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STRICT CONVEXITY AND THE REGULARITY OF SOLUTIONS
TO VARIATIONAL PROBLEMS ∗

Arrigo Cellina
1

Abstract. We consider the problem of minimizing

∫
Ω

[L(∇v(x)) + g(x, v(x))]dx on u0 + W 1,2
0 (Ω)

where Ω is a bounded open subset of R
N and L is a convex function that grows quadratically outside

the unit ball, while, when |∇v| < 1, it behaves like |∇v|p with 1 < p < 2. We show that, for each
ω ⊂⊂ Ω, there exists a constant H , depending on ω but not on p, such that both

‖∇u‖W1,2(ω) ≤ H and ‖ ∇u

|∇u|2−p
‖W1,2(ω) ≤ H

(p − 1)2
;

in particular, for every i = 1, ...N , we have max{ |uxi
|

|∇u|2−p , |uxi |} ∈ W 1,2
loc (Ω).
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1. Introduction

This paper is concerned with the regularity properties of solutions to variational problems and, more precisely,
with their properties of higher differentiability. We consider the problem of minimizing∫

Ω

[L(∇v(x)) + g(x, v(x))]dx on w0 +W 1,2
0 (Ω) (1.1)

where L is a convex function and Ω a bounded open subset of R
N . We wish to explore the effect of an increase

of the strict convexity of the Lagrangian, with respect to the variable gradient, on the regularity of the solution;
more precisely, we consider a problem where L grows quadratically outside the unit ball, while, when |∇v| < 1,
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it behaves like |∇v|p with 1 < p < 2; hence, near the origin, the norm of the matrix of the second derivatives
of L diverges, making the problem very strictly convex when |∇v| is small. Our Theorem 2.2 below describes
how this increasing in the strict convexity of L affects the higher differentiability of the solution u, when |∇u|
is small.

Regularity results in the sense of u being in C1,α for L(ξ) = |ξ|p with p > 1 have been proved by Uhlenbeck [8],
Lewis [6] and Tolksdorf [7] for g = 0 and by Di Benedetto [2], Acerbi and Fusco [1] in the general case; very
recently functionals with different conditions on {|ξ| > 1} and on {|ξ| < 1}, (with g = fu) have been considered
by Colombo and Figalli [5] and the regularity C1,α of the solution established; these results and techniques are
different from ours.

2. Statement of the Theorem

The integrand L of (1.1) is described as follows: for some 1 < p < 2, we shall consider the function

l(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
|t|2 + 1 for |t| ≥ 1

1
p
|t|p +

3
2
− 1
p

for |t| ≤ 1
(2.1)

and set L(ξ) = l(|ξ|). We have that, calling HL(ξ) the matrix of second derivatives of L computed at ξ,

HL(ξ) =

{
(p− 2)|ξ|p−4ξ ⊗ ξ + |ξ|p−2I for |ξ| < 1

I for |ξ| > 1
(2.2)

so that zTHL(ξ)z ≥ |z|2 for all ξ, while |HL(ξ)| → ∞ as |ξ| → 0.
The assumptions on g are:

Assumption 2.1.

i) There exist τ ∈ L1(Ω) and a non-negative λg ∈ L2
loc(Ω) such that for a.e. x ∈ Ω and every u, we have

g(x, u) ≥ τ(x) − λg|u|.
ii) There exist non-negative λ2 ∈ L2

loc(Ω) and λ∞ ∈ L∞
loc(Ω), such that |gu(x, u)| ≤ λ2(x) + λ∞(x)|u|.

Functions like g(x, u) = λ2(x)u or g(x, u) = (sin(x1)u)2 satisfy Assumption 2.1.
The map l, and the map lr to be defined, are not really C2 everywhere, but their gradients are Lipschitzian,

and, by a simple modification of results that go back to [3], one proves that a solution u to the problem of
minimizing (1.1), with L and g described above, is such that ∇u ∈W 1,2

loc (Ω).
The purpose of this paper is to prove the following result:

Theorem 2.2. Let Ω be a bounded open subset of R
N , let l be as in (2.1) and let g satisfy Assumption 2.1.

