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INTERPENETRATION OF MATTER IN PLATE THEORIES OBTAINED
AS Γ-LIMITS ∗

Heiner Olbermann
1

and Eris Runa
2

Abstract. We reconsider the derivation of plate theories as Γ -limits of 3-dimensional nonlinear elas-
ticity and define a suitable notion for the interpenetration of matter in the limit configuration. This is
done via the Brouwer degree. For the approximating maps, we adopt as definition of interpenetration
of matter the notion of non-invertibility almost everywhere, see [J.M. Ball, Proc. Roy. Soc. Edinburgh
Sect. A 88 (1981) 315–328]. Given a limit map satisfying the former interpenetration property, we show
that any recovery sequence (in the sense of Γ -convergence) has to consist of maps that satisfy the latter
interpenetration property except for finitely many sequence elements. Then we explain how our result
is applied in the context of the derivation of plate theories.
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1. Introduction

In the mathematical theory of nonlinear elasticity, the elastic deformations of an elastic body are identified
with (almost-) minimizers of some free elastic energy functional. This identification works as follows: The
reference configuration of the elastic body is some domain Ω ⊂ R

n, the deformation is a map y : Ω → R
m, and

the associated energy I : X → R has as domain the function space of deformations y. Of crucial importance is
the right choice for the function space X . Unphysical deformations (e.g., non-injective maps, which represent
configurations displaying self-penetration of matter) should either be excluded from X , or the energy of these
configurations should be infinite, signaling that it is not possible to observe them in the “real world”. There
exists a large amount of literature on how to choose the function space of elastic deformations in a manner that
at the same time excludes unphysical configurations and ensures existence of energy minimizers. We do not
attempt to give an exhaustive literature review here, and only mention [1–4,6, 16, 17]. In [16], a framework has
been introduced that allows for cavitation, i.e., the free energy allows for the formation of holes in the elastic
body. Cavity formation can be observed in experiments; the mathematical theory for radially symmetric cavities
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has been developed in [4]. In [16], the function space X is chosen such that cavities created at one point cannot
be filled with matter from elsewhere. Clearly, this is another property that “physical” deformations of an elastic
body should fulfill. The mathematical formulation of this condition (called “(INV)” in [16]) is rather technical.

An important question in nonlinear elasticity is the relation between models in three, two and one dimensions.
Conceptually and mathematically, the most satisfying approach is the derivation of lower dimensional models
from a 3-dimensional one by Γ -convergence [8]. In [11, 12], a hierarchy of 2-dimensional plate models has been
derived from 3-dimensional nonlinear elasticity. These models can be classified by the assumed scaling of the
energy per unit thickness Ih in the underlying 3d theory, where h denotes the thickness of the elastic sheet.
Assuming Ih ∼ hβ , where h is the thickness of the elastic plate, the Γ -limit for β = 2 is nonlinear bending
theory [11]. The parameter choice 2 < β < 4 results in “von-Kármán-like” plate theories, see [12].

The 3d models taken as a starting point for this hierarchy of Γ -limits do not require the condition (INV).
In [16] it is shown that in general, if condition (INV) is not imposed, it is possible to construct sequences of
(almost everywhere) invertible deformations of finite energy that weakly converge to a non-(a.e.) invertible one.
We will give a slightly more detailed presentation of this construction in Section 2.2. What matters for us is
that such a situation is potentially problematic for the derivation of plate theories by Γ -convergence: A weakly
converging sequence of invertible (a.e.) functions might result in a non-invertible (a.e.) configuration with finite
elastic energy in the 2d limit theory. The obvious cure would be, of course, to impose condition (INV) on the
3d theory. In the present contribution, we show that this is not necessary.

In contrast to the existing mathematical literature on interpenetration of matter that mainly focuses on
finding sufficient conditions for invertibility of elastic deformations, we here identify sufficient conditions for
non-invertibility. Questions related to the image of Sobolev functions are known to be a delicate issue, and these
objects may display counter-intuitive features, cf. the pathological examples going back to Besicovitch [5, 15].
Here, such pathologies are not problematic, because we want to show that the image of the considered functions
is sufficiently large.

This will be achieved in the main theorem of the present paper, Theorem 2.5. We will assume the typical
conditions fulfilled by sequences of elastic deformations of thin films in the derivation of 3d-to-2d Γ -limits.
Additionally, we will assume that the limit configuration is non-invertible in a suitable sense, see Definition 2.2.
This definition is crucial for our method of proof to be workable. The statement of Theorem 2.5 is that under
these assumptions, the considered sequence yh of elastic deformations must consist of non-invertible functions
for h small enough as h → 0.

The structure of the present paper is as follows. In Section 2, we state our main result. In Section 3, we
recall some results from the literature that we will use for its proof. The proof of the theorem (see Sect. 4) is
based on a reduction to a 2-dimensional domain. The intersection on a sufficiently large set in the 2d-domain
is proved by a homotopy argument, and the passage back to the 3-dimensional situation is performed with
the help of the geometric rigidity result by Friesecke et al. [11]. In Section 5, we recall the derivation of plate
theories as Γ -limits of 3d-nonlinear elasticity, and obtain some straightforward corollaries from the application
of Theorem 2.5 to these settings.

Notation. The symbol C will be used as follows. A statement such as “f ≤ Cg”, where f, g are quantities
that depends on a variable x, is to be read as: there exists a numerical constant C > 0 with the property that
f ≤ Cg for all x. The value of C may change from one line to the next.

The d-dimensional Lebesgue measure is denoted by Ld. Further we write ω(m) = Γ (1/2)m/Γ (m/2 + 1); if
m ∈ N, then ω(m) is the volume of the m-dimensional ball.

2. Statement of results

2.1. Brouwer degree

First we need to recall the definition and some basic properties of the Brouwer degree. For U ⊂ R
n bounded,

f ∈ C∞(Ū , Rn), and y ∈ R
n \ f(∂U) such that det∇f(x) �= 0 for all x ∈ f−1(y), the Brouwer degree is
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defined by

deg (f, U, y) =
∑

x∈f−1(y)

sgn(det∇f(x)).

