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A WASSERSTEIN GRADIENT FLOW APPROACH
TO POISSON−NERNST−PLANCK EQUATIONS

David Kinderlehrer1, Léonard Monsaingeon2 and Xiang Xu3

Abstract. The Poisson−Nernst−Planck system of equations used to model ionic transport is inter-
preted as a gradient flow for the Wasserstein distance and a free energy in the space of probability
measures with finite second moment. A variational scheme is then set up and is the starting point of
the construction of global weak solutions in a unified framework for the cases of both linear and nonlin-
ear diffusion. The proof of the main results relies on the derivation of additional estimates based on the
flow interchange technique developed by Matthes et al. in [D. Matthes, R.J. McCann and G. Savaré,
Commun. Partial Differ. Equ. 34 (2009) 1352–1397].
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1. Introduction

The Poisson−Nernst−Planck (PNP) system of equations [18,24] is the principal description of ionic transport
of several interacting species. It has been applied in a number of contexts ranging from electrical storage devices
to molecular biology, at times coupled to Navier−Stokes or other systems.

The basic system is to find u(t, x) ≥ 0 and v(t, x) ≥ 0 satisfying

∂tu = Δum + div (u∇ (U + ψ)) ,

∂tv = Δvm + div (v∇ (V − ψ)) , t ≥ 0, x ∈ R
d, d ≥ 3,

−Δψ = u− v,

(1.1)

for some suitable initial conditions u|t=0 = u0 and v|t=0 = v0. The unknowns u and v represent the density of
some positively and negatively charged particles. Here m ≥ 1 is a chosen fixed nonlinear diffusion exponent.
Note that (1.1) formally preserves the L1 mass∫

Rd

u(t, x)dx =
∫

Rd

u0(x)dx and
∫

Rd

v(t, x)dx =
∫

Rd

v0(x)dx
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2 CAMGSD Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
3 Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA. x2xu@odu.edu

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/cocv/2015043
http://www.esaim-cocv.org
http://www.edpsciences.org


138 D. KINDERLEHRER ET AL.

for all t ≥ 0, which physically represents the conservation of total charge of the individual species. For initial
masses

∫
Rd u

0(x)dx =
∫

Rd v
0(x)dx, a simple rescaling of time and space allows normalization of masses to unity,

and without loss of generality we consider u(t, x), v(t, x) to be probability densities. The external potentials U(x)
and V (x) are prescribed and sufficiently smooth. ψ(x) from the Gauss Law is the self-consistent electrostatic
potential created by the two charge carriers according to the last equation in (1.1). The first two equations
in (1.1) are called Nernst−Planck equations and describe electro-diffusion and electrophoresis according to the
Fick and Kohlrausch laws, respectively, while the last equation in (1.1) corresponds to the electrostatic Poisson
law. The boundary condition for this coupling equation will always be understood in the sense of the Newtonian
potential: we shall always implicitly write

−Δψ = u− v ⇔ ψ = G ∗ (u− v) = (−Δ)−1(u− v), (1.2)

where
G(x) :=

1
d(d− 2)ωd

|x|2−d

is the fundamental solution of −Δ in R
d and ωd the volume of the unit ball in R

d (for d ≥ 3).
In some PNP models, an extra background doping profile C(x) is considered resulting in the modified potential

−Δψ′ = u − v + C. With suitable assumptions on C(x) this can be easily eliminated replacing the external
potentials U by U + ψC and V by V − ψC , where ψC = (−Δ)−1C.

There is a vast literature on well-posedness and long time behavior of the system (1.1). We refer to [6,13,14,17]
and references therein for bounded domains, and [3,4,7,12,21] for the whole space problem. Different from these
papers, our contribution is to show that the system of equations (1.1), governing drift, diffusion and reaction of
charged species, possesses a gradient flow structure as viewed on the metric space of probability measures on R

d

endowed with the quadratic Wasserstein distance, in essence the weak-∗ topology (see also [28,31,36] for various
discussions). Therefore, variational methods may be introduced to prove global existence of weak solutions (see
definition below). Motivation for this in terms of energy dissipation is offered below. Also, we provide a unified
framework both for linear m = 1 and nonlinear m > 1 diffusions. To the best of our knowledge well-posedness
in the whole space for m > 1 usually requires either high integrability of the initial data or initial gradient
regularity. We would like to stress that we need here no such hypotheses and that our result merely requires
some low initial integrability, defined in terms of the diffusion exponent m ≥ 1 and dimension d ≥ 3 only (which
we think is sharp, see discussion after the proof of Prop. 4.4). Also, we do not need compatibility conditions
between m ≥ 1 and d ≥ 3. This is in contrast with the Patlak−Keller−Segel chemotaxis models [9, 10], for
which critical mass phenomena may occur depending on whether m is larger or smaller than the scale-invariant
exponent m∗(d) = 2 − 2

d , see e.g. [8] for the critical parabolic-parabolic case. This is mainly due to the fact
that the self-induced drifts are repulsive here, while they are self-attractive in the Keller−Segel models, thus
leading to aggregation and blow-up in finite time.

It was shown in [16, 30] that certain scalar diffusion equations can be interpreted as gradient flows in metric
spaces and the literature concerning this issue is steadily growing (see [2] and references therein). It is thus a
question of great interest to apply such ideas to study systems of equations. In contrast, there are only a few ex-
amples for systems. For related studies, we refer to [8–10,15,20,22,25,37], where the energy functional is involved
with the Wasserstein metric and existence theorems using a minimizing movement scheme for corresponding
evolution problems are presented.

In [16], the linear Fokker−Planck equation

∂tρ = σΔρ+ div(ρ∇ϕ)

is regarded as the gradient flow of a free energy consisting of the Boltzmann entropy with a potential ϕ,

F(ρ) =
∫

Rd

(ϕρ+ σρ log ρ) dx,
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with respect to the quadratic Wasserstein metric. There may be many Lyapunov functions associated to a dif-
ferential equation. The result of [16] means that dissipation for the free energy F determines the Fokker−Planck
Equation. The same idea was later employed in [30] and, in addition, to derive long-time asymptotics for the
Porous Medium Equation (PME). Since the system (1.1) can be viewed as two Fokker−Planck equations (when
m = 1) or Porous Medium equations (when m > 1) in u, v coupled by means of a Poisson kernel, we are
motivated to extend these ideas to study our coupled system. Inspired by [30] and [35], we shall in fact discover
that the PNP system can be seen as a gradient flow driven by the free energy

E(u, v) :=
∫

Rd

(
u logu+ v log v + uU + vV +

|∇ψ|2
2

)
dx if m = 1,

E(u, v) :=
∫

Rd

(
um

m− 1
+

vm

m− 1
+ uU + vV +

|∇ψ|2
2

)
dx if m > 1. (1.3)

We further motivate this approach informally by discussing the relationship between the dissipation relation and
the weak-∗ topology in terms of the Wasserstein−Rubinstein−Kantorovich distance, or simply the Wasserstein
distance. We follow [36] and consider for illustration the case m = 1. Set

ϕ(u, v) = u logu+ v log v + uU + vV +
1
2
|∇ψ|2, so that

E(u, v) =
∫

Rd

ϕ(u, v)dx.

Given a process or an evolution (u(t), v(t)), during an interval (T, T + h) the change in energy is

E(u, v)
∣∣∣
T+h

−
∫ T+h

T

∫
Rd

d
dt
ϕ(u, v)dxdt = E(u, v)

∣∣∣
T
. (1.4)

This, (1.4), is the dissipation equality or inequality and the density of the middle term

D = −
∫

Rd

d
dt
ϕ(u, v)dx (1.5)

is the dissipation density along the trajectory. Writing

d
dt
ϕ(u, v) = ϕu

du
dt

+ ϕv
dv
dt
, (1.6)

we must ascribe a meaning to
du
dt
,
dv
dt

to render the system dissipative, that is, so that (1.5) is positive. To begin we calculate the terms in (1.6).
Keeping in mind (1.2), one checks that

δ

δu

(
1
2
|∇ψ|2

)
= ψ and

δ

δv

(
1
2
|∇ψ|2

)
= −ψ,

which leads to
ϕu(u, v) = log u+ U + ψ + 1 and ϕv = log v + V − ψ + 1.

Let us now employ the Poisson−Nernst−Planck equations (1.1). Substituting into (1.5) and integrating by parts
gives

D =
∫

Rd

{∣∣∣∣∇uu + ∇(U + ψ)
∣∣∣∣2 u+

∣∣∣∣∇vv + ∇(V − ψ)
∣∣∣∣2 v

}
dx
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Introduce

w = −
(∇u
u

+ ∇(U + ψ)
)

and ω = −
(∇v
v

+ ∇(V − ψ)
)

so that

ut + div(wu) = 0 and vt + div(ωv) = 0.
(1.7)

We have that ∫ T+h

T

Ddt =
∫ T+h

T

∫
Rd

|w|2udxdt+
∫ T+h

T

∫
Rd

|ω|2vdxdt

where the pairs (u,w), (v, ω) satisfy the continuity equations (1.7). This represents a trial in dW , the quadratic
Wasserstein metric, using the Benamou−Brenier formulation [5], where

1
h
dW (u

∣∣
T+h

, u
∣∣
T
)2 = inf

∫ T+h

T

∫
Rd

|w|2udxdt and

1
h
dW (v

∣∣
T+h

, v
∣∣
T
)2 = inf

∫ T+h

T

∫
Rd

|ω|2vdxdt
taken over all pairs (u,w) and (v, ω) satisfying the continuity equations
ut + div(wu) = 0 and vt + div(ωv) = 0, and the initial and terminal conditions.

The calculation shows that the dissipation relation (1.7) for E and the PNP system are closely related to the
Wasserstein distance. We could write, in fact,

1
h
dW (u

∣∣
T+h

, u
∣∣
T
)2 +

1
h
dW (v

∣∣
T+h

, v
∣∣
T
)2 + E(u, v)

∣∣
T+h

≤ E(u, v)
∣∣
T

suggesting an implicit scheme which leads to a gradient flow. This is nearly correct. As is well-known, a factor
of 1/2 must be inserted; see below (1.8).

We now turn to the precise formulation. Denoting P(Rd) the set of Borel probability measures on R
d with

finite second moments and dW the quadratic Wasserstein distance as before, the underlying space will be here
(u, v) ∈ P(Rd)×P(Rd) and will inherit a natural differential structure from that of (P(Rd), dW ) − see Section 2
for details. The total free energy (1) is a combination of the well-known internal (diffusive entropy) and potential
energies for each species, and, although unclear at this stage, the coupling Dirichlet energy 1

2

∫
Rd |∇ψ|2dx falls

into the category of so-called interaction energies. See [35] for an introduction.
Following [16], we shall construct weak solutions z = (u, v) as follows. Given suitable initial data z0 =

(u0, v0) and some small time step h ∈ (0, 1) we first construct a discrete sequence {z(n)
h }n∈N solution to the

Jordan−Kinderlehrer−Otto or JKO implicit scheme

z
(0)
h = z0,

z
(n+1)
h ∈ Argmin

K×K

{
1
2h
d2

(·, z(n)
h

)
+ E(·)

}
.

