn(1) = 0. By the

Lax–Milgram theorem, we know that this solution is unique; moreover, the special form of the right-hand side
leads us to the ansatz y′

n = α on [0, 1/n] and y′
n = β on [1/n, 1]. Using the homogenous boundary conditions,

we find that yn = αx on [0, 1/n] and yn = β(x − 1) on [1/n, 1]. Since yn has to be continuous at x = 1/n, we
conclude that α 1

n = β 1
n−1 .

Then, we can obtain using the weak formulation and the fundamental theorem of calculus that

〈un, p〉M,C = np(1/n) =
∫ 1/n

0

αp′ dx +
∫ 1

1/n

βp′ dx

= α(p(1/n) − p(0)) + β(p(1) − p(1/n))
= (α − β)p(1/n),

which implies that α − β = n. Solving these two equations for α and β yields our claim. �

Proposition 3.9. Problem (3.4) does not possess an optimal solution in M([0, 1]).

Proof. From Lemma 3.8 we conclude that yn → 1 − x in L2((0, 1)). Hence, {(yn, un)}n∈N is a minimizing
sequence, since each pair is feasible and J(yn) → 0 ≤ J(y) for all y. However, the limit J = 0 cannot be
attained, because the only possible candidate y(x) = 1 − x does not satisfy the boundary conditions. �

If we instead consider {
min ‖y − (1 − x)‖2

L2([δ,1−δ]) s. t. u ≥ 0,

− y′′ = u, y(0) = y(1) = 0,

for some δ > 0, then the control domain [δ, 1 − δ] is a compact subset of (0, 1). So by Lemma 3.4 we can
verify Assumption 3.1 and thus apply Theorem 3.3 to assert existence of an optimal control in M([0, 1]). This
reasoning works in general for distributed control on a compact subset ωc of the domain Ω.

4. Optimality conditions

We apply Fenchel duality to derive optimality conditions for minimizers of (P). For the reader’s convenience,
we recall duality theory, e.g., from Chapter II.4 of [9]. For a functional F : W → R := R ∪ {∞} defined on a
Banach space W , let F∗ : W ∗ → R denote the Fenchel conjugate of F given for w∗ ∈ W ∗ by

F∗(w∗) = sup
w∈W

〈w∗, w〉W∗,W −F(w).

Furthermore, let

∂F(w) := {w∗ ∈ W ∗ : 〈w∗, w̃ − w〉W∗,W ≤ F(w̃) −F(w) for all w̃ ∈ W}



228 CH. CLASON AND A. SCHIELA

denote the subdifferential of the convex function F at w, which reduces to the Gâteaux-derivative F ′(w) if it
exists. These definitions immediately yield the Fenchel–Young inequality

〈w∗, w〉W∗,W ≤ F∗(w∗) + F(w) for all w ∈ W, w∗ ∈ W ∗, (4.1)

where equality holds if and only if w∗ ∈ ∂F(w).
The Fenchel duality theorem states that if F : W → R and G : Z → R are proper, convex, and lower

semicontinuous functionals on the Banach spaces X and Z, Λ : W → Z is a continuous linear operator, and
there exists a w0 ∈ W such that F(w0) < ∞, G(Λw0) < ∞, and G is continuous at Λw0 (a generalized Slater
condition), then

inf
w∈W

F(w) + G(Λw) = sup
z∗∈Z∗

−F∗(Λ∗z∗) − G∗(−z∗), (4.2)

and the right-hand side of (4.2) – the dual problem – has at least one solution. Furthermore, the equality in (4.2)
is attained at (w̄, z̄∗) ∈ W × Z∗ if and only if

{
Λ∗z̄∗ ∈ ∂F(w̄),
−z̄∗ ∈ ∂G(Λw̄),

(4.3)

holds (see, e.g., [9], Rem. III.4.2).
We wish to apply the Fenchel duality theorem to (P), where Λ would take the role of the control-to-observation

mapping S. Since M is non-reflexive, the dual problem would be posed in M∗, which is difficult to characterize.
We therefore follow a pre-dual approach as in [6, 7], where we introduce the optimization problem

inf
h∈dom ∗S

1
2
‖h + yd‖2

L2(ωo) −
1
2
‖yd‖2

L2(ωo) + δC(ωc)+(∗Sh) (∗P)

(obtained by formal application of Fenchel duality) and show that its Fenchel dual coincides with problem (P).

Remark 4.1. Before delving into a deeper analysis, let us point out that the pre-dual problem (∗P) is essentially
a state-constrained optimal control problem with control h ∈ dom ∗S ⊂ L2(ωo) and state p := ∗Sh ∈ C(Ω), i.e.,

inf
h∈dom ∗S

1
2
‖h + yd‖2

L2(ωo) −
1
2
‖yd‖2

L2(ωo) s. t. ∗Ap = ∗Eh, ∗Bp ≥ 0, on ωc.

However, it has the slightly unusual characteristics that the state does not appear in the objective and that the
inequality constraint is imposed on a subdomain.

A further complication arises if dom ∗S is a proper subset of L2(ωo). This case corresponds to a state-
constrained problem where the control-to-state mapping does not map into the space of continuous functions.
Such problems have been analysed in [17]. The analysis performed in this section may offer an alternative
approach to this class of problems.