One can show that for ϕ ∈ C∞
0 (Rn) with supp(ϕ) ∩ f(∂U) = ∅, and any y ∈ R

n in the same connected
component of R

n \ f(∂U) as supp(ϕ),

deg (f, U, y)
�

Rn

ϕ(z) dz =
�

U

ϕ(f(x))det∇f(x) dx.

By this formula and approximation by smooth functions, one can define the degree for any continuous f ∈
C0(Ū , Rn) and y �∈ f(∂U). One can show that the degree only depends on f |∂U . Hence, from now on, we write
deg (f, ∂U, y) ≡ deg (f, U, y). Another basic property of the degree is

deg (f, ∂U, y) �= 0 ⇒ y ∈ f(U).

On each connected component of R
n \ f(∂U), deg (f, ∂U, ·) is constant. The latter yields the implication

y0 ∈ ∂{y ∈ R
n : deg (f, ∂U, y) = k} ⇒ y0 ∈ f(∂U), (2.1)

for any k ∈ N. Finally, we will need the homotopy invariance of the degree: If γ : [0, 1] → R
n and H : [0, 1]×U →

R
n are continuous, and γ(t) �∈ H(t, ∂U) for t ∈ [0, 1], then

deg (H(0, ·), ∂U, γ(0)) = deg (H(1, ·), ∂U, γ(1)). (2.2)

For the details of the definition and the proofs of the properties mentioned here, we refer to [9].

2.2. Invertibility almost everywhere and the example by Müller and Spector

Next we introduce appropriate notions of invertibility for Sobolev functions.

Definition 2.1 (Invertibility almost everywhere [3, 16]). Let U ⊂ R
n, and let f be (a representative of an

equivalence class) in W 1,1(U, Rn). We say f is invertible almost everywhere if there is a null set N ⊂ U such
that f |U\N is injective.

Note that invertibility almost everywhere only depends on the equivalence class.
In [16], Müller and Spector gave an example of a sequence of a.e. invertible maps that weakly converge to a

map that is 2-to-1 on a set of positive measure. (As in [16], by saying that a map u is 2-to-1 at a point x we
mean that there exists exactly one point x̄ �= x such that u(x) = u(x̄).) Their examples were two-dimensional,
but similar (slightly more complicated) constructions can be carried out in higher dimensions too. Crucial for
their construction is the assumed regularity. The formation of cavities must be permitted, which is the case if
the deformations are W 1,p with p < n, where n is the dimension of the domain. We do not give the explicit
formulas for the examples, but only give a qualitative explanation and refer to Figure 1, where the construction
is sketched.

The domain of the example is a strip Ω ⊂ R
2. The deformations are in W 1,p(Ω, R2) for all p < 2, and are

constructed as follows: one starts off with the formation of one single cavity in a quadratic reference configuration,
and subsequent continuous deformation. This is depicted in the upper left frame in Figure 1. In the upper right
frame, this building block is scaled and periodically continued to a larger square. Two of these larger squares
are the end parts of the deformed rectangular strip u(Ω). Then the strip is bent so that material from one end
covers the voids from the other (see the lower left frame of Fig. 1). The map constructed in this way is invertible
almost everywhere. Letting the period of the perforation tend to 0, the resulting sequence converges weakly in
W 1,p(Ω, R2), for all p < 2, to a deformation that is 2-to-1 on a set of positive measure (see the lower right frame
of Fig. 1).
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creation of
a cavity

rearrangement

of matter

Figure 1. The pathological example by Müller and Spector.

2.3. Interpenetration for codimension one maps

For maps R
n−1 ⊃ U → R

n as they occur in plate theories, the above definition of invertibility almost every-
where is not suitable. Here, modifications on sets of measure zero will be enough to make deformations with
interpenetration of matter injective. We by-pass this problem by restricting ourselves to continuous deforma-
tions – in fact, we will even require Lipschitz continuity, since this is general enough for all applications to the
derivation of plate theories.

For U ⊂ R
n−1, we let Û ⊂ R

n denote the boundary of the cylinder over U :

Û := ∂ (U × [0, 1]).

In the following, we will identify U with U × {0} ⊂ Û .

Definition 2.2 (Interpenetration). For i ∈ {1, 2}, let Ui ⊂ R
n−1 be simply connected Lipschitz domains and

ui ∈ Lip(Ui, R
n). We say that u2 interpenetrates u1 if there exists a Lipschitz-continuous extension û1 : Û1 → R

n

of u1 with the following properties:

(i) The sets
{
x ∈ U2 : u2(x) �∈ û1(Û1), deg (û1, Û1, u2(x)) = k

}
, k ∈ N

have positive Ln−1-measure for at least two different k ∈ N.
(ii) The extension satisfies

û1(Û1 \ U1) ∩ u1(U1) =∅,

û1(Û1 \ U1) ∩ u2(U2) =∅. (2.3)

We have depicted the extension û1 : Û1 → R
n in Figure 2, and the typical situation of interpenetration in

Figure 3.

Example 2.3. Let U1 = U2 = [0, 1]2 and vi : C1(Ui) for i = 1, 2. Moreover, suppose that the set A1 :=
{x : v1(x) < v2(x)} and that A2 := {x : v2(x) < v1(x)} are both open, non-empty and simply connected.
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û1

Figure 2. The extension û1 : Û1 → R
3.

u2(U2)

û1(Û1)

Figure 3. An example of interpenetration.

Set ui(x′) = (x′, vi(x′)) for i = 1, 2, and define the extension of u1 by û1 : Û1 = ∂[0, 1]3 → R
3, (x′, x3) �→

(x′, v1(x′) + x3M), where M := sup |v2 − v1|. We will now check that deg (u1, Û1, z) = 0 for z ∈ A2 and that
there exists z ∈ A1 such that deg (u1, Û1, z) > 0. Indeed, there is an obvious way to extend û1 to [0, 1]3:

û∗
1 : [0, 1]3 → R

3, (x′, x3) �→ (x′, v1(x′) + x3M).

Trivially, û1 = û∗
1 on Û1. Hence, deg (û1, Û1, ·) = deg (û∗

1, Û1, ·). For û∗
1, we may compute the degree by

(cf. Sect. 2.1)

deg (û∗
1, Û1, z) =

∑
x∈û−1

1 (z)

sgn(det (∇û∗
1(x))).