(1.8)

Here E(z) = E(u, v) is the total free energy (1), d2 is the (squared) distance on the product space inherited from
dW , and K ⊂ P the set of admissible minimizers defined later on. As is classical by now, one obtains interpolating
solutions {zh(t)}h = {uh(t), zh(t)}h defined for all t ≥ 0, piecewise constant in time, and satisfying a coupled
system of two Euler−Lagrange equations. We shall then prove that as h → 0 one recovers a weak solution
(u(t), v(t)) = z(t) = lim

h→0
zh(t) of (1.1). There are several challenges in this program.

In handling the
∫

Rd |∇ψ|2 dx coupling term, some intrinsic difficulties arise due both to the specific Poisson
kernel and to the nonscalar setting. First, as neither the external potentials nor G are convex the free energy E
is not displacement convex in the sense of McCann [27] and we cannot simply apply the standard procedures
as in [2]. Secondly, due to the singular nature of the kernel G(x) = C/|x|d−2 both the existence of minimizers
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in (1.8) and derivation of the corresponding Euler−Lagrange equations become delicate, see in particular the
discussions in Propositions 3.2 and 4.4 for details. In order to tackle this issue we used the “flow interchange”
technique that originates in [26] and was later used in [8, 22] to obtain some integrability improvement and
gradient regularity of the minimizers, see Propositions 3.5 and 3.6 below. The highlight of the argument is the
propagation of initial Lp(Rd) regularity established in Proposition 3.5. In addition to being technically essential
here, this propagation of initial regularity allowed us to obtain a natural L∞(Rd) estimate (see Thms. 2.3−2.4),
which to the best of our knowledge was unknown for the PNP system in the whole space. We also believe
that the very same argument could be employed for similar problems in order to show propagation of initial
regularity, which is usually a delicate point in the mass transport framework.

The rest of the paper is organized as follows. In Section 2 we recall well-known facts in optimal transport theory
and briefly describe the differential structure of the product space. We then formally derive the Wasserstein
gradient flow structure of the system (1.1) and state the main existence results. In Section 3 we study the relevant
energy functionals, and establish improved regularity of their minimizers. In Section 4 we fix a time step h > 0
small enough and consider the minimizing scheme. We obtain approximate discrete solutions {uh, vh}h and
derive the corresponding Euler−Lagrange equations. In Section 5 we take the limit h → 0 and show that the
convergence (u, v) = lim

h→0
(uh, vh) is strong enough to retrieve a weak solution. This last section also contains

the proof of the main theorems.

Notation convention

Unless otherwise specified, 〈·, ·〉 and · denote inner product of elements in R
d, P denotes P(Rd), and Pac denotes

Pac(Rd). If clear from the context we shall often omit the subscripts m = 1 or m > 1. If 1 ≤ p ≤ ∞, we denote
by p′ = p

p−1 the conjugate Lebesgue exponent.

2. Formal Wasserstein gradient flow

From now on we assume that the external potentials are quadratic at infinity, i.e.

C1|x|2 ≤ U(x), V (x) ≤ C2(1 + |x|2)
|∇U(x)|, |∇V (x)| ≤ C3(1 + |x|)
‖ΔU‖L∞(Rd), ‖ΔV ‖L∞(Rd) ≤ C4,

(2.1)

for some generic positive constants Ci. Note that U, V need not be uniformly convex as is often assumed, so
that we allow here multiple wells. Although these assumptions on the potentials could be weakened we assume
here strict confinement C1 > 0 for the ease of exposition, and we do not seek optimal generality.

We also introduce the admissible set

K :=
{K1 := Pac(Rd) ∩ L1 logL1(Rd) if m = 1,
Km := Pac(Rd) ∩ Lm(Rd) if m > 1, (2.2)

and for reasons that shall become clear later on we shall always consider initial data

u0, v0 ∈ K ∩ Lr0(Rd) for some r0 > max{m, 2d/(d+ 1)}. (2.3)

Essentially u0, v0 ∈ Lm ∩ L2d/(d+2)(Rd) ensures that the initial energy (u0, v0) is finite, while L2d/(d+1)(Rd)
regularity will ensure that the self-induced drifts u∇Ψ, v∇Ψ ∈ L1(Rd) for all times. We believe that r =
max{m, 2d/(d+ 1)} should be admissible, but for technical compactness issues we have to assume here slightly
better Lr0(Rd) integrability for some r0 > r arbitrarily close. See the proof of Theorem 5.1 later on for details.

For ρ, u, v ≥ 0 let us define the usual Boltzmann entropy

H(ρ) :=
∫

Rd

ρ log ρ dx,
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the diffusion energy

Ediff(u, v) :=
∫

Rd

(
u logu+ v log v

)
dx if m = 1 and

Ediff(u, v) :=
1

m− 1

∫
Rd

(
um + vm

)
dx if m > 1

(2.4)

and the external potential energy

Eext(u, v) :=
∫

Rd

(uU + vV ) dx. (2.5)

Note that, with our assumptions, Ediff , Eext are finite for all (u, v) ∈ K×K. For ψ = (−Δ)−1(u−v) = G∗ (u−v)
we define now the coupling energy

Ecpl(u, v) :=
1
2

∫
Rd

|∇ψ|2dx, (2.6)

which is the energy of the self-induced electric potential. Note that, at least formally,∫
Rd

|∇ψ|2dx =
∫

Rd

(−Δψ)ψ dx =
∫

Rd

(u− v)G ∗ (u− v) dx

=
∫∫

Rd×Rd

[u− v](x)G(x − y)[u− v](y) dxdy (2.7)

falls into the category of interaction energies∫∫
Rd×Rd

ρ(x)K(x, y)ρ(y)dxdy

treated in [35]. To sum up, the total free energy E = Ediff + Eext + Ecpl is given by (1).
For given probability measures μ, ν ∈ P(Rd) we denote the squared (quadratic) Wasserstein distance by

d2
W (μ, ν) = inf

γ∈Γ (μ,ν)

∫∫
Rd×Rd

|x− y|2dγ(x, y),

where Γ (μ, ν) ⊂ P(Rd
x ×R

d
y) is the set of admissible joint distributions with x and y marginals μ, ν respectively.

We recall from [35] that (P , dW ) is a metric space and that dW metrizes the weak convergence of measures.
When μ ∈ Pac

2 is moreover absolutely continuous with respect to the Lebesgue measure dμ(x) � dx, the square
Wasserstein distance can also be computed by the Benamou−Brenier theorem [5] as already noted.

Theorem 2.1 (Existence of optimal maps, [35]). Let μ ∈ Pac
2 (Rd) and ν ∈ Pac

2 (Rd). There exists a unique
optimal transport map T = ∇ϕ ∈ L2(Rd; dμ) for some convex function ϕ such that

ν = T#μ : ∀f ∈ Cc(Rd),
∫

Rd

f(y)dν(y) =
∫

Rd

f ◦ T (x)dμ(x)

and
d2

W (μ, ν) =
∫

Rd

|x− T (x)|2dμ(x).

Our interest here is a system so we endow P(Rd) × P(Rd) with the natural product distance

d2(z, z′) = d2
W (u, u′) + d2

W (v, v′)

for all z = (u, v) and z′ = (u′, v′) in P × P . It is well-known [30, 35] that (P , dW ) enjoys a natural differential
structure defined by means of continuity equations, so that our product space also has the same differential
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structure. This permits us to differentiate real-valued functions F on the product space, and defines the corre-
sponding Wasserstein gradient by the chain rule d

dtF(zt) = gradW F(zt).dzt

dt . We show now that (1.1) is really
the gradient flow

dz
dt

= − gradW E(z), z(t) =
(
u(t)
v(t)

)
.

In terms of ordinary calculus of variations, we recall that this is achieved by variation of domain or, in fluid
dynamical terms, by Lagrangian variations, [16]. To this end, let us split for convenience the coupling Poisson
equation −Δψ = u− v as

ψ = ψu − ψv with
{−Δψu = u ⇔ ψu = G ∗ u,
−Δψv = v ⇔ ψv = G ∗ v.

Formally differentiating the diffusive energy (2.4) with respect to u (resp. v), a by now classical computa-
tion [30, 35] leads to the Δum (resp. Δvm) term in (1.1). Similarly, differentiating the external energy (2.5) with
respect to u and v classically gives rise to ∇·(u∇U) and ∇·(v∇V ) in (1.1). In order to differentiate the coupling
term we first use the formal integration by parts (2.7) and then exploit the symmetry G(x− y) = G(y − x) to
expand

Ecpl(u, v) =
1
2

∫∫
Rd×Rd

[u− v](x)G(x − y)[u− v](y) dxdy

=
1
2

∫
Rd

[
u(G ∗ u) + v(G ∗ v)]dx−

∫∫
Rd×Rd

u(x)G(x − y)v(y)dxdy.

Differentiating with respect to u, it is well-known [35] that the first integral gives the corresponding
∇ · (u∇(G ∗ u)) + 0 = ∇ · (u∇ψu) term. Rewriting the remaining cross term

−
∫∫

Rd×Rd

uGv dx = −
∫

Rd

u(G ∗ v) dx = −
∫

Rd

uψv dx,

and noting that ψv is independent of u, it is again well known that this term gives rise to −∇·(u∇ψv). Summing
up we obtain ∇ · (u∇ (ψu − ψv)) = ∇ · (u∇ψ) as in the first equation of (1.1). Similarly differentiating with
respect to v we obtain the −∇ · (v∇ψ) term appearing in the second component.

Though very general notions of solutions related to Energy Dissipation Equality (EDE) or Evolution Varia-
tional Inequality (EVI) can be used for abstract gradient flows in metric spaces, [1, 2], we use the more direct
framework, introducing some features later for the implementation of the flow-interchange method.

Definition 2.2. A pair u, v : (0,∞) × R
d → R

+ is a global weak solution if u, v ∈ C([0,∞);P), u(t), v(t) →
u0, v0 in (P , dW ) as t ↘ 0, ∇um, ∇vm, u∇U , v∇V , u∇ψ and v∇ψ ∈ L2(0, T ;L1(Rd)) for all T > 0, and for
any fixed ϕ ∈ C∞

c (Rd)

d
dt

∫
Rd

u(t, x)ϕdx = −
∫

Rd

〈∇um(t, x),∇ϕ〉dx −
∫

Rd

u(t, x)〈∇U,∇ϕ〉dx

−
∫

Rd

u(t, x)〈∇ψ(t, x),∇ϕ〉dx, (2.8)

and

d
dt

∫
Rd

v(t, x)ϕdx = −
∫

Rd

〈∇vm(t, x),∇ϕ〉dx −
∫

Rd

v(t, x)〈∇V,∇ϕ〉dx

+
∫

Rd

v(t, x)〈∇ψ(t, x),∇ϕ〉dx (2.9)

hold in the sense of distributions D′(0,∞) with ψ(t, x) = G ∗ [u− v](t, x) a.e. (t, x) ∈ (0,∞) × R
d.
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We observe that L2
loc([0,∞);L1(Rd)) could be replaced by L1

loc((0,∞) × R
d) in the above definition, which is

enough for all the integrals in (2.8) and (2.9) to make sense. In any case the weak solutions constructed here
would still enjoy strong regularity in the end, and our choice of including the regularity in the definition of weak
solutions is purely practical.