Then, there exist u, a solution to the Euler−Lagrange equation, i.e. such that∫
Ω

[〈∇L(∇u(x)),∇η(x)〉 + gu(x, u(x))η(x)]dx = 0

for every η ∈ C1
c (Ω), and, for each ω ⊂⊂ Ω, a constant H, depending on ω but not on p, such that both

‖∇u‖W 1,2(ω) ≤ H and ‖ ∇u
|∇u|2−p

‖W 1,2(ω) ≤ H

(p− 1)2
;

in particular, for every i = 1, . . .N , we have max{ |uxi
|

|∇u|2−p , |uxi |} ∈ W 1,2
loc (Ω).
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Under some additional assumptions, mainly when g is convex in the variable v, a solution to the Euler−Lagrange
equation is actually a solution to the minimization problem (1.1).

The additional regularity of the solution, provided by Theorem 1, is actually lost in the limit as p → 1,
as the statement of Theorem 2.2 itself suggests. In fact, the limit problem consists in minimizing (1.1) where
L(ξ) = l∗(|ξ|) with

l∗(t) =

⎧⎪⎨
⎪⎩

1
2
|t|2 + 1 for |t| ≥ 1

|t| + 1
2

for |t| ≤ 1;
(2.3)

here we have at once that l′′∗ (0) = ∞ while l′′∗ (t) = 0 for 0 < |t| < 1. When g(x, u) = u, a (radial) solution to
problem (1.1) is

u∗(x) =

{
0 for |x| ≤ 1
1
2
(|x|2 − 1) for |x| ≥ 1

whose gradient is

∇u∗(x) =
{

0 for |x| < 1
x for |x| > 1

so that the gradient is discontinuous along |x| = 1, preventing ∇u∗ from being a Sobolev function.

3. Proof of Theorem 2.2

We shall use the following notations. The measure of A ⊂ R
N is |A|; aT is the transpose of a; for a fixed

coordinate direction es, we set δhesu to be the difference quotient of the function u, defined by δhesu(x) =
u(x+hes)−u(x)

h . For a variation η to be defined, Dη is such that |∇η(x)| ≤ Dη.
For the proof of the main result we shall need lr, a regularization of l, defined to be

lr(t) =

⎧⎨
⎩

1
2
rp−2t2 +

(
1
p
− 1

2

)
rp +

3
2
− 1
p

for |t| ≤ r

l(t) otherwise,
(3.1)

so that

l′r(t) =
{
rp−2t for 0 ≤ t ≤ r
l′(t) otherwise.

We have that l′r is continuous and increasing, hence lr is convex; moreover, for t /∈ {r, 1}, l′′r (t) exists and

l′′r (t) =

⎧⎨
⎩
rp−2 for |t| < r
(p− 1)|t|p−2 for r < |t| < 1
1 otherwise.

In particular, l′r is (globally) Lipschitzian with constant rp−2. Set Lr(ξ) = lr(|ξ|) so that ∇Lr is Lipschitzian
with Lipschitz constant rp−2. In addition, we have that ∇Lr → ∇L uniformly as r → 0.

Besides Problem 1.1, we shall also consider the problem of minimizing∫
Ω

[Lr(∇v(x)) + g(x, v(x))]dx on w0 +W 1,2
0 (Ω) (3.2)

and call ur its solution. By known regularity results, the function ur is in W 2,2
loc (Ω).

Lemma 3.1. Let Ω and g as in Theorem 2.2; let ur be a solution to the minimization of (3.2); let φ ∈W 1,2(Ω)
with support compactly contained in Ω. Then, for s = 1, . . . , N , we have∫

Ω

〈
d

dxs
∇Lr(∇ur),∇φ

〉
=
∫

Ω

gu(·, ur)φxs
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Proof.
a) First, we claim that the map ∇Lr(∇ur) is in W 1,2(Ω); we have that ∇Lr(ξ) = l′r(|ξ|) ξ

|ξ| and that |∇ur| is in

W 1,2(Ω), with d
dxi

|∇ur| =
〈

∇ur

|∇ur | ,∇ur
xi

〉
. The map

l′r(t)
t

=

⎧⎨
⎩
rp−2 for 0 ≤ |t| ≤ r
|t|p−2 for r ≤ |t| ≤ 1
1 for |t| ≥ 1

is (uniformly) Lipschitzian and it is not differentiable only at at |t| = r and |t| = 1; then, as it is known,
x→ l′r(|∇ur(x)|)

|∇ur(x)| is a Sobolev function with

d
dxi

l′r(|∇ur(x)|)
|∇ur(x)| =

[(
l′r(t)
t

)′
◦ |∇ur(x)|

]〈 ∇ur

|∇ur| ,∇u
r
xi

〉

=

⎧⎨
⎩

0 for |∇ur(x)| ≤ r or |∇ur(x)| ≥ 1

(p− 2)|∇ur(x)|p−3

〈 ∇ur

|∇ur| ,∇u
r
xi

〉
otherwise. (3.3)

