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Abstract. We investigate the role of the noncompact group of dilations in R
n on the difference of

the quadratic forms associated to the fractional Dirichlet and Navier Laplacians. Then we apply our
results to study the Brezis–Nirenberg effect in two families of noncompact boundary value problems
involving the Navier−Laplacian.
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1. Introduction

The Sobolev space Hm(Rn) = Wm
2 (Rn), m ∈ R, is the space of distributions u ∈ S′(Rn) with finite norm

‖u‖2
m =

∫
Rn

(
1 + |ξ|2)m |Fu(ξ)|2 dξ,

see for instance Section 2.3.3 of the monograph [13,24]. Here F denotes the Fourier transform

Fu(ξ) =
1

(2π)n/2

∫
Rn

e−iξ·xu(x) dx.

For arbitrary m ∈ R we define fractional Laplacian on Rn by the quadratic form

Qm[u] = 〈(−Δ)mu, u〉 :=
∫

Rn

|ξ|2m|Fu(ξ)|2dξ, (1.1)

with domain
Dom(Qm) = {u ∈ S′(Rn) : Qm[u] < ∞}.
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Let Ω be a bounded and smooth domain in Rn. We introduce the “Dirichlet” fractional Laplacian in Ω
(denoted by (−ΔΩ)m

D ) as the restriction of (−Δ)m. More precisely, its quadratic form is given by (1.1) with
domain

Dom(QD
m,Ω) = {u ∈ Dom(Qm) : supp u ⊂ Ω}.

Also we define the “Navier” fractional Laplacian as the mth power of the conventional Dirichlet Laplacian in
the sense of spectral theory. Its quadratic form reads

QN
m,Ω[u] = 〈(−ΔΩ)m

Nu, u〉 :=
∑

j
λm

j · |〈u, ϕj〉|2.

Here, λj and ϕj are eigenvalues and eigenfunctions of the Dirichlet Laplacian in Ω, respectively, and Dom(QN
m,Ω)

consists of distributions in Ω such that QN
m,Ω[u] < ∞.

For m = 1 these operators evidently coincide: (−ΔΩ)N = (−ΔΩ)D. We emphasize that, in contrast to
(−ΔΩ)m

N , the operator (−ΔΩ)m
D is not the mth power of the Dirichlet Laplacian for m �= 1. In the recent

paper [2], the interested reader may find a thorough review of some differences between the Dirichlet and Navier
Laplacians of order m ∈ (0, 1), see in particular Section 2.1 of [2] and references therein.

It is well known that for m > 0, the quadratic forms QD
m,Ω and QN

m,Ω generate Hilbert structures on their
domains, and

Dom(QD
m,Ω) = H̃m(Ω) ⊆ Dom(QN

m,Ω),

where
H̃m(Ω) = {u ∈ Hm(Rn) : supp u ⊂ Ω}.

It is also easy to see that for m ∈ N, u ∈ H̃m(Ω)

QD
m,Ω[u] = QN

m,Ω[u].

In [15, 17] we compared the operators (−ΔΩ)m
D and (−ΔΩ)m

N for non-integer m. It turned out that the
difference between their quadratic forms is positive or negative depending on the fact whether 
m� is odd or
even. However, roughly speaking, this difference disappears as Ω → Rn.

Namely, denote by F (Ω) the class of smooth and bounded domains containing Ω. For any u ∈ Dom(QD
m,Ω)

the form QD
m,Ω′[u] does not depend on Ω′ ∈ F (Ω) while the form QN

m,Ω′ [u] does depend on Ω′ ⊃ Ω, and the
following relations hold.

Proposition 1.1 ([17], Thm. 2). Let m > −1, m /∈ N0. If u ∈ Dom(QD
m,Ω), then

QD
m,Ω[u] = inf

Ω′∈F (Ω)
QN

m,Ω′ [u], if 2k < m < 2k + 1, k ∈ N0; (1.2)

QD
m,Ω[u] = sup

Ω′∈F (Ω)

QN
m,Ω′ [u], if 2k − 1 < m < 2k, k ∈ N0. (1.3)

The main result of our paper is a quantitative version of Proposition 1.1.