For every z ∈ R
3, we have that (û∗

1)
−1 (z) is either empty or has one element. In the latter case, it holds

det (∇û∗
1(x)) = det

(
id 0

(∇′v)T 1

)
= 1,

where û∗
1(x) = z. In particular for any x ∈ A2, one has that deg (û∗

1, Û1, u2(x)) = 0. On the other side, one
easily sees that for every x ∈ A1 one has that

deg (û∗
1, Û1, u2(x)) = 1.

Thus u2 interpenetrates u1.
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u1(U1)

u2(U2)

Figure 4. Interpenetrating curves with deg (û1, Û1, u2(x)) �= 0 for all extensions û1 of u1 and
x ∈ U2.

Remark 2.4.

(1) Definition 2.2 is asymmetric with respect to u1, u2. This is done on purpose. It is always possible to reverse
the roles by shrinking the domain of U1, but we are neither going to prove nor use this fact.

(2) If U is closed and u : U → R
3 is an embedding, then there do not exist disjoint subsets U1, U2 ⊂ U such that

u2 := u|U2 interpenetrates u1 := u|U1 . The converse is not true: there exist non-injective maps u : U → R
3

such that it is not possible to choose U1, U2 such that u2 interpenetrates u1 (defined as before). This is
the case, e.g., if the graphs u(U1) and u(U2) touch, but do not intersect. This is a desirable feature of a
definition for interpenetration of matter. Indeed, two surfaces that are touching but can be separated via
infinitesimal perturbations, should not be considered as interpenetrating, as they can be approximated by
recovery sequences with disjoint graphs.

(3) Even though we chose the case of intersecting graphs to illustrate Definition 2.2 in Example 2.3, the definition
is much more flexible than that. In particular, it is invariant under surface reparametrization.

(4) It might seem at first sight as if the requirement that the sets{
x ∈ U2 : u2(x) �∈ û1(Û1), |deg (û1, Û1, u2(x))| = k

}
have positive measure for k ∈ {0, 1} would be equivalent to Definition 2.2 (i). However this would exclude
cases such as the one depicted in Figure 4 (where n = 2), which are also covered by Definition 2.2 (i).

2.4. Statement of the main theorem

Let S ⊂ R
2 be open and bounded, and let Ωh = S × (−h/2, h/2). We write Ω ≡ Ω1. We will consider

sequences of functions zh : Ωh → R
3. It is convenient to define them on the same domain by introducing

yh : Ω → R
3 via yh(x1, x2, x3) = zh(x1, x2, hx3). Also, we introduce the scaled gradient

∇hy =
(
∇′y,

1
h

∂3y

)
.

Theorem 2.5. Let S, Ωh and Ω be as above, and let U1, U2 ⊂ S be disjoint simply connected Lipschitz sets.
Let u1 : U1 → R

3, u2 : U2 → R
3 be Lipschitz and let u2 interpenetrate u1, let ε > 0 and yh a sequence in

W 1,2(Ω, R3) such that
‖dist (∇hyh, SO(3))‖2

L2(Ω) < Ch1+ε (2.4)

and
� 1/2

−1/2

yh(·, x3) dx3 ⇀ ui in W 1,2(Ui, R
3)as h → 0 for i = 1, 2. (2.5)

Then, for h small enough, yh is not invertible almost everywhere.
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Remark 2.6. The crucial assumption here is (2.4). This condition (or, more precisely, its 2-dimensional analog)
is not fulfilled by the pathological examples from [16], whereas it does hold true for recovery sequences in the
derivation of plate theories by Γ -convergence.

3. Preliminaries

For A ⊂ R
n, we recall the definitions of m-dimensional Hausdorff and spherical Hausdorff pre-measures and

of the “packing measure”,

Hm
δ (A) = inf

{
ω(m)

∑
j

2−mdiam (Aj) : A ⊂ ∪jAj , diam (Aj)/2 ≤ δ

}

Sm
δ (A) = inf

{
ω(m)

∑
j

rm
j : A ⊂ ∪jB(xj , rj), rj ≤ δ

}

Pm
δ (A) =ω(m)δm inf

{
#{B(xi, δ)} :

⋃
i

B(xi, δ) ⊃ A

}

where m ∈ [0,∞). In the above definition, we also allow δ = ∞.
It is well known (see e.g. [10]) that the limits limδ→0 Hm

δ , limδ→0 Sm
δ define Borel measures Hm,Sm on R

n,
and that there exists a numerical constant C = C(n) such that

C−1Sm
δ (A) ≤ Hm

δ (A) ≤ CSm
δ (A) and Pm

δ ≥ Sm
δ (A) ≥ Hm

∞

for every A ⊂ R
n. Also, we recall the definition of the 1-capacity of a set A ⊂ R

n,

cap1(A) = inf{Per(E) : E is an open set of finite perimeter and A ⊂ E}.

From these definitions, it is easily seen that there exists a constant C = C(n) with the property

cap1(A) ≤ CH1
∞(A) for all A ⊂ R

n. (3.1)

We cite the relative isoperimetric inequality for sets of finite perimeter. In the following statement, for a set of
finite perimeter E, ∂∗E denotes the reduced boundary of E (see [19]).

Theorem 3.1 ([19]). Let U ⊂ R
n be a bounded open set with Lipschitz boundary. Then there exists a constant

C = C(U) such that for every set E ⊂ R
n of finite perimeter,

min {|E ∩ U |, |U \ E|}n−1/n ≤ CHn−1(∂∗E ∩ U). (3.2)

The same inequality holds true if one considers instead of U the whole R
n. Namely, there exists a constant

C = C(n) such that

min {|E|, |Rn \ E|}n−1/n ≤ CHn−1(∂∗E). (3.3)

Using the previous theorem, we will now prove a version of the isoperimetric inequality involving capacities
instead of the Hausdorff measure. Note that due to cap1 ≤ CHd−1 the next lemma is stronger than Theorem 3.1.

