ESAIM: COCV 23 (2017) 71-94 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2015040 WWW.esallm-cocv.org

THE INVERSE PROBLEM IN CONVEX OPTIMIZATION
WITH LINEAR CONSTRAINTS *»**

MARWAN ALOQEILI"

Abstract. In this paper, we solve an inverse problem arising in convex optimization. We consider
a maximization problem under m linear constraints. We characterize the solutions of this kind of
problems. More precisely, we give necessary and sufficient conditions for a given function in R™ to be
the solution of a multi-constraint maximization problem. The conditions we give here extend well-known
results in microeconomic theory.
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1. INTRODUCTION

In this paper, we consider a multi-constraint maximization problem of the form

max fx)
Az < C(A)

where x € R", A is an m x n matrix and f and C are some functions that satisfy certain conditions which will
be specified later. Hence, we are dealing with a multi-constraint maximization problem with linear constraints.
The solution of this problem is a function of the parameters A = (a;) We assume certain conditions on the
functions f and C that guarantee the differentiability of the solutions which we require to be at least of class
C?. Our main objective is to characterize the solutions of this type of optimization problems. We rely on the
first order conditions and optimality conditions to achieve our objective. Moreover, we make use of the envelope
theorem and the value function, V(A) = f(x(A)), of the above problem.

Such kind of problems arise in many applications especially in some economic contexts in microeconomic
theory. Economic applications to this problem will be given in the sequel. Moreover, we will show that the
results we get here generalize well-known results in consumer theory, see [6] for a recent survey. An inverse
problem arising from economic theory was also solved by Ekeland and Djitté [8].

We use the indirect approach to deal with this problem. This approach depends on the value function, V(A).
The necessary and sufficient conditions on a given function z(A) € R™ for the existence of a value function will
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be given. It turns out that the necessary and sufficient conditions will include a set of function A;j,¢,7 =1,...,m
that can be computed from z(A). The problem then is to find the objective function. This is a duality problem.
We consider a class of functions introduced by Epstein [10] that is stable under duality.

Our problem will be split into mathematical integration problem and economic integration problem. The
mathematical and the economic integration problems can be stated as follows:

e Mathematical integration. Given a function z(A) and a family of functions Az, 1 <4,k < m, what are
the necessary and sufficient conditions for the existence of m + 1 functions Aq,...,\,, and V that satisfy
equation (2.2) with A, = \;/A\x and C?(a?) = (a®)Tx(A).

e Economic integration. In addition to the mathematical integration, we impose the following additional
conditions on the functions that satisfy (2.2): the functions A; are strictly positive and the function V is
quasi-convex with respect to each a’ for alli = 1,...,m.

Both of these problems will be solved. The duality problem will then be solved.

In this model, the objective function is assumed to satisfy a set of conditions that will be specified later. One
of these conditions requires f to be strictly increasing in each of its arguments. This condition permits us to
write the inequality constraints as equalities.

To get the necessary and sufficient conditions for mathematical integration, we use the techniques of exterior
differential calculus that showed to be powerful for the treatment of such problems. A good reference to these
techniques is the book by Bryant et al. [4]. We get local results; that is, the functions involved in the integration
problem are defined in a neighbourhood of some given point. We define a family of differential forms and set
up an integration problem using these forms. The solution of this integration problem, then, requires solving
a nonlinear system of partial differential equations. The integration problem will be solved using Darboux
Theorem [4].

The rest of the article is organized in the following way: in the next section, we set up the model and present its
basic assumptions. Then, the main results that include the necessary and sufficient conditions for mathematical
integration are given in Sections 3 and 4. In Section 5, the economic integration problem is solved. Then, duality
problem is considered. The necessary and sufficient conditions for the 2-constraint case are given in Section 7.
The geometry of the problem and some economic applications are finally discussed. Proofs of main results are
gathered in the appendix.

2. SETTING UP THE MODEL

We consider a multi-constraint maximization problem of the form

max f(x)
(P) { Az = C(A)

Where f is a function that satisfies certain regularity and convexity conditions that will be specified later, A
is an m x n matrix of rank m and C : Rmxn — R, is a given mapping. The ith constraint takes the form
(a")Tx = C'(A) where a' is the ith row of the matrix A. Define the Lagrangian function

L(z, +Z/\k (ok Zalac>

with x € R, and A € R, . The first order conditions for interior maximum are

axﬂ ZAka/ja .7 =1,

Az = C’(A)
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Define the value function of this problem by

V(A) = max {f(x) + i)\k (Ck(A) — zn:afml) }
k=1

If the functions C*(a'),...,C™(a™) are convex on R’} | then the value function V'(a',...,a™) is quasi-convex
with respect to each a* for i = 1,...,m, see [2].
Differentiating the function V' (A) with respect to a; and using the envelope theorem we get

i - N (2.1)
k=

J

J

We suppose that C* is a function of the vector a* € R’ only, where aF is the kth row of the matrix A.
Moreover, we assume that each component of the mapping C(A) is not homogeneous of degree one because this
entails division by zero. This implies, in particular that, the function 2(A) is not homogeneous of degree zero
and the Lagrange multiplier corresponding to the ith constraint, \;(A) is not homogeneous of degree —1 in a’.
The case of homogeneous mapping C'(A) will not be treated here. We adopt the following assumptions on the
mapping C":

Assumption 2.1. For each i € {1,...,m}, we assume that the function C* has the following properties:
(a) C": R}, — Ry, is a function of a’ only.
(b) C* is a convex function of a’.

(c) Cis of class C?.
(d) C%is not homogeneous of degree one in a’; that is, (a*)T D,:C* — C*(a’) # 0.

We consider the following assumptions on the objective function f:
Assumption 2.2. Assume the function f satisfies the following conditions:

(1) f is strictly increasing in each of its arguments.
(2) the Hessian matrix D2 f is negative definite on the subspace {D, f}*.
(3) f is of class C*.

By applying the implicit function theorem, one can show that the solution of the above maximization problem as
well as the associated vector of Lagrange multipliers are of class C?, we refer to [3] for details. Assumption 2.1(a)
implies that D,:C* = 0 if i # k which reduces equation (2.1) to

oV _ A (acf —xj>. (2.2)

da’ 8(1;-

J

Define a family of differential 1-forms w?,. ..