Then
d

dxi

[
l′r(|∇ur(x)|)
|∇ur(x)| · ∇ur(x)

]
=
l′r(|∇ur(x)|)
|∇ur(x)| ∇ur

xi
(x) +

(
d

dxi

l′r(|∇ur(x)|)
|∇ur(x)|

)
∇ur(x).

Both terms above are in L2
loc(Ω): in fact, l′r(t)

t is bounded and, from (3.3), the absolute value of the second term
is at most |∇uxi |. Hence, ∇Lr(∇ur) is in W 1,2

loc (Ω).

b) Under the assumptions of the Lemma, the Euler−Lagrange equation holds for ur in the sense that for
ψ ∈W 1,2

0 (Ω) we have ∫
Ω

[〈∇Lr(∇ur),∇ψ〉 + gu(x, u)ψ]dx = 0.

For h sufficiently small, consider the variation ψ = δ−hesφ to obtain∫
Ω

〈∇Lr(∇ur(x+ hes)) −∇Lr(∇ur(x))
h

,∇φ(x)
〉

dx =
∫

Ω

gu(x, ur(x))
φ(x − hes) − φ(x)

−h dx. (3.4)

Since ∇Lr(∇ur) is in W 1,2
loc (Ω), the family

(
∇Lr(∇ur(x+hei))−∇Lr(∇ur(x))

h

)
h

is bounded in L2
loc(Ω) and we can

assume the existence of a sequence (hn) such that

∇Lr(∇ur(x + hnei)) −∇Lr(∇ur(x))
hn

⇀
d

dxi
∇Lr(∇ur)

so that the left hand side of (3.4) converges to
∫

Ω
〈 d
dxs

∇Lr(∇ur),∇φ〉.
We also have∫

Ω

gu(x, ur(x))
φ(x − hes) − φ(x)

−h dx =
∫ 1

0

∫
supp(φ)+thes

gu(x, ur(x))φxs(x− thes)dxdt

=
∫ 1

0

∫
supp(φ)

gu(x+ thes, u
r(x+ thes))φxs(x)dxdt

=
∫

Ω

gu(x, ur(x))φxs (x)dx +
∫ 1

0

∫
Ω

[gu(x + hes, u
r(x+ hes)) − gu(x, ur(x)]φxs(x)dxdt.

By Assumption 2.1, ii), we obtain that the map x→ gu(x, ur(x)) is in L2
loc(Ω), so that ‖gu(·+hes, u

r(·+hes))−
gu(·, ur(·))‖L2(supp(φ)) → 0, thus proving the lemma. �
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Lemma 3.2. There exists K, depending neither on r nor on p, such that ‖∇ur‖L2(Ω) ≤ K and ‖ur‖L2(Ω) ≤ K.

Proof. Set L0(ξ) = 1
2 |ξ|2 + 1, so that, for any 1 < p < 2 and any r ≤ 1, we have Lr(ξ) ≤ L0(ξ) + 1.

Let u0 be a solution to the problem of minimizing∫
Ω

[L0(∇v(x)) + 1 + g(x, v(x))]dx on w0 +W 1,2
0 (Ω) (3.5)

and set V =
∫

Ω[L0(∇u0(x)) + 1 + g(x, u0(x))]dx. Then

V ≥
∫

Ω

[Lr(∇u0) + g(x, u0)] ≥
∫

Ω

[Lr(∇ur) + g(x, ur)] ≥
∫

Ω

[
1
2
|∇ur|2 + g(x, ur)

]
;

on the other hand, recalling Assumption 2.1, for a constant α to be fixed, from
∫
λg|u| ≤ 1

2α
2
∫
(λg)2+ 1

2
1

α2

∫ |u|2
we obtain ∫

Ω

g(x, ur(x))dx ≥
∫
τ − 1

2
α2

∫
(λg)2 − 1

2
1
α2

∫
|ur|2.