Lemma 3.2. Let U be a bounded open set with Lipschitz boundary. Then there exists a constant C = C(U)
such that for every bounded set E of finite perimeter,

(min (|E ∩ U |, |U \ E|))(n−1)/n ≤ C cap1(∂∗E ∩ U). (3.4)
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Proof. Suppose that the claim of the lemma were not true. Then there exists a sequence of sets Ek ⊂ R
n such

that

(min (|Ek ∩ U |, |U \ Ek|))(n−1)/n ≥ k cap1(∂∗Ek ∩ U). (3.5)

Let us split the proof in two cases: either there exists an M and a sequence {Ek} such that

min(|Ek ∩ U |, |U \ Ek|)(n−1)/n ≥ M

or for every sequence such that (3.5) holds, one has that

min(|Ek ∩ U |, |U \ Ek|)(n−1)/n ↓ 0 as k ↑ ∞.

To deal with the first case, we will show that it is not possible to have min(|E ∩ U |, |U \ E|) > M and
cap1(∂∗E ∩ U) < ε, with ε suitably small. To show that also the second case leads to a contradiction, we will
use a spatial scaling and basically reduce ourselves to having

min(|E ∩ U |, |U \ E|) = 1.

Case 1. There exists an M and subsequence {Ek} such that min(|Ek ∩ U |, |U \ Ek|)(n−1)/n ≥ M . The bound-
edness of U implies that cap1(∂∗Ek ∩ U) ≤ |U|n/(n−1)

k . In particular, one has that cap1(∂∗Ek ∩ U) ↓ 0. Fix
ε > 0 sufficiently small. By the definition of 1-capacity, there exists an open set of finite perimeter Vk such that
∂∗Ek ∩ U ⊂ Vk and Per(Vk) ≤ cap1(∂∗Ek ∩ U) + ε ≤ 2ε. Using the second part of Theorem 3.1, one has that
|Vk| ≤ Cεn/(n−1). Let us define Ẽk := Ek ∪ Vk. We claim that

∂∗Ẽk ∩ U ⊂ ∂∗Vk. (3.6)

Indeed, note that ∂∗(Ek ∪ Vk) ∩ U ⊂ (∂∗Ek ∪ ∂∗Vk) ∩ U . By ∂∗Ek ∩ U ⊂ Vk, one has that every x ∈ ∂∗Ek is an
interior point (and in particular a set of 1-density, see [19]), and thus x �∈ ∂∗(Ek ∪ Vk) ∩ U which proves (3.6).

Hence,

min (|Ek ∩ U |, |U \ Ek|) ≤ C min
(
|Ẽk ∩ U |, |U \ Ẽk|

)
+ Cεn/(n−1)

≤ C(U)
((

Hn−1(∂∗Ẽk ∩ Uk)
)n/(n−1)

+ εn/(n−1)

)

≤ C(U)
(
(Per(Vk))n/(n−1) + εn/(n−1)

)
≤ C(U)

(
εn/(n−1)

)
, (3.7)

where in the second inequality above, we have used Theorem 3.1. By the arbitrariness of ε, we obtain a contra-
diction.

Case 2. Let us now suppose that for every sequence Ek such that (3.5) holds, one has that min(|Ek ∩ U |, |U \
Ek|) ↓ 0. Without loss of generality we may assume that min(|Ek ∩ U |, |U \ Ek|) = |Ek ∩ U |. Note that both
sides of (3.4) have the same spatial scaling. Thus, there exists λk > 0 such that |λkEk| = 1 and

|λkEk|(n−1)/n ≥ k cap1((λk∂∗E\) ∩ (λkU)).

Hence, by rescaling by λk one can assume without loss of generality that |Ek| = 1 and Uk ↑ R
d, where Uk := λkU .

After this observation the proof will proceed in a similar fashion as in the first case. As in the previous
case, one has that cap1(∂∗(Ek ∩ Uk)) ↓ 0. Using the definition of 1-capacity, there exists an open set of finite
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perimeter Vk such that ∂∗(Ek ∩Uk) ⊂ Vk and Per(Vk) ≤ cap1(∂∗(Ek ∩Uk))+ε ≤ 2ε. Without loss of generality,
we may assume additionally that |Vk| < +∞. Indeed, let B ⊃ U be a ball, and Bk := λkB. Because Bk is convex
one has that Per(Bk ∩ Vk) ≤ Per(Vk) thus by taking Vk ∩ Bk instead of Vk, one has the additional requested
property.

Using the second part of Theorem 3.1, one has that |Vk| ≤ Cεn/(n−1). Denote by Ẽk := Ek ∪ Vk and notice
as before that ∂∗Ẽk ⊂ ∂∗Vk. Hence, following exactly the same chain of inequalities as in (3.7), this gives a
contradiction as before. �

3.1. Miscellaneous results from the literature

In the proof of our main theorem, we will use the following geometric rigidity result.

Theorem 3.3 ([11], Thm. 3.1). Let U ⊂ R
n be a bounded Lipschitz domain, with n ≥ 2. Then there exists

a constant C = C(U) with the following property: For every v ∈ W 1,2(Rn), there is an associated rotation
R ∈ SO(n) such that,

‖∇v − R‖L2(U) ≤ C‖dist (∇v, SO(n))‖L2(U)

The constant C(U) is invariant under rescaling of the domain.

We will also use Zhang’s Lemma [18]. An inspection of its proof in the latter reference shows that the following
(slightly modified) statement holds true as well.

Theorem 3.4 ([18], Lem. 3.1). Let K > 0. There exist constants C1 = C1(n, m), C2 = C2(n, m, K) with the
following property: If U ⊂ R

n is open and bounded, f ∈ W 1,1(U, Rm) and ε > 0 such that
�

U∩{|∇f |≥K}
|∇f | dx < ε,

then there exists f̃ ∈ W 1,∞(U, Rm) such that

‖∇f̃‖L∞(U) ≤C1K,

Ln
(
{x : f(x) �= f̃(x)}

)
≤C2ε.

4. Proof of Theorem 2.5

Let S, Ω and Ωh be as defined in Section 2.4. Our strategy is as follows. In Proposition 4.2 below, we will
consider maps yh on a 3-dimensional domain. We reduce the domain to 2 dimensions and assume that the thus
obtained maps are 2-to-1 on a “large set” in terms of capacity, and we will show that this is sufficient to conclude
that the maps yh are 2-to-1 on a set whose L3-measure is of order h2. This will be the main step in the proof
of Theorem 2.5. In the proof of the proposition, we will need the following lemma:

Lemma 4.1. Let ε > 0, xh ∈ S, α ∈ (0, 1/2], and yh ∈ W 1,∞(Ωh; R3) with
�

B(xh,αh)

dist 2(∇yh, SO(3)) dx ≤Ch3+ε,

‖∇yh‖L∞ ≤C.