Tl ; i
w'= Z <8ai - 1'J> daj. (2.3)

It follows that the differential of V', dV, can be written as:

dv =" Nw'. (2.4)
=1
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Notice that ]
4 oo da! A da’ d da’
dw'® = ———daj A a a; A a
Z daidal Z daF
gl J gk,
The coefficients in the first summation are symmetric, so we end up with
Oz’

dwi = dal A da (25)
dal
7.kl

The ith constraint is (a’)"z(A) = C¥(a’). Differentiating both sides of this equality with respect to a’ and

rearranging, we get:
T‘

BCZ -
00 _wi- Z ai. (2.6)

J

Using this result, the 1-form w’ can be written as:

i —~ da”
w'= Z wardaj (2.7)
J=1"J

Now, our inverse problem can be stated as follows:

We observe the functions 27(A), j = 1,...,n from R7TY to Ry 4.

Then we define the functions C*(a’) = (a*)Tz(A).

We observe also a family of positive functions A;; using symmetry conditions that will be given below.
Our objective is to find a function f(z), by first finding the value function V(A), such that z(A) €
argmax{ f(z)|Ax = C(A)} and V(A) = f(xz(A)).

The inverse problem will be solved in three steps. In the first step, we identify a set of necessary conditions. Then,
we find sufficient conditions by solving the following problem: given a family of m differential 1-forms (21, ..., (2,
that satisfy the conditions

2; N2k, =0, foranyi,k

can we find m + 1 functions p1, . .., by, and V such that updV = 2. Notice that the function V is independent
of k. Finally, we solve for functions that have the required curvature and positivity conditions. Notice that the
family of m 1-forms, {{2,...,§2,} generates a vector space of dimension one; that is, span{{2y,...,2,,} =
span{ (2 }.

Henceforth, we set 1;(A) = ((a*)T (Dy:x)a’)~!. Note that it is an observed quantity (it can be computed from
z(A) and A). We wrote 7;(A) to emphaslze the fact that n; is a function of A. In fact, n; can be written as:

n;t = (e (Dyix)a' = Z (ac»l - ﬂﬁj> a;- = (a")"(Da:C") = C'(a")

j=1
where ni_l is the reciprocal of 7;. Using equation (2.2), we find that

(@) (DaiV) = Ai((a")T(Dg: CY) = C*(a')).

Remark 2.3. Let us suppose, for a moment, that C?(a’) is homogeneous of degree p; that is, (a’)T (D4:C?) =
pC*(a?). Tt follows from this equation that

(@) (DaiV) = Ai(p — 1)C(a).
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We conclude that (a’)?(D,:V) is negative, zero or positive if p < 1, p =1 or p > 1, respectively. If p = 1 then
C’Z( Z) is homogeneous of degree one in which case the value functlon Vis homogeneoua of degree zero, hence
(a))T (D, V) = 0. Moreover, we conclude that 0 < C(a') = (a)T(D,:C* — (D,ix)a’). Notice that if C?(a’) = ¢!

7

(C' is independent of a’) then 7, ' = —c'.
Using equations (2.2) and (2.6) we find that

)\z’ =1 8@@ CLJ.
J

Consequently, ; and (a’)? D,:V should have the same sign since \; > 0. Moreover, we have

‘90: i 78‘//8;; - (2.8)
Oaj i 22 a7 %

We will come back to this equation in the applications section as this equation has an important counterpart
in economics.

To allow for better follow up of our exposition, we will restrict the ranges of the subscripts and superscripts
used in the sequel as follows, 1 < i,k, k', s,t < m and 1 < 4,5',1,I',7 < n. In what follows, &, denotes the
Kronecker symbol which equals one if i = k and zero otherwise.

Now we are ready to give our main results. We first identify a set of necessary conditions satisfied by the
function z:(A) as well as the vector of Lagrange multipliers. Then, the necessary and sufficient conditions for
mathematical and economic integration will be given.

3. MATHEMATICAL INTEGRATION: NECESSARY CONDITIONS

In the following sections we give the main results of the paper. We first give a set of symmetry conditions
satisfied by the function z:(A). Then, we give the necessary and sufficient conditions for mathematical integration.
Necessary conditions permit us to specify (proportionality) functions \;x > 0. As we will see, sufficient conditions
involve a system of partial differential equations that should be satisfied by these functions as well as z. Consider
the following result

Theorem 3.1. Let x(A) be a solution of problem (P) and A(A) be the corresponding vector of Lagrange mul-
tipliers. Then, the following symmetry conditions are satisfied:

Ox! " 02t Lo, 8xj O’ o "L 0x"
Ak 3(1;. — Z_: dat, = Z_: da’ a | = A Tk Z dak, ajr Z_: a—a;ca"f‘ (3.1)
7'=1 J r=1 J J r=1
foralll1 <ik<mand1<jl<n.
Proof. See Appendix. O

Some remarks are in order:
Remark 3.2.
(a) As the function z(A) is observable, we can use symmetry conditions (3.1) that we write as Egl = E;fl to
determine the proportionality functions A := \; /. It is important to point out that we do not observe the

Lagrange multipliers A1, ..., A,,. We observe, however, the functions A;z. The above necessary conditions
can be written as \; Sy = A\ S} where Sy, is the n x n matrix whose ij-entry is given by

il xﬂ axﬂ o
S = Z Z aal
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(b) Conditions (3.1) mean that there is a symmetric matrix corresponding to each constraint and these matrices
are proportional.

Theorem 3.3. Let x(A) be a solution of problem (P) and A1, ..., A\ are the corresponding Lagrange multipli-
ers. Then the following conditions are equivalent
(a) NiSk = M\ST, for alli,k=1,...,m.

(b) S Ndwi Awl AL AW™ =0.
i=1

Proof. See Appendix. d

As a consequence of the last theorem, we can conclude that the conditions given in Theorem 3.1 are necessary
but not sufficient for the decomposition dV' =3, \iw’. Moreover, if there is only one constraint then S = S7 if
and only if dw Aw = 0. Consequently, the condition dw Aw = 0 is both necessary and sufficient for mathematical
integration in the single constraint case. In the multi-constraint case, however, we need additional conditions
on the proportionality functions A;; := A; /A as well as on the function z(A4). Symmetry conditions can also be
interpreted as follows: for any given i and k, we fix all variables except a* and a*. Optimality conditions imply
that \;w’ + A\pw® = dV. Consequently, we have d(\;w’) = —d(\,w®) which implies that \;Sy = Ae ST, However,
m
the above theorem proves that \;Sx = A\SI, for all i and k, are equivalent to Y \;dw’ € span{w?, ... ,w™}
i=1
which means that Z:’;l Aidw® + Z:’;l Bi A w® = 0 for some 1-forms f31, ..., 3y. Obviously, this result is not
sufficient, we need f; = d\;, compare equations (A.8) and (A.11) below.