In this setting our main result is

Theorem 2.3 (Existence of solutions for m > 1). Fix m > 1 and initial data u0, v0 as in (2.3). Then there
exists a global weak solution (u, v) with

u, v ∈ L∞(
0,∞;Lm(Rd) ∩ L1(Rd, (1 + |x|2)dx))

∇ψ ∈ L∞(0,∞;L2(Rd))

u
m
2 , v

m
2 ∈ L2(0, T ;H1(Rd))

u, v ∈ L∞(0, T ;Lp(Rd)), ∀p ∈ [1, 2d/(d+ 1)],

(2.10)

for all T > 0, and
E(u(t), v(t)) ≤ E(u0, v0) for a.e. t ≥ 0. (2.11)

If we further assume that u0, v0 ∈ Lp(Rd) for some p ∈ [1,∞], then ∀τ ≥ 0,

sup
t∈[0,τ ]

(‖u(t)‖Lp(Rd) + ‖v(t)‖Lp(Rd)

) ≤ Ceλτ
(‖u0‖Lp(Rd) + ‖v0‖Lp(Rd)

)
, (2.12)

with
λ = max

{‖ΔU‖L∞(Rd), ‖ΔV ‖L∞(Rd)

}
. (2.13)

In the case of linear diffusion we have similarly

Theorem 2.4 (Existence of solutions for m = 1). The conclusions of Theorem 2.3 hold for m = 1 if we replace
u, v ∈ L∞(0,∞;Lm(Rd)) in (2.10) by u, v ∈ L∞(0,∞;L1 logL1(Rd)).

We would like to stress again that estimate (2.12) holds for p = ∞, and was not known in the whole space as
far as we can tell. Since we interpret (1.1) as a gradient flow one could expect energy monotonicity E(t) ↓. This
would immediately follow from (2.11) and uniqueness of solutions. Unfortunately due to the lack of regularity
and displacement convexity we were not able to prove uniqueness within the above class of weak solutions, and
therefore we only retrieve an energy upper bound.

It is worth mentioning that the gradient flow structure of the PNP system and the above theorems are also
valid in the bounded domain case, with some mild assumptions on the boundary and minor modifications of
the proofs. Suppose Ω ⊂ R

d is a smooth bounded and convex domain, and consider the physically relevant
boundary condition, that is, the no flux boundary condition

∂u

∂ν
=
∂v

∂ν
=
∂ψ

∂ν
= 0 on ∂Ω,

∫
∂Ω

ψ dx = 0,

where ν is the unit outward normal on ∂Ω. We also assume the external potentials satisfy

∂U

∂ν
=
∂V

∂ν
= 0 on ∂Ω.

By [19] we know that the electrostatic potential can be represented as

ψ(x) =
∫

Ω

N(x, y)(u − v)(y) dy, ∀x ∈ Ω.

Here the (singular) kernel N(x, y) = N(y, x) serves as a counterpart of the Green’s function G(x− y) in R
d for

the Newton potential. Then we may argue in a similar way that the PNP system formally possesses the gradient
flow structure, and the existence theorems can be proved in a similar but somewhat technically easier manner.
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3. Study of the energy functionals

In this section we study various properties of the two relevant energy functionals, namely the total free
energy E and the functional (3.3) used in the JKO minimizing scheme. As already mentioned in the introduction,
we use the flow interchange technique to establish some improved regularity for the minimizers, which will turn
out to be crucial in the next sections.

For further use we recall here a particular case of the celebrated Hardy−Littlewood−Sobolev (HLS) inequality:

Lemma 3.1 (Hardy−Littlewood−Sobolev, [23, 33]). In dimension d ≥ 3 let w ∈ Lp(Rd) and Φ = G ∗w. Then

(1) If 1 < p < d/2 there is a C = C(p, d) such that

‖Φ‖
L

dp
d−2p (Rd)

≤ C‖w‖Lp(Rd), (HLS-1)

while if p = 1 there is a C = C(d) such that

‖Φ‖
L

d
d−2
w (Rd)

≤ C‖w‖L1(Rd). (HLS-2)

(2) If 1 < p < d there is a C = Cp,d such that

‖∇Φ‖
L

dp
d−p (Rd)

≤ C‖w‖Lp(Rd). (HLS-3)

Since |G(x)| = C
|x|d−2 and |∇G(x)| = C

|x|d−1 this is a particular case of well-known fractional integration results
for the Riesz potential Iαf = 1

|.|d−α ∗ f with α = 2, 1, and we refer to [23, 33] for details. Here Lq
w(Rd) denotes

the weak-Lq space and coincides with the usual Lorentz space Lq,∞(Rd).
As an immediate consequence we have the following integration by parts formula:

Proposition 3.2. Let d ≥ 3 and w ∈ L2d/(d+2)(Rd). Then Φ = (−Δ)−1w = G ∗w satisfies Φ ∈ L2d/(d−2)(Rd),
∇Φ ∈ L2(Rd), and ∫

Rd

|∇Φ|2dx =
∫

Rd

Φw dx =
∫∫

Rd×Rd

w(x)G(x − y)w(y)dxdy. (3.1)

We shall use this later on with w = u− v in order to control ψ = G ∗ (u− v).

Proof. Taking p = 2d
d+2 ∈ (1, d/2) in (HLS-1)(HLS-3) we see that Φ ∈ L2d/(d−2)(Rd) and ∇Φ ∈ L2(Rd). Since

(2d/(d + 2))′ = 2d/(d − 2) all the integrals in (3.1) are absolutely convergent and the last equality holds by
Fubini’s theorem. In order to retrieve the first equality we use approximation: if wn ∈ C∞

c (Rd) converges to w in
L2d/(d+2)(Rd) then by the HLS lemma Φn → Φ in L2d/(d−2)(Rd) and ∇Φn → ∇Φ in L2(Rd). Since (3.1) holds
for smooth wn ∈ C∞

c with −ΔΦn = wn we conclude by letting n→ ∞. �

Back to our energy functional, we begin with a fairly standard type of result [9, 16]:

Proposition 3.3 (Energy lower bound). Let m ≥ 1 and K as in (2.2). The total free energy E is a proper
functional on K ×K and

inf
K×K

E(u, v) > −∞.

Moreover we have in every sub-levelset {E(u, v) ≤ R} that

(i) gradient control: ‖∇ψ‖L2(Rd) ≤ C
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(ii) no concentration: if m > 1 then ∫
Rd

(um + vm) dx ≤ C,

while if m = 1 then ∫
Rd

(u| log u| + v| log v|) dx ≤ C.

(iii) Mass confinement:
∫

Rd |x|2(u+ v) dx ≤ C,

for some C > 0 depending on R > 0, the confining potentials, and m.

Proof. Choosing u, v smooth and compactly supported it is clear that E(u, v) <∞ so E is proper.
m > 1 : (i)–(ii) immediately hold because each term in (1) is nonnegative. (iii) then follows by

∫
Rd(uU+vV ) dx ≤

E(u, v) together with (2.1).
m = 1 : if m2(ρ) =

∫
Rd |x|2ρdx denotes the second moment let us first recall [16] the Carleman estimate

H(ρ) ≥ −
∫

Rd

ρ(log ρ)− dx ≥ −C(1 + m2(ρ))α, ρ ∈ P , (3.2)

for some C > 0 and α ∈ (0, 1) depending on the dimension d only. By (2.1) we have Eext(u, v) ≥ C1(m2(u) +
m2(v)), whence

C [m2(u) + m2(v) − (1 + m2(u))α − (1 + m2(v))α]

≤ H(u) + H(v) +
∫

Rd

(uU + vV ) dx ≤ E(u, v) ≤ C.

Hence the second moments are bounded as in (iii). Then (i) and (ii) come immediately from (iii) and (3.2). �

For fixed z∗ = (u∗, v∗) ∈ P × P , and given time step h > 0 we set

Fh(z) :=
1
2h
d2(z, z∗) + E(z), z = (u, v) ∈ K ×K. (3.3)

In order to define later a discrete sequence of approximate solutions using the JKO minimizing scheme, we
collect here some properties of Fh and preliminary results.

Proposition 3.4 (Existence of minimizers). Fix h > 0, and z∗ = (u∗, v∗) ∈ P × P. Then Fh admits a unique
minimizer z = (u, v) ∈ K ×K.

Proof. By Proposition 3.3, Fh is bounded from below on K × K, hence there is a minimizing sequence zk =
(uk, vk) satisfying (i)−(iii) and {uk, vk}k are tight and uniformly integrable. By the Dunford−Pettis Theorem
one may extract a subsequence such that

uk ⇀ u and vk ⇀ v in L1(Rd),

and standard truncation arguments together with the uniform bounds on the second moments ensure that
u, v ∈ P . The weak L1 lower semi-continuity (l.s.c.) of the squared Wasserstein distance, diffusive and potential
energies are standard, in particular u, v ∈ K. We prove in the appendix, Proposition A.1 that the Dirichlet
energy is lower semicontinuous with respect to weak L1(Rd) convergence. Because uk − vk ⇀ u − v in L1(Rd)
we conclude here that Ecpl(u, v) ≤ lim inf

k→∞
Ecpl(uk, vk), thus u, v is a minimizer. Finally, the uniqueness result

comes from the fact that the admissible set K×K is convex w.r.t. linear interpolation zθ = (1− θ)z0 + θz1 and
that the total free energy is jointly strictly convex in (u, v). �
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We remark that the squared distance term left aside in (3.3), the same line of argument would readily give
existence of a global minimizer of the total free energy E , which would result in the end in a least energy
stationary weak solution u, v to (1.1). Since our gradient flow system is driven by E one could expect long
time convergence u(t), v(t) → u, v when t → ∞ together with some convergence rates. However, the lack of
displacement convexity prevents here from applying standard techniques [2,11,30] and this is beyond the scope
of this paper. We refer to [6, 7] for related results on similar PNP models.

In the next section we shall derive the discrete Euler−Lagrange equations satisfied by the minimizers, which
requires integration by parts as in (3.1). However, at this stage the minimizers only lie in Lm(Rd) if m > 1
and L1 logL1(Rd) if m = 1, and this manipulation is not justified. The discrete Euler−Lagrange equations are
necessary to pass to the limit as the time step h→ 0 and to thereby obtain a solution to the PNP system. The
remainder of this section is devoted to improving the regularity of the minimizers of the discrete functional.