Problem (∗P) is strictly convex and admits a feasible point by Assumption 3.1 and thus is non-trivial, i.e.,
admits a finite infimum. If dom ∗S is not closed, we cannot expect (∗P) to have a minimizer. However, any
minimizing sequence is bounded in L2(ωo) and thus has a weak cluster point h̄ ∈ L2(ωo). In fact, by strict
convexity of the term ‖h + yd‖2

L2(ωo), any minimizing sequence converges even strongly to the unique limit h̄.
While h̄ is possibly not contained in dom ∗S – and hence ∗Sh̄ is not defined – we can express the limit using a
suitable extension of ∗S which we will define below.

Although the Fenchel duality theorem is not directly applicable since ∗S may be an unbounded operator, a
modification of the arguments in [9] shows that the statement still holds. In our argumentation, we can make
use of the fact that we have already established existence of solutions of the dual problem in Theorem 3.3.
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For the sake of completeness, we give here the full proof, where we closely follow Chapter II.4 of [9]. Let us
define for problem (∗P) the perturbation function Φ : L2(ωo) × C(ωc) → R by

Φ(h, v) :=
1
2
‖h + yd‖2

L2(ωo) −
1
2
‖yd‖2

L2(ωo) + δC(ωc)+(∗Sh − v) + δdom ∗S(h).

Clearly, Φ(h, v) is convex but – by the last term – not lower semicontinuous with respect to h unless dom ∗S =
L2(ωo). Furthermore, infh Φ(h, 0) coincides with (∗P) and hence is finite.

Consider now the Fenchel conjugate Φ∗ : L2(ωo) ×M(ωc) → R of Φ with respect to (h, v).

Lemma 4.2. The dual problem
sup

v∗∈M(ωc)

−Φ∗(0, v∗) (4.4)

coincides with problem (P). Furthermore, if Assumption 3.1 is satisfied, the supremum is attained at v̄∗ = ū.

Proof. By definition, the Fenchel conjugate at h∗ = 0 is given by

Φ∗(0, v∗) = sup
h∈dom ∗S,v∈C(ωc)

〈v∗, v〉M,C − Φ(h, v)

= sup
S∗h−v∈C(ωc)+

(
〈v∗, v〉M,C − 1

2
‖h + yd‖2

L2(ωo)

)
+

1
2
‖yd‖2

L2(ωo).

Using that dom ∗S is dense in L2(ωo) and introducing for h ∈ dom ∗S the function p := ∗Sh − v ∈ C(ωc) then
yields for the case that v∗ ∈ dom S :

Φ∗(0, v∗) = sup
h∈dom ∗S,p∈C(ωc)+

(
〈v∗, ∗Sh − p〉M,C − 1

2
‖h + yd‖2

L2(ωo)

)
+

1
2
‖yd‖2

L2(ωo)

= sup
h∈dom ∗S,p∈C(ωc)+

(
〈Sv∗, h〉L2(ωo) − 〈v∗, p〉M,C − 1

2
‖h + yd‖2

L2(ωo)

)
+

1
2
‖yd‖2

L2(ωo)

= sup
h∈dom ∗S,p∈C(ωc)+

(
−〈v∗, p〉M,C − 1

2
‖h‖2

L2(ωo) + 〈h, Sv∗ − yd〉L2(ωo)

)
.

If, in contrast, v∗ /∈ domS, there exists a sequence {hn}n∈N ⊂ dom ∗S, bounded in L2(ωo), such that
〈v∗, ∗Shn〉M,C → ∞. Hence the first term in the first line is unbounded, while the opthers are bounded, and
thus Φ∗(0, v∗) = ∞. We therefore assume that v∗ ∈ dom S and maximize separately with respect to p and h.
Considering the first term, we have that 〈v∗, p〉M,C < 0 for some p ≥ 0 implies that Φ∗(0, v∗) = ∞. Otherwise,
the supremum is attained at p = 0 and is 0. For the second term, we use that the functional is differentiable
with respect to h to deduce that the supremum is attained at h = Sv∗ − yd. Together, we obtain

Φ∗(0, v∗) =
1
2
‖Sv∗ − yd‖2

L2(ωo) + δM(ωc)+(v∗) + δdom S(v∗).

Writing u := v∗, we see that the dual problem (4.4) is precisely our original problem (P), which by Theorem 3.3
has a solution ū ∈ domS ⊂ M(ωc). �

To derive optimality conditions, we first show that the duality gap between (∗P) and (P) is zero.

Proposition 4.3. We have that

inf
h∈L2(ωo)

Φ(h, 0) = sup
v∗∈M(ωc)

−Φ∗(0, v∗). (4.5)

Proof. The claim follows from Proposition III.2.1 in [9], if problem (∗P) is normal, i.e., the mapping v �→
infh Φ(h, v) is lower semicontinuous at 0. To verify this, it suffices to show that for each feasible point
hv ∈ dom Φ(h, v), we can find a nearby feasible point h0 ∈ domΦ(h, 0) with Φ(hv, v) close to Φ(h0, 0).
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This can be achieved by adding a small multiple of the function h from Assumption 3.1, since ∗Sh is strictly
positive and the perturbations are measured in the C(ωc)-norm.