4. MATHEMATICAL INTEGRATION: NECESSARY AND SUFFICIENT CONDITIONS

The conditions given so far are not sufficient for mathematical integration. Our objective now is to give
sufficient conditions and to express them as a system of partial differential equations that have to be satisfied
by the coefficient functions A;; and the function x(A).

Notice that A;; = 1 for every i = 1,...,m and A\jxA\r; = 1. Equation (2.2) implies that

1 9V oct .
— S5 - ). 4.1
Neoal (8@? $> (“.1)

Define a family of 1-forms 2, k=1,...,m, by

Q6= Aapw® (4.2)
s=1

where w® is the 1-form defined by (2.3) or the equivalent form (2.7). Notice that (2, ..., 2, are defined using
observable functions only. Then equation (4.1) can be written as p,dV = 2, which is equivalent to 2 Ad{2; = 0.
Clearly, the family of 1-forms defined by (4.2) are collinear to the same gradient dV. The last equation gives
us the necessary and sufficient conditions for mathematical integration. This result stems from the underlying
structure of the optimization problem. The following result proves that the 1-forms §21,..., {2,, are proportional.

Lemma 4.1. Let (,..., 2, be the family of 1-forms defined by (4.2) with A\, = ;\‘—k then £2; \ 2, = 0 for all
,k=1,...,m. /

Proof. Using the definition of 2 in (4.2) we have

m

QN = Madar)w’ Aw” =D (Aidar — Asidp)w’ Aw®

s,t=1 t<s
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The coefficients A\ Asp — Agi Asx are identically zero since

Atidsk  Aeds Mg

Asidik  Aidg AsAr

This proves the result. O

This is a general result that is true for any 1-forms defined by equation (4.2) with coefficients A, = A;/Ak.
This result is obvious if 2 = prdV.

Theorem 4.2. Given the family of I1-forms §21,...,8, defined above, then there exist m + 1 functions
M1y fim and V', defined in a neighbourhood U of some point A € R}, such that ppdV = Q fork=1,...,m
if and only if the condition 2, A d§2;, = 0 holds in a neighbourhood V of A with U C V.

Proof. Using Darboux Theorem [4], £2; A df2;, = 0 if and only if there exist two functions uy and Vi such that
pedVy = ). Lemma 4.1 implies that

2; N, = pippdV; AdVe = 0.
Therefore, dVy, = ¢ (A)dV;, Vi, k = 1,...,m for some function ¢;;. So we can set dVy = ---=dV,, =dV. O
We also need the following lemma.

Lemma 4.3. Let {21,...,82,, be the family of differential 1-forms defined in (4.2). Then, if £2; ANd§2; =0 for
some i, then 25 ANd2, =0 for any k € {1,...,m}.

Proof. Let i,k € {1,...,m}. Assume that 2; A df2; = 0. Note that £2; A 2, = 0 if and only if 2 = @f2; for
some function ¢. Taking the exterior derivative we get d{2x = @d{2; + dp A £2;. Multiply both sides of the last
equation by (2, and using the fact that 2, = p(2;, we find that 2, A A2 = ©%62; Ade2; + p82; Adp A £2; = 0.

This completes the proof. O
Clearly, the 1-forms 21, ..., £2,, belong to the space of 1-forms spanned by w',...,w™. Moreover, it follows
from the definition of w!,...,w™ that they are linearly independent since w' A ... A w™ # 0. Let us consider

the following result.

m

Lemma 4.4. Let £1,..., 3y belong to the subspace of 1-forms spanned by o', ..., a™. Suppose that o', ..., «
are linearly independent; that is, a* A ... Aa™ # 0. Then B; A Br = 0 if and only if there exist C}* rank-one
symmetric m X m matrices Mix = (bisbit), such that B; =Y ne | bisa®.

Proof. Since 31, ..., fm belong to the linear span of o' ,a'™ then for any i there exist m functions b;1, . .., bim
such that 3; = ZJ 1 bisa® Therefore, B;AB), = ZS . bngkta Aot = ZKt(bisbkt—bitbks)as/\at. Thus, 3;ABr =0
if and only if b;sbgt = b;tbgs. O

Our objective now is to explicit the necessary and sufficient conditions for mathematical integration given in
Theorem 4.2.

Theorem 4.5. Given the family of 1-forms (21,...,82,. Then 2, A dS2; = 0 if and only if for any k' €
{1,...,m} the following conditions are satisfied for all 1 <i,s <m, 1< j 1l <n.

8)\z’k ox"” i 8l‘j Nk’ 8)\3k k/ k'
; - >\Z a s 7 ‘/ a, — S 7 /
daj - da’; r k daj + Ak 8ak 8 H § Z Oa k
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o7’ .
e 8a A’“‘Zas : Zkz ar

Ok ox"” oxt Nier ONik o i Oxd o
— - S Ag . g 7 - / '
da . da; r 'kaa; + YRy 8ak @ 8 Z ap = Aik Z Oa k
1 8>\k/k x
— - —a s as 4.3
Mk aa; kkz a] kzﬁq " (4.3)
Proof. See Appendix. O

Remark 4.6. It is clear that the necessary and sufficient conditions are imposed on observable functions.
Moreover, when we get the functions p1, ..., ur and V by setting \; = prAir so as to get (2.2) as required.

The next result proves that (4.3) includes the conditions given in Theorem (3.1).

Corollary 4.7. Suppose that conditions (4.3) are satisfied then
(a) S;=8T, foralli=1,...,m
(b) Si =Nk SF foralli,k=1,...,m

Proof. If s = k' = i = k then, using the fact that \; = 1, relations (4.3) boil down to the following symmetry
conditions

, y n
Ox? oxt . ozl ox"
i 2 i 45— 8iaj’ 8iar

Oaj = das, ~~ 0aj = Oa;

Ot oz, drl | = 0"

= — 1N az~/ — az~/ az
/) : . .

da = das, 7 = day 7 | = Oap "

so we get (a). To prove (b), it suffices to take k' = s = k and i # k in (4.3) which writes down in this case as

ik ~— 0" D 9r7 | = 0z

_af = Nip—— + M ok, _qf

dal — Ja} O = ik dal Ak Z ZJ: dal K ; da; or
- ah o Y gk = aF. 4.4
gt Za 5 2 gt k;aa;aaﬂ 2 ap (44

Now, multiply both sides by ag-, summing over j and solving to get the following formula

Z

g ; 1

ONir, ort ozl
8al’ = )\zk"?k %: aT?,/aj/ — zj: aT;g(lj/ — i Z da z
substitute back into (4.4) to get the conditions S; = )\ikSE. O

Now, we have the following theorem that solves the mathematical integration problem.
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Theorem 4.8. Given a function x(A) € R | and a family of strictly positive functions N, 1 < i,k < m all
of class C? defined in a nezghbourhood V of some point A such that Mihsk = Asidx for all 1 < ik, s, t < m.
Define the functions Ct(al),...,C™(a™) by C*(a’) = (a*)Tx(A). Then, there exist m + 1 functions p1, ..., jix
and V', defined in a possibly smaller neighbourhood U C V, such that updV = §2; if and only if conditions (4.3)
are satisfied in V.