The argument is based on the flow interchange technique of Matthes et al. [26], as implemented by Blanchet
and Laurençot [8], as well as Laurençot and Matioc [10,22]. The idea of the flow interchange technique is that a
known gradient flow is sufficiently close, generally first order close, to the one under study so that it may be used
as an approximation with controllable error. We need to use this method twice, first to propagate the regularity
of the minimizers and then to establish some smoothness of their spatial gradients. The characterization of
gradient flow that is useful here is the so called Evolution Variational Inequality (EVI) for a functional F . Using
the notation to follow, a flow (ũ(t)) is a gradient flow in the EVI sense, [1, 2], provided that

1
2

d
dt
d2

W (ũ(t), w) + F(ũ(t)) ≤ F(w) for all w ∈ Pac(Rd) and a.e. t > 0. (3.4)

Displacement convexity and the other detailed requirements for (3.4) to hold are discussed in the references just
cited. For our purposes we note that (3.4) is valid for

(1) solutions of ∂tũ = Δũ, the heat equation, with F = H, the Boltzmann entropy

H(ũ) =
∫

Rd

ũ log ũdx and (3.5)

(2) solutions of ∂tũ = Δ (ũp), the porous medium flow, with F = Ep, 1 < p <∞, given by the functional

Ep(ũ) :=
1

p− 1

∫
Rd

ũpdx. (3.6)

Proposition 3.5 (Discrete propagation of Lp estimates). Let m ≥ 1, λ as in (2.13), and further assume
that u∗, v∗ ∈ K ∩ Lp(Rd) for some p ∈ (1,∞). If 0 < h < h0(p) = 1

λ(p−1) then the minimizer (u, v) from
Proposition 3.4 satisfies

‖u‖p
Lp(Rd)

+ ‖v‖p
Lp(Rd)

≤ 1
1 − λ(p− 1)h

(
‖u∗‖p

Lp(Rd)
+ ‖v∗‖p

Lp(Rd)

)
. (3.7)

In this first use of the flow interchange, we simply use the solution of (3.8) below as variations in the minimum
principle. Note that at this point the time step h must be taken small in terms of p for the minimizing problem
to “see” the estimate. As a consequence there is no hope to retrieve an L∞(Rd) estimate at the discrete level
for fixed h directly from the limit p → ∞ in (3.7), since h < h0(p) would require h → 0. However, u, v will be
retrieved as some limit when h → 0, so one can actually take p arbitrarily large and the weak solutions will
ultimately satisfy such an L∞ estimate. See the proof of Theorem 2.3 at the end of Section 5 for details.

Proof. For fixed p ∈ (1,∞) and u∗, v∗ ∈ K∩Lp consider the auxiliary Porous Media flows ũ(t), ṽ(t) defined by

∂tũ = Δ (ũp) in (0,∞) × R
d, ũ|t=0 = u in R

d,

∂tṽ = Δ (ṽp) in (0,∞) × R
d, ṽ|t=0 = v in R

d.
(3.8)
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By standard results for the PME [34] we know that (i) these Cauchy problems are well posed and ũ, ṽ ∈
C(

[0,∞);L1(Rd)
)

remain probability measures, (ii) by L1 − L∞ smoothing ũ(t), ṽ(t) ∈ L∞(Rd) for all t > 0,
and (iii) the second moments remain finite. As a consequence ũ(t), ṽ(t) ∈ K are admissible for any t > 0, and
by Proposition 3.2 it will be no issue to integrate by parts in the coupling term.

Step 1: Dissipation of the internal energy. We first claim that

t > 0 :
d
dt

Ediff(ũ, ṽ) ≤ 0, (3.9)

and we distinguish cases, m = 1 being the most involved.
m > 1 : By usual properties [34] of the PME all the Lq(Rd) norms are non-increasing along the PME flow, in
particular Ediff(ũ, ṽ) = 1

m−1

(
‖ũ‖m

Lm(Rd) + ‖ṽ‖m
Lm(Rd)

)
is nonincreasing in time.

m = 1 : Assume first that u is smooth and positive. Then by standard properties of the PME flow so is ũ(t) for
later times and, therefore, we get

d
dt

( ∫
Rd

ũ log ũ dx
)

=
∫

Rd

(log ũ)Δũp dx = −4
p

∫
Rd

|∇ũp/2|2dx ≤ 0 (3.10)

for t > 0. Thus t �→ H(ũ(t)) is nonincreasing.
If u is not smooth and positive we first regularize it by running the heat equation for small times

uk = Γ1/k ∗ u →
k→∞

u,

where Γs is the usual heat kernel at time s. Since the heat equation is the H-gradient flow we have in particular
H(uk) ≤ H(u), and of course uk is positive and smooth. Denoting by ũk(t) the solution of the corresponding
PME-flow ∂tũk = Δũp

k starting from uk, then the previous computation (3.10) shows that

∀ t > 0 : H(ũk(t)) ≤ H(ũk(0)) ≤ H(u).

Since uk → u in L1(Rd), we get by standard L1 contractivity of the PME that ũk(t) → ũ(t) in L1(Rd) uniformly
in t ≥ 0 when k → ∞, in particular weakly in L1(Rd). By lower semi-continuity of H with respect to weak L1

convergence we conclude that

∀ t > 0 : H(ũ(t)) ≤ lim inf
k→∞

H(ũk(t)) ≤ H(u).

Finally, by uniqueness of solutions to the PME flow with ũ(0) = u we conclude that t �→ H(ũ(t)) is monotone
nonincreasing, and similarly arguing for v entails (3.9) as claimed.

Step 2: The remaining terms. Arguing by approximation [34] the potential energy is easily controlled for
t > 0 as

d
dt

Eext(ũ, ṽ) =
d
dt

∫
Rd

(
ũU + ṽV

)
dx =

∫
Rd

[
(Δũp)U + (Δṽp)V

]
dx

=
∫

Rd

[
ũpΔU + ṽpΔV

]
dx ≤ λ

∫
Rd

(ũp + ṽp) dx. (3.11)

For the coupling term, let ψ̃(t) = G ∗ (ũ− ṽ)(t) and observe that for t > 0 we have ∂tψ̃ = ∂t[(−Δ)−1(ũ− ṽ)] =
(−Δ)−1[∂t(ũ − ṽ)] = −(ũp − ṽp). Since ũ(t), ṽ(t) ∈ L∞(Rd) for t > 0 we can legitimately integrate by parts

d
dt

Ecpl(ũ, ṽ) =
d
dt

(
1
2

∫
Rd

|∇ψ̃|2 dx
)

=
∫

Rd

(−Δψ̃)∂tψ̃ dx = −
∫

Rd

(ũ − ṽ).(ũp − ṽp) dx ≤ 0. (3.12)
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Note that, due to ‖∇ψ̃‖L2(Rd) = ‖∇(−Δ)−1(ũ − ṽ)‖L2(Rd) ≈ ‖ũ − ṽ‖H−1(Rd), this is the well-known H−1

contraction property of the PME flow, see [34].
As for the Wasserstein term, note that ũ, ṽ are respective gradient flows of the functional Ep, (3.6), so

from (3.4),

1
2h

d
dt

[
dW (ũ, u∗)2 + dW (ṽ, v∗)2

]
≤ 1

(p− 1)h

∫
Rd

(up
∗ − ũp) dx+

1
(p− 1)h

∫
Rd

(vp
∗ − ṽp) dx. (3.13)

Step 3: Dissipation inequality. Gathering (3.9), (3.11), (3.12), and (3.13), we get the total dissipation
inequality

D(t) :=
d
dt

Fh(ũ, ṽ) ≤ 1
(p− 1)h

∫
Rd

(up
∗ + vp

∗) dx− 1
(p− 1)h

∫
Rd

(ũp + ṽp) dx

+ λ

∫
Rd

(ũp + ṽp) dx =: A(t)

for small t > 0. Because
(
ũ(0), ṽ(0)

)
= (u, v) is a minimizer we must have D(t) ≥ 0 at least for a time sequence

tn ↘ 0, otherwise (ũ(t), ṽ(t)) would be a strictly better competitor for small t > 0. If 0 < h < h0 = 1
λ(p−1) we

have 1 − λ(p− 1)h > 0 and A(tn) ≥ D(tn) ≥ 0 can be rearranged as∫
Rd

[
ũp(tn) + ṽp(tn)

]
dx ≤ 1

1 − λ(p− 1)h

∫
Rd

(up
∗ + vp

∗) dx. (3.14)

Our statement follows by finally letting tn ↘ 0 in (3.14), recalling that
(
ũ(t), ṽ(t)

) → (u, v) in L1(Rd) when
t→ 0. �

We shall also need a further regularity result for the gradient of (u, v). The use of the flow interchange in this
estimate is very similar to its use in [8] for the critical parabolic-parabolic Keller−Segel model.

Proposition 3.6 (Discrete gradient estimate). For m ≥ 1, d ≥ 3, and any h > 0, fix z∗ = (u∗, v∗) ∈ P × P
and let z = (u, v) ∈ K ×K be the unique minimizer from Proposition 3.4. Then∥∥∇(um/2)

∥∥2

L2(Rd)
+

∥∥∇(vm/2)
∥∥2

L2(Rd)

≤ C
[
1 +

H(u∗) −H(u)
h

+
H(v∗) −H(v)

h

]
(3.15)

for some C > 0 independent of h > 0 and z∗.

Proof. We use a second flow interchange with ũ(t), ṽ(t) now defined by

∂tũ−Δũ = 0 in (0,∞) × R
d, ũ|t=0 = u in R

d (3.16)

and
∂tṽ −Δṽ = 0 in (0,∞) × R

d, ṽ|t=0 = v in R
d. (3.17)

Step 1: Dissipation inequality. We first note that classical properties of the heat equation and ũ(0), ṽ(0) ∈ K
guarantee ũ(t), ṽ(t) ∈ K for all t > 0. Let ψ̃ := G ∗ (ũ − ṽ). Then it is easy to check that ∂tψ̃ = Δψ̃ as well.
Since the pair (u, v) is a minimizer and has finite energy we have in particular ∇ψ̃(0) = ∇ψ ∈ L2(Rd), whence
by standard properties of the heat equation ∇ψ̃(t) ∈ L2(Rd) and

d
dt

∥∥∇ψ̃(t)
∥∥2

L2(Rd)
≤ 0
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for all t > 0. Since ũ, ṽ are positive and smooth for all t > 0 we may differentiate and integrate by parts as
m > 1:

d
dt

E(ũ, ṽ) =
m

m− 1

∫
Rd

(
ũm−1Δũ + ṽm−1Δṽ

)
dx+

∫
Rd

(
UΔũ+ V Δṽ

)
dx

+
d
dt

(1
2

∥∥∇ψ̃(t)
∥∥2

L2(Rd)

)
≤ − 4

m

∫
Rd

(
|∇ũm

2 |2 + |∇ṽm
2 |2

)
dx+

∫
Rd

(
ũΔU + ṽΔV

)
dx

≤ − 4
m

∫
Rd

(
|∇ũm

2 |2 + |∇ṽm
2 |2

)
dx+ ‖ΔU‖L∞(Rd) + ‖ΔV ‖L∞(Rd) (3.18)

and similarly
m = 1:

d
dt

E(ũ, ṽ) ≤ −4
∫

Rd

(
|∇ũ 1

2 |2 + |∇ṽ 1
2 |2

)
dx+ ‖ΔU‖L∞(Rd) + ‖ΔV ‖L∞(Rd). (3.19)

Here (2.1) is used in the third inequality of both (3.18) and (3.19).
For m > 1, the above term 4

m

∫
Rd |∇ρ̃m

2 |2dx in (3.18) (dissipation of Em(ρ) = 1
m−1

∫
Rd ρ

m dx along ∂tρ = Δρ)
corresponds to the usual Fisher information −4

∫
Rd |∇ρ 1

2 |2dx = d
dtH(ρ) in the linear diffusion case (3.19), and

enjoys a formal continuity when m ↘ 1. Comparing with (3.10) for p = m we also see that the dissipation of
H along the Em-flow equals the dissipation of Em along the H-flow, which is in fact the cornerstone of this flow
interchange technique.