Call P the Poincaré constant in W 1,2(Ω); from
∫ |ur|2 =

∫ |w0 − (ur −w0)|2 ≤ 2
∫ |w0|2 +2P

∫ |∇(ur −w0)|2 ≤
2
∫ |w0|2 + 4P

∫ |∇ur|2 + 4P
∫ |∇w0|2, we obtain

∫
Ω

g(x, ur) ≥
∫
τ − 1

2
α2

∫
(λg)2 − 1

2
1
α2

[
4P

∫
|∇ur|2 +

∫
|∇w0|2(2 + 4P )

]
.

Hence,∫
Ω

1
2
|∇ur|2 ≤ V −

∫
Ω

g(x, ur) ≤ V −
∫
τ +

1
2
α2

∫
(λg)2 +

2P
α2

∫
|∇ur|2 +

1
2α2

∫
|∇w0|2(2 + 4P ).

Choose α such that 2P
α2 = 1

4 to obtain
∫ |∇ur|2 ≤ 4[V +

∫
(−τ + 1

2α
2(λg)2 + 2+4P

2α2 |∇w0|2)] = k1.
From this, making use of w0 ∈ W 1,2 and of Poincaré’s inequality, we infer that for some k2, we also have∫

Ω
|ur|2 ≤ k2 for all r ≤ 1. �

A similar estimate was proved in [4].

Proof of Theorem 2.2.
a) Consider the function

γr(t) =
l′r(t)
t

=

⎧⎨
⎩
rp−2 for |t| ≤ r
|t|p−2 for r < |t| < 1
1 otherwise;

then, as in the Proof of Lemma 3.1, the map x→ γr(|∇ur(x)|) is in W 1,2
loc and

d
dxs

γr(|∇ur(x)|) =

⎧⎨
⎩

0 for |∇ur| ≤ r or |∇ur| ≥ 1

(p− 2)|∇ur|p−3

〈 ∇ur

|∇ur| ,∇u
r
xs

〉
for r < |∇ur| < 1.

Moreover, 1 ≤ γr ≤ rp−2 and | d
dxs

γr(|∇ur|)| ≤ (2 − p)rp−3|∇ur
xs
|. Then, the map x→ γr(|∇ur(x)|)uxi(x) is in

W 1,2
loc (Ω) and, setting Hur to be the Hessian matrix of ur, we obtain

∇(γr(|∇ur|)ur
xi

) =

⎧⎨
⎩
γr(|∇ur|)∇ur

xi
for |∇ur| ≤ r or |∇ur| ≥ 1

(p− 2)|∇ur|p−2Hur

∇ur

|∇ur|
ur

xi

|∇ur| + γr(|∇ur|)∇ur
xi

for r ≤ |∇ur| ≤ 1. (3.6)



STRICT CONVEXITY AND THE REGULARITY OF SOLUTIONS TO VARIATIONAL PROBLEMS 867

b) Let x0 and δ0 be such that B(x0, 4δ0) ⊂⊂ Ω. Let η ∈ C∞
0 (B(x0, 2δ0)) be such that 0 ≤ η ≤ 1 and that

η(x) = 1 for x ∈ B(x0, δ0); we recall that Dη = sup{|∇η(x)|}. Then, the function φ = [η2γr(|∇ur|)ur
xi

] is in
W 1,2

0 (B(x0, 3δ0)) and from Lemma 3.1 we have∫
Ω

〈
d

dxi

l′r(|∇ur|)
|∇ur| ∇ur,∇φ

〉
=
∫

Ω

gu(·, ur)φxi ,

i.e., ∫
B(x0,3δ0)

〈
l′r(|∇ur|)
|∇ur| ∇ur

xi
+
(

d
dxi

l′r(|∇ur|)
|∇ur|

)
∇ur, 2η∇ηγr(|∇ur|)ur

xi
+ η2∇(γr(|∇ur|)uxi)

〉
dx

=
∫

B(x0,3δ0)

gu(·, ur)
[
2ηηxiγr(|∇ur|)ur

xi
+ η2 d

dxi
(γr(|∇ur|)ur

xi
)
]

dx (3.7)

We shall call Gi the term at the right hand side.
Since the above equality holds for every i, we obtain