Thus, for given ε > 0 we can find δ > 0 such that with ‖v‖L∞(ωo) < δ, h0 := hv + εh is feasible for
the original problem, as long as hv is feasible for the perturbed problem. Moreover, it is easy to see that
Φ(h0, 0) − Φ(hv, v) ≤ τ(ε) with τ → 0 as ε → 0. Taking infima, this implies that

inf
h

Φ(h, 0) ≤ inf
h

Φ(h, v) + τ,

which in turn yields the desired lower semicontinuity and thus (4.5). �

To derive optimality conditions from the equality (4.5), we continue as in Section III of [9] after equa-
tion (4.22). We first derive a limiting form of the optimality conditions.

Proposition 4.4. Let {hn}n∈N ⊂ dom ∗S ⊂ L2(ωo) be a minimizing sequence for problem (∗P) with hn → h̄ ∈
L2(ωo), and let ū ∈ M(ωc) be the solution to problem (4.4). Then,{

h̄ = Sū − yd,
∗Shn ≥ 0, ū ≥ 0, lim

n→∞〈ū, ∗Shn〉M,C = 0.
(4.6)

Proof. By definition of Φ∗, Proposition 4.3 implies that if {hn}n∈N is a minimizing sequence of Φ(·, 0) and ū is
a minimizer of Φ∗(0, ·), we have

lim
n→∞Φ(hn, 0) + Φ∗(0, ū) = 0.

We now use continuity of ‖ · ‖L2(ωo) with respect to hn → h̄ (recall that this limit exists due to the strict
convexity of the first term in (∗P)), which yields

0 = lim
n→∞Φ(hn, 0) + Φ∗(0, ū)

=
1
2
‖h̄ + yd‖2

L2(ωo) −
1
2
‖yd‖2

L2(ωo) + lim
n→∞ δC(ωc)+(S∗hn)

+
1
2
‖Sū − yd‖2

L2(ωo) + δM(ωc)+(ū).

Next, we observe that, since ū ∈ dom S and thus Sū ∈ L2(ωo)∗, we have the convergence

lim
n→∞〈ū, ∗Shn〉M,C = lim

n→∞〈Sū, hn〉L2(ωo) = 〈Sū, h̄〉L2(ωo).

Hence, continuing our last computation, we obtain

0 =
[
1
2
‖h̄ + yd‖2

L2(ωo) −
1
2
‖yd‖2

L2(ωo) +
1
2
‖Sū − yd‖2

L2(ωo) − 〈Sū, h̄〉L2(ωo)

]

+
[

lim
n→∞ δC(ωc)+(S∗hn) + δM(ωc)+(ū) + lim

n→∞〈ū, ∗Shn〉M,C

]
.

We now argue that both brackets are non-negative. For the first bracket, we use the fact that the third term
is the Fenchel conjugate of the sum of the first two terms to apply the Fenchel–Young inequality (4.1). For the
second bracket, feasibility of elements of a minimizing sequence (after passing to a subsequence if necessary)
implies that ∗Shn ≥ 0 and ū ≥ 0 and hence that the first two terms vanish. By definition of non-negativity of
measures, positivity of ū and ∗Shn implies that 〈ū, ∗Shn〉M,C ≥ 0 for all n ∈ N and hence that the third term is
non-negative as well. Therefore, each bracket has to vanish separately. The first one immediately yields equality
in (4.1) and hence that

h̄ ∈ ∂
(

1
2‖ · −yd‖2

L2(ωo)

)
(Sū) = {Sū − yd},
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i.e., the first relation of (4.6). From the second bracket, we directly obtain the remaining relations (i.e., the
second line) of (4.6). �

We now wish to pass to the limit n → ∞ in (4.6), which is impeded by the fact that the operators S and ∗S
are defined in the non-standard setting needed for measure-valued control. Recall that ∗S – which appears in
〈ū, ∗Shn〉M,C – is a restriction of its classical counter-part ∗SH1 : L2(ωo) → L2(ωc). Hence, while ∗Sh̄ may not
be well-defined, ∗SH1 h̄ is well-defined since h̄ ∈ L2(ωo). Moreover, from ū ∈ domS we can deduce not only that
ū ∈ M(ωc) but also that Sū ∈ L2(ωo).

We thus make use of ∗SH1 to define a new bilinear form

〈·, ·〉dom S,ran ∗SH1 : domS × ran ∗SH1 → R

that can be used as a replacement of the term 〈ū, ∗Shn〉M,C in (4.6) but is well-defined also for the limit h̄. Let
u ∈ dom S and λ ∈ ran ∗SH1 with h ∈ L2(ωo) such that λ = ∗SH1h, then set

〈u, λ〉dom S,ran ∗SH1 := 〈Su, h〉L2(ωo).

With this definition, we obtain the following first-order necessary optimality conditions.