Theorem 1.2. Assume that m > 0, m /∈ N. Let u ∈ H̃m(Ω), and let supp(u) ⊂ Br ⊂ BR ⊂ Ω. Then

QN
m,Ω[u] ≤ QD

m,Ω[u] +
C(n, m) Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω), if 
m� is even; (1.4)

QD
m,Ω[u] ≤ QN

m,Ω[u] +
C(n, m) Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω), if 
m� is odd. (1.5)
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The Proof of Theorem 1.2 is given in Section 2. In Section 3 we apply this result for studying the equations4

(−ΔΩ)m
Nu = λ(−ΔΩ)s

Nu + |u|2∗
m−2u in Ω, (1.6)

(−ΔΩ)m
Nu = λ|x|−2su + |u|2∗

m−2u in Ω, (1.7)

where 0 ≤ s < m < n
2 and 2∗m = 2n

n−2m . By solution u of (1.6) or (1.7) we mean a weak solution from
Dom(QN

m,Ω), see Section 3 for details.
In the basic paper [3] by Brezis and Nirenberg a remarkable phenomenon was discovered for the problem

−Δu = λu + |u| 4
n−2 u in Ω, u = 0 on ∂Ω, (1.8)

which coincides with (1.6) and (1.7) with n > 2, m = 1, s = 0. Namely, the existence of a nontrivial solution
for any small λ > 0 holds if n ≥ 4; in contrast, for n = 3 non-existence phenomena for any sufficiently small
λ > 0 can be observed. For this reason, the dimension n = 3 has been named critical for problem (1.8) (compare
with [10, 19]).

As was pointed out in [16], the Brezis–Nirenberg effect is a nonlinear analog of the so-called zero-energy
resonance for the Schrödinger operators (see, e.g., [26] and ([27], pp. 287–288)).

After [3], a large number of papers have been focussed on studying the effect of lower order linear perturbations
in noncompact variational problems, see for instance the list of references included in ([10], Chap. 7) about the
case m ∈ N, s = 0. The Dirichlet case with non-integer m was considered in the recent paper [16], see also [20,21]
for m ∈ (0, 1) and s = 0. As concerns the Navier case with non-integer m, the only papers we know consider
m ∈ (0, 1) and s = 0, see [1, 23]. We mention also the recent paper [7] and references therein for nonlinear
lower-order perturbations.

We study the general case and prove the following result (see Sect. 3 for a more precise statement), that
corresponds to ([16], Thm. 4.2).

Theorem 1.3. Let 0 ≤ s < m < n
2 . If s ≥ 2m − n

2 then n is not a critical dimension for (1.6) and (1.7). This
means that both these equations have ground state solutions for all sufficiently small λ > 0.

Let us recall some notation. BR is the ball with radius R centered at the origin, SR is its boundary. We denote
by c with indices all explicit constants while C without indices stand for all inessential positive constants. To
indicate that C depends on some parameter a, we write C(a).

2. Proof of Theorem 1.2

Notice that we can assume u ∈ C∞
0 (Ω), the general case being covered by approximation.

Proof of (1.4). Let m = 2k + σ, k ∈ N0, σ ∈ (0, 1). Denote by wD(x, y), x ∈ Rn, y > 0, the Caffarelli–Silvestre
extension of (−Δ)ku (see [5]), that is the solution of the boundary value problem

−div(y1−2σ∇w) = 0 in R
n × R+; w

∣∣
y=0

= (−Δ)ku,

given by the generalized Poisson formula

wD(x, y) = c1(n, σ)
∫

Rn

y2σ (−Δ)ku(ξ)

(|x − ξ|2 + y2)
n+2σ

2

dξ. (2.1)

4We assume that 0 ∈ Ω.