∑
i

∫
B(x0,3δ0)

〈
d

dxi

l′r(|∇ur|)
|∇ur| ∇ur, η2∇(γr(|∇ur|)ur

xi
)
〉

dx

≤
∑

i

|
∫

B(x0,3δ0)

〈
d

dxi

l′r(|∇ur|)
|∇ur| ∇ur, 2η∇ηγr(|∇ur|)ur

xi

〉
|dx+

∑
i

Gi (3.8)

c) For j = 1, . . . , N , we have(
∇x

(
l′r(|∇ur|)
|∇ur| ∇ur

))
i,j

=
l′r(|∇ur|)
|∇ur| ur

xjxi
+
(

d
dxi

l′r(|∇ur|)
|∇ur|

)
ur

xj

=
l′r

|∇ur|u
r
xjxi

+
〈 ∇ur

|∇ur| ,∇u
r
xi

〉(
l′′r − l′r

|∇ur|
)

ur
xj

|∇ur|
i.e.,

∇x

(
l′r(|∇ur|)
|∇ur| ∇ur

)
=

l′r
|∇ur|Hur +

(
l′′r − l′r

|∇ur|
)( ∇ur

|∇ur|Hur

)
⊗ ∇ur

|∇ur|
and we obtain ∣∣∣∣∇x

(
l′r(|∇ur|)
|∇ur| ∇ur

)∣∣∣∣
2

=
(

l′r
|∇ur|

)2

|Hur |2 +
(
l′′r − l′r

|∇ur|
)2 ∣∣∣∣ ∇ur

|∇ur|Hur

∣∣∣∣
2

+ 2
(
l′′r − l′r

|∇ur|
)

l′r
|∇ur|

∣∣∣∣ ∇ur

|∇ur|Hur

∣∣∣∣
2

=
(

l′r
|∇ur|

)2

|Hur |2 +

(
(l′′r )2 −

(
l′r

|∇ur|
)2
)∣∣∣∣ ∇ur

|∇ur|Hur

∣∣∣∣
2

so that

inf

{
(l′′r )2,

(
l′r

|∇ur|
)2
}
|Hur |2 ≤ |∇x

(
l′r(|∇ur|)
|∇ur| ∇ur

)
|2 ≤ sup

{
(l′′r )2,

(
l′r

|∇ur|
)2
}
|Hur |2. (3.9)

We also have, computing l′r, l′′r , γr and γ′r at |∇ur|,
∑

i

〈
d

dxi

l′r(|∇ur|)
|∇ur| ∇ur,∇(γru

r
xi

)
〉
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=
∑

i

∑
j

(
l′r

|∇ur|u
r
xjxi

+

(∑
s

ur
xs

|∇ur|u
r
xixs

)(
l′′r − l′r

|∇ur|
)

ur
xj

|∇ur|

)

·
(
γru

r
xjxi

+ (γr)′
(∑

l

ur
xjxl

ur
xl

|∇ur|

)
ur

xi

)

=
l′r

|∇ur|γr|Hur |2 +
(
l′′r − l′r

|∇ur|
)
γ′r|∇ur|

⎛
⎝∑

i,s

ur
xi

|∇ur|
ur

xs

|∇ur|u
r
xixs

⎞
⎠

·
⎛
⎝∑

j,l

ur
xj

|∇ur|
ur

xl

|∇ur|u
r
xjxl

⎞
⎠

+γr

(
l′′r − l′r

|∇ur|
)∑

i

⎛
⎝∑

j

ur
xj

|∇ur|u
r
xjxi

⎞
⎠(∑

s

ur
xs

|∇ur|u
r
xixs

)