Theorem 4.5. Let ū ∈ M(ωc) be a minimizer of problem (1.1). Then there exist ȳ ∈ W 1,q′
(Ω), p̄ ∈ H1(Ω)

and λ̄ ∈ ran ∗SH1 ⊂ L2(ωc) satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∗E(Eȳ − yd) − ∗AH1 p̄ = 0,

λ̄ − ∗Bp̄ = 0,

Aȳ − Bū = 0,

λ̄ ≥ 0, ū ≥ 0, 〈ū, λ̄〉dom S,ran ∗SH1 = 0.

(OS)

Proof. First, we note that 〈u, λ〉dom S,ran ∗SH1 is well-defined because u ∈ dom S implies Su ∈ L2(ωo), and
because h ∈ L2(ωo) = dom ∗SH1 . We now to argue that this bilinear form can indeed be used in (4.6). For
h ∈ dom ∗S, we have λ = ∗SH1h = ∗Sh ∈ C(ωc) and thus

〈u, λ〉dom S,ran ∗SH1 = 〈Su, h〉L2(ωo) = 〈u, ∗Sh〉M,C = 〈u, λ〉M,C.

Furthermore, if u ∈ dom S and the sequence {hn}n∈N ⊂ dom ∗S converges to h in L2(ωo), then

lim
n→∞〈u, ∗Shn〉M,C = lim

n→∞〈u, ∗SH1hn〉M,C = lim
n→∞〈u, ∗SH1hn〉dom S,ran ∗SH1

= lim
n→∞〈Su, hn〉L2(ωo) = 〈Su, h〉L2(ωo)

= 〈u, ∗SH1h〉dom S,ran ∗SH1 .

Thus, the limit limn→∞〈ū, ∗Shn〉M,C in (4.6) can be replaced by 〈ū, ∗SH1 h̄〉dom S,ran ∗SH1 as claimed.
Introducing the state ȳ := Sū = A−1Bū, an adjoint state p̄ := ∗A−1

H1
∗Eh̄ = ∗A−1

H1
∗E(Sū − yd) ∈ H1(Ω) and a

Lagrangian multiplier λ̄ := ∗Bp̄ = ∗SH1 h̄ ∈ ran ∗SH1 now yields (OS). �

If E is continuous, we can directly pass to the limit in the second relation of (4.6) and obtain a Lagrange
multiplier λ̄ = ∗Sh̄ ∈ C(ωc).

Corollary 4.6. Assume that E is continuous, and let ū ∈ M(ωc) be a minimizer of problem (1.1). Then there
exist ȳ ∈ dom A, p̄ ∈ dom ∗A ⊂ H1(Ω) ∩ C(Ω), and λ̄ ∈ C(ωc) satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∗E(Eȳ − yd) − ∗Ap̄ = 0,

λ̄ − ∗Bp̄ = 0,

Aȳ − Bū = 0,

λ̄ ≥ 0, ū ≥ 0, 〈ū, λ̄〉M,C = 0.

(4.7)
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In this case, the optimality conditions can also be obtained by direct application of the Fenchel duality theorem
to problem (∗P), where the last three relations of (4.7) are the complementarity conditions of the second relation
of (4.3), which here read −ū ∈ ∂δC+(λ̄).

5. Connection to problems with control costs

In this section, we show that problem (P) can be interpreted as the limit problem for vanishing L2 or
measure-space control costs.

5.1. L2 control costs

We first connect the measure-space problem (P) with the classical control-constrained linear quadratic prob-
lem

min
u∈L2(ωc)

1
2
‖Su − yd‖2

L2(ωo) +
α

2
‖u‖2

L2(ωc)
+ δL2(ωc)+(u), (Pα)

which for every α > 0 is known to admit a minimizer uα ∈ L2(ωc) (see, e.g., [21], Thm. 2.14). Arguing as
in the proof of Theorem 3.3, it can be shown that uα converges weakly-∗ to some û in M(ωc) as α → 0 (up
to a subsequence if S is not injective). It is, however, not obvious that the limit û coincides with the global
minimizer ū from Theorem 3.3. The validity of this assertion hinges on the question, whether there is a sequence
{un}n∈N ⊂ L2(ωc)+ such that un ⇀∗ ū and Sun ⇀ Sū in L2(ωo), i.e., whether optimal control and optimal
observation can be approximated simultaneously by a sequence of positive functions.

Due to Theorem A.3, this is certainly the case if E is continuous, since then un ⇀∗ ū implies Sun → Sū by
Lemma 2.1.

Theorem 5.1. Assume that E is continuous, S is injective, and ωc is equipped with a measure ν such that
ν(ωc ∩ O) > 0 for every open set O ⊂ R

d, such that ωc ∩ O is non-empty. Then

uα ⇀∗ ū and Suα → Sū.

Proof. By Theorem A.3, there exists a sequence {vn}n∈N ⊂ L2(ωc)+ such that vn ⇀∗ ū. Since E is continuous,
this implies via Lemma 2.1 that Svn → Sū strongly and thus that ‖Svn−yd‖L2(ωo) → ‖Sū−yd‖L2(ωo). Denoting
by Jα the functional in (Pα) and by J the functional in (P), we conclude that for each ε > 0 there are vn and
αn such that

Jαn(uαn) = inf
u∈L2(ωc)

Jαn(u) ≤ Jαn(vn) ≤ J(ū) + ε.