Let
D(t) :=

4
m

(∥∥∇ũm
2 (t)

∥∥2

L2(Rd)
+

∥∥∇ṽm
2 (t)

∥∥2

L2(Rd)

)
.

Integrating (3.18) or (3.19) from 0 to t > 0 we get in both cases

E(ũ(t), ṽ(t)) − E(u∗, v∗) ≤ 2λt−
∫ t

0

D(s)ds, (3.20)

with λ defined in (2.13). Because (3.16)−(3.17) are respective H-gradient flows, we again appeal to (3.4) to
obtain

1
2

d
dt
d2(z̃(t), z∗) =

1
2

d
dt

[
d2

W (ũ(t), u∗) + d2
W (ṽ(t), v∗)

]
≤ H(u∗) −H(ũ(t)) + H(v∗) −H(ṽ(t)).

Integrating again and using the monotonicity of s ↘ H(ũ(s)) and s ↘ H(ṽ(s)) along the flow with z̃(0) = z
gives

1
2h

[
d2(z̃(t), z∗) − d2(z, z∗)

] ≤ t

h

[H(u∗) −H(ũ(t)) + H(v∗) −H(ṽ(t))
]
.

Since z is a minimizer we have by (3.3) and (3.20) that for small t > 0

0 ≤ Fh(z̃(t)) −Fh(z)

≤ t

h

[H(u∗) −H(ũ(t)) + H(v∗) −H(ṽ(t))
]
+ 2λt−

∫ t

0

D(s) ds,

which we reformulate as

1
t

∫ t

0

D(s) ds ≤ 2λ+
H(u∗) −H(ũ(t))

h
+

H(v∗) −H(ṽ(t))
h

· (3.21)
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Step 2: The limit t→ 0. If

D1(t, x) :=
1
t

∫ t

0

ũ
m
2 (s, x)ds, D2(t, x) :=

1
t

∫ t

0

ṽ
m
2 (s, x)ds,

we first note that ũ, ṽ ∈ C([0,∞);Lm(Rd)) as solutions of the heat equation with initial data in Lm(Rd), so that
D1, D2 ∈ C([0,∞);L2(Rd)). As a consequence D1(t) → D1(0) = u

m
2 and D2(t) → D2(0) = v

m
2 in L2(Rd) when

t ↓ 0. By (3.21) we find that ∇D1(t) and ∇D2(t) are bounded in L2(Rd) and converge at least in D′(Rd) to
∇(

u
m
2
)

and ∇(
v

m
2
)

when t→ 0. Consequently, ∇(
u

m
2
)
,∇(

v
m
2
) ∈ L2(Rd) and our statement follows from∥∥∇(u

m
2 )

∥∥2

L2(Rd)
+

∥∥∇(v
m
2 )

∥∥2

L2(Rd)

≤ lim inf
t→0

∥∥∇D1(t)
∥∥2

L2(Rd)
+ lim inf

t→0

∥∥∇D2(t)
∥∥2

L2(Rd)

≤ m

4
lim inf

t→0

1
t

∫ t

0

D(s)ds

≤ C

(
1 +

H(u∗) −H(u)
h

+
H(v∗) −H(v)

h

)
·

The last inequality comes from the limit t ↘ 0 in (3.21) with strong convergence (ũ(t), ṽ(t)) → (u, v), e.g. in
L1 ∩ Lr0(Rd), and suitable continuity of ρ �→ H(ρ). �

4. Minimizing scheme and discrete estimates

In this section, we shall construct a family of time-discrete approximate solutions using the JKO method,
also known as the variational minimizing movement scheme. A priori estimates for the set of discrete solutions
are necessary to allow us to deduce the existence of a time-continuous limit curve.

Fix an initial datum z0 = (u0, v0) as in (2.3) and some time step h > 0. Setting z(0)
h = z0, Proposition 3.4

allows us to define a sequence z(n)
h = (u(n)

h , v
(n)
h ) ∈ K ×K recursively as

z
(n+1)
h := the unique minimizer z of Fh with z∗ = z

(n)
h =

(
u

(n)
h , v

(n)
h

)
and a corresponding piecewise-constant interpolation t ∈ [0,∞) �→ zh(t) as

zh(t) = z
(n)
h for nh ≤ t < (n+ 1)h.

The rest of this section is devoted to collecting the suitable a priori estimates on zh suitable to pass to the limit
in h↘ 0.

It is now standard to get the discrete energy monotonicity as in [16] that

∀n ≥ 0 : E(
z
(n+1)
h

) ≤ E(
z
(n)
h

)
inasmuch as z(n)

h is a competitor in the search for z(n+1)
h . At the continuous level this reads as

E(zh(t2)) ≤ E(zh(t1)) ≤ E(z0) for all 0 ≤ t1 ≤ t2.

Proposition 4.1. The total square distance and approximate Hölder estimates

1
2h

∑
n≥0

d2
(
z
(n)
h , z

(n+1)
h

) ≤ E(z0) − inf
K×K

E , (4.1)

∀ 0 ≤ t1 ≤ t2, d
(
zh(t1), zh(t2)

) ≤ C |t2 − t1 + h| 12 , (4.2)

hold for some C > 0 independent of h > 0.
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Proof. Note that since u0, v0 ∈ L1(Rd) ∩ L2d/(d+1)(Rd) we have in particular u0 − v0 ∈ L2d/(d+2)(Rd). By
Proposition 3.2 we have ∇ψ0 = ∇G ∗ (u0 − v0) ∈ L2(Rd) and u0, v0 has therefore finite energy. We also recall
from Proposition 3.3 that inf

K×K
E > −∞, hence the right-hand side in (4.1) is finite (and of course independent

of h > 0). The rest of the argument is by now very classical and we refer to [16]. �

Proposition 4.2. The piecewise constant interpolation satisfies

m > 1 : sup
t≥0

∫
Rd

(
um

h (t) + vm
h (t)

)
dx ≤ C

m = 1 : sup
t≥0

∫
Rd

(
uh(t)| log uh(t)| + vh(t)| log vh(t)|) dx ≤ C

(4.3)

and
sup
t≥0

∫
Rd

|x|2(uh(t) + vh(t)
)
dx ≤ C (4.4)

uniformly in h > 0.

Proof. By energy monotonicity we have sup
n≥0

E(
u

(n)
h , v

(n)
h

) ≤ E(u0, v0) < ∞, which by Proposition 3.3 bounds

the internal energy and the second moments uniformly in h, n for the discrete sequence. This property extends
to the interpolation uh(t), vh(t). �

In addition to the uniform control in Proposition 4.2, we also have

Proposition 4.3 (Continuous Lp estimate). In addition to (2.3) assume that the initial data u0, v0 ∈ Lp(Rd)
for some p ∈ (1,∞), and let λ as in (2.13). Then for h < h0(p) = 1

λ(p−1) sufficiently small we have

∀t ≥ 0 :
∥∥uh(t)

∥∥
Lp(Rd)

+
∥∥vh(t)

∥∥
Lp(Rd)

≤ Ceλt
(
‖u0‖Lp(Rd) + ‖v0‖Lp(Rd)

)
for some C > 0 independent of t, p, h, and the initial data.

Proof. Fix any t > 0, let k = �t/h�, and recall that uh(t) = u
(k)
h . By induction we immediately get from

Proposition 3.5

‖uh(t)‖p
Lp(Rd)

+ ‖vh(t)‖p
Lp(Rd)

≤
( 1

1 − λ(p− 1)h

)�t/h	 (
‖u0‖p

Lp(Rd)
+ ‖v0‖p

Lp(Rd)

)
·

For small h > 0 this easily gives

‖uh(t)‖Lp(Rd) + ‖vh(t)‖Lp(Rd) ≤ Ceλ p−1
p t

(‖u0‖Lp(Rd) + ‖v0‖Lp(Rd)

)
for some universal C > 0. Since eλ p−1

p t ≤ eλt the proof is complete. �

Proposition 4.4 (Approximate Euler−Lagrange equations). Fix m ≥ 1. Let ∇q(n) and ∇r(n) be the optimal
transport maps

u
(n+1)
h =

(∇q(n)
)
#
u

(n)
h and v

(n+1)
h =

(∇r(n)
)
#
v
(n)
h

in Brenier’s Theorem 2.1, and ψ
(n)
h = G ∗

(
u

(n)
h − v

(n)
h

)
. Then for any vector-field ζ ∈ C∞

c (Rd; Rd), we have
that

1
h

∫
Rd

〈∇q(n) − Id, ζ ◦ ∇q(n)〉u(n)
h dx =

∫
Rd

(
u

(n+1)
h

)m div ζ dx−
∫

Rd

u
(n+1)
h 〈∇U, ζ〉dx

−
∫

Rd

u
(n+1)
h 〈∇ψ(n+1)

h , ζ〉dx, (4.5)
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and

1
h

∫
Rd

〈∇r(n) − Id, ζ ◦ ∇r(n)〉v(n)
h dx =

∫
Rd

(
v
(n+1)
h

)m div ζ dx−
∫

Rd

v
(n+1)
h 〈∇V, ζ〉dx

+
∫

Rd

v
(n+1)
h 〈∇ψ(n+1)

h , ζ〉dx. (4.6)

Proof. In order to simplify notations, we write below u∗ = u
(n)
h , u = u

(n+1)
h , v∗ = v

(n)
h , v = v

(n+1)
h , and

ψ = ψ
(n+1)
h = G ∗ [u(n+1)

h − v
(n+1)
h ]. Fix an arbitrary vector-field ζ ∈ C∞

c (Rd,Rd). For ε ∈ [−δ, δ], let Φε(x) be
the associated ε-flow (i.e. dΦε/dε = ζ(Φε) and Φ0 = Id), and let us consider the perturbation (of domain)

uε := (Φε)#u, zε := (uε, v).

Since z|ε=0 = z is a minimizer, computing the first variation d
dε (Fh(zε))ε=0 = 0 will classically give (4.5).