+
l′r

|∇ur|γ
′
r|∇ur|

(
Hur

∇ur

|∇ur|
)2

=
l′r

|∇ur|γr|Hur |2 +
(
l′′r − l′r

|∇ur|
)
γ′r|∇ur|

(
∇ur

|∇ur|
T

Hur

∇ur

|∇ur|

)2

+γr

(
l′′r − l′r

|∇ur|
) ∣∣∣∣Hur

∇ur

|∇ur|
∣∣∣∣
2

+
l′r

|∇ur|γ
′
r|∇ur||Hur

∇ur

|∇ur| |
2

=
l′r

|∇ur|γr|Hur |2 +
(
l′′r − l′r

|∇ur|
)
γr

∣∣∣∣Hur

∇ur

|∇ur|
∣∣∣∣
2

+
l′r

|∇ur|γ
′
r|∇ur|

⎡
⎣|Hur

∇ur

|∇ur| |
2 −

(
∇ur

|∇ur|
T

Hur

∇ur

|∇ur|

)2
⎤
⎦

+l′′rγ
′
r|∇ur|

(
∇ur

|∇ur|
T

Hur

∇ur

|∇ur|

)2

≥ γr[
l′r

|∇ur| |Hur |2 +
(
l′′r − l′r

|∇ur|
) ∣∣∣∣Hur

∇ur

|∇ur|
∣∣∣∣
2

]

≥ γr[inf
{
l′′r ,

l′r
|∇ur|

}
]|Hur |2

where

γr(t) inf
{
l′′r (t),

l′r(t)
t

}
=

⎧⎨
⎩
r2(p−2) for |t| ≤ r
(p− 1)|t|2(p−2) for r ≤ |t| ≤ 1
1 otherwise.

Hence we have obtained∫
B(x0,3δ0)

η2γr

[
inf

{
l′′r ,

l′r
|∇ur|

}]
|Hur |2dx ≤

∑
i

∫
B(x0,3δ0)

η2

〈
d

dxi

l′r(|∇ur|)
|∇ur|r ∇ur,∇(γr(|∇ur|)uxi)

〉
dx



STRICT CONVEXITY AND THE REGULARITY OF SOLUTIONS TO VARIATIONAL PROBLEMS 869

so that, from (3.8),∫
B(x0,3δ0)

η2γr

[
inf

{
l′′r ,

l′r
|∇ur|

}]
|Hur |2dx

≤
∑

i

∣∣∣∣∣
∫

B(x0,3δ0)

〈
d

dxi

l′r(|∇ur|)
|∇ur| ∇ur, 2η∇ηγr(|∇ur|)ur

xi

〉∣∣∣∣∣dx+
∑

i

Gi (3.10)

d) From (3.6) we have that∑
i

Gi =
∫

B(x0,3δ0)

[gu(x, ur)2ηγr(|∇ur|)〈∇η,∇ur〉 + η2gu(x, ur)Δur]dx

+
∫

B(x0,3δ0)∩{r≤|∇ur(x)|≤1}
gu(x, ur)η2(p− 2)|∇ur|p−2

( ∇ur

|∇ur|
)T

Hur

∇ur

|∇ur|dx

≤
∫

B(x0,3δ0)

[η2g2
u + |∇η|2 +

4
p− 1

η2g2
u +

p− 1
4

η2|Hur |2]dx

+
∫

B(x0,3δ0)∩{r≤|∇ur(x)|≤1}

[
4

p− 1
η2g2

u + η2 p− 1
4

|∇ur|2(p−2)|Hur |2
]

dx (3.11)

By Assumption 2.1, gu(x, ur)2 ≤ 2[(λ2)2 + (λ∞|ur|)2]; hence, applying Lemma 3.2 we infer that there exists a
constant K0, independent of r and p, such that the right hand side of (3.11) is bounded above by

K0

p− 1
+

1
2

∫
B(x0,3δ0)

η2(p− 1)|∇ur|2(p−2)|Hur |2dx.

Then, from inf{l′′r , l′r
|∇ur |} ≥ p− 1, (3.10) gives

1
2

∫
B(x0,3δ0)

η2γr

[
inf

{
l′′r ,

l′r
|∇ur|

}]
|Hur |2dx

≤ 1
p− 1

K0 +
∑

i

∣∣∣∣∣
∫

B(x0,3δ0)

〈
d

dxi

l′r(|∇ur|)
|∇ur| ∇ur, 2η∇ηγr(|∇ur|)ur

xi

〉∣∣∣∣∣dx
≤ 1
p− 1

K0 +
∫

B(x0,3δ0)

[
p− 1

4
|∇x(∇L(∇ur))|2η2 +

4
p− 1

N |∇η|2
]

dx

≤ 1
p− 1

K0 +
∫

B(x0,3δ0)

[
1
4
γr inf

{
l′′r ,

l′r
|t|
}
|∇x (∇L(∇ur)) |2η2 +

4
p− 1

N |∇η|2
]

dx (3.12)

and we obtain

p− 1
4

∫
B(x0,3δ0)