Hence, {uαn}n∈N is a minimizing sequence for J , which satisfies – like any minimizing sequence – the properties
stated in the proof of Theorem 3.3. This yields our assertions. �

On the other hand, if E and thus S is unbounded, the graph norm on domS, defined by ‖u‖S := ‖u‖M(ωc) +
‖Su‖L2(ωo), is strictly stronger than ‖u‖M(ωc). Thus, there may be sequences in L2(ωc) that converge weakly-∗
in (M(ωc), ‖u‖M(ωc)) but are unbounded in (domS, ‖u‖S) and thus cannot converge weakly-∗ with respect
to this norm. Hence if S is unbounded, the weak-∗ sequential closure of L2(ωc) may be a proper subset of
dom S, and thus we cannot expect in general that our global minimizer ū can be approximated by a minimizing
sequence in L2(ωc).

Although the necessary optimality conditions for problem (Pα) are standard (see, e.g., [21], Thm. 2.22), it is
instructive to derive them using the convex analysis framework employed for (P). Since problem (Pα) is posed
in the Hilbert space L2(ωc) and we have assumed E to be continuous, we can apply the Fenchel duality theorem
directly, where we denote by F∗ the tracking term and by G∗

α the two remaining terms in (Pα). To derive an
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explicit characterization of the second relation of (4.3), we set λα := S∗hα ∈ L2(ωo) and use the fact that due
to the Hilbert space setting, Gα coincides with the Moreau envelope of δL2(ωc)+ , i.e.,

Gα(λ) =
(α

2
‖ · ‖2

L2(ωc)
+ δL2(ωc)+

)∗
(λ) =

(
δL2(ωc)+

)
α

(λ) := min
w∈L2(ωc)+

1
2α

‖w − λ‖2
L2(ωc)

(see, e.g., [1], Prop. 13.12). Hence, ∂Gα coincides with the Yoshida regularization of ∂δL2(ωc)+ , i.e.,

∂(Gα)(λ) =
(
∂δL2(ωc)+

)
α

(λ) :=
1
α

(
λ − proxαδL2(ωc)+

(λ)
)

=
1
α

(
λ − projL2(ωc)+(λ)

)
,

since the proximal mapping of an indicator function of a convex set C is given by the metric projection onto C
(see, e.g., [1], Prop. 12.29). After some algebraic manipulations, we thus obtain the the optimality system⎧⎨

⎩
λα = S∗(Suα − yd),

uα =
1
α

max (0,−λα) ,
(OSα)

where max is to be understood pointwise almost everywhere in ωc. Note that the system (OSα) coincides with
the well-known projection formulation of the optimality condition for the control-constrained linear-quadratic
problem (Pα) (see e.g., [21], Thm. 2.28).

5.2. Measure-space control costs

We now connect problem (P) with the non-negative “sparse control problem”

min
u∈M(ωc)

1
2
‖Su − yd‖2

L2(ωo) + β‖u‖M(ωc) + δM(ωc)+(u) (Pβ)

considered in [7]. Existence of an optimal control uβ ∈ M(ωc)+ can be shown as in Theorem 3.3, using the fact
that a minimizing sequence is necessarily bounded in M(ωc) by virtue of the additional (weak-∗ lower semi-
continuous) term. Similarly, by the minimizing property of uβ , the family {Suβ}β>0 is bounded in L2(ωo) and
hence uβ converges weakly-∗ to ū in M(ωc) as β → 0 (up to a subsequence if S is not injective) if Assumption 3.1
holds and E is continuous. If on the other hand E is unbounded, the discussion in Section 5.1 shows that domS
is in general not weakly-∗ closed, and we cannot expect weak-∗ convergence of uβ to a minimizer ū.

Optimality conditions for (Pβ) with a bounded control-to-observation mapping S can be derived by applica-
tion of the Fenchel duality theorem, making use of the fact that the Fenchel conjugate of

Gβ : C(ωc) → R, Gβ(λ) = δ{v≥−β}(λ) =

{
0 λ(x) ≥ −β for all x ∈ ωc,

∞ else,

is given by
G∗

β : M(ωc) → R, G∗
β(u) = β‖u‖M(ωc) + δM(ωc)−(u),

(see, [7], Rem. 2.5). (Recall that by (4.2) the dual problem involves G∗
β(−u).) Fenchel duality now leads to the

necessary optimality conditions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∗E(Eyβ − yd) − ∗Apβ = 0,

λβ − ∗Bpβ = 0,

Ayβ − Buβ = 0,

λβ ≥ −β, uβ ≥ 0, 〈uβ , λβ + β〉M,C = 0,

(5.1)

(see again [7], Rem. 2.5), where the last relation was equivalently expressed as a variational inequality. Setting
β = 0, we recover (4.6).