Proof. Given the functions z(A) and Ak, 1 < i,k < m as in the statement of the theorem, define a family of
1-forms 2, k =1,...,m as in (4.2). Symmetry conditions (4.3) are equivalent to £2; A df2;, = 0 for all k. Now,
2, NdS2, = 0 if and only if there exist two functions pu and Vi such that prdVy = 2. Symmetry conditions
on the coefficients \;; guarantee that dVj = --- = dV;, = dV using Lemma (4.4). The proof is complete. O

5. ECONOMIC INTEGRATION

In this section, we give the necessary and sufficient conditions for the existence of m + 1 functions Aq,..., A\,
and V such that dV = A(dC — x) where Ay, ..., \,, are strictly positive and V is quasi-convex with respect to
each a’, i = 1,...,m. Such a result solves the economic integration problem. The following theorem relates the
matrix A\; Sk, for any 4, k, to the value function V' and the mapping C.

Theorem 5.1. Let z(A) be a solution of a problem of type (P), A1, ..., Am be the associated Lagrange multipliers
and V(A) be the value function then

83;3 83;3 o o 0%V 92Cct
Ai = — -+ )\ — 07
— Z Z dal r 8@?8@9 * 8@?8@9 k
i v . 0*Ct . oV S\ oV
i AL S SV WAL SRCA ¥ 1 :
- Ai \ &~ daloat, “ Z dalkoa, “ dak | "* | da’
3’ J 7’ J J

Nk 2V . m ?v. . oV 82C’i ki(?Vi

The proof of this theorem is given in the appendix.
Notice that if ¢ # k then the Hessian matrix of the mapping C(A) drops out of this formula because of the
assumption that C* depends on a’ only.

Remark 5.2. Set i = k in the previous equality. Then
AZSZ = _Dgiv + AZD;CZ —+ Rz

Where R; is a rank one symmetric matrix that takes the form Q(D,: V)7 for some matrix Q. Let ¢ € {D,:V}+
then we have 1
C18i¢ = =D V)¢ + (DL CTC

2
It follows that the n X n matrix S; has no specific negativity properties since the first term is negative while
the second one is positive. In fact, this holds true for any vector { € R™ since any such vector can be written as
¢ = (+ta’ where  is orthogonal to D,: V. This follows from the fact that (a’)” D,:V = 2— # 0 and Theorem 5.1.
If the function C%(a?) is an affine function then the matrix S; is indeed negative semi-definite. Moreover, if
we pre-multiply both sides of the equality in Theorem 5.1 by (a’)? and post-multiply both sides by a’ then
both sides of the equality are identically zero. To see this, it suffices to use the fact that 1; = A\;(a’)T D, V.
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Although the matrix S; is not necessarily negative semi-definite, there do exist negativity conditions related
to the function x(A). We have the following result.

Lemma 5.3. Suppose that V(A) is the value function, x(A) is a solution and M(A) is the associated vector of
Lagrange multipliers for problem (P), C(A) = Ax(A). Then we have

D2V(A) = Mi(A)(D2.C* (%) — Dyr(A)) + Dy A(A) (Dys CP(a) — )7 (5.1)
Moreover, the n x n matriz D2, C*(a’) — Dyiz(A) is symmetric and positive semi-definite on (Dg:V)*:.

Proof. Equation (5.1) follows by differentiating the first order conditions D,V = \;(Dy:C%(a’) — x) and the
positivity result follows from the fact that the value function V is quasi-convex with respect to a’. g

We have also the following results

Lemma 5.4. Let ©(A) be a solution of problem (P) and C(A) = Ax(A). Then

o0%a" o oxd . o92Cs .
— 58 4 5 = _§igk. 5.2
' Dafoa " " dal k" BaF** T dafda; ™" (5:2)

Moreover, if C'(a') is a convex function then the n x n matriz M* where

; 0%z, Ozt Oad
o= - - - -
at 0atdat " Oal  Oal

r l J J l

18 symmetric and positive semi-definite.

Proof. Differentiating the sth constraint with respect to a; and af

" 9%, 0 oxd ,  9*Ct
—_— 0 8 = ———5in, 5.3
rzzl dafoa; " " 9a T Baf O T Dafoal " (5:3)
Thus, we have equation (5.2). Positivity follows from the convexity of C*(a). O

Lemma 5.5. Let 2(A) and C(A) be as above. Then the matriz T* defined by
i %", Ot
is symmetric and positive semi-definite on the subspace {(a’)T Djix}=.

Proof. Tt follows from the above calculations that T% + D,ix = DglC’i. Using equation (5.1) and the fact that
D,iC' —x = )\%Dalv, we get

o1
D2V = NT' + )\—(Dal)\i)(DwV)T.
i
The result follows from the last equality, the quasi-convexity of V with respect to a’ and the fact that D,V =
)\i((ai)TDaix). O

The following theorem solves the economic integration problem.

Theorem 5.6. Let x(A) € R, A\ix(A) > 0 be given functions defined on a neighbourhood U of some point
A € R, Define C(A) = Ax(A). Suppose that the following conditions are satisfied in U for all i,k =1,...,m
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(&) Aidsk = Asidg for all 1 < i k,s,t < m.

(b) Conditions (4.3).

(c) The matriz M* is positive semi-definite.

(d) The restriction of the matriz T® to {(a’)T Dz} is positive definite.

Then, there exist positive functions \i,...,A\m and a function V which is quasi-convex with respect to a' for
each i, defined in a neighbourhood V C U such that DV = \i(D,:C* — z).