η2|∇x(∇Lr(∇ur)|2dx ≤ 1
4

∫
B(x0,3δ0)

η2γr

[
inf

{
l′′r ,

l′r
|∇ur|

}]
|Hur |2dx ≤ K1

p− 1
·

f) In particular, ∫
B(x0,δ0)

|∇x∇Lr(∇ur)|2 ≤ 4
(p− 1)2

K1; (3.13)

hence, the family (∇x∇Lr(∇ur))r is bounded in L2(B(x0, δ0)). The arbitrariness of x0 and of δ0 then shows
that, for every ω ⊂⊂ Ω, there exists H , independent of r and p, such that (‖∇x∇Lr(∇ur)‖L2(ω))r ≤ H

(p−1)2 .

Then, from (3.9) and since inf{(l′′r )2, ( l′r
|∇ur | )

2} ≥ (p− 1)2, we infer that∫
ω

|Hur |2 ≤ 1
(p− 1)2

∫
ω

|∇x∇Lr(∇ur)|2 ≤ 1
(p− 1)4

H2. (3.14)



870 A. CELLINA

Then, we can assume that, for s = 1, . . . , N , there exists a sequence (rn)n such that d
dxs

∇Lrn(∇urn) converges
weakly in L2(ω) to some dλ, that ∇Lrn(∇urn) converges in L2(ω) to a function λ, that urn → u and, finally,
that ∇urn → ∇u in L2(ω).

g) We claim that:

i) λ = ∇L(∇u); dλ = d
dxs

∇L(∇u) and

∥∥∥∥ d
dxs

∇L(∇u)
∥∥∥∥

L2(ω)

≤ 1
(p− 12

H.

ii) u is a solution to the Euler Lagrange equation, i.e., that, for every η ∈ C1
c (Ω),

∫
Ω

[〈∇L(∇u(x)),∇η(x)〉 + gu(x, u(x))η(x)]dx = 0.

To prove the claim, notice that, possibly passing to a subsequence, we can assume that both ∇urn → ∇u and
∇Lrn(∇urn) → λ pointwise a.e.. Fix x such that the above holds and fix ε. By the continuity of ∇L, let δ be
such that |∇u(x)− ξ| ≤ δ implies |∇L(∇u(x))−∇L(ξ)| < ε

2 ; let n be so large that both |∇urn(x)−∇u(x)| < δ,
and ‖∇Lrn −∇L‖C < ε

2 . Hence, for n large,

|∇Lrn(∇urn(x)) −∇L(∇u(x))|

≤ |∇Lrn(∇urn(x)) −∇L(∇urn(x))| + |∇L(∇urn(x)) −∇L(∇urn(x))| < ε,

so that |λ(x) −∇L(∇u(x))| ≤ ε, and by the arbitrariness of ε, we obtain

λ(x) = ∇L(∇u(x)).

Moreover, ∇Lrn(∇urn) → λ in L2(ω) and d
dxs

∇Lrn(∇urn) ⇀ dλ weakly, imply dλ = d
dxs

∇L(∇u), so that from
‖ d

dxs
∇Lrn(∇ur)‖L2(ω) ≤ 1

(p−1)2H we obtain that ‖ d
dxs

∇L(∇u)‖L2(ω) ≤ 1
(p−1)2H , thus proving i).

To prove ii), fix η ∈ C1
c (Ω). We have that

∫
Ω

[〈∇Lrn(∇urn(x)),∇η(x)〉 + gu(x, urn(x))η(x)] dx = 0;

since urn → u in L2(ω) and ∇Lrn(∇urn) ⇀ ∇L(∇u), we obtain

∫
Ω

[〈∇L(∇u(x)),∇η(x)〉 + gu(x, u(x))η(x)]dx = 0.

Hence, we have obtained the existence of a solution u to the Euler−Lagrange equation such that, for every
s = 1, . . . , N ,

d
dxs

∇L(∇u) =
d

dxs

⎧⎨
⎩

∇u
|∇u|2−p

for |∇u| ≤ 1

∇u for |∇u| ≥ 1

belongs to L2(ω); in particular, for every i = 1, . . . , N , both uxi and uxi

|∇u|2−p belong to W 1,2
loc . �
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