Then there exist rigid motions Ah : R
3 → R

3 such that

sup
x′∈B(xh,αh)

|yh(x′) − Ah(x′)| ≤ Ch1+ε̄. (4.1)

where ε̄ = ε/(3 + ε).
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Proof. By Theorem 3.3, there exists a numerical constant C = C(C1, C2) and Rh ∈ SO(3) such that
�

B(xh,αh)

|∇yh − Rh|2 dx ≤ Ch3+ε.

We set
bh =

�
B(xh,αh)

(yh(x) − Rhx) dx.

By the Poincaré inequality, there exists C = C(C1, C2) such that
�

B(xh,αh)

|yh(x) − Rhx − bh|2 dx ≤ Ch5+ε. (4.2)

Let Ah be the rigid motion
x �→ Rhx + bh.

Since ‖yh − Ah‖2
W 1,2(B(xh,αh)) ≤ Ch3+ε, and ‖yh − Ah‖2

W 1,∞(B(xh,αh)) ≤ C, we also have

‖∇(yh − Ah)‖p
Lp(B(xh,αh)) ≤ C(p)h3+ε

for all p ∈ [2,∞).
Let wh = yh − Ah, and B = B(xh, αh). Using (4.2) and Hölder’s inequality, we have

�
B

|wh| ≤
1

ω(3)(αh)3

(�
B

|wh|2
)1/2

(ω(3)(αh)3)1/2

≤ Ch(2+ε)/2.

We set p = 3 + ε. For x ∈ B, we have the following estimate (which is used in a similar fashion in the proof of
Morrey’s Inequality, see e.g. the proof of the latter in [13])

�
B

|wh(x) − wh(z)| dz ≤C

�
B

|∇wh(z)|
|x − z|2 dz

≤C

(�
B

|∇wh|p
)1/p (�

B

|x − z|−2p/(p−1)

)(p−1)/p

≤Ch(3+ε)/ph1−3/p

≤Ch1+ε/(3+ε).

Thus we get

sup
x∈B

|wh(x)| ≤
�

B

|wh| dz + sup
x∈B

�
|wh(x) − wh(z)| dz ≤ Ch1+ε̄ (4.3)

which proves (4.1). �

Proposition 4.2. Let yh : Ωh → R
3 be Lipschitz, and let C∗ ≥ 1, ε > 0 such that
�

Ωh

dist 2(∇yh, SO(3)) dx ≤C h2+ε,

‖∇yh‖L∞ ≤C∗.

Further, with uh(·) = yh(·, 0), and

Fh := {x : there exists x′ ∈ S s.t. uh(x) = uh(x′) and |x − x′| > 2h}
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assume that
cap1

(
Fh

)
≥ C1 for all h < h0

for some constants C1, h0 > 0. Then there exists c = c(C1) > 0 such that for h small enough,

L3 ({x : yh is not 1-to-1 at x}) > ch2. (4.4)

Proof.
Step 1. Covering of Fh by balls of size h and definition of auxiliary partitions. For simplicity let us denote

Eh :=
�

Ωh

dist 2(∇yh, SO(3)) dx.

Fix a set of points Xh = {xi}i∈I ⊂ Fh such that Fh ⊂ ∪IB(xi, h/2) and B(xi, h/10) ∩ B(xj , h/10) = ∅ for
i �= j. Such a set Xh exists by Vitali’s Covering Lemma. By definition of Fh, we may define a function Fh → Fh,
x �→ x̄, such that uh(x) = uh(x̄) and B(x, h/2) ∩ B(x̄, h/2) = ∅ for every x ∈ Fh.

In the following, we identify the points x ∈ Xh ⊂ S with the points (x, 0) ∈ S × {0} ⊂ Ωh, and whenever we
speak of a ball around a point x ⊂ Xh, it is understood to be three-dimensional.

Now we introduce several useful partitions of Xh. First, we define the set of x ∈ Xh with “low energy”,

X low
h :=

{
x ∈ Xh :

�
B(x,h/10)

dist 2(∇yh, SO(3)) ≤ 4hC2

C1
Eh

}
, (4.5)

where C2 is the constant from (3.1) with n = 3. The complement (the set of x ∈ Xh with “high energy”) is
denoted by Xhigh

h = Xh \ X low
h .

Secondly, for x ∈ Xh, we write M(x) := B(x, h/(20C∗)) ∪ B(x̄, h/(20C∗)). We define the set of x with “low
pair-energy” as

X̄ low
h :=

{
x ∈ Xh :

�
M(x)

dist 2(∇yh, SO(3)) ≤ 4hC2

C1
Eh

}
. (4.6)

The complement (the set of x ∈ Xh with “high pair-energy”) is denoted by X̄high
h = Xh \ X̄ low

h .
Finally, we introduce the partition Xh = Gh ∪ Bh where we call Gh the set of “good” points and Bh the set

of “bad” points. We define the set of “good” points as the union Gh = G1
h ∪ G2

h, where the latter are defined as
follows,

G1
h =

{
x ∈ X low

h : ∃x′ ∈ X low
h , x �= x′, with |yh(x) − yh(x′)| ≤ h/10

}
, (4.7)

and
G2

h = X̄ low
h . (4.8)

Now we claim that there exists a constant C3 > 0 such that for h small enough,

#Gh > C3h
−1 (4.9)

and
L3({x′ ∈ B(x, h/10) : yh is not 1-to-1 at x′}) > C3h

3 for all x ∈ Gh. (4.10)

This will be enough to prove the proposition since the balls of radius h/10 and centers in Xh are mutually
disjoint.