ON FRACTIONAL LAPLACIANS – 3 835

In [5] it is also proved that

QD
m,Ω[u] = QD

σ,Ω[(−Δ)ku] = c2(n, σ)

∞∫
0

∫
Rn

y1−2σ|∇wD|2 dxdy. (2.2)

Integrating by parts (2.1), we arrive at following estimates for |x| > r:

|wD(x, y)| ≤ C(n, m) y2σ ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m+σ

2

; |∇wD(x, y)| ≤ C(n, m) y2σ−1 ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m+σ

2

· (2.3)

Following ([15], Thm. 3), we define, for x ∈ BR and y ≥ 0, the function

w̃(x, y) = wD(x, y) − φ̃(x, y),

where φ̃(·, y) is the harmonic extension of wD(·, y) on BR, that is,

−Δxφ̃(·, y) = 0 in BR; φ̃(·, y) = wD(·, y) on SR.

Clearly, w̃
∣∣
y=0

= (−Δ)ku and w̃
∣∣
x∈SR

= 0. Further, we have

∞∫
0

∫
BR

y1−2σ|∇w̃|2 dxdy =

∞∫
0

∫
BR

y1−2σ(|∇wD|2 − 2∇wD · ∇φ̃ + |∇φ̃|2) dxdy

=

∞∫
0

∫
BR

y1−2σ|∇wD|2 dxdy − 2

∞∫
0

∫
SR

y1−2σ(∇wD · n) φ̃ dSR(x)dy

+

∞∫
0

∫
BR

y1−2σ|∇φ̃(x, y)|2 dxdy. (2.4)

Since φ̃(·, y) = wD(·, y) on SR, we can use (2.3) to get∣∣∣∣∣∣
∞∫
0

∫
SR

y1−2σ(∇wD · n) φ̃ dSR(x)dy

∣∣∣∣∣∣ ≤
C(n, m)Rn−1

(R − r)2n+2m−1
· ‖u‖2

L1(Ω).

Now we estimate the last integral in (2.4). It is easy to see that |∇φ̃(·, y)|2 is subharmonic in BR and thus the
function

ρ �→ 1
ρn−1

∫
Sρ

|∇φ̃(x, y)|2 dSρ(x)

is nondecreasing for ρ ∈ (0, R). This implies

∫
BR

|∇φ̃(x, y)|2 dx =

R∫
0

∫
Sρ

|∇φ̃(x, y)|2 dSρ(x)dρ

≤ R

n

∫
SR

(|∇xφ̃(x, y)|2 + |∂yφ̃(x, y)|2) dSR(x).
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Using the fact that ∂yφ̃(x, y) = ∂ywD(x, y) for x ∈ SR, and the well known estimate∫
SR

|∇xφ̃(x, y)|2 dSR(x) ≤ C(n)
∫
SR

|∇xwD(x, y)|2 dSR(x),

we can apply (2.3) to arrive at

∞∫
0

∫
BR

y1−2σ|∇φ̃(x, y)|2 dxdy ≤ C(n, m)Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω).

In conclusion, from (2.4) we infer

∞∫
0

∫
BR

y1−2σ|∇w̃|2 dxdy ≤
∞∫
0

∫
BR

y1−2σ|∇wD|2 dxdy +
C(n, m) Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω). (2.5)

Now we use the Stinga–Torrea characterization of QN
σ,Ω. Their general result stated in Theorem 1.1 of [22]

(see also the last example in Sect. 2 therein) and integration by parts imply that

QN
m,Ω[u] = QN

σ,Ω[(−Δ)ku] = c2(n, σ) inf
w|x∈∂Ω=0

w|y=0=(−Δ)ku

∞∫
0

∫
Ω

y1−2σ|∇w|2 dxdy. (2.6)

Relations (2.6), (2.5) and (2.2) give us

QN
m,Ω[u] ≤ QN

m,BR
[u] ≤ c2(n, σ)

∞∫
0

∫
BR

y1−2σ|∇w̃|2 dxdy

≤ c2(n, σ)