Proof. Notice first that condition (c) implies that the function C?(a’) is convex. Consider the family of 1-forms

21,..., 82, defined by
Qk_ZAZk< )da—Z)\mZalada

rj=1
Conditions (4.3) are equivalent to §2;, A df2;, = 0. Using Darboux theorem, the last equation is satisfied if and
only if there exist two functions puy and V' such that pirdV = 2. Note that V is independent of k. Therefore,

we have
ppdV = Z)\zk Z Sl Z ard -. (5.4)

r,j=1

Apply the previous 1-form to the vector field £° to get
1
Mk((as)TDaSV) = Aok —"

It follows that ns(A)wus (A)(a*)T Dy V(A) = Ak (A) > 0, for all A in sufficiently small neighbourhood of some
point A. We can assume that 7,(a®)T D,sV > 0 and py, > 0. Substitute for A in (5.4), we get

_ 9" . ,
_ T ) %
:U'de—zi:/ikni((a) DyiV) (aa; _xj> daj.
Canceling p and setting \; = 1;((a’)T D, V) > 0, we obtain
80’ ;
dv = Z/\ ( —337> da.
It remains to prove that the function V' has the required positivity conditions. Note that

0%V @ " 9%, 02t O\ ox” 4
dajoal ZA <r—1 daj0al " " Bl 55) " ap 2= 9l

=1

Using relations (5.3), we can write D2V as

OV
daj 8(1‘;-

s = Ox"
=\T5 + — —a’.
sttt daj — aa«;“’“

Take a vector ¢ € {D,:V}*; that is, o satisfies the condition

n

ZZ@ : a,0; =

j=1r=1

n
Z 8 8(1 ———0jo =X Y Thoj00 > 0.

jl=1

It follows that

We conclude that the matrix D,’jSV is positive definite on {D,:V}*; that is, V is quasi-convex with respect
to a®. The proof is complete. O
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6. DuALITY

After solving the mathematical and economic integration problems, we get functions A1,..., A, and V that
have the required properties. The question now is how to get a concave (or quasi-concave) objective function.
In the single constraint case, if V' (a) is strongly convex (meaning that the Hessian is positive), then f(x) =
min, {V (a) | o’z < c(a)} is quasi-convex (see [5], Prop. 11).

The objective function can be obtained from the value function using the duality relation

f(z) = min {V(A)|(ai)TJ;(A) = Ci(A)} .

The function f is not necessarily quasi-concave. However, we can introduce a class of functions that is stable
under duality, see [3,10]. We need to define the following space

EA)={v=>0". ... v™) eR"™|()T D,V =0,i=1,...,m}.
We now recall the definitions of QE-convex and QE-concave introduced by Epstein [10].
Definition 6.1. Let ¢/ C R}, and V C R} Suppose that C'(A) is a convex mapping. Then,

e We say that a function f(z) is locally QE-concave if

Va* € U,3A* € V such that f(z*) = m&){({f(x)M*x =C(A")}.

e We say that a function V(A) is locally QE-convex if

VA* € V,3z" € U such that V(A") = gnei%{V(AﬂAac* =C(A4)}.

We have the following theorems:
Theorem 6.2. The value function V(A) is locally QE-convez if D4V is positive definite on E(A).

Proof. Let V be a neighbourhood of a point A in which the function V is defined. The assumption that D4V is
positive definite on £(A) for all A € V implies that if v = (v1,..., ™) € € such that (a' +v!,....a™+1v™) €V
then

Via* + vt .. am + ™) > Vit .. a™) (6.1)

To show that V' is locally QE-convex, suppose that A* is given. Let 2* be such that
V(A") = mjn{V(A)|Aaz* =C(A)}.

Take )
“(A) = DyiC*(a™) — ———=Dy V(A

T ( ) a (a ) )\Z (A*) a ( )

and ‘
Xi(A%) = 0;(A*)(a™)T Dgi V (A%)

where n; ' = (a*)T(Dy:iC") — C¥(a?). The point A* satisfies the first order optimality conditions. Its clear
that A*a*(A*) = C(a™). The point A* satisfies the second order condition for minimum which is the positive
definiteness of D4V on £(A*). This completes the proof. O

Now, we need to show that the function

(@) = min{V(4)|Az = C(4)}
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is locally QE-concave if V is locally QE-convex. Let f(x) be a given locally QE-concave function. Define a
function V' : ¥V C R"? — R by
V(4) = max{f(z)|Az = C(4)}

define also the function f*(x) = gleig{V(A)\Ax =C(A)}.

Suppose that the function V(A) is defined in a neighbourhood of some point A € R7TY, then U = {x €
R% | |Az = C(A),VYA € V}. The following theorem establishes duality between f and V.

Theorem 6.3. If V is locally QFE-convex then f* is locally QE-concave. Moreover, f* = f throughout U if f
18 locally QE-concave.

Proof. See [1]. O

Theorem (5.1) implies that, on the space £, we have for any fixed kg € {1,...,m}

0V d%a" i i i i i
koa Fa Z = Xiko ( W%(l —0p) +le5k> = Kj .’
T J

Clearly, the assumption of positive definiteness of D?V on the subspace £ can now be stated in terms of
observable functions, namely \;i, and x. Moreover, it is a stronger condition than the assumption of positive
definiteness of 7% on {(a’)D,:x}* as required in theorem (5.6). To put all pieces of the puzzle together, we state
the following theorem that gives the solution of the inverse problem:

Theorem 6.4. Let x(A) € R, A\ix(A) > 0 be given functions defined on a neighbourhood U of some point
A € R, Define C(A) = Ax(A). Suppose that the following conditions are satisfied throughout U

(a) Midsk = Agideg for all 1 < i k,s,t < m.

(b) Conditions (4.3).

(c) The matriz M is positive semi-definite.

(d) The restriction of the tensor K to the subspace € is positive definite.

Then, there exists a locally QE-concave function f(x) such that
z(A) € argmax{f(z)|Ax = C(A)}.

7. PARTICULAR CASE: m = 2

In the 2-constraint particular case, we have i, s, k, k" € {1,2} which gives 16 cases to consider in Theorem 4.5.
Fortunately, some of these cases are redundant. The first type of redundancy comes from the proportionality of
2 and 2 and Lemma 4.3. Consequently, we can take only one value for k, say k = 1, and £’ € {1, 2}.