Step 2. Proof of (4.9). Recalling the relations between capacities and Hausdorff pre-measures we have cap1 ≤
C2H1

∞ ≤ C2P1
h/2 for some numerical constant C2. Hence P1

h/2(Fh) ≥ C1C
−1
2 , and in particular for every covering

of Fh with balls {Bi} of radius h/2 we have that

2
∑

i

r(Bi) ≥ C1C
−1
2 , (4.11)
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where r(B) denotes the radius of the ball B. Applying (4.11) to the cover by balls with centers in Xh constructed
above, we get

#Xh ≥ 1
h
P1

h(Fh) ≥ C1

hC2
· (4.12)

By definition, Bh = Xh \ Gh, and hence

Bh =

{
x ∈ X̄high

h : Either
(
x ∈ Xhigh

h

)
or

(
� ∃x′ ∈ X low

h , x �= x′, with |yh(x) − yh(x′)| ≤ h/10
)}

. (4.13)

Hence we have Bh ⊂ B1
h ∪ B2

h with

B1
h = Xhigh

h =

{
x ∈ Xh :

�
B(x,h/10)

dist 2(∇yh, SO(3)) >
4hC2

C1
Eh

}
, (4.14)

and

B2
h =

{
x ∈ X low

h :
(
x ∈ X̄high

h

)
and

(
� ∃x′ ∈ X low

h , x′ �= x, with |yh(x) − yh(x′)| ≤ h/10
)}

. (4.15)

By (4.14) and the fact that the h/10-balls with centers in Xh are mutually disjoint, we have

#B1
h ≤ C1

4C2h
· (4.16)

For x1, x2 ∈ B2
h, we have

|x̄1 − x̄2| ≥
1

C∗ |yh(x̄1) − yh(x̄2)|

=
1

C∗ |yh(x1) − yh(x2)|

≥ h

10C∗ , (4.17)

and hence the balls B(x̄, h/(20C∗)) with x ∈ G2
h are mutually disjoint. By the definition of X̄high

h , this implies

#B2
h ≤ C1

2C2h
· (4.18)

Combining (4.12), (4.16) and (4.18), we have proved (4.9) for C3 ≤ C1
4C2

c
dot

Step 3. Proof of (4.10) for x ∈ G1
h. Let x ∈ G1

h. By the definition of G1
h in (4.7), there exists x′ ∈ G1

h, x′ �= x,
with |yh(x) − yh(x′)| ≤ h/10. Let Bx

h = B(x, h/10), Bx′
h = B(x′, h/10). The conditions of Lemma 4.1 with

α = 1/10 are fulfilled for yh on both of these balls, and hence we obtain the existence of rigid motions Ax
h, Ax′

h

(depending on x, x′, h) that satisfy

sup
z∈Bx

h

|yh(z) − Ax
h(z)| ≤ Ch1+ε̄, sup

z∈Bx′
h

|yh(z) − Ax′
h (z)| ≤ Ch1+ε̄. (4.19)

Note that C is independent of x, x′ ∈ G1
h and of h. The images of Bx

h and Bx′
h under Ax

h and Ax′
h respectively

are balls of radius h/10 and centers Ax
h(x), Ax′

h (x′). By (4.19),

sup
h>0

inf
x∈G1

h

1
h
|Ax

h(x) − Ax′
h (x′)| ≤ 1/10. (4.20)
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Set

c0 =
L3(B(0, 1) ∩ B(e1, 1))

L3(B(0, 1))
·

By (4.20), given δ > 0 sufficiently small, we may choose h1 = h1(δ) such that for all h < h1, there exists a
set Wh ⊂ Bx

h with

L3(Wh) ≥(c0 − δ)L3(Bx
h) (4.21)

Ax
h(Wh) ⊂Ax′

h (Bx′
h ) (4.22)

dist (Ax
h(Wh), Ax′

h (∂Bx′
h )) ≥δh

C
· (4.23)

In particular, (4.22) implies
deg (Ax′

h , ∂Bx′
h , Ax

h(z)) = 1 for z ∈ Wh. (4.24)

We define homotopies Hx
h : [0, 1]× Bx

h → R
3, Hx′

h : [0, 1] × Bx′
h → R

3 by

Hx
h (t, z) = tyh(z) + (1 − t)Ax

h(z)

Hx′
h (t, z) = tyh(z) + (1 − t)Ax′

h (z). (4.25)

By (4.19) and (4.23), we have (for h small enough)

Hx
h(t, z) �∈ Hx′

h (∂Bx′
h ) for t ∈ [0, 1], z ∈ Wh.

By (2.2) and (4.24), this yields

deg (Ax′
h , ∂Bx′

h , Ax
h(z)) =deg (Hx′

h (0, ·), ∂Bx′
h , Hx

h(0, z))

=deg (Hx′
h (1, ·), ∂Bx′

h , Hx
h(1, z))

=deg (yh|Bx′
h

, ∂Bx′
h , yh(z)) = 1 for z ∈ Wh.

By (4.21) and the arbitrariness of δ, this implies

lim inf
h→0

inf
x∈G1

h

L3
({

z ∈ Bx
h : deg (yh|Bx′

h
, ∂Bx′

h , yh(z)) = 1
})

L3(Bx
h)

≥ c0. (4.26)

Note that deg (yh|Bx′
h

, ∂Bx′
h , yh(z)) = 1 is sufficient to conclude that yh is not 1-to-1 at z ∈ Bx

h . Hence, (4.26)
proves (4.10) for x ∈ G1

h.

Step 4. Proof of (4.10) for x ∈ G2
h. This closely parallels the previous step, this time using the balls Bx

h =
B(x, h/(20C∗)), Bx̄

h = B(x̄, h/(20C∗)). As in the last step, we use Lemma 4.1 to obtain rigid motions Ax
h, Ax̄

h

that satisfy
sup

z∈Bx
h

|yh(z) − Ax
h(z)| ≤ Ch1+ε̄, sup

z∈Bx′
h

|yh(z) − Ax̄
h(z)| ≤ Ch1+ε̄.

Here, we even have

lim
h→0

inf
x∈G2

h

1
h
|Ax

h(x) − Ax̄
h(x̄)| = 0,

and hence

lim
h→0

inf
x∈G2

h

L3 ({z ∈ Bx
h : deg (Ax̄

h, ∂Bx̄
h, Ax

h(z)) = 1})
L3(Bx

h)
= 1,
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and

lim
h→0

inf
x∈G2

h

L3 ({z ∈ Bx
h : deg (Ax̄

h, ∂Bx̄
h, Ax

h(z)) = 1})
L3(Bx

h)
= 1.