∞∫
0

∫
BR

y1−2σ|∇wD|2 dxdy +
C(n, m) Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω)

≤ QD
m,Ω[u] +

C(n, m)Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω),

and (1.4) follows. �

Proof of (1.5). Let m = 2k − σ, k ∈ N, σ ∈ (0, 1). Denote by w−D(x, y), x ∈ Rn, y > 0, the “dual” Caffarelli–
Silvestre extension of (−Δ)ku (see [4, 17]), that is the solution of the boundary value problem

−div(y1−2σ∇w) = 0 in R
n × R+; y1−2σ∂yw

∣∣
y=0

= −(−Δ)ku,

given by the formula

w−D(x, y) = c3(n, σ)
∫

Rn

(−Δ)ku(ξ)

(|x − ξ|2 + y2)
n−2σ

2

dξ. (2.7)

Note that the representation (2.7) is true also for n = 1 < 2σ while for n = 1, σ = 1/2 it should be rewritten
as follows:

w−D(x, y) = c3(1, 1/2)
∫

Rn

(−Δ)ku(ξ) ln(|x − ξ|2 + y2) dξ.



ON FRACTIONAL LAPLACIANS – 3 837

It is also shown in [17] that

QD
m,Ω[u] = QD

−σ,Ω[(−Δ)ku] =
1

c2(n, σ)

⎛
⎝2

∫
Rn

(−Δ)ku(x)w−D(x, 0) dx −
∞∫
0

∫
Rn

y1−2σ|∇w−D|2 dxdy

⎞
⎠. (2.8)

Integrating by parts (2.7), we arrive at following estimates for |x| > r:

|w−D(x, y)| ≤ C(n, m) ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m−σ

2

; |∇w−D(x, y)| ≤ C(n, m) ‖u‖L1(Ω)

((|x| − r)2 + y2)
n+m+1−σ

2

· (2.9)

Now we define, as in ([17], Thm. 2),

ŵ(x, y) = w−D(x, y) − φ̂(x, y), x ∈ BR, y ≥ 0,

where
−Δxφ̂(·, y) = 0 in BR; φ̂(·, y) = w−D(·, y) on SR.

Clearly, ŵ
∣∣
x∈SR

= 0. Arguing as for (1.4) and using (2.9) instead of (2.3), we obtain

∞∫
0

∫
BR

y1−2σ|∇ŵ|2 dxdy ≤
∞∫
0

∫
BR

y1−2σ|∇w−D|2 dxdy +
C(n, m) Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω). (2.10)

We can use the “dual” Stinga–Torrea characterization of QN
−σ,Ω. It was proved in [17] that

QN
m,Ω[u] = QN

−σ,Ω[(−Δ)ku] (2.11)

=
1

c2(n, σ)
sup

w|x∈∂Ω=0

⎛
⎝ ∫

Ω

(−Δ)ku(x)w(x, 0) dx −
∞∫
0

∫
Ω

y1−2σ|∇w|2 dxdy

⎞
⎠.

Relations (2.11), (2.10), (2.8) and the evident equality∫
BR

(−Δ)ku(x)φ̂(x, 0) dx = 0 ,

give us

QN
m,Ω[u] ≥ QN

m,BR
[u] ≥ 1

c2(n, σ)

⎛
⎝2

∫
BR

(−Δ)ku(x)ŵ(x, 0) dx −
∞∫
0

∫
BR

y1−2σ|∇ŵ|2 dxdy

⎞
⎠

≥ 1
c2(n, σ)

⎛
⎝2

∫
BR

(−Δ)ku(x)w−D(x, 0) dx −
∞∫
0

∫
BR

y1−2σ|∇w−D|2 dxdy

⎞
⎠

− C(n, m)Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω) = QD
m,Ω[u] − C(n, m)Rn

(R − r)2n+2m
· ‖u‖2

L1(Ω),

and (1.5) follows. The proof is complete. �

Remark 2.1. It can be seen from the proof that the estimates (1.3) and (1.4) are sharp in order of decay as
R → ∞.