The second kind of redundancy arises from symmetry with respect to ¢ and s, the case s = 1,7 = 2 gives the
same conditions as s = 2,7 = 1. This reduces the number of cases to be considered to 6. Let A\ = 21, note that
A1 = A2 = 1 and A3 = 1/A91. We consider each case in turn:

(a) First we set k = k' = 1. We consider the following 3 subcases:
(i) s =14 =1, in this case A\1; = 1. After canceling identical terms from both sides we get

ot Oxd
@1“712@1 12@17“:%'”71233;1@12817“ (7.1)
J I

So we have S; = ST.
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(ii) s = 1,7 =2 we get in this case the following conditions
O\ — Ox" , a7 ox! dxd’ " dx”
A= i ——al | AY  “=al.
+m 8a1 aj + ; da! a; ; aaf asy.

s dadip B
1 3 1
Oa, - 8aj Oa,

axﬂ
o RN DR DL IRV oEC T Dok - RS

Multiply both sides of the previous equation by af and summing over j we find the following formula

s
1 oz 4

7712(8(1, 3a1> 772282@,4-771281@, a—allar.

Substitute in the previous equation for % we get the condition Sy = AS;.
l
(ifi) s =i =2

oz’ o N

o2 2 1 2

- - A — U,

aaf Z 92" a 9a7 ~ M L9l 2 a2
r 3’ r=1 J

oA ox" o ox! ox? " Ox"

=— D L 2 7.3
da} <~ Oa} o da? n = daj, “ “— daj o (7.3)
(b) k= 1,k" = 2. We have another 3 subcases to consider:
() i=s=1
Ox? s 1 OXN | &Ko
1+An2 Z 9%+ 1Bl | 2= 9™
r=1 J
89;3 1 oA ox"”
A a? — ——al 7.4
81+ 12 Z 778(11 “ a} " (7.4)
(i) i =s=2
/ ox! 2 1 0A "L Oz" 2

o\ oz" oz oz
= —— -5 )\_ - )\2 )\ 2 2' 75
a&zr 9az " oz~ " 232“ 2 Tzzlaafar (7:5)
Multiply both sides of the last equation by p? and summing over j, we get
oz Oz
T T ) 2

1))
7 =X (57 - o

Substituting back in the above equation we get Sy = ST
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(iii) s=1,i=2

O\ 81‘ 9 ,  ON ) =0z, _ 0a!
daj &~ da? A_ A ’72282“’ da] Tzzlaaga’“_ da?
15)) ox" ozl 929’ " 9"
+)\7’]2 Z &7@% Z @ag — aa2 a,2, Z a 2 ] a—allai (76)
7’ 3’ r J r=1

So far, we have proved the following theorem.

Theorem 7.1. Given functions x and \ of class C?. There exist three functions V, \; and Xy such that D,V =
Xi(DgiC* — ), i = 1,2 if and only if conditions (7.1)—(7.6) are fulfilled.

8. GEOMETRY OF THE PROBLEM

Consider the following pair of dual problems

T

v(a) = maxu(x) subject to a” z = c(a)

and

T

f(z) =minv(a) subject to a x = c(a).

The first order conditions for those problems are, respectively

ov Oc i
Op; _)\<5ai —az)

af
ozt

w(a) = f: (88; - x) da;.

i=1

and
= Ua;.

Define the 1-form

Then w(a) vanishes on the tangent space to the (n — 1)-dimensional manifold defined by
M(a) = {a € R"|v(a) = const.}

That is, for any £ € T,M, (w(a),&) = 0. This is our integration problem: given w(a), can we find a (n — 1)-
dimensional manifold M such that w vanishes on the tangent space of M. The existence of this manifold is
guaranteed by the symmetry of the matrix

S =Dyx+ (Do) — (Doz) )aa' (Daz).

a/(Dyx)a
Following the argument in [7], take a mapping x(a) that we assume to be invertible with inverse a(x). Define
the 1-form m(z) = Y./, a;da’. Integrating m means that we want to find a (n — 1)-dimensional manifold such
that the form 7 vanishes on its tangent space.

In the general m-constraint case, we have the following dual problems

V(A) = max f(z) subject to Ax = C(A)



86 M. ALOQEILI

and
f(z) =minV(A) subject to Az = C(A).

The first order conditions for these problems are, respectively

k
o Z)\kac I
k

il 7
8aj aaj

and
af m &
k=1

Analogously, we define a family of 1-forms w?, ..., w™ by w' = dC? — Zj xidaé. The symmetry of the matrix .S;
guarantees the existence of a (n — 1)-dimensional manifold

M; = {a' € R"|Vi(a';a™") = '}

where a~* denotes the set of row vectors of the matrix A except the ith row, such that w? vanishes over its
tangent space. Clearly, this is not sufficient for our purpose. This is reflected in the fact that these symmetry
conditions are not sufficient for mathematical integration.

9. APPLICATIONS

In this section, the dependent variables will be denoted by P instead of A as they represent prices. The
inverse problem we considered in this article has interesting applications in microeconomics. The results we
got here extend basic results in microeconomic theory. This kind of problems, maximization under several
constraints, arise in many economic contexts; e.g., rationing, choice under uncertainty and other applications
such as models of uncertainty with production. The objective function f is called the individual’s utility function.
This function represents the tastes (or preferences) of the consumer on the set of affordable goods. The solution
of the optimization problem is called, in such models, the individual demand function. The value function is
called the indirect utility function which gives the maximum utility achieved by the consumer under budget
constraints. This function has many interesting properties in the basic individual model. These properties include
zero-homogeneity and quasi-convexity. In our setting, however, the indirect utility function is quasi-convex with
respect to each a' if each component of the mapping C is convex. It is not zero-homogeneous unless income
mapping is one-homogeneous.

9.1. The basic consumer’s problem

The basic individual problem in consumer theory takes the form of a maximization problem of the utility
function U(z) under one budget constraint in which the income y is price independent; that is,

maxU(x) subject to ploz=y
x

where p € R”} , is the price vector. The solution to this problem, x(p,y) that is called the individual demand
function is, characterized by the following conditions:

e pTx(p,y) =y (Walras law).
o x(tp,ty) = z(p,y) (zero-homogeneity).
e Symmetry and negative semi-definiteness of the Slutsky matrix S where

ozt Ozt
+

= xd,
dp; Oy
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9.2. The consumer’s problem when income is price dependent

Now, if the consumer’s income depends on the price vector p, then we have a maximization problem of the
utility function U(x) under the linear constraint p”z = ¢(p). In this case, the necessary and sufficient conditions
of theorem (4.5) boil down to

Oxd oz’ oxd' "9z
=== F—Pi' = ) Py = Dr
I ; apj” ; ap; ; Ip

9z’
Zap/pj Z@ﬁ) Py Za Pr-

This is indeed the extended Slutsky matrix given in [2] that characterizes individual demand functions in the
single constrain case. Moreover, if the function ¢ is independent of a then we get the Slutsky matrix of the
standard individual model. It is important to point out that in the single constraint case the symmetry of this
matrix is both necessary and sufficient for mathematical integration.