234 CH. CLASON AND A. SCHIELA

The optimality conditions (5.1) are frequently used as a justification for calling uβ a sparse control : From the
last relations, we see that uβ must be zero on all subsets of ωc where ∗Bpβ is strictly greater than −β. Hence, the
support of uβ is contained in the set {x ∈ ωc : ∗Bpβ(x) = −β}, which in many situation (e.g., if pβ is harmonic)
can be argued to be a set of zero Lebesgue measure. Furthermore, increasing β will decrease the size of this
set. The same argument is possible for (4.6): the optimal control ū must be zero on all subsets with ∗Bpβ > 0,
and hence the support of ū is contained in {x ∈ ωc : ∗Bp̄(x) = 0} (which has Lebesgue measure zero in similar
situations as in the case β > 0). This implies that optimal measure-space controls have an inherent sparsity
independent of the sparsity-promoting control cost, whose role is solely to control the size of the support.

We can also apply our framework from Section 4 to derive optimality conditions for unbounded observation
operators (which cannot be treated using the standard approach as in, e.g., [7]). Proceeding exactly as before with
δC(ωc)+ replaced by δ{v≥−β} and δM(ωc)+ replaced by β‖·‖M(ωc) + δM(ωc)+ , we obtain the modified optimality
conditions ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∗E(Eyβ − yd) − ∗AH1pβ = 0,

λβ − ∗Bpβ = 0,

Ayβ − Buβ = 0,

λβ ≥ −β, uβ ≥ 0, β‖uβ‖M(ωc) + 〈uβ, λβ〉dom S,ran ∗SH1 = 0.

(OSβ)

Again setting β = 0, we recover (OS). However, since the last relation can no longer be interpreted pointwise,
a sparsity property of uβ does not follow directly.

6. Numerical solution

The numerical solution is based on the conforming discretization of M(ωc) introduced in [4], which we
briefly recall. The starting point is to replace S : M(ωc) → L2(ωo) by its finite element semidiscretization
Sh : M(ωc) → Yh, where Yh ⊂ L2(ωo) is a finite-dimensional space spanned by the usual continuous piecewise
linear nodal basis (“hat”) functions attached to the vertices {xj}N

j=1 of a triangulation of Ω. We then consider
the semidiscrete optimal control problem

min
u∈M(ωc)

1
2
‖Shu − yd‖2

L2(ωo) + δM(ωc)+(u). (Ph)

Existence of an optimal control ū can be shown as in Section 3. Although the optimal state ȳh = Shū is
unique, this is no longer the case for the control due to the finite number of observations. However, there is
a unique ūh ∈ M(ωc) with ȳh = Sh(ūh) that can be represented as a linear combination of Dirac measures
concentrated on the vertices xj contained in ωc (see [4], Thm. 3.2). We can thus restrict the minimization
in (Ph) over the set Uh of such linear combinations. In this sense, this approach is related to a discretization
method introduced in [24] for unconstrained linear-quadratic problems and also to the variational discretization
of control-constrained problems of [13].

This allows expressing problem (Ph) purely in terms of the expansion coefficients u of ūh and y of ȳh.
Using that ūh ∈ M(ωc)+ if and only if u ≥ 0 componentwise and applying the Fenchel duality theorem as in
Corollary 4.6 (all finite-dimensional operators being bounded) yields the fully discrete optimality conditions

⎧⎪⎨
⎪⎩

AT
h p = Mh(y − yd),

Ahy = Bhu,

−u ∈ ∂δ(RN )+(BT
h p),

(OSh)

where Ah denotes the stiffness matrix corresponding to the differential operator A, Mh the restricted mass matrix
on the observation domain ωo, and BT

h the discrete restriction operator to the components of p corresponding
to vertices contained in ωc. (Note the lack of mass matrix for the discrete state equation.) Since R

N is a Hilbert
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space, we can reformulate the last relation in (OSh) using resolvent calculus similarly as in Section 5 as

−u =
1
α

(
BT

h p − αu − proj(RN )+(BT
h p − αu)

)
for any α > 0 (see also [14], Thm. 4.41). (Comparing this relation with the last relation in (OSα), we remark
that the only difference is the presence of u on the right-hand side.) In particular, for α = 1 we obtain

u = max
(
0, u − BT

h p
)
,

where the max is to be understood componentwise.
It is well-known that the max operator is semismooth on R

N with Newton derivative at v in direction h is
given componentwise by

[DN max(0, v)h]j =

{
hj if vj > 0,

0 if vj ≤ 0,

and that system (OSh) therefore can be solved by a superlinearly convergent semismooth Newton method
(see [14,22]). To account for the local convergence of Newton methods, we compute a starting point by solving
a sequence of discrete regularized problems analogous to Section 5. Specifically, we add for α > 0 the �2 penalty
α
2 |u|22 and proceed as in Section 5 to obtain

⎧⎪⎪⎨
⎪⎪⎩

AT
h p = Mh(y − yd),

Ahy = Bhu,

u =
1
α

max
(
0,−BT

h p
)
.

(OSh,α)

Since the last relation is explicit, we can eliminate u and apply a semismooth Newton method to the reduced
system, starting with α = 1 and successively reducing α, taking for each α the previous solution as starting point.

7. Numerical examples

We illustrate the nature of the generalized measure-space controls with numerical examples for the Laplace
equation on the unit square with homogeneous Dirichlet conditions, i.e., we take Ω = [−1, 1]2 ⊂ R

2 and A = −Δ.
The domain is discretized using the standard uniform triangulation arising from 256×256 equidistributed nodes.
The optimal controls for the discretized problem are computed using a matlab implementation of the approach
described in Section 6, which can be downloaded from https://github.com/clason/positivecontrol.