838 R. MUSINA AND A.I. NAZAROV

3. The Brezis–Nirenberg effect for Navier fractional Laplacians

We recall the Sobolev and Hardy inequalities

Qm[u] ≥ Sm

⎛
⎝∫

Rn

|u|2∗
m dx

⎞
⎠

2/2∗
m

(3.1)

Qm[u] ≥ Hm

∫
Rn

|x|−2m|u|2 dx , (3.2)

that hold for any u ∈ C∞
0 (Rn) and 0 < m < n

2 . The best Sobolev constant Sm and the best Hardy constant Hm

were explicitly computed in [8] (see also [6]), and in [12], respectively.
It is well known that Hm is not attained, that is, there are no functions with finite left and right-hand sides

of (3.2) providing equality in (3.2). In contrast, it has been proved in [8] that Sm is attained by a unique family
of functions, all of them being obtained from

φ(x) = (1 + |x|2) 2m−n
2 (3.3)

by translations, dilations in R
n and multiplication by constants.

A standard dilation argument implies that

inf
u∈Dom(QD

m,Ω)

u�=0

QD
m,Ω[u](∫

Ω

|u|2∗
m dx

)2/2∗
m

= Sm.

The key fact used in further considerations is the equality

inf
u∈Dom(QN

m,Ω)

u�=0

QN
m,Ω[u](∫

Ω

|u|2∗
m dx

)2/2∗
m

= Sm, (3.4)

that has been established in [18] (see also earlier results [11,25] for m = 2, [10] for m ∈ N and [15] for 0 < m < 1).
Clearly, the Sobolev constant Sm is never achieved on Dom(QN

m,Ω).
The corresponding equality for the Hardy constant, that is,

inf
u∈Dom(QN

m,Ω)

u�=0

QN
m,Ω[u]∫

Ω

|x|−2m|u|2 dx
= Hm , (3.5)

was proved in [18] as well (see also [9, 14] for m ∈ N).
We point out that the infima

Λ1(m, s) := inf
u∈Dom(QN

m,Ω)

u�=0

QN
m,Ω[u]

QN
s,Ω[u]

, Λ̃1(m, s) := inf
u∈Dom(QN

m,Ω [u])

u�=0

QN
m,Ω[u]∫

Ω

|x|−2s|u|2 dx
(3.6)

are positive and achieved. Since Dom(QN
m,Ω) is compactly embedded into Dom(QN

s,Ω), this fact is well known
for Λ1(m, s) and follows from (3.5) for Λ̃1(m, s).
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Weak solutions to (1.6), (1.7) can be obtained as suitably normalized critical points of the functionals

RΩ
λ,m,s[u] =

QN
m,Ω[u] − λQN

s,Ω[u]( ∫
Ω

|u|2∗
m dx

)2/2∗
m

, (3.7)

R̃Ω
λ,m,s[u] =

QN
m,Ω[u] − λ

∫
Ω

|x|−2s|u|2 dx

( ∫
Ω

|u|2∗
m dx

)2/2∗
m

, (3.8)

respectively. It is easy to see that both functionals are well defined on Dom(QN
m,Ω) \ {0}.

In fact, we prove the existence of ground states for functionals (3.7) and (3.8). We introduce the quantities

SΩ
λ (m, s) = inf

u∈Dom(QN
m,Ω)

u�=0

RΩ
λ,m,s[u]; S̃Ω

λ (m, s) = inf
u∈Dom(QN

m,Ω)

u�=0

R̃Ω
λ,m,s[u].

By standard arguments we have SΩ
λ (m, s) ≤ Sm, argue for instance as in ([16], Lem. 4.1). In addition, if λ ≤ 0

then SΩ
λ (m, s) = Sm and it is not achieved. Similar statements hold for S̃Ω

λ (m, s).
We are in position to prove our existence result that includes Theorem 1.3 in the introduction.

Theorem 3.1. Assume s ≥ 2m − n
2 .

i) For any 0 < λ < Λ1(m, s) the infimum SΩ
λ (m, s) is achieved and (1.6) has a nontrivial solution in

Dom(QN
m,Ω).

ii) For any 0 < λ < Λ̃1(m, s) the infimum S̃Ω
λ (m, s) is achieved and (1.7) has a nontrivial solution in

Dom(QN
m,Ω).

Proof. We prove i), the proof of the second statement is similar. Using the relation (3.4) and arguing for instance
as in ([16], Lem. 4.1) one has that if 0 < SΩ

λ (m, s) < Sm, then SΩ
λ (m, s) is achieved.

Since 0 < λ < Λ1(m, s), then SΩ
λ (m, s) > 0 by (3.6).

To obtain the strict inequality SΩ
λ (m, s) < Sm we follow [3], and we take advantage of the computations

in [16].
Let φ be the extremal of the Sobolev inequality (3.1) given by (3.3). In particular,

M := Qm[φ] = Sm

⎛
⎝ ∫

Rn

|φ|2∗
m dx

⎞
⎠

2/2∗
m

. (3.9)

Fix a cutoff function ϕ ∈ C∞
0 (Ω), such that ϕ ≡ 1 on the ball {|x| < δ} and ϕ ≡ 0 outside the ball {|x| < 2δ}.

If ε > 0 is small enough, the function

uε(x) := ε2m−nϕ(x)φ
(x

ε

)
= ϕ(x)

(
ε2 + |x|2) 2m−n

2

has compact support in Ω.
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From ([16], Lem. 3.1) we conclude

Aε
m := QD

m,Ω[uε] ≤ ε2m−n
(
M + C(δ) εn−2m

)

Aε
s :=

∫
Ω

|x|−2s|uε|2 dx ≥

⎧⎪⎨
⎪⎩

C(δ) ε4m−n−2s if s > 2m − n
2

C(δ) | log ε| if s = 2m − n
2

Ãε
s := QN

s,Ω[uε] ≥ Hs Aε
s [ see (3.5) ]

Bε :=
∫
Ω

|uε|2∗
m dx ≥ ε−n

(
(MS−1

m )2
∗
m/2 − C(δ) εn

)
.

If m is an integer or if 
m� is odd, then by (1.3)

Ãε
m := QN

m,Ω[uε] ≤ Aε
m,

and we obtain

RΩ
λ,m,s[uε] ≤ Sm

1 + C(δ) εn−2m − λC(δ) ε2m−2s

1 − C(δ) εn
, if s > 2m − n

2
(3.10)

RΩ
λ,m,s[uε] ≤ Sm

1 + C(δ) εn−2m − λC(δ) εn−2m| log ε|
1 − C(δ) εn

, if s = 2m− n

2
· (3.11)

Thus, for any sufficiently small ε > 0 we have that RΩ
λ,m,s[uε] < Sm, and the statement follows.

It remains to consider the case when 
m� is even. Since ‖uε‖L1(Ω) ≤ C(δ), the estimate (1.4) implies

Ãε
m ≤ Aε

m + C(δ) = ε2m−n
(
M + C(δ) εn−2m

)
,

and we again arrive at (3.10), (3.11). �

For the case s < 2m − n
2 we limit ourselves to point out the next simple existence result. Its standard proof

can be obtained as for Theorem 4.3 in [16]. We omit details.

Theorem 3.2. Assume s < 2m − n
2 .

(i) There exists λ∗ ∈ [0, Λ1(m, s)) such that for any λ ∈ (λ∗, Λ1(m, s)) the infimum SΩ
λ (m, s) is attained, and

hence (1.6) has a nontrivial solution.
(ii) There exists λ̃∗ ∈ [0, Λ̃1(m, s)) such that for any λ ∈ (λ̃∗, Λ̃1(m, s)) the infimum S̃Ω

λ (m, s) is attained, and
hence (1.7) has a nontrivial solution.
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