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THE LEBEAU-ROBBIANO INEQUALITY FOR THE ONE-DIMENSIONAL
FOURTH ORDER ELLIPTIC OPERATOR AND ITS APPLICATION

PENG GAO'?

Abstract. In this paper, we establish the Lebeau—Robbiano inequality for the one-dimensional fourth
order elliptic operator by using a point-wise estimate. Based on this inequality, we obtain the null
controllability of one-dimensional stochastic fractional order Cahn—Hilliard equation.
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1. INTRODUCTION

In this paper, we investigate the one-dimensional fourth order elliptic operator A on L?(I) as follows

D(4) = H3(1) " HA (D),
{ AY = Ypzaw Yy € D(A),

where I = (0,1).
Let {Ai}521,0 < Ay < A2 < ... be the eigenvalues of A and {e;}2; be the corresponding real eigenfunctions
such that [le;]| 2y =1 (i = 1,2,3,...), which serves as an orthonormal basis of L?(I) (see [13], Thm. 8.94).
The main result in this paper is an observability estimate on partial sums of eigenfunctions for the eigen-
functions of A, i.e. the Lebeau—Robbiano inequality:

Theorem 1.1. Let w be a nonempty open subset of I. There exist two positive constants C1,Cy such that
2
Z |ai\2 < CleC“/F/ Z a;e;| dx
)\iST w )\LST
for every finite r > 0 and every choice of {a;}x,<, with a; € C.
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The Lebeau—Robbiano inequality was first established in [5] for the Laplacian with homogeneous Dirichlet
boundary condition, then the same result for more general boundary conditions and second order elliptic oper-
ators were established in [7,11].

In the study on the controllability of PDE, the inequality of this type is the foundation of Lebeau—Robbiano
iteration technology. By this inequality, [5] obtained the null controllability of a linear system of thermoelasticity
in a compact, C'°°, n-dimensional connected Riemannian manifold. Then, this inequality was used to establish a
certain L°°-null controllability for the internal controlled heat equation when the control functions are restricted
in arbitrary subset of positive measure in time variable in [14]. Later, in [10], via the Lebeau-Robbiano inequality,
the authors presented a time optimal control problem with control constraints of the rectangular type for
internal controlled heat equations. Recently, the similar result as in [14] was extended to forward stochastic
heat equations in [9] and second order parabolic equation with equivalued surface boundary conditions in [11].
In [3], the Lebeau—Robbiano inequality can also be used to depict nodal sets of sums of functions.

However, to the best of our knowledge, the Lebeau—Robbiano inequality for fourth order elliptic operator has
not been established. It should be noted that Theorem 1.1 in this paper is not a straightforward generalization
of the Lebeau-Robbiano inequality in [4], although the inequality has the same formal. To prove Theorem 1.1,
a point-wise estimate for the operator 97 — 93 in Proposition 2.1 plays a crucial role. In order to obtain the
point-wise estimate, we need to choose suitable grouping for the terms of 0(ys — Ywzar) (see It and I in the
proof of Prop. 2.1) since the high order of the operator. Due to the special properties of the operator 97 — 93
and the boundary terms in the point-wise estimate, we need to construct several weight functions.

Based on Theorem 1.1, we can obtain the second result in this paper: the null controllability of one-dimensional
stochastic fractional order Cahn—Hilliard equation.

First, we give some assumptions.

(H1) Let (2, F,{Fi}t>0,P) be a complete filtered probability space on which a one-dimensional standard
Brownian motion {B(t)}+>0 is defined such that {F;}+>0 is the natural filtration generated by B(:), aug-
mented by all the P-null sets in F. Let H be a Banach space, and let C([0,T]; H) be the Banach space
of all H-valued strongly continuous functionals defined on [0,7"]. We denote by L%(0,T; H) the Banach
space consisting of all H-valued {F;};>0-adapted processes X (-) such that ]E(HX(')||2L2(0,T;H)) < 00,
with the canonical norm; by LF(0,T; H) the Banach space consisting of all H-valued {F}}:>o-adapted
bounded processes; and by L2%(2;C[0,7]; H)) the Banach space consisting of all H-valued {F;}¢>o0-
adapted continuous processes X(-) such that ]E(HX(-)HQC([O’T];H)) < o0, with the canonical norm; by
L%(0,T; L?(£2; H)) the Banach space consisting of all H-valued {F;};>¢-adapted processes X such that
|| X )13 -0, < 0o(1 <7 < o00), with the canonical norm.

(H2) E C [0,T] with positive measure. x,, and xg denote the characteristic function of w and FE, respectly.

(H3) We define the operator A as follows

D(A%) = {u € L*(Dju= Y aje; and Y |a;|*\2® < +OO},

i1 i>1
A% = ) a;A\{e; where u = )" age;.
i>1 i1
(H4) a(t) € L%O(O’T;R)v 5 = ”a”QL}C(O,T;R)'
(H5) For each r > 0, we set X, = span{e;(r)}, <, and denote by P, the orthogonal projection from L?(I) to
X,.
(H6) Throughout this paper, C'(and sometimes C') denotes various positive constants. C(...) stands for a
positive constant that depends on what are enclosed in the brackets.