For the first example, we choose the desired state as

yd(x1, x2) = χ{t:|t−0.5|<0.25}(x1)χ{t:|t−0.5|<0.25}(x2) +
1
2
χ{t:|t+0.5|<0.25}(x1)χ{t:|t+0.5|<0.25}(x2), (7.1)

see Figure 1a. According to the discussion at the end of Section 3.2, the control domain has to be chosen as a
proper subset of Ω for problem (1.1) to be well-posed; here we set

ωc =
{

x ∈ Ω : |x|∞ ≤ 3
4

}
·

The observation domain is chosen as ωo = Ω. The expansion coefficients of the optimal control are shown in
Figure 1b, where the boundary of the control domain is also marked by a yellow line; the corresponding optimal
state is shown in Figure 1c. It can be observed that the optimal control is sparse, which is in accordance with
the discussion in Section 5.2. This is further illustrated in Figure 1d where the nodes with non-zero control
coefficients are marked with a small circle.

https://github.com/clason/positivecontrol
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(a) desired state yd (b) optimal control ūh

(c) optimal state ȳh

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

(d) sparsity pattern

Figure 1. First desired state and resulting optimal control and state.

The situation is different if the adjoint state satisfies p̄ = 0 on an open set, which can happen if the desired
state is (locally) attainable. We demonstrate this using

yd(x1, x2) = (1 − x2
1)(1 − x2

2),

see Figure 1a. The control domain is set to

ωc =
{

x ∈ Ω : |x|2 ≤ 3
4

}
,

while the observation domain is again chosen as ωo = Ω. The corresponding optimal control ūh, control domain,
optimal state ȳh and locations of non-zero components of u are shown in Figures 2b–2d. Here, the control consists
of the sum of a line measure concentrated on the boundary ∂ωc of the control domain and a distributed function
(of small magnitude compared to the line measures in b) in the interior of ωc. (We remark that a similar behavior
can be observed in the case of M-norm penalties for attainable targets).

We close this section with an example of Neumann boundary control, i.e., ωc = ∂Ω, for the operator A =
−Δ + c0 Id with c0 = 10−2, desired state (7.1) and ωo = Ω. The corresponding optimal control ūh is shown in
Figure 3, where we again observe a sparse solution.
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(a) desired state yd (b) optimal control ūh

(c) optimal state ȳh
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(d) sparsity pattern

Figure 2. Second desired state and resulting optimal control and state.

x1 = −1 x2 = −1 x1 = 1 x2 = 1
0

2
·10−3

Figure 3. Optimal Neumann boundary control ūh for desired state in Figure 1a.

8. Conclusion

Optimal control problems with non-negativity constraints are coercive even without control costs, albeit only
in the space of Radon measures. Existence of a strictly positive solution of the pre-adjoint equation verifies a
pre-dual Slater condition, which yields existence of and optimality conditions for a minimizing control. These
results confirm the previously only numerically observed stability of the non-negative sparse control problem
in [7] as α → 0. This approach is also applicable if the control-to-observation mapping is not continuous, using



238 CH. CLASON AND A. SCHIELA

Fenchel duality for an unbounded operator. A conforming discretization of the space of Radon measures yields
a discrete measure-space control problem that is amenable to the efficient numerical solution by a semismooth
Newton method. The numerical examples demonstrate that optimal measure-space controls have an inherent
sparsity property which does not require the presence of sparsity-promoting penalties. Rather, the measure-
space setting allows the minimizing sequence to concentrate on lower-dimensional manifolds, which is prevented
by Lp control costs enforcing higher regularity. (Of course, an additional sparsity penalty can lead to even
smaller support of the optimal control.) This is another illustration of the fact that optimization problems in
function spaces have a much more delicate structure than their finite-dimensional counterparts due to the richer
topological properties of infinite-dimensional spaces.

This work can be extended in several directions. Although outside the scope of the current paper, an analysis
of the conforming finite element discretization – including convergence rates – along the lines of [4] is certainly
possible. One could also apply techniques developed for the Moreau–Yosida regularization of state constraints
to obtain convergence rates for the regularization in Section 5. Finally, it would be worthwhile to investigate
whether well-posedness in weak spaces can also hold for nonlinear or time-dependent problems without control
costs.

Appendix A. Density in the cone of positive measures

In this appendix we will prove Theorem A.3, needed in Sections 3 and 5. We will need some notation. For a
normed space X , let BX its closed unit ball, and for S ⊂ X , define its polar set

S◦ := {x∗ ∈ X∗ : 〈x∗, x〉X∗,X ≤ 1 for all x ∈ S} .

By switching the roles of X and X∗ one defines the polar of a subset of X∗. Basic results on polar sets can be
found in, e.g., Section IV.1 of [16]. We also need the following density result.

Lemma A.1. Let X be a separable Banach space, U a linear subspace of X∗, and S ⊂ X. Assume that

co (BX ∪ S) ⊃ (BU ∩ S◦)◦.