Similarly considering vε = (Φε)#v and zε = (u, vε) will produce (4.6).
More precisely, differentiating the Wasserstein distance squared, the confining potential, and the diffusive

energy are by now classical computations [2]. However, differentiating the coupling energy is quite delicate here:
because we have to consider separate horizontal and vertical perturbations the nonscalar nature of the problem
induces a loss of symmetry. Formally the result should follow from∫

Rd

|∇ψε|2dx =
∫

Rd

ψε(uε − v) dx =
∫∫

Rd×Rd

[uε − v](x)G(x − y)[uε − v](y) dxdy

and the classical computations for interaction energies, see [35]. But because we consider two components
independently it might happen that ∇ψε /∈ L2(Rd) even though ∇ψ ∈ L2(Rd), and the above integration by
parts might not be legitimate. Moreover since ∇G is more singular than G itself, differentiating with respect
to ε requires some extra regularity. This can actually be made rigorous using the propagation of the initial
regularity as follows. Since the initial datum u0, v0 ∈ L2d/(d+1)(Rd) and the time step is small enough, we
have by Proposition 3.5 that u, v ∈ L1(Rd) ∩ L2d/(d+1)(Rd), and in particular u, uε, v ∈ L2d/(d+2)(Rd). Using
Proposition 3.2 we can therefore integrate by parts and expand with uε = (Φε)#u∫

Rd

|∇ψε|2dx =
∫∫

Rd×Rd

u(x)G(Φε(x) − Φε(y))u(y) dxdy

− 2
∫∫

Rd×Rd

u(x)G(Φε(x) − y)v(y) dxdy + terms independent of ε,

where the last equality follows by definition of the pushforward uε = (Φε)#u. In order to differentiate under the
integral sign we only need L1(Rd × R

d) bounds such that∫∫
Rd×Rd

u(x)
∣∣∣〈∇G(Φε(x) − Φε(y)), ζ ◦ Φε(x) − ζ ◦ Φε(y)〉

∣∣∣u(y) dxdy ≤ C,∫∫
Rd×Rd

u(x)
∣∣∣〈∇G(Φε(x) − y), ζ ◦ Φε(x)〉

∣∣∣v(y) dxdy ≤ C,

uniformly as ε→ 0. Because Φε is close to Id for small ε, ζ ∈ C∞
0 (Rd), and

|∇G(x − y)| ≤ C

|x− y|d−1
,
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this simply amounts to controlling ∫∫
Rd×Rd

u(x)
1

|x − y|d−1
u(y) dxdy ≤ C,∫∫

Rd×Rd

u(x)
1

|x − y|d−1
v(y) dxdy ≤ C,

which is valid by (HLS-3) with p = 2d/(d+ 1) and u, v ∈ L2d/(d+1)(Rd). As a consequence we can legitimately
compute with Φ0 = Id

d
dε

(∫
Rd

|∇ψε|2dx
)

ε=0
=

∫∫
Rd×Rd

u(x)〈∇G(x − y), ζ(x) − ζ(y)〉u(y) dxdy

− 2
∫∫

Rd×Rd

u(x)〈∇G(x − y), ζ(x)〉v(y) dxdy.

Exploiting the symmetry ∇G(x − y) = −∇G(y − x) we finally get

d
dε

(1
2

∫
Rd

|∇ψε|2dx
)

ε=0
=

∫∫
Rd×Rd

u(x)〈∇G(x − y), ζ(x)〉[u − v](y) dxdy

=
∫

Rd

u〈∇ψ, ζ〉dx

as in our claim, and the proof is complete. �

The above restriction at initial data u0, v0 ∈ L2d/(d+1)(Rd), which then is inherited by the solutions to later
times, is technically essential in order to differentiate under the integral sign with respect to ε-perturbations
and retrieve the discrete Euler−Lagrange equations. Actually this restriction is not purely technical: in (1.1)
it seems natural to require the terms u∇ψ, v∇ψ to be at least in L1(Rd) at time t = 0. If u0, v0 are both in
Lp(Rd) for some p then the integrability for ∇ψ coming from (HLS-3) is ∇ψ ∈ Ldp/(d−p)(Rd), which is optimal
since HLS inequalities are. Solving for p′ = dp

d−p gives exactly the sharp p = 2d/(d + 1) exponent. Technically
speaking we had to assume initial Lr0(Rd) regularity with slightly better but arbitrarily close r0 > 2d/(d+ 1).
This is needed for technical compactness issues, arising later on when we take the limit h → 0 to retrieve the
weak solution (u, v) = lim(uh, vh).

In addition to being an approximate solution in the sense of the previous Proposition, the interpolation
(uh, vh) satisfies

Corollary 4.5 (Continuous gradient estimate). Fix m ≥ 1. Then for all 0 < h < T ,∥∥∇(uh)m/2
∥∥

L2(h,T ;L2(Rd))
+

∥∥∇(vh)m/2
∥∥

L2(h,T ;L2(Rd))
≤ C(T + 1)

1
2 , (4.7)

and ∥∥∇(uh)m
∥∥

L2(h,T ;L1(Rd))
+

∥∥∇(vh)m
∥∥

L2(h,T ;L1(Rd))
≤ C(T + 1)

1
2 , (4.8)

for some constant C = C(u0, v0) > 0 independent of h.

Proof. For once the argument requires no distinction between m > 1 or m = 1. We only estimate the u
component because the computations are identical for v.

Since um/2
h ,∇um/2

h ∈ L2(Rd) we have

∇(uh)m = 2u
m
2

h ∇(
u

m
2

h

) ∈ L1(Rd).
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Recalling that um/2
h (t) is actually bounded in L2(Rd) uniformly in t ≥ 0 and h, clearly (4.8) will follow from (4.7)

and we only establish the latter.
For fixed 0 < h < T let N = �T/h�, and recall that the interpolation zh(t) is piecewise constant. Multiply-

ing (3.15) by h > 0 and summing from n = 0 to n = N we obtain

∫ T

h

∥∥∇(uh)m/2
∥∥2

L2(Rd)
dt ≤

∫ (N+1)h

h

∥∥∥∇(
uh(t)m/2

)∥∥∥2

L2(Rd)
dt =

N−1∑
n=0

h
∥∥∥∇(

u
(n+1)
h

)m/2
∥∥∥2

L2(Rd)

≤ C

N−1∑
n=0

(
h+ H(u(n)

h ) −H(u(n+1)
h ) + H(v(n)

h ) −H(v(n+1)
h )

)
≤ C

(
T + H(u0) + H(v0) −H(

u
(N)
h

) −H(
v
(N)
h

))
. (4.9)

By Proposition 4.2 the second moments m2

(
u

(n)
h

)
,m2

(
v
(n)
h

)
are bounded uniformly in t, h, n, hence by the

Carleman estimate (3.2) we see that −H(
u

(N)
h

) −H(
v
(N)
h

) ≤ C in (4.9) and the proof is complete. �

We observe that another possible way to retrieve better gradient regularity is to estimate∣∣∣∣
∫

Rd

div(ζ)um
h dx

∣∣∣∣ +
∣∣∣∣
∫

Rd

div(ζ)vm
h dx

∣∣∣∣ ≤ C‖ζ‖Lp(Rd)

for arbitrary vector-fields ζ ∈ C∞
c (Rd; Rd) in the Euler−Lagrange equations (4.5)-(4.6), which would estimate

by duality ∇um
h ,∇vm

h ∈ Lp′
(Rd), see e.g. [29]. This approach would only improve the previous total variation

estimate if p < ∞, so that (Lp′
(Rd))′ = Lp(Rd) and C∞

c (Rd) is dense in Lp. Unfortunately we are here in
a limiting situation where essentially uh∇ψh, vh∇ψh ∈ L1(Rd) only, so this is not feasible. More precisely,
our assumption u0, v0 ∈ Lr0(Rd) with r0 > 2d/(d + 1) in fact does give slightly better uh∇ψh ∈ L1+δ(Rd)
integrability through HLS inequalities (for some δ > 0 depending on r0). But since r0 could be arbitrarily close
to the critical 2d/(d + 1) exponent, δ > 0 is arbitrarily small and we shall refrain from taking this technical
path.

5. Convergence to a weak solution

This section is devoted to the convergence of the previously approximated interpolating solution towards the
final weak solution, (u, v) = lim

h→0
(uh, vh) in some suitable topology. Because of the quadratic interaction term

and nonlinear diffusion if m > 1 we will need the following strong convergence

Theorem 5.1 (Strong convergence). There is a discrete subsequence, still denoted h ↘ 0, and functions u, v
such that

uh(t, x) → u(t, x) and vh(t, x) → v(t, x) a.e. in (0,∞) × R
d (5.1)

and
∀ 1 ≤ p <∞, 1 ≤ q < r0 : uh, vh → u, v in Lp

loc([0,∞);Lq(Rd)), (5.2)

where r0 > max{m, 2d/(d+ 1)} is the initial integrability as in (2.3).

Observe in particular that q = m and q = 2d/(d + 1) are allowed in (5.2), which will be crucial in order to
pass to the limit in the Euler−Lagrange equations later on. Roughly speaking, Lr(Rd) integrability suffices to
guarantee Lq(Rd) convergence for all q < r. Unfortunately q = max{m, 2d/(d+ 1)} is a borderline case that we
could not treat, and this is why we needed to assume initial Lr0(Rd) integrability for some slightly better but
arbitrarily close r0 > max{m, 2d/(d+ 1)}.
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Strategy of proof: We will use a compactness criterion in Bochner spaces from [32] that involves:

(i) boundedness in Lp(0, T ;X) for some strong X topology,
(ii) compactness in Lp(0, T ;Y ) for a weaker Y space,
(iii) a target intermediate Lp(0, T ;B) space with embeddings X ⊂⊂ B ⊂ Y .

Note that X ⊂⊂ B will be achieved by space difference quotients and that the key ingredient to obtain
boundedness of {uh, vh}h in the strong X topology is the gradient estimate from Corollary 4.5. Compactness
in Lp(0, T ;Y ) will be ensured by an approximated time equi-continuity in some suitable W−s,r′

(Rd) space.

We first collect some technical results and then establish Theorem 5.1. To begin with, for m > 1, we set

qm := 1 +
1
m′ = 1 +

m− 1
m

∈ (1,m). (5.3)

Then there exists θm ∈ (0, 1) satisfying

1
qm

= (1 − θm)
1
1

+ θm
1
m
, (5.4)

and we let

pm :=
2m
θm

> 1. (5.5)

If τe denotes the usual shift operator in space

e ∈ R
d : τew(x) := w(x− e),

we also define the weighted Nikolsk’ii spaces

Xm :=
{
w ∈ Lqm(Rd) : sup

e∈Rd

‖τew − w‖Lqm |e|− θm
m <∞,

∫
Rd

|x| 2
m′ |w|qmdx <∞

}
endowed with their natural Banach norms with θm/m < 1. By the Riesz−Fréchet−Kolmogorov Theorem we
have

Xm ⊂⊂ Lqm(Rd).

We note that the above choice for p = pm, q = qm, θ = θm is purely technical so we shall go as little as possible
into details regarding their explicit values.

For the case m = 1 one should similarly use

X1 :=
{
w ∈ L1(Rd) : ∇w ∈ L1(Rd),

∫
Rd

|x|2|w| dx <∞
}
⊂⊂ L1(Rd).

Since the related argument is fairly easy compared to the nonlinear case, in what follows we will omit the related
proof and focus on the nonlinear diffusion case and henceforth we assume m > 1. Compactness in space will be
ensured by

Proposition 5.2 (Compactness in space). Let p, q, θ,X as in (5.3)−(5), and fix T > 0. Then for h > 0 small
enough we have

‖uh‖Lp(h,T ;Xm) + ‖vh‖Lp(h,T ;Xm) ≤ CT

uniformly in h.
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Proof. For simplicity we write here p = pm, q = qm, θ = θm, X = Xm. We first claim that

‖uh(t)‖X ≤ C
(
1 + ‖∇um

h (t)‖θ/m

L1(Rd)

)
, for t ≥ h. (5.6)

Indeed since q ∈ (1,m), it follows immediately from (4.3) that

‖uh‖L∞(0,∞;Lq(Rd)) ≤ C.