This proves (4.10) for x ∈ G2
h and completes the proof of the proposition. �

Proof of Theorem 2.5. Let zh ∈ W 1,2(Ωh, R3) be defined by

zh(x′, hx3) = yh(x′, x3) for all x′ ∈ S, x3 ∈ [−1/2, 1/2].

By (2.4),
‖dist (∇zh, SO(3))‖2

L2(Ωh) ≤ Ch2+ε. (4.27)

Step 1. Approximation by Lipschitz functions. Using (4.27),
�
{|∇zh|>2

√
3}

|∇zh| dx ≤ 1
2
√

3

�
{|∇zh|>2

√
3}

|∇zh|2 dx

≤ 4
2
√

3

�
{|∇zh|>2

√
3}

dist 2(∇zh, SO(3)) dx

≤Ch2+ε.

We apply Theorem 3.4 (with K → 2
√

3, f → zh, ε → Ch2+ε) and obtain z̃h ∈ W 1,∞(Ωh, R3) such that

|{zh �= z̃h}| ≤Ch2+ε (4.28)
‖∇z̃h‖L∞(Ωh) ≤C. (4.29)

Step 2. Extension to a sphere. By Definition 2.2, there exists an extension û1 : Û1 → R
3 such that equation (2.3)

is fulfilled. For δ > 0, let
U1,δ := {x ∈ U1 : dist (x, ∂U1) < δ}.

Now we choose δ so that
u1(U1,δ) ∩ u2(U2) = ∅.

Such a choice of δ is possible by the fact that u2 interpenetrates u1, cf. Definition 2.2. Set δ̄ :=
dist (u1(U1,δ), u2(U2)). Next let χδ ∈ C∞

0 (U1) with χδ = 1 on U1 \ U1,δ and ‖∇χδ‖L∞ < Cδ−1. Set

û1,h(x) =

⎧⎪⎨
⎪⎩

z̃h(x, 0) if x ∈ U1 \ U1,δ

χδ(x) (z̃h(x, 0)) + (1 − χδ(x))u(x) if x ∈ U1,δ

û1(x) if x ∈ ∂Û1 \ U1

(4.30)

and
u2,h = z̃h(·, 0)|U2 . (4.31)

Step 3. Convergence of Brouwer degree in L1.
Let

E := {x ∈ U2 : u2(x) ∈ û1(Û1)}.

We claim that

deg (û1,h,Û1, u2,h(·)) → deg (û1, Û1, u2(·))
in L1(U2 \ E) as h → 0. (4.32)

We prove this claim by a homotopy argument.
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By definition of zh and (2.5),
�

[−h/2,h/2]

dx3zh(·, x3) ⇀ ui in W 1,2(Ui, R
3).

By definition of z̃h, this holds also true if zh is replaced by z̃h. By the uniform Lipschitz bound (4.28) on z̃h,
we also have

z̃h(·, 0) ⇀ ui in W 1,2(Ui, R
3).

By the definitions of û1,h, u2,h in (4.30) and (4.31), we get

û1,h ⇀ û1 in W 1,2(Û1, R
3) and u2,h ⇀ u2 in W 1,2(U2, R

3). (4.33)

Since the uniform Lipschitz bound holds for z̃h, there also exist uniform Lipschitz bounds for û1,h and u2,h

by definition of the latter two. Hence the weak convergence in (4.33) is also true in W 1,p for every 1 < p < ∞.
By the compact Sobolev embedding, we have û1,h → û1 and u2,h → u2 in C0,α for every 0 < α < 1, and in
particular, we have uniform convergence.

Set Eε := {x ∈ U2 \ E : dist (x, U2). Since E is relatively closed in U2, we have L2(Eε) → 0 as ε → 0. The
claim (4.32) follows from the continuity of the degree function in the first and the third argument with respect
to uniform convergence.

Step 4. Application of isocapacitary inequality and passage back to 3d. By the definition of interpenetration
(Def. 2.2), there exist k1, k2 ∈ N, k1 �= k2 and some C > 0 such that∣∣∣{x ∈ U2 : deg (û1, Û1, u2(x)) = ki}

∣∣∣ > C for i = 1, 2.

Hence by Step 3, there exists h0 > 0 such that∣∣∣{x ∈ U2 : deg (û1,h, Û1, u2,h(x)) = ki}
∣∣∣ > C for i = 1, 2 (4.34)

for h < h0 (which we assume from now on). Let

Ah := {x ∈ U2 : deg (û1,h, Û1, u2,h(x)) = k1}

and let U◦
2 denote the interior of U2. Then by (4.34), min(|Ah ∩U◦

2 |, |U◦
2 \ Ah|) > C. We apply Lemma 3.2 and

obtain

cap1(∂Ah ∩ U◦
2 ) > C. (4.35)

On the other hand, x ∈ ∂Ah ∩ U◦
2 implies

u2,h(x) ∈ ∂{y ∈ R
3 : deg (û1,h, Û1, y) = k1}

and hence by (2.1),

∂Ah ∩ U◦
2 ⊂{x ∈ U2 : u2,h(x) ∈ û1,h(Û1)}.

By the definition of û1,h in (4.30) and the uniform convergence û1,h → û1, u2,h → u2, we may assume that
dist (x, ∂U2) > δ whenever u2,h(x) ∈ û1,h(Û1), whence û1,h(x) = uh(x) for x ∈ ∂Ah ∩ U◦

2 and

∂Ah ∩ U◦
2 ⊂ Fh := {x ∈ U2 : there exists x̄s.t. uh(x) = uh(x̄) and |x − x̄| > 2h}.
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By (4.35), we have proved

cap1

(
Fh

)
> C.

By this last inequality and the results from step 1, the conditions of Proposition 4.2 are fulfilled and we can
apply it to z̃h and obtain that

L3 ({x : z̃h is not 1-to-1}) > ch2.