Then BU ∩S◦ is weakly-∗ sequentially dense in BX∗ ∩S◦, i.e., for all f ∈ X∗ there exists a sequence {fn}n∈N ⊂
(BU ∩ S◦) such that 〈fn, x〉X∗,X → 〈f, x〉X∗,X for all x ∈ X.

Proof. We compute

BX∗ ∩ S◦ = B◦
X ∩ S◦ = (BX ∪ S)◦ = (co (BX ∪ S))◦

⊂ (BU ∩ S◦)◦◦ = coσ(X∗,X)(BU ∩ S◦ ∪ {0}) = BU ∩ S◦σ(X∗,X)
.

Here we used the following rules of polar calculus: BX∗ = B◦
X , M◦ ∩ N◦ = (M ∪ N)◦, M◦ = (coM)◦,

M ⊃ N ⇒ M◦ ⊂ N◦, and the bi-polar theorem M◦◦ = co (M ∪{0}). The last equality follows from 0 ∈ BU ∩S◦

and from convexity of BU ∩ S◦. Now equality follows from BU ⊂ BX∗ and the fact that BX∗ ∩ S◦ is closed in
the σ(X∗, X) topology since polar sets are always weakly-∗ closed.

Hence, the bounded set BU ∩ S◦ is weakly-∗ dense in the bounded set BX∗ ∩ S◦. By separability of X , this
implies weak-∗ sequential density because BX∗ is metrizable (see, e.g., [2], Cor. 3.30). �
Lemma A.2. If S ⊂ X is a cone, then

S◦ = {x∗ ∈ X∗ : 〈x∗, x〉X∗,X ≤ 0 for all x ∈ S}

and
co (BX ∪ S) ⊃ BX + S := {ϕ ∈ X : ϕ = ϕ1 + ϕ2 : ϕ1 ∈ BX , ϕ2 ∈ S} .

In particular, the conclusions of Lemma A.1 hold if BX + S ⊃ (BU ∩ S◦)◦.
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Proof. For the first assertion, we note that if 〈x∗, x〉X∗,X > 0, then there exists an α > 0 such that
〈αx, x∗〉X,X∗ > 1. For the second assertion, observe that for ρ ∈ [0, 1) we have that

ρ(ϕ1 + ϕ2) = ρϕ1 + (1 − ρ)(ρ/(1 − ρ)ϕ2) ∈ co(BX ∪ S).

Hence, letting ρ → 1, we obtain ϕ1 + ϕ2 ∈ co (BX ∪ S). �

Theorem A.3. Let Q be a compact subset of R
d, equipped with a positive measure ν such that ν(ω) > 0 for

each relatively open, non-empty subset ω ⊂ Q.

(i) Let μ ∈ M(Q)+ be a positive measure. Then there exists a sequence of positive functions 0 ≤ fn in L∞(Q)
with fn ⇀∗ μ and ‖fn‖L1(Q) ≤ ‖μ‖M(Q).

(ii) Let μ ∈ M(Q) be a signed measure. Then there exists a sequence fn in L∞(Q) with fn ⇀∗ μ and
‖fn‖L1(Q) ≤ ‖μ‖M(Q).

Proof. We first consider assertion (i) and note that for S = {ϕ ∈ C(Q) : ϕ ≤ 0}, we have that

S◦ =
{
μ ∈ M(Q) : 〈μ, ϕ〉M(Q),C(Q) ≤ 0 for all ϕ ∈ S

}
= M(Q)+.

This follows by the fact that S is a cone and from the Riesz representation theorem for positive linear functionals.
Let further X = C(Q) and U = L∞(Q), which can be interpreted as a subspace of X∗ = M(Q). Application of
Lemma A.1 will then yield our result (possibly after scaling of μ to ‖μ‖M(Q) = 1). Thus, we have to check the
condition co (BX ∪ S) ⊃ (BU ∩ S◦)◦.

By Lemma A.2, we merely have to show BX + S ⊃ (BU ∩ S◦)◦. Let ϕ ∈ C(Q) \ (BX + S). Since max{ϕ, 0}
and min{ϕ, 0} are also continuous functions, this implies that there exists x ∈ Q such that ϕ(x) > 1. We now
show that ϕ /∈ (BU ∩ S◦)◦, i.e., there exists f ∈ BU ∩ S◦ such that 〈f, ϕ〉M(Q),C(Q) > 1. Let α := ϕ(x)− 1 > 0.
Then, by continuity of ϕ, there exists an open neighborhood ω of x such that ϕ|ω ≥ 1 + α/2. By assumption,
ν(ω) �= 0. Set f := ν(ω)−1χω (i.e., a scaled characteristic function), which yields ‖f‖L1(Q) = 1 and f ≥ 0. Thus,
f ∈ BU ∩ S◦, and

〈f, ϕ〉M(Q),C(Q) = ν(ω)−1

∫
ω

ϕdν ≥ 1 + α/2 > 1.

This shows that ϕ �∈ (BU ∩ S◦)◦, which allows application of Lemma A.1.
Assertion (ii) now follows from assertion (i) by splitting μ into a positive and negative part and approximating

these separately via (i) by positive and negative functions, respectively. �
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