Using (4.3), (4.4), and Hölder inequality we estimate with q = qm = 1 + 1/m′∫
Rd

|x| 2
m′ uq

h(t) dx =
∫

Rd

(
uh(t)|x|2) 1

m′ uh(t) dx

≤
(∫

Rd

|x|2uh(t) dx
) 1

m′
‖uh(t)‖Lm(Rd) ≤ C.

Fixing e ∈ R
d and using the convexity inequality |a− b|m ≤ ∣∣|a|m − |b|m∣∣ for a, b ≥ 0, we get

∥∥τeuh(t) − uh(t)
∥∥

Lm(Rd)
=

(∫
Rd

|τeuh(t) − uh(t)|mdx
) 1

m

≤
(∫

Rd

|τeum
h (t) − um

h (t)| dx
) 1

m

≤ |e|1/m
∥∥∇um

h (t)
∥∥1/m

L1(Rd)
.

By (5.4) and ‖τeuh(t) − uh(t)‖L1(Rd) ≤ 2 we get by interpolation∥∥τeuh(t) − uh(t)
∥∥

Lq(Rd)
≤ ∥∥τeuh(t) − uh(t)

∥∥1−θ

L1(Rd)
· ∥∥τeuh(t) − uh(t)

∥∥θ

Lm(Rd)

≤ 2|e| θ
m

∥∥∇um
h (t)

∥∥ θ
m

L1(Rd)
,

thus (5.6) holds as claimed.
Taking now the Lp(h, T ) norm with p = pm = 2m/θ in (5.6) and using Corollary 4.5 finally leads to

‖uh‖Lp(h,T ;X) ≤ C
(
T +

∥∥∇um
h

∥∥2/p

L2(h,T ;L1(Rd))

)
≤ CT .

The estimate for the v component is again identical. �

Next, we turn to compactness in time in a weaker topology. We first have

Proposition 5.3 (Time-equicontinuity in W−s,r′
(Rd)). Let s, r > 0 be large enough so that

W s,r(Rd) ⊂W 1,2m′
(Rd) ∩W 2,∞(Rd).

Then ∥∥uh(t2) − uh(t1)
∥∥

W−s,r′ +
∥∥vh(t2) − vh(t1)

∥∥
W−s,r′ ≤ C

√
|t2 − t1| + h, 0 ≤ t1 ≤ t2, (5.7)

for some C = Cs,r > 0 independent of t1, t2 and h.

Proof. The argument is very similar to ([8], Lem. 3), beginning with the calculation of the approximate 1/2-
Hölder continuity of the sequence {uh(t)}. For indices 0 < n < n′ let ∇q denote the optimal map from u

(n)
h

to u(n′)
h so that u(n′)

h = (∇q)#u(n)
h . Then∫

Rd

(
u

(n′)
h − u

(n)
h

)
ξdx =

∫
Rd

(ξ(∇q(x)) − ξ(x)) u(n)
h (x)dx, ξ ∈ C∞

c (Rd).
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Expanding the integrand on the right,

ξ(x) − ξ(∇q(x)) =∇ξ(∇q(x)) · (x −∇q(x))
+ O (|x−∇q(x)|2‖∇2ξ‖L∞(Rd)

)
,

Hence ∫
Rd

(
u

(n′)
h − u

(n)
h

)
ξ dx =

∫
Rd

[ξ ◦ ∇q − ξ] u(n)
h dx

=
∫

Rd

〈∇q − Id,∇ξ ◦ ∇q〉u(n)
h dx

+ O(‖∇2ξ‖L∞(Rd)

) ∫
Rd

|Id −∇q|2u(n)
h dx

=
∫

Rd

〈∇q − Id,∇ξ ◦ ∇q〉u(n)
h dx

+ O
(
‖∇2ξ‖L∞(Rd)dW

(
u

(n′)
h , u

(n)
h

)2
)
.

We further compute by Cauchy−Schwarz and Hölder inequalities∣∣∣∣
∫

Rd

〈∇q − Id,∇ξ ◦ ∇q〉u(n)
h dx

∣∣∣∣ ≤
(∫

Rd

|∇q − Id|2 u(n)
h dx

) 1
2

·
(∫

Rd

|∇ξ ◦ ∇q|2 u(n)
h dx

) 1
2

≤ dW

(
u

(n)
h , u

(n′)
h

)( ∫
Rd

|∇ξ|2u(n′)
h dx

) 1
2

≤ dW

(
u

(n)
h , u

(n′)
h

)∥∥u(n′)
h

∥∥ 1
2
Lm(Rd)

∥∥|∇ξ|2∥∥ 1
2

Lm′(Rd)

≤ C dW

(
u

(n)
h , u

(n′)
h

)||∇ξ||L2m′ (Rd),

Given 0 < t1 < t2 and N1 = �t1/h�, N2 = �t2/h�, from (4.1) and the Cauchy−Schwarz inequality we get

dW (uN1
h , uN2

h ) ≤
N2−1∑
n=N1

dW

(
u

(n)
h , u

(n+1)
h

) ≤ C
√

|t2 − t1| + h,

and then ∣∣∣∣
∫

Rd

(uh(t2) − uh(t1)) ξ dx
∣∣∣∣ ≤ C

(
‖∇ξ‖L2m′(Rd)

√
|t2 − t1| + h+ ‖∇2ξ‖L∞(Rd)h

)
.

With our choice W s,r ⊂W 1,2m′ ∩W 2,∞ and because h is small we finally obtain∣∣∣∣
∫

Rd

(
uh(t2) − uh(t1)

)
ξ dx

∣∣∣∣ ≤ C
(√

|t2 − t1| + h+ h
)
‖ξ‖W s,r

≤ C
√

|t2 − t1| + h‖ξ‖W s,r .

Our statement follows by density of C∞
c (Rd) in W s,r(Rd) and duality

(
W s,r(Rd)

)′ = W−s,r′
(Rd). �

We are now in position to prove the desired convergence when h→ 0:

Proof of Theorem 5.1. Once again we only establish the result for the u component. Fix any 0 < δ < T and let
q = qm, θ = θm, p = pm, X = Xm as in (5.3)−(5.5). Taking s, r large enough such that

W s,r(Rd) ⊂⊂ Lm′
loc(R

d)
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is compact. By truncation, a standard duality argument then ensures that

Lm(Rd) ∩ L1(Rd)((1 + |x|2)dx) ⊂⊂W−s,r′
(Rd)

is also compact. By Proposition 4.2, we see that there is a fixed W−s,r′
(Rd)-relatively compact set K such that

uh(t) ∈ K for all t ≥ 0 and small h > 0. Therefore, we infer from Proposition 5.3 that a refined version of
Arzelà−Ascoli (Thm. [2], Prop. 3.3.1) can be applied to conclude that there exists u ∈ C([0, T ];W−s,r′

(Rd))
such that

∀ t ∈ [0, T ], uh(t) → u(t) in W−s,r′
(Rd)

for some (discrete) subsequence h ↘ 0, not relabeled here for simplicity. This pointwise convergence together
with the uniform Lm(Rd) ∩ L1(Rd, (1 + |x|2)dx) bounds and Lebesgue’s Dominated Convergence Theorem
therefore guarantee strong convergence

uh → u in Lp(0, T ;W−s,r′
(Rd)). (5.8)

By diagonal extraction we can moreover assume that u ∈ C([0,∞);W−s,r′
) and that (5.8) holds for all T > 0.

Choosing s, r large enough we can further assume that

X ⊂⊂ Lq(Rd) ⊂W−s,r′
(Rd).

We recall from Proposition 5.2 that {uh}h is bounded in Lp(δ, T ;X), and by (5.8) it is also relatively compact
in Lp(δ, T ;W−s,r′

(Rd)). By ([32], Lem. 9) we conclude that {uh}h is relatively compact in the intermediate
target space, i.e. uh → u in Lp(δ, T ;Lq(Rd)) for some subsequence. By a diagonal extraction we may assume
that u is independent of δ, T , and uh → u in Lp

loc(0,∞;Lq(Rd)). Up to extraction of a further subsequence this
classically implies the desired pointwise convergence a.e. (t, x) ∈ (0,∞) × R

d.
Let us turn now to the Lp

loc([0,∞);Lq(Rd)) convergence, and fix 1 ≤ p < ∞ and 1 ≤ q < r0 as in our
statement (we recall here that r0 > max{m, 2d/(d + 1)} is the initial integrability u0, v0 ∈ Lr0(Rd)). Once
again we only focus on the u component. Thanks to the previous (t, x) a.e. convergence we shall apply Vitali’s
convergence theorem in fixed bounded intervals (0, T ), and we only need to check that the sequence {uh} is tight
and uniformly integrable in time and space. Tightness in time is obvious in bounded intervals, and tightness in
space is easily obtained by Young’s inequality

∀ t ≥ 0 :
∫

Rd

uq
h|x|2εdx =

∫
Rd

uq−ε
h︸︷︷︸

∈L(1/ε)′

(
uh|x|2

)ε︸ ︷︷ ︸
∈L1/ε

dx ≤ C

uniformly in h, t for some suitably small ε > 0. Here we used the uniform bounds on the second moment
m2(uh) ≤ C and q − ε ≤ q < r0 to control ‖uh(t)q−ε‖L(1/ε)′(Rd) by local uniform bounds ‖uh(t)‖Lr0(Rd) ≤ CT

(obtained by propagation of initial integrability, Prop. 4.3). The same propagation of integrability gives uniform
bounds ‖uh‖L∞(0,T );Lr0(Rd) ≤ C, thus by immediate L1Lr0 interpolation we obtain equi-integrability in the
form

‖uh‖Lp+ε(0,T ;Lq+ε(Rd)) ≤ CT

for ε > 0 suitably small (essentially such that 1 ≤ q + ε < r0). Applying Vitali’s convergence theorem gives
strong convergence uh → u in Lp([0, T );Lq(Rd)) as desired and the proof is complete. �

We can now prove our main result. The proof of Theorem 2.4 is identical to that of Theorem 2.3 so we only
establish the latter.
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Proof of Theorem 2.3.

Step 1: Convergence. Recall that uh(t), vh(t) ∈ K for all t, h, and that K is L1-weak relatively compact. Using
the approximate 1/2 Hölder equicontinuity (5.7) and applying the previous refined Arzelà−Ascoli theorem, we
can extract a subsequence such that

∀t ≥ 0 : uh(t), vh(t) ⇀ u(t), v(t) in L1(Rd)

for some u, v ∈ C(0, T ;P(Rd)) and u(t), v(t) ∈ K for all times. This entails the L∞(0, T ;Lm(Rd) ∩ L1(Rd)((1 +
|x|2)dx)) bounds. By standard truncation arguments we also get that u(t), v(t) are probability measures for all
times, and because d2

W is l.s.c for the L1-weak convergence we can moreover take the limit in (4.2) to deduce
that t �→ u(t), v(t) are 1/2-Hölder continuous in (P , dW ). Since uh(0), vh(0) = u0, v0 we can take the limit
u(0), v(0) = u0, v0, which together with u, v ∈ C1/2([0,∞);P) shows that the limit u, v satisfies the initial
condition at least in the sense of measures as desired.

We claim now that
∇um

h ,∇vm
h ⇀ ∇um,∇vm in L2(δ, T ;L1(Rd)) (5.9)

for all 0 < δ < T , and also
∇um,∇vm ∈ L2(0, T ;L1(Rd)).