Remark 9.1. Equation (2.8) is a generalized Roy’s identity in consumer theory. This relation can be used, as
in the classical individual model, to find the demand function from the indirect utility function V' as the income
mapping C' is given
aC" , , . OV/opt

—((P)1(DyC) = C*(p")) :

i p <~ 0V i
8]); ZJ aplpj

It can be readily verified that this formula reduces to the classical Roy’s identity if C? is independent of the
price vector a'.

) =

We also get generalization of the results in [3] when the mapping C' is independent of A, see Corollary (4.7).

9.3. Point rationing

There are two types of rationing: simple rationing and points rationing. Simple rationing consists of exogenous
restrictions on certain consumption goods whereas points rationing means that the consumer has a certain
number of rationing coupons. Points rationing could be considered as replacing a systems with one currency by
a system of multiple currencies. Under points rationing, the consumer’s problem takes the form

max U(x!,...,z")
(m kA 7xn)

subject to the constraints Z;;l p;xj = ci(p"), i = 1,...,m. In this model, pg- refers to the price of good j in
currency ¢. It is assumed here that the individual’s income is price dependent.

10. CONCLUDING REMARKS

In this paper,we have solved the inverse problem max, f(z) subject to the linear constraints Az = C(A).
We assumed that m < n and that the rank of the matrix A is m. If m > n, then w! A ... Aw™ = 0; that is,
w!,...,w™ are linearly dependent. Consequently, the condition > Adw? A WAL A W™ =0 is fulfilled.

In fact, we have treated the problem in its most general form. In some cases, however, we need to deal with
some problems in which there is few number of parameters. More precisely, we are given a mapping ¢ — A(q)
so that the problem depends, ultimately, on the parameters ¢. This would, rather, simplify the necessary and
sufficient conditions. To get an idea of this case, we give a simple example from microeconomic theory. Let us

consider a consumer whose utility function is U(z?,...,2") and his income is normalized to 1. Suppose that
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the prices of the n consumption goods pi,...,p, are determined by the prices of capital and labor used in
the production process, namely, wage rate w and capital rental price v. The consumer maximizes U(x!, ..., z")
under the budget constraint p; (v, w)z! +- - -+ pp (v, w)az™ = 1. Let V (v, w) be the value function of this problem.
Then, the envelope theorem implies that

—%dV = 2/(Dyp)dv + 2’ (Dyp)dw := w.

The necessary and sufficient condition for this decomposition is w A dw = 0 is always fulfilled in the parameter

(v, w)-space; this is a 3-form in a 2-dimensional space?.

APPENDIX A. PROOFS OF MAIN RESULTS

A.1. Proof of Theorem 3.1

We use the following preliminary results in the proof of theorem

Lemma A.1. Let 2(A) be a solution of a multi-constraint mazimization problem of the above type then

(b) é (58— #7) ai = (@)" (Dusr)al.

Proof. Differentiate the kth constraint (a*)Tz = C*(a*) with respect to a’ we get

ock

"ozt .
Z —a; + 2760, = —0;.
= 9, a]

Condition (a) follows when ¢ # k. If i« = k then multiply both sides of the last equality by aé., summing over j
and rearranging to get (b). This completes the proof. O

We need also the following lemma.

Lemma A.2. Let \;, i = 1,...,m be the Lagrange multiplier corresponding to the ith constraint. Then, the
m x m matric A = (Ai), i,k =1,...,m is symmetric where

O\
A=y 6—afa;€~
=1

Moreover, let ¢* = n;a’ then
Aire = (6" (D2 Vg + (6")T (D200 C1)a' 6 — mihid, (A1)

akat akat

Proof. Let i,k € {1,...,m} with i # k. By differentiating equality (2.2) with respect to af we get

2 ) i ) J
VAN (ao x7>—/\i8i.

ka0 k i
Oa, 8aj Oa, 8aj

2 1 would like to thank an anonymous referee for pointing out the issues discussed in this section and for other constructive
comments that contributed to improving the presentation of this article. Errors are mine.
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Multiply both sides of the last equality by ag-a;“ and summing up to get

8ak8ai, ajal = Z 80/;‘? a; Z 8a; — xj aj — )\Z W@jal .

gi=1 177 =1

Using Lemma (A.1), we end up with

OV ik ik
Nz::l 8@5“8@; a9 =1 dak -
Multiply both sides by 7, we find that

A =mmi Y OV g

ko i Jol"
= | Oay Oa;

This proves the symmetry of the matrix A.

89

O

Equation (A.1) can be considered as a generalization of the homogeneity condition for Lagrange multiplier

when C? is independent of a’, see [3]. Now, we start the proof of Theorem 3.1.

Proof. Let 2(A) be a solution of problem (P) and A(A) = (A1(A),..., A\n(A4)) be the corresponding vector of
Lagrange multipliers. These functions are related to the value function through decomposition (2.4). Taking the

exterior derivative of both sides of equation (2.4), gives the 2-form
> (Aedw® +da Awk) = 0.
k=1

Introduce a family of vector fields ¢!, ..., ™ defined by

i\~ 0
¢ :Zajaa;'

Jj=1

Equation (2.7) implies that

o R . ; _
W&y = 3 aial = (@) (Dua)a = ;.

r,j=1 aa;
Notice that (w?, £¥) = 0 if i # k. Applying equation (A.2) to the vector field &°
m m )
Z)\k<dw +Z dAg, €Y — dXs (W', &) =
k=1 k=1
Since (w’, &%) = n; !, solving for d)\;, we get
m
(Z A (dw®, (€5, + > (dAg, € >

Substituting this value of d); into Y1 | (Aidw’ 4 dX; Aw') = 0, we get

i=1 k=1

> ()\idwi i Y (Ae(dw®, (€6,) + (dh, €1)w") Awi) —0.
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Expanding each summation on the right-hand side of this equality, we can write
) oxd 0
k i
(dw"”, (&',.)) = — da; dal/\da ;“Jaa“'

7y8,1

:_Zazald +Za adsék

78,1

It follows that
da + Z )\k a dal

)\k<dw >\k z
2 e
k gkl Jykys,l
:—Zxkaz ajdaj +/\Z ;
gkl jkl

Using Lemma (A.1), we get

k Jokl J
Similarly,
‘ O\ 0 SN V|
<d>\k,f > = gda?, 4 ry = ia; = _Aki~
%: a; ; 7 da} — Oa i
Therefore,
m ) m
D (A, €t =Y —Apiw
k=1 k=1 "

It follows, from the above calculations, that

.:_UZZZ)\ka Z%daz +ZAklw + nidiw’.

k, j=1

Using Lemma (A.2), we conclude that

d\ Aw' = =1 :daf Aw'.

ki j=1

Then, equation (A.5) becomes

a z k %

Z 3k+7712)‘k31 3’ Z a’ dal/\daj:().
-7 : ]

1,5,k

The result follows.