By (4.28) and the definition of zh, one has that

L3 ({x : zh is not 1-to-1}) = L3 ({x : yh is not 1-to-1}) > ch2,

which concludes the proof. �

5. Application to plate theories derived as Γ -limits

As before, let S ⊂ R
2 be open and bounded and Ω = S × [−1/2, 1/2]. We define the elastic energy of a

3-dimensional body. Let the inhomogeneous stored energy W : Ω × R
3×3 → [0,∞) satisfy:

(i) W (x, FR) = W (x, F ) for all R ∈ SO(n).
(ii) W (x, id3×3) = 0.
(iii) W (x, F ) ≥ c dist2(F, SO(3)) for some uniform constant c.
(iv) W ∈ C2(S, T ) where T is an ε-neighborhood of SO(3).
(v) W (x, F ) = W (z, F ) if (x − z)‖e3.

We introduce the quadratic forms Q3 : Ω × R
3×3 → R, Q2 : S × R

2×2 → R by

Q3(x̄, F̄ ) =
D2W (x, F )

DF 2
|x=x̄,F=id(F̄ , F̄ )

Q2(x̄′, F̄ ′) = min
{
Q3(x̄, F ′ + a ⊗ e3 + e3 ⊗ a) : a ∈ R

3
}

.

The integral of W satisfying properties (i) through (v) above is the (rescaled) elastic energy functional

Ih : W 1,2(Ω, R3) → R

y �→
�

Ω
W (x,∇hy(x)) dx.

The penalization of interpenetration of matter is expressed in a modification of the 3d energy functional Ih,
assigning infinite energy to non-physical deformations. We define Īh : W 1,2(Ω, R3) → R ∪ {+∞} by

Īh(y) =

{ �
Ω W (x,∇hy(x)) dx if y is invertible a.e.

+∞ else. (5.1)

5.1. Contractive maps

In [7], the Γ -limit of the functional h−βIh for the scaling regime 0 < β < 5/3 has been derived (using results
from [14]). The result can be stated as follows: We say yh ∈ W 1,2(Ωh, R3) converges uniformly to u ∈ W 1,2(S, R3)
as h → 0 if

lim
h→0

ess sup(x1,x2,x3)∈Ωh
|yh(x1, x2, x3) − u(x1, x2)| = 0.

Further, we say that u ∈ W 1,∞(S, R3) is short if

∇uT∇u ≤ id2×2 a.e.
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i.e., id2×2−∇uT∇u is positive semi-definite almost everywhere. The Γ -convergence result from [7] can be stated
as saying that for 0 < β < 5/3,

(
Γ − lim

h→0
h−βIh

)
(u) =

{
0 if u is short
+∞ else,

where the Γ -limit is taken with respect to uniform convergence. In fact, it could just as well have been formulated
for weak convergence in W 1,2(Ω, R3) (see the discussion in [7]). This result includes the trivial lower bound

lim inf
h→0

h−βIh(yh) ≥ 0

for sequences yh that converge towards a short map u. The application of Theorem 2.5 immediately yields the
following corollary, that is a sharper lower bound for h−β Īh for 1 < β < 5/3.

Corollary 5.1 (To Thm. 2.5). Let 1 < β, u ∈ W 1,∞(S, R3), and let U1, U2 ⊂ S be disjoint simply connected
Lipschitz domains such that with u1 := u|U1 , u2 := u|U2 , u2 interpenetrates u1. Further let yh ∈ W 1,2(Ωh)
converge uniformly to u. Then

lim inf
h→0

h−β Īh(yh) = +∞.

5.2. Nonlinear bending theory

In [11], the nonlinear Kirchhoff plate theory was obtained as the Γ -limit of the scaled functional h−2Ih.
Nonlinear plate theory can be defined as follows:

Let the set of W 2,2-isometries of S into R
3 be denoted by

A = {u ∈ W 2,2(S, R3) : ∇uT∇u = id2×2}.

Further, the second fundamental form is given by

II[u] = ∇uT · ∇ν,

where ν = u,1 ∧ u,2 is the normal of the isometry u. Nonlinear plate theory may be defined via the energy
functional

IKh. : W 2,2(S, R3) → R ∪ {+∞}

u �→
{

1
24

�
S Q2(x′, II[u]) dx′ if u ∈ A

+∞ else.

The limiting deformations with finite bending energy will be the set of y ∈ W 1,2(Ω, R3) such that there exists
u ∈ A with

y(x′, x3) = u(x′) for a.e. x′ ∈ S, x3 ∈ [−1/2, 1/2]. (5.2)

We define the auxiliary functional IKh.
3d : W 1,2(Ω, R3) → R ∪ {+∞} by

IKh.
3d (y) =

{
IKh. (u) if ∃u ∈ A such that equation (5.2) holds
∞ else.

(5.3)

Theorem 5.2 ([11], Γ − lim inf-inequality).
Let yh, y ∈ W 1,2(Ω, R3), yh ⇀ y in W 1,2(Ω, R3). Then

lim inf
h→0

h−2Ih(yh) ≥ IKh.
3d (y).

The application of Theorem 2.5 to nonlinear bending theory yields the following sharper version of the lower
bound for h−2Īh.
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Corollary 5.3 (To Thm. 2.5). Let u ∈ A, and let U1, U2 ⊂ S be disjoint simply connected Lipschitz domains
such that with u1 := u|U1 , u2 := u|U2 , u2 interpenetrates u1. Further, let yh ⇀ y in W 1,2(Ω, R3), with

lim sup
h→0

h−2‖dist (∇hyh, SO(3))‖2
L2(Ω) < ∞

and
y(x′, x3) = u(x′) for a.e. x′ ∈ S, x3 ∈ [−1/2, 1/2].

Then
lim inf

h→0
h−2Īh(yh) = +∞.

Remark 5.4. In the case β > 2, a consequence of the compactness part of the Γ -convergence result for h−βIh

in [12] is the following: whenever

lim sup
h→0

h−βIh(yh) < ∞ and yh ⇀ y in W 1,2(Ω, R3)

then y is (up to a rigid motion) just the projection onto the first two components, y(x) = x′. This indicates
that if S is connected, and U1, U2 ⊂ S are disjoint subsets, it is impossible to state sufficient conditions for the
limits that assure that yh|(U1∪U2)×[−1/2,1/2] is 2-to-1 on a set of positive measure. One can still create a setting
in which our main result is applicable, considering reference sets S with more than one connected component.
We refrain from doing so here for the sake of brevity.
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