Our second main result in this paper is the following theorem.
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Theorem 1.2. Let o > 1. For any yo € L*(£2, Fo, P; L*(I)), there is a control f € L¥(0,T; L*(£2; L*(I)))
such that the solution y of system

dy + A% = a(t)ydB + xuxefdt in I x (0,T),

y(oa t) =0= y(lvt) m (O,T)7
yI(Oat) :Ozyz(lat) m (O,T), (11)
y(z,0) = yo(z) in 1,

satisfies y(T') = 0 in I, P-a.s. Moreover, the control f satisfies the following estimate

||f||2L;c(o,T;L2(Q;L2(1))) < LE|lyollZz(z);
where L is a constant independent of yq.
Remark 1.3. We refer to ([1], Chap. 6) for the well-posedness of system (1.1) in the class
L% (52;C([0,T); L*(1))).-
The rest of this paper is organized as follows. In Section 2, we establish a point-wise estimate. Theorem 1.1
is proved in Section 3 according to two important lemmas. Section 4 is devoted to the proof of Theorem 1.2.

2. A POINT-WISE ESTIMATE

In this section, we give a point-wise estimate which will be used in the proof of Theorem 1.1 and the estimate
itself has independent interest.

Proposition 2.1. Setf =e', 1 = \p, ¢ = e andu = 0y in Q = I x(0,T), where 1) € C(Q) andy € C*(Q).
Assume that ;1 > 1 and X > o, where Ao = Ao (11, 1) such that \u=te > 1. Then we have the following point-wise
estimate
‘|‘>\3/~L4 37/14 —|—)\,u 901/’3: xt+{ o+ 1 }ww+{ Soee H{ - Jooee H{ e+ { hue
< C(W) (WTu'pTu® + NpP%ul + N i o’ ul, + Mupul, + N o®uf + Mupuly + 02y — Yoaaal?) , (2.1)

where

3 3 1 1
{ ..}z = {——Bgmu + = Bgu B4umz 4axui + 2app0u° + bwuiz — BoUtUgpr + §Bleu2

2 2
3 2 3 2 2 1 2 1 2 2
+ 5(3134)3335’& — §BlB4um — (bBl)xu + §BgB3ux + §BgB4um — (CLB3)3;U + B()Bgutux
1 3

3 1 1
——Bgut B4mut + B4u — brusuy + bxu? — (B4c)zu§ + iacu2 + —bcui} ,

T

b 1
ngmu —3az,u’ —|—2au —iu 3(BlB4)mu += bB1u += aBgu —1—334‘% uy — buf+§B4cui} ,

TT

Bgu + 2a,u’ + 2BlB4u 234u§} )

rxrx

BoByu® — —B()Bg’u + Bougug, + Bout — apu® + Bitgtigmy + bustipy + btu } ,
t

a =421y, b=8lpy, c=—10l4lps, Bo= —2l;, By =—l% By=4I3,

B3 = —61>

L)

By = 4l,.
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Remark 2.2. The key points in the proof of Proposition 2.1 are suitable grouping and the choice of a, b and c.

Proof. From the assumptions of A, u, ¢ and [, we can obtain that

)\n,um(pn < >\n+i/im—i<pn+i < )\n—&-i,um—&-i(pn—&-i’ Y m,n € 7 and i€ N,

ly gt .t SC@MTe, Yk, jeEN,
k J
_ 9kt
where lw...x t...t — 9Fzdit

k J
Direct computation shows that

g(ytt - yxxxm) = Uy + AOut + A1U + A2uz + ASUII + A4uzzz — Ugzzx

where
Ay = =21,
Ay =12 — Uy — 12— Aylynn + logws + 61200 — 312,
Ay = —12Uplpy + 413 + dlpaa,
Ag = —612 + 6l
Ay =4l,.
Set
I = —Ugzge + Bru + B3Ugs + g + cug,
Iy = Boug + Baugye + Boug + au + bugy,
R = 0(yst — Yoawa) — 11 — Iz = Sou + Siug + Satga,
where

SO = ltz - ltt - 4laclacacac + lacacacac - 3l32¢x + 2l32r;l3’:3’:7
Sl = 4lmxm - 2lxlxaca S2 = _2lacac~
Step 1. We shall prove the following equality
) FRR P Ton SN SEY 5. SR SRR 750 GRS SREY V5. N S S R T5-8 S S A V5.8 SN S SR T T SRS
+upug{. .} utigea {3+ { e F {0 Fer {0 S {0 Fazee H{ e+ {0 T

where

1 1 1 1 1 1 1 1
U2{- . } = UZ{ - Eazzzz*5(3132)1*5(3134)zzz+5(bB1)zzfE(BOBl)t+§(aB3)zz+Eatt+aB1*E(ac)z}y

(2.2)

(2.3)

1 3 1 1 1 1 1
w2{.. .} = ui{ 582m+2am+5(3134)z —bBy *5(3233)z*a33+5(3033)t - Ebtt+Bzc+5(B4c)zr i(bc)z},