(A.6)

(A.9)
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A.2. Proof of Theorem 3.3
Proof. Firstly, we prove that (a) implies (b). Define a family of 1-forms g1, ..., B by

Bi =i Z /\k ’dal

L3’k

Symmetry conditions in (a) read as

n r

O O’ Ox ;= Oz”
Ai| =— — k/ ak = '/
oaf " 2_: “ Zl daF " E_: ; ; da’
Recall the definition of w’ in (2.7) and equation (2.5), the last symmetry conditions are equivalent to

n

> (hidw' + B Aw') = 0.

i=1

Multiply by w! A ... Aw™ to get condition (b).

Conversely, condition (b) means that there exist m differential 1-forms 1, ..., ¥, such that
m
D (Nidw' + 7 Aw') = 0. (A.10)
i=1

Then, write ~; as

Yi = Z @ZI(A)da;C
Tl

for some smooth functions ¢%,;(A). Now, apply the 2-form in equation (A.10) to the vector field &* for some
1 < k < m, the first summation gives, using equation (A.6),

SN (€ ) = SN ;k akdaj + M.

i=1 i,7,1

While the second summation gives us

m n
D Awt (€8,)) = (Z %af) Wb — 1 .
i=1 =1

It follows from the two previous equations that,

—Z)\k dal—i—)\w—i—(z:gollal)w—m vi = 0.

gkl =1

Solving for ~;
Vi = Z/\ka za]dal +77zZ<lealW + midiw". (A.11)
kil =1

So, we conclude that

—i Z/\ka : Jdal mod w’
7.k,
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Now, plug this value of ~; into (A.10) and expand to get

Ou? — oa! i — " i k i
Z >\ a k + 771>\k Waj/ Z aai, a,. dal A da’j =0.
J

ikl jr=1 "1 r=1
Symmetry conditions (a) follow from the last equality. This completes the proof. O

A.3. Proof of Theorem 4.5
Proof. Recall that 2, A df2, = 0 if and only if there exists a 1-form «ay, such that

A2 = ag A 2 (A.12)
The 1-form «j can be identified (mod (2;). Notice that

Qk—z)\zk Z dal

rj=1

Let fk/ be a vector field defined as in (A.3), then

’

(20, €y = Mok (@) T (D )a = N

To find a 1-form «y, that satisfies equation (A.12), we apply both sides of that equation to the vector field e,
so we have

(A, (€%,.)) = (o, €5V 2 — (0, €¥).
Using the fact that ({2, §k/> = )\k/knlg,l and solving for «ay, we get

o = 1 (o 6) 2 = (420, (¥, .)] -
k'k

Substitute for ay, in equation (A.12) that becomes

A0y = — ;k/k (A2, (€5, )Y A 2. (A.13)

Now

Taking the exterior derivative and using the budget constraint we find that

8)% ox” . ox
d;, = —al — \; d da®
k Z (8@? - 8a§-ar k81> ai A a

1,5,5,1

Now, we apply the 2-form df2; to the vector field 5"’/, we conclude that
’ ON; ox" . 8l‘j ’ ;
k _ ik } k
<d9ka (5 ) )> - § <8CI/{C/ - 8—a;azr - Azk 8@;«) a; da;

i,7,0
8/\k 'k k' ox? k' s
oy ( S Akfkaas) ¥ do

7,8,l l
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Rewrite equation (A.13) as

ko-l-;k (AL, (€, )) A 2 = 0.

Depending on the above formulas of df2;, and (d{2, (§k/, .)) the last equation can be expanded as

a)\ik ox” . ox? A Nk’ 8>\sk k' k'
a7 . _>\Z 7 S_ S 7
2 R T * Zaak ¥ as o kz ak

£ Akk/
1,5,8,1

1 Ok 927" . ,
— + A Y i ! | daj Ada’ = 0. A.14
G > e e

Write the previous equation as
> (Twe)iidaj Adal =0,

8,1

where

8/\'k az" l‘j Nk’ 8/\gk ’ ’
T, sl g 4 A k/ as — s k/
(Tere)i; da; 2= 9ai " """ da; T X Z da¥, a 5 r ’“Za K

1 " Ox”
o i
/ )\ g .
e aal Awrk Z = Oa; “
Then equation (A.14) is satisfied if and only if (Iwg)5} = (I 1) for any given &',k € {1,...,m} and all

1<i,s<mand 1<yl <n.So, we get the required symmetry condltlons This completes the proof. O

A.4. Proof of Theorem 5.1

First, we have from the envelope theorem

ov oC! 4 ox"
Pl Ai (8% - 907> =\ Z o al. (A.15)
Differentiate this equation with respect to af, we get
0%V o\ (o0 , 92C" oz7
—_— = — — Ai 6 ——— 1. A.16
dafoa;  daf (aa; v ) * (a Foa aa;f> (4.16)
Multiply both sides by aé, summing over j, and solving to get the following formula
O\ o?V 92Cct . 9z ,
day 1 Z dafdal, = (8(1;"8(1;, ¥ daf ) “

Note that

Using the last two equations together with (A. 5) and (A.16) we find that

ori OV Q2ci . 2V eci . ov) .\ ov
PR A VA=A T i L ) ST
daf ~ dafoa; ' oafoa; " N \ 2+ Bufoa, dafoal, "~ oaf | % ) o 17
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Now, multiply both sides of (A.16) by a;“ and add up with respect to [ to get the following formula after
rearrangement

772 7 8V 82CZ k i 8V :
’ ’ A Z !’ v e v A.l
Azal,“l Za kaa Za aa,‘”“ da ”Zaal,az‘”“ﬂ 9l (4.18)

/ R ]/ I

8 8201 ;
+o Zakﬂ Za T Zaf,ak.

To get this formula we used also

Z kal, —mza al,a, — mzza al,a,ék—l—/\dk

/=1 / R / R

Recall that

Tt suffices to substitute from (A.15), (A.17) and (A.18) into this equation to get the required formula. The proof
is complete.
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