To see this fix a test function ϕ ∈ L2(δ, T ;L∞(Rd)), and write for small h > 0∫ T

δ

∫
Rd

(∇um
h )ϕdxdt =

∫ T

δ

∫
Rd

2∇um/2
h

(
u

m/2
h ϕ

)
dxdt.

By Corollary 4.5 and pointwise a.e convergence uh → u we can assume ∇um/2
h ⇀ ∇um/2 in L2(δ, T ;L2(Rd))

for fixed 0 < δ < T , and by diagonal extraction we can assume that the limit ∇um/2 is independent of δ, T .
By (5.2) with q = m < r0 it is easy to get um/2

h ϕ → um/2ϕ in L2(δ, T ;L2(Rd)). As a consequence we can pass
to the limit ∫ T

δ

∫
Rd

(∇um
h )ϕdxdt →

h↘0
2

∫ T

δ

∫
Rd

∇um/2
(
um/2ϕ

)
dxdt =

∫ T

δ

∫
Rd

∇umϕdxdt

to obtain (5.9). In particular by Corollary 4.5 we see that ∀0 < δ < T , it holds∥∥∇um
∥∥

L2(δ,T ;L1(Rd))
≤ lim inf

h↘0

∥∥∇um
h

∥∥
L2(δ,T ;L1(Rd))

≤ 2 lim inf
h↘0

∥∥um/2
h

∥∥
L∞(δ,T ;L2(Rd))

∥∥∇um/2
h

∥∥
L2(δ,T ;L2(Rd))

≤ C(1 + T )1/2

uniformly in δ > 0, whence ∇um ∈ L2(0, T ;L1(Rd)) for all T > 0.
For the drift terms, recall from (2.1) that ∇U(x),∇V (x) are at least locally bounded. From Theorem 5.1

we have uh, vh → u, v at least in L1(0, T ;L1(Rd)), thus uh∇U, vh∇V ⇀ u∇U, v∇V in L1(0,∞;L1
loc(R

d)) when
tested with compactly supported functions ϕ(x). Moreover by uniform bounds on the second moments and
linear behavior of ∇U,∇V it is easy to check that the limit u∇U, v∇V ∈ L∞(0,∞;L1(Rd)).

Regarding now the coupling terms uh∇ψh, vh∇ψh, note from (5.2) with q = 2d/(d + 1) < r0 that we have
in particular uh, vh → u, v in Lp(δ, T ;L2d/d+1(Rd)) for all p ∈ [1,∞). By strong L2d/(d+1)(Rd) → L2d/(d−1)(Rd)
continuity in (HLS-3) we thus obtain ∇ψh = (∇G) ∗ [uh − vh] → (∇G) ∗ [u− v] = ∇ψ in Lp(δ, T ;L2d/(d−1)(Rd))
for all p ∈ [1,∞), so by Hölder inequality

uh∇ψh, vh∇ψh → u∇ψ, v∇ψ in Lp(δ, T ;L1(Rd))

for all p ∈ [1,∞) and 0 < δ < T . Using the L∞(δ, T ;L2d/(d+1)(Rd)) bounds for uh, vh this gives Lp(δ, T ;L1(Rd))
bounds uniformly in p ≥ 1 and δ > 0, thus u∇ψ, v∇ψ ∈ L∞(0, T ;L1(Rd)) ⊂ L2(0, T ;L1(Rd)) for all T > 0.
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Step 2: The weak solution. Fix any test-function ϕ ∈ C∞
c (Rd) and 0 < T1 < T2, and let N1 = �T1/h�, N2 =

�T2/h�. Let ∇q(n) be the optimal map in u(n+1)
h =

(∇q(n)
)
#
u

(n)
h . Expanding

ϕ(x) − ϕ(∇q(n)(x)) = (∇ϕ(∇q(n)(x))) · (x−∇q(n)(x))

+ O(|x−∇q(n)(x)|2‖D2ϕ‖L∞(Rd)

)
. (5.10)

Taking ζ = ∇ϕ in the Euler−Lagrange equation (4.5), and summing from n = N1 to n = N2 − 1 we compute
by (4.1), (4.5) and (5.10) that∫

Rd

(
uh(T2) − uh(T1)

)
ϕdx =

∫
Rd

(
u

(N2)
h − u

(N1)
h

)
ϕdx

=
N2−1∑
n=N1

∫
Rd

(
u

(n+1)
h − u

(n)
h

)
ϕdx

=
N2−1∑
n=N1

∫
Rd

[
ϕ ◦ ∇q(n) − ϕ

]
u

(n)
h dx

=
N2−1∑
n=N1

∫
Rd

〈∇q(n) − Id,∇ϕ ◦ ∇q(n)〉u(n)
h dx

+
N2−1∑
n=N1

O
(
‖D2ϕ‖L∞(Rd)d

2
W

(
u

(n)
h , u

(n+1)
h

))

=
N2−1∑
n=N1

h

∫
Rd

[
Δϕ

(
u

(n+1)
h

)m − u
(n+1)
h 〈∇U,∇ϕ〉 − u

(n+1)
h 〈∇ψ(n+1)

h ,∇ϕ〉
]

dx

+ O(
h‖D2ϕ‖L∞(Rd)

)
.

Integrating by parts and exploiting (4.1), at the continuous level this becomes

O(
h‖D2ϕ‖L∞(Rd)

)
+

∫
Rd

(
uh(T2) − uh(T1)

)
ϕdx

= −
∫ N2h

N1h

∫
Rd

[
〈∇(

uh(t)
)m
,∇ϕ〉 + 〈∇U,∇ϕ〉uh(t) + uh(t)〈∇ψh(t),∇ϕ〉

]
dxdt.

By step 1 we can take h→ 0 as∫
Rd

(u(T2) − u(T1))ϕdx = −
∫ T2

T1

∫
Rd

(〈∇um,∇ϕ〉 + u〈∇U,∇ϕ〉 + u〈∇ψ,∇ϕ〉) dxdt

to obtain (2.8). The equation for v is similarly obtained.

Step 3: Energy bounds and further regularity. We first establish the energy bound (2.11). Arguing as
in step 1, using (5.2) with q = 2d/(d + 2) < r0, and (HLS-3) it is easy to conclude that ∇ψh → ∇ψ in
Lp

loc(0,∞;L2(Rd)) for all p ∈ [1,∞). In particular ∇Ψh(t) → ∇Ψ(t) in L2(Rd) and

Ecpl(uh(t), vh(t)) → Ecpl(u(t), v(t)) a.e. t ≥ 0.

From the energy control ‖∇ψh‖L∞(0,∞;L2(Rd)) ≤ C we also have ∇ψ ∈ L∞(0,∞;L2(Rd)). Similarly, from the
Lp

loc(0,∞;Lq(Rd)) with q = m < r0 it is easy to get

Ediff(uh(t), vh(t)) → Ediff(u(t), v(t)) a.e. t ≥ 0.
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For the potential energy, we have 0 ≤ uh(t, x)U(x) → u(t, x)U(x) a.e. x ∈ R
d for a.e. fixed t ≥ 0, and similarly

for vhV . By Fatou’s lemma we conclude that

Eext(u(t), v(t)) ≤ lim inf
h→0

Eext(uh(t), vh(t)) a.e. t ≥ 0.

Summing E = Ediff + Eext + Ecpl with E(uh(t), vh(t)) ≤ E(u0, v0) at the discrete level finally entails the desired
energy bound (2.11). Note that the potential energy Eext is the most problematic term, because we cannot
a priori conclude equality Eext(u(t), v(t)) = lim Eext(uh(t), vh(t)) in the last display (in fact strong convergence
would imply convergence of the second moments, thus convergence in dW ). As a consequence we only retrieve
the one-sided inequality, and we are unable to conclude that the total energy is monotone nonincreasing in the
limit.

Turning now to the propagation of initial regularity (2.12), assume that the initial datum u0, v0 ∈ Lp(Rd) for
some p ∈ [1,∞]. If p < ∞ then Proposition 4.3 bounds uh(t), vh(t) in Lp(Rd) uniformly in h with exponential
control

sup
t∈[0,τ ]

(‖uh(t)‖Lp(Rd) + ‖vh(t)‖Lp(Rd)

) ≤ Ceλτ
(‖u0‖Lp(Rd) + ‖v0‖Lp(Rd)

)
.

Up to extraction of a further subsequence we can assume that uh, vh
∗
⇀ u, v in L∞

loc([0,∞);Lp(Rd)), which
immediately gives (2.12). If now u0, v0 ∈ L∞(Rd) clearly (2.12) holds for arbitrarily large p. Our claim then
easily follows by letting p→ ∞ and the proof is achieved. �

Appendix A.

For p > 1 let Lp
w(Rd) be the weak-Lp spaces, which coincide with the usual Lorentz space Lp,∞(Rd). The

natural Banach norm is
‖w‖Lp

w(Rd) = ‖w‖Lp,∞(Rd) = sup
t>0

{t1/pw∗(t)}, (A.1)

where w∗(t) is the symmetric-decreasing rearrangement of w(x).

Proposition A.1. Denoting Φ = (−Δ)−1w = G ∗ w, the Dirichlet energy

w ∈ L1(Rd) �→ ED(w) =
∫
Rd

|∇Φ|2 dx ∈ [0,+∞]

is lower semi-continuous for weak L1 convergence.

Proof. Let wn ⇀ w in L1(Rd). If lim inf ED(wn) = +∞ our statement is trivial, so up to extraction of a
subsequence we may assume that lim inf ED(wn) = lim ED(wn) = C < +∞, in particular we have that

lim ‖∇Φn‖2
L2(Rd) = lim inf ED(wn) < +∞. (A.2)

Now since wn ⇀ w in L1(Rd) we see that wn is bounded in L1(Rd), hence by(HLS-2),

‖Φn‖L
d/(d−2)
w (Rd)

≤ C‖wn‖L1(Rd) ≤ C.

Since L
d/(d−2)
w (Rd) = Ld/(d−2),∞(Rd) =

(
Ld/2,1(Rd)

)′
is a topological dual we can also assume, by the

Banach−Alaoglu theorem, and up to a further subsequence, that

Φn
∗
⇀ Φ in Ld/(d−2)

w (Rd).

By (A.2) and up to a subsequence we see that

‖∇Φ‖2
L2(Rd) ≤ lim inf ‖∇Φn‖2

L2(Rd) = lim inf ED(wn).

As a consequence it suffices to prove that Φ = G ∗ w, since then ED(w) = ‖∇Φ‖2
L2(Rd) ≤ lim inf ED(wn).
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Set Φ̃ = G ∗ w ∈ L
d/(d−2)
w (Rd) and let us prove that Φ − Φ̃ = 0. Since −ΔΦn = wn ⇀ w = −ΔΦ̃ in L1(Rd)

we have in particular that Φ − Φ̃ is harmonic. Because harmonic tempered distributions are polynomials and
L

d/(d−2)
w (Rd) ⊂ S′(Rd) we get that Φ − Φ̃ ∈ L

d/(d−2)
w (Rd) is polynomial. By (A.1) we see that the polynomial

Φ− Φ̃ decays at infinity, hence Φ− Φ̃ = 0 as claimed and the proof is complete. �
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