1 1
uzz{ . } = uzz {_EBQZ —a— Ebrz - §(B3B4)z + bB3 — B4C} B
2 2 1
1 1 1 1
uf{ . } = u? {5321 - iBOt —a+ 534717 - ibzz} )
2 2 3
uzt{}:urt _534z+b 5

urtuzrz{ . } = u.’l)tu:l:.'ll:l:{BO}v
utugq{...} = wpuz {—(BoB3)z — Bat + bat + Boc},

Utuzzz{- . } = utuzzz{Bﬂz - B4t}7
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and {.. .}, { -« }ox, {- - }ozs, {- - tozes, {-- -}t {- . . }u are the same as in Proposition 2.1.
Indeed, (2.3) can be obtained from the following equations

pare Botte = 5 (Bod) . — 5 (Baatd) ,, + 5 (Boeatid = Byud,), + 5 Bogid, — - Brresti,
U e Balgww = % ((Bau,,), — Biati,,)
st = 1 (@), =2 (a0?),,, + (Bl = 20
+ (4aguf = 2a550u%) |+ aul, — 2a.,u7 + %ammu27
UgprrbDUpe = % (buix)m — (bxuiw)z — buim + %bmuiw,
Uzazz Bots = (BoUitaze)e — Bowtilaze — Bolattzes,
BiuBou, = % ((B1Bau?), — (B1Ba)gu?)
BiuBytzey = % BiByu?) g ((BiBy)su?), + 2(3134)xui
42 ((BiBa)sat® —~ BiBui2), — 5 (BiBi)eren®
Biubug, = % (bB1u?) = [(bB1)2u?], — bByul + %(bBl)mu2,
BiuByu; = % ((BoB1u?), — (BoB1)wu?)
B3ty Bauy, = % ((Bngui)m — (B2Bs)gu2),
B3ty Bitgze = % ((BsBauZ,), — (BsBa)sul,) ,
Bsugzau = % (aBgu2)m — ((aBg)zuz)w —aBsu? + %(aBg)mu2,
B3y Bouy = %(3033)&36 — (BoB3)usuy — ! (BOBSUi)t + (BoB3ug )z,

1
ugt Boug = (Baugug)r — Barusuy — 3 ((Bauf) , — Basuy),

uy Bous = = ((Bou7), — Boiui) ,

1
(auz)tt — (atu2)t — auf + —attu2,

2

1
2
1
Uprah = 5

1 3
Ut Bitigre = (BaUtUzee)t — BagUilzze — 5 (B4u3) + 3 (B4xu%)zz

2

3 3
- 5 (B4xacu3 - B4uit)z - §B4xuit + §B4xacacu?7

1 1 1
UptbUgy = (butu:mc)t"—bztutux_§bttui+§ (btui)t - (btutu:v)z_§ (buf)

T

. (ac).u?),
((bcui)w —(

1
2
aucuy = + ((acu?)
)
1
3 be)pul) .

+ (bxuf) .t bu?, —

2

1
b

815

2

zaxly,



816 P. GAO

Step 2. We shall prove estimate (2.1).

Indeed,
w?{.. .} = u? {102\ 1B Y% + Ry},
up{.. .} = uz{220°1°0°Yg + Ru},
uz,{- ) = i {600 Y + Ra},
U gl -} = U3, {10A* 002 + Ra},
u{.. .} =} 2N G0l + Ra},
ug{ .} = i {20ea},
UgptUaza{. - -} = UptUaza {20},
g ..} = g {—24141% — Ailylyy + Slyzat},
Utz ] -} = UtUpza{—06lyt},
where

[Rol S CXTuT™, |R| < ONpP¢”, |Ro| < ONpP¢?,
|Rs| < CApe, |Ra| < CN°p’p”.
Here we have used (2.2). Similarly, we have
|tattizea{. . | < C (Appud,, + Mupul,) ,
usus{.. .} < C (Np*®ul + N pPp’uf)
urtigze{. .} < C (AppuZ,, + Npp’uf)
Squ < CA7/,L7QD7U/2,
Stu < CXNpPpdul,
S3uZ, < CXNpPul,,

this implies

LI < ~(I + I)?

— N~

= 5 [e(ytt - yacacacac) - R]Q

< 92‘ytt - yacacacac|2 + |R‘2
<C (ez‘ytt - yacacacac|2 + Squ + Slzui + S%uix)

< C(0%|yer — Yaaaal® + A T 0% + N pPoou2 + NpPpPu2,) .

Thanks to (2.4)—(2.7) all together with (2.3), we can obtain (2.1).

3. PROOF OF THEOREM 1.1
Through this section, we make the following assumptions:
(A1) Let Ty, T',T",~, by satisfy
0<y<T' <L <T"<Ty—~,

-7 -l

)

1
max{T”—%,(l—i—(%—T’)2)2} <bg <L —n.

(2.6)

(2.7)
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(A2) For a measurable F' C Qg £ I x (0,T,) and a function g satisfies g, gz, 9ox, Gz, 9t 9ot € L2(F), we set

1
2

llglls,r = (H9||2L2(F) F92llZ 2y + 922172y + N92aelF2m) + 196l 72 ) + Hgth%"’(F))

(A?’) Define G £ {g € LQ(QO) ‘ 9z 9zay Yrzay rzazs 9ty 9ot € LQ(QO)}~

Remark 3.1. The existence of Ty, T',T",~ and by is easy to obtain, for example, Top = 4,7 = 1,T7" = 3,~v =
0.5,by = 1.42 satisfies (Al).

We borrow some idea from [11].
In order to prove Theorem 1.1, we investigate the following system

Ytt — Yazax =0 in Qo,
y(0,t) =0=y(1,t) in (0,Tp), (3.1)
Y2(0,t) = 0=y, (1,¢) in (0, Tp).

First, we establish two important lemmas.

Lemma 3.2. There exists a constant oy € (0,1) such that we have the following estimate
yllz2rx 1, 7r)) < Cllyl S,LX(%TO_V)\|?J\|1}5;1’ (32)
where y € G solves (3.1).

Proof. Introduce ¢ € C5°(vy, Ty — ) and vy € C°°(I) which enjoy the following properties

0<¢t) <1 te (v, To =)

o) =1 re (Bt b,

to(x) >0 vel, (3.3)
[toz] > 0 r € \w,

Y0(0) = ¥o(1) =0, ¢0x(0) >0, vo.(1) <0, [[Yollcq =1

The existence of 1y can be found in [15].

Set ¥1(z,t) = ¥o(x) — (t — L)% + C1, where O is chosen to be so large to make ¢; > 0. According to (A1),
it is obvious that (7”,7") C (Z2 — by, 22 + by).

We here let ¢(x,t) = ¢ (z,t) in Proposition 2.1 and apply (2.1) to § = ¢y and w = 67y, some straightforward
calculation gives that

/ (Vusﬂﬁwwz + N8Py w2 + Nt w2, + Apdevdw?

0

+ Xttt w? + NP eudwl, + e+ Lo dan L dam + L damee + {0 b+ {0 du ) dadt

<C() / ATuToTw? + NP w? + N p*w?, + Apw?,,,
0
+ )‘3M3905wt2 + Aﬂwwftt + 02|ytt - yzzzz‘z)dwdt (34)
Tt follows from (3.3) that

w(0,t) = w(1,t) = w, (0,t) =w,(1,¢) =0 Vte (0,Tp)
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and
w(x,0) = wi(x,0) = w(zr, Ty) = w(z,Ty) =0 Vael.
Thus
/ ({.. .}t +{ . }a)dzdt =0,
Qo "
/QO<{--.}x+{...}m+{...}m+{-~-}mx)dxdt=/0 (w2, (—1003 + 4lys) — 8luaWerWass
W (=2L2)) (1)t
£ V(1) - V(0). (3.5)
If we choose A > A\g with Ag large enough and note that 1o, (1) < 0, 10, (0) > 0, then it holds that
—-V(0)>0,V(1) >0, (3.6)

In view of (3.4)—(3.6), there holds

/ (WP i, w? + N pl®ei,wh + N pto* i, wl, + Moyt wl,, + N ptePvi e} + MPepiws,) dedt

0
< C(y) / (AT T w? + NP owl + N o*w?, + Mpw?,,,
Qo
+ )‘3,u3()03wt2 + A/”'@wit + 92|ytt - ymxmm‘2)dxdt (37)
Set QF = w x (0,Tp). Recall that |tp1,| > 0 in I\ w, it follows that

/ (ATpPeTw® + N0 %w? + N pte*w?, + MPowl,, + N pto*w] + MiPow?,) dedt
Qo\Qg

< Ci(¥) / (A" e"w? + NP owl + N pPoPw?, + Aupw?
Qo
+ )\3/13(,03’11}? + )\,ugowit + 02‘?% - ywmxm|2)dxdta

from which if we choose u = po = C1(10) + 1, then it holds that
/ (Ve w? + NpP o w + XN pP o wl, + Apw?,, + N pp*w] + Mpw?, ) dedt
Qo\QY

S 02 (1/’) (/ 02|ytt - yzzzz‘zdwdt + / (>‘7/~L7§07w2 + )‘S:U’SSOSU)?:
Qo

w

0
+ NP wd, + Apw,, + N ptetu] + Awwit)dﬂfdt> :
Then

Qo\QY

w
0

<C ( /Q O[Tt — Y| ddt + / (Nu"o"w?® + NP pPw?
. .

Qs

+ NP, + Mg, + NP wi + Awwit)dwdt> ,
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and thus

/ (AT " w? + NP wl + NP *w?, + Appw? ., + NP 0w + Appw?,) dadt
Qo

S C(/Q 92|ytt - ?mxmx‘zdxdt + / (/\7/’6790711}2 + )‘5/15900“}35
o w

Qs

+ N udodw?, + Mwpw?,, + NP oPw? + Aucpwiﬂdazdt) ;
from which it holds that

/ ()\7<p7w2 + )\5ap5wi + )\3ap3wgz + /\apwim + 233 wt + A(pwm) dxdt
Qo

S C(:u) </Q 92|ytt - yxmxm‘zdxdt + / ()‘7907"1)2 + /\S(pswi

§
+ MPwZ, + Apw?,, + NoPuw? + /\soth)dwdt>

Returning w to 6y (1 = o is now fixed), we can obtain that

/ (VG0 + NGO + NGO, + AT, + NG 0TE + Aph?72,) dadt

0
S C / ez‘ytt - ymxmmFdxdt + / (>‘79070252 + >‘590502§i
Qo ]
+ N P302T2, + N0 T2, + NP2 0°TE + )\<p02ywt)dxdt> . (3.8)

Taking into account the construction of ¢ and 1y, we have

/ ()\7 792y2+)\a 002y2 +)\3 302yxx+>‘9002yxxx )\380302 +)‘§002yxt) d.’Edt
0
2 A780792y2
Qo

> / )\7@79252
Ix(T",T'")
To

~ e (Lo _pr 2
> )\767%‘(01—(%—T')2>ezx\e‘<CI G- / y2dadt,
Ix(T",T")

/ (N 0% + N D0%Ys + NP 0°7a, + Ap0 Yo, + NP 0P 0777 + A0y, dwdt
0
- - To—~
< C)\7e7u(01+1)e2,\eu(cl+1) / / (y2 2y, R+ yit) dzdt
¥ w

(S 41 A n(Cr+1)
— ONTeTH(Crt1) g2re 1Ul7 (. 70—)



820 P. GAO

and

92@& - yxwww|2dxdt = / 92|¢tty + 2¢tyt|2dxdt = /
Qo (

Qo 0,T0)\ (52 —bo, 22 4by)

(1-b3+C1)

ot
< Ce* 19112 -

From the above estimates and (3.8), we know that
_ N\ 2
ATeTH(@n (o)) et (- (270

||y||2L2(Ix(T/,T~))

17b(2)+61)

/ 02|y + 202 dadt
I

#( & w(E1+1)
<0 (I g, 4 MO DI e Y
namely,
2 7 2’\(9“(1_”34“@1)—e"(él_(%_Tl)Q)) ~Tu(Cr-(-1")%) 2
HyHL2(I><(T’,T”)) <O A 'e yl1%, 00
~ 2
Tl 14+ E—T’ 2 u(é +1) “(le(%fT/) )
+e M( ( 2 ) >e2)\(e 1 e ||y||’2<7w><(%To_’y) ) (39)
Set .
~ = T ’
AT 2A<e“(1’b3+cl)—e“<cl’(é1”) >)—7u(61—(%—T')2)
e=A""e ,
- 2>\0< u(l b0+cl) ;L(Cl—(%Q_T/)2>)77#(517(%77—”)2)
€0 = Ag € ,
k eu(clﬂ)_e“(él*(%*w)?)
}L<cl_(22Q_T/)2> _on(1-34C1)
where 1 = po.

(3.9) implies that for any e € (0, 0] the following inequality holds:

lyllz2rx 7y < C (€_k\|y e wox (v, To—) T EllYlle00) -

Therefore, (3.10) holds for all € > 0. Further, if we let

Q1

1 HyH*,wx(%—b,%er)

a)=——, = )
1+k [yll+.00

(3.10) implies (3.2).

Lemma 3.3. There exists a constant as € (0,1) such that we have the following estimate

1Yl (7. 70—3) < C (190l 22wy + 18Ol 223)) ** NIl 2

where y € G solves (3.1).

(3.10)

(3.11)
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Proof. Since w is a nonempty open set, there exists an interval wg C w. Set a = inf wy, b = sup wy. We introduce
the set

N(r)={(z,t) |z €(a+T,b—7),t € (0,Ty — 7)}.
Let 7; (i =1,2,3) besuch that 0 < 73 < 72 < 71 < min{b_T‘l,To}7 thus N(71) C N(72) C N(713) C wo x (0,Tp).
We take a function h = h(z) such that

(3.12)

Let x € C*°(N(73)) with the properties

IN

<1 (x,t) € N(73)
(x,t) € N(12)
(z,t) € N(13) NU(IN (73)\wo x {0})

I
o = X

0
X
X
where U(ON (73)\wo x {0}) is a neighborhood of ON(73)\wo x {0}, which is very small.
Step 1. We shall prove that there exists a constant 3 € (0, 1) such that

8 _

[y lle.n(r) < C (15e(0) | 2wy + 19O m3) ™ N0ll5 - (3.13)

In order to prove (3.13), set a(z,t) = h(x). We here let ¥(z,t) = 12(x,t) in Proposition 2.1. Since h is
piecewise smooth in N(73), i.e. h is smooth in (a + 73, “E2) x (0, Ty — 73) and (22,6 — 73) x (0,1 — 73), we

can apply (2.1) to § = yy and u = 0§ in (a + 73, %F2) x (0,Tp — 73) and (“£2,b— 73) x (0,Tp — 73), respectively
and then add the two estimates together to obtain that

/ (ATiPpTu® + N pfo®ul + N ptoPul, + MiPpul,, + N ptePuf + MiPpul,) dedt
N(7s3)
< C/N( )(92|gtt — Gwewel? = Lo e — Lo Yo — Lo Ywow — Lo Yawae — Lov e — Lo da)dadt,
T3

where p is large enough with respect to C'(¢3).
Taking into the construction of 15 and x, we have

/J;{( ) ()\7/L8Q07’LL2 +)\5,u6§05ui +>\3M4Q03u3;3; _'_)\“2@”3:303: +)\3,LL4Q05U? _,_)\/LQSouit) dl’dt
T3

> /N( : ()\7u8<p7u2 + /\5u6<p5ui + )\3u4ap3uiw + /\u2apuim + /\3u4<p3uf + )\uzgouit) dzdt
T1

> O/ . (A,?/’(‘S 792:02 b Aslu/ﬁ 592:0:% )\3/’(‘4(03922‘}331 + )\M2(992gizz )\3M4 392@? Au2@92git) dzdt
N(m1 £

= C/ . (A7M8 792y2 . Asluﬁ 592:%20 + )\3/’64(9392:"/3:1 )‘M2(992y3xz¢z )\3/.t4 392yt2 A/"2()092y32gt) dzdt
N(m1 £

>C / MNP0 (Y2 + Y2 + Yo + Yiwe + Ui +y3y) dadt
N(71)

v(a+71)
> C)\M2eh(a+7'1)lte2>\e’ 1 “”y”i,N(Tl)
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and

/ (e =L ae = Lo Yome — L Yewwe — Lo be = L) dadt
N(s)
= / (_{}t — {}tt)dxdt
N(7s)

b*Tg

= /+ | ((Bautuy)(z,0) + (Batptigey ) (2,0) + (buptgs ) (x,0) + (auuy)(x,0)) da

<C ()\3u3 ((p?’uf) (z,0) 4+ X33 ( ) (z,0) + X1t (ap_luim) (z,0)

wo

A (e ) (2,0) + NP (9Pu?) (2,0)) d

(z
< OO [ (3 (2,0) 4 520.0) + 1210 0.0) 12, (0,0) + 4(0,0)) o
wo
< OXP P (”yt(O)H%Q(u}) F YO 20) + 192 (O 1720y + 1922 (0)]| 72y + ”yzzz(o)H%z(u}))
= NP e (Jly(0) 30y + 5O Frs(ey ) -
Noting that gy solves
Jtt — Jowwe = Y(Xtt — Xewaz) + 20Xt — WaXoove — 6YzaXaz — WazeXa,

this leads to

/ 92|gtt - gmx$$‘2dxdt - / 92|y(Xtt - Xxxacac) + 2tht - 4yachacw - nyxXxx - 4yxxxXx‘2d-Tdt
N(73) N(T3)
- / 92|y(Xtt - Xzzzz) + 2y Xt — WaXazr — 6YzeXaz — 4yxmmXx‘2d1'dt
N(73)\N(72)
g Ceerh,(a+rz);4r/ (y2 +yt2 _’_yi +y32£'3: _’_yiww)dxdt
N(m3)\N(72)

ehlatra)n
< Qe / - (V97 +yi + Y2 + Vi) dedt
N T3

h(a+To)p 9

Yllx,N(73)"

_ CeZ)\e

From the above estimates, we conclude that

atr oh(atTn 5 ot ohlatTa)n

AT e 0 (00 (a0 + 19O B ) + €T 0 )
namely,
—h(a+T n__h(at+71)p
J9112 ey < € (N2ptePhlermma (=< ()220 + y(0) s
4L —2 e~ hlatm)p 2)\( h(a+72)u—eh(a+f1)u)” ” N )
* 7'3
Set

h(at+7o)p _  h(atTi)p
c = )\71”72efh(a+71)/162)\(e 21 g ol )’
)\ 1 _2 _h(a+7_1)“e2>\0(eh(a+72)u_eh(a+71)u)

)

k- ek _eh(a+71)u
= ohlatrn _ghlatma)pm
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It is clear that 1 > h(a + 71) > h(a + 72), therefore, we can choose p large enough such that k& > 2. Then for
any € € (0,g0] the following inequality holds:

19l v(r) < Cellylleo + Ce™* (I (O)llz2e) + [5(O)llms)) - (3.14)
Therefore, (3.14) holds for all € > 0. Further, if we let
3, = o (||yt(0)|L2(w) + ||y(0)||H3(w))ﬁ1
1+k’ ]l )

(3.13) follows immediately from (3.14).
There must be some open ball B C N(71), it is easy to see that

8 _
Ill,z < C (19O 20) + IOl s @)™ Nyl
Step 2. We shall prove that there exists a constant 33 € (0, 1) such that

1—
Yl o (70— < ClYIZ5 Y152

Indeed, let B;, ¢ = 1,2, 3 be three open balls with the properties By CC By CC Bs CC Q. Take n € C§°(Qo)
be valued in (0,1) and n = 1 in Bs.
Set

2
¢3(l‘,t) = (.T — 1‘0)2 — 62 (t — %) +53,

1
ri= sup (|ac—ar;0|2—|—|t—to|2)2 ,
(z,t)EB;
ro = sup |t —tol,
(z,t)EB3
ry = inf t — 1o,
3 (I,t)EQo\B3| 0|
TQy = sup |z — xo],

(2,t)€Qo\Bs

where (zg,to) is the center of By and C~’2, C are large enough such that Cs (r3 —nr3) > r%o and 3 > 0.
We here let ¢(x,t) = ¥3(x,t) in Proposition 2.1 and apply (2.1) to g = ny and z = 07, then it follows that

/ (Nt ys,27 + NP 05,27 + N ulePyl, 22 + Nt ys, 22, + Ml oys,20,, + MPevs,22,) dzdt
Qo
S O(/ 92|gtt - waww‘2dxdt + / (A3M3‘P3Zt2 + /\7M7(p722
Qo Qo

+ NP2+ NP2l + Mz, + Ampzit)dwdt> :
By the same argument as in the proof of Lemma 3.2, there exists p1 > 0 such that for g > py, we have

/ (WP @®2] + NuToT22 + N pd® 22 + N pPp® 22, + Mupzl,, + Mupzs,) dadt
Qo
< C(/ 0?|9e¢ — Jrwaal*dadt +/ (NP2 + X" 2?
Qo B,

+ NP2+ NP2l + Mz, + Ampzit)dwdt> :
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Taking into account the construction of 13, we have
/ (NP @®2] + N "™ 22 + NpP P22 + N P22, + Mozl + Mupzs,) dadt
Qo
Z C ()\3,u390392gt2 + )\7M790702Q2 + >\5/l5§0502:1;i + )\3,u390392g3x + )\/Lgoe2giww + )\ucpezﬁit)dxdt
Qo

>C [ (NP 0%y; + N "0 0%y + NP o072 + NP 0%y2, + Aueb?ys,, + Aupb®y2, ) dadt
B

N (A
> C)\Me”(c?’*CzT?)ez)\e (Cs=e2rd) / (yt2 + y2 + ygzc + ygzcx + ya%xac + yazﬁt) dedt
B2

(€s=Car3) =

_ m C3—Car2) 2Xe"
= CAue (Ca=Car) B>

ly

and
/ (NuP@®2] + AT 2% + NpP P22 + NP 022, + Azl + Aupza,) dadt
B

<C [ (NP 0%y] + X0 0%y + NP 0007y + N iPp?0%y2, + Aueb?yl,, + Mupby2,) dadt
By
=, L r2+é
< C)\7M767H(T%+C3)e2)\e‘( 1 3) / (yf + y2 + yg + ygz + ygzz + ygzct) dzdt
B

— C)\7M7e7,u(7"%+63) 82)\6“'(7“%4—@3)

Hy |3,Bl'

Noting that ¢ solves
:gtt - mexm - y(ntt - nzzzz) + Yt - 277t — Yz - 477:1:;1:;1: — Yz * 6773030 — Yzzzx * 4771:,

we have

92|gtt - gzzzz‘zdwdt S 02 ‘y(ntt - nzzzz) + Yt - 27715 — Yz 477303030 — Yz * 6773030 — Yzzax * 4nz|2 d.’Edt
Qo Qo

Qo\B3

2 B2 &
n(rg, —C2r3+Cs)

< Ce?e 19112 0-

From the above estimates, we know that

= = 2 M(cg_cwg) u(ﬂQ 762rg+c~3) 2~ ,1,(T§+63)
/\MeM(C% Czrz)e2>\e ”y”i’B2 < C <e2>\e 0 ”y”a%,Qo +/\7M7e7u(r1+03)82>\e ”y”i,Bl ,

namely,

2/\(‘3“(%0 ~Cyr3+Cy) 76,4,(63—62%))

_ _ _ NV_N 2
lyl1? 5, s0<A Ly te (G Card)ug 19112 00

_ o 2)\( }L(T%+é3 _ n(C3—Car3 )
pagsstrisen) e (T )y
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Set

- A_lﬂ_le_(63_627‘3)“82}\(9}43‘?0 _c27‘§+63) _e“(égfé’z'r%)>

2. & B2 F 2
eur(rl-%—cs)_ ( 3—02T2)N er'f’u_e(—czrrz)u

= 2 _ 2 '
o(—C2rd)n_ (72 Car3 )

Note Cy (r3 —r3) > Té, therefore, we can choose p large enough such that k& > 6.
By the same method as in Step 1, it is easy to see that

4 1-6
lyll.5. < Cllylls 5, 19ll1qn (3.15)

where § € (0,1).
For any open ball B’ CC Qo, there is finite natural number m and two sequences of open balls {B*}" | and
{B"}™ | such that
B'c BB 'cc B NB*',i=1,...,m—1,
B™ cc B™,B™ C B.
In view of (3.15), there must be a sequence {§;}", such that

3 1-0 3 1-06
[Ylle.5r < Nyl < Clyll 5.0l g0 < CllYIL B2 MYk 00

516 1-816 5102...0m 1—6102...0m
< Oyl gl < .. < Cllyl|oh: o [y L gt

Setting ¢’ = 0102 ... 0m, it follows that

_5’
e (3.16)

ylle5 < Cllyll2 sy

Since w x (v,To —7) CC Qo, there must be a finite subcover of open balls, then from (3.16) we know there
is a constant 0 < 33 < 1 such that

1—
1l .10 < Cllyll gl g

Define as = 3132, we can deduce that

17
o - U

HyH*,wX(%TOf"/) <C (Hyt(O)HL"’(w) + ||y(0)||H3(w))a2 Hy
Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Following Lemma 3.2 and 3.3, there exists two constants ag,as € (0,1) such that for
any y € G which solves (3.1), satisfy

|1—a1

*,Qo

1yl L2cax ) < CIYIS iy o 1Y

and

9l ox (70— < C (lye(O) 122wy + 15O [ r2)) ™ Nyll 50

which conclude that

Yl L2y < C (1ye(0)ll 2wy + O rse)) ™ Nyl o 2. (3.17)
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Set y(z,t) = > Shtblazez, where b; = /A; and Shtb =t for b = 0. Direct computation shows that y given
Ai<r

as above solves (3.1), which vanishes when (z,t) € w x {0}. It is obvious that both Rey and Imy satisfy (3.1).
Applying (3.17) to Rey gives that

IReyll 21 x (1777 < C (IReye(0) 2wy + [Rey(0) ]| a5 (u)) hones. (3.18)
Since
IRey[12 o, < CeV" 3 [Rearf?,
Ai<r
(Rey)q+( Z Reaie;,
Ai<r

(Rey)(az,O) = (Rey)x(l‘, 0) = (Rey)zz(z,0) = (Rey)mx(as,()) =0

and

2

’ shib;
||Rey||2L2(IX(T,,T,,)) = // /I Z TzReaiei dzdt
i< '

T 2
= Z |Reaz|2/ Shtbi dt
A <r bz
T
> Z |[Rea; |2/ t2dt

Ai<r

=C(T",T") Y [Rea;|?,

)\iST

it is shown that

Z |Rea;|* < Cecﬁ/ Z Rea;e;| dx.

A <r e Ai<r

By the same manner, we have

Z |Imai|2 < Cecﬁ/ Z Ima;e;| dx.

Ai<r @ <r

This complete the proof with
2

Z |a; |2 < Cpe@2Vr / Z aze;| dx. O

Ai<r Wi <r

4. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 combines the ideas in [8,9]. First we give several lemmas.
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Lemma 4.1. ([6], pp. 256-257) For almost all t € E, there exists a sequence of numbers {t;}5¢, C (0,T) such
that

th <ty<...ti<tg1<..<t t;—1t as i — oo, (4.1)
m(E n [tiati-‘rlD Z p(ti+1 — ti), 1= 1,2, ..y (42)

tiv1 —t;
il <, i=1,2,. ., (4.3)

Live —tita

where p and Cy are two positive constants which are independent of i.

Lemma 4.2.

(a) For each v > A1, there exists a control f, € L¥(0,T; L*(£2; X,)) such that the solution y of system (1.1)
with [ = f, satisfies Pr(y(-,T)) = 0 in I, P-a.s. Moreover, f, verifies: If 2A§ > &, then

C’1€Cr"‘/F
2 (0T < ———E 2 -
||fTHL}. (0,T;L2(2; X)) = (m(E))? ||Z/o||L2(1)

For the general case, it holds that
C’lecm/;JrgT
£ 0,722 2,y < W]EH?JOH%my

(b) If f =0 in system (1.1), then for any yo € L*(£2, P, Fo; L2(I)) with Py,_, (yo) = 0 for some k = 2,3, ...,
the corresponding solution y of system (1.1) satisfies

Elly()l 72y < e~ @ Elyol7ar)- (4.4)

Proof.
(a) We first introduce the following backward stochastic fractional order Cahn-Hilliard equation

dz — A%z = —a(t)Zdt + ZdB in Q,

2(0,t) = 0= z(1,t) ?n (0,7), (4.5)
22(0,1) =0 = 2z,(1,1) in (0,7),
z2(x,T) = zr(x) in I,

where zr € L%*(02,P,Fr;X,). According to [2,12], (4.5) admits one and only one solution (z,72) €
L% (£2;C([0,T]; L*(I))) x L%(0,T5 L*(1))).
Since zr € L?(92, P, Fr; X,.), 27 can be written as 27 = > zhe; for a sequence of Fr-measurable random
Ai<r
variable {z%},<,. Then the solution (z,Z) of (4.5) can be expressed as

z = Z zi(t)ei,Z = Z Zi(t)ei’

)\1§7" >\7ST‘
where z;(-) € L%(£2; C([0,T])) and Z;(-) € L%(0,T)()\; < r) satisfy the following equation

in (0,7), (4.6)

dz; — A8z dt = —a(t)Z;dt + Z;dB
z(T) = 2&.
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It follows from Theorem 1.1 that

2

EY s < cleczﬁn«:/ S at)er] do = oleczﬁn«:/ 12(8) 2dz (@.7)
w [\ <r w

Ai<lr

for any ¢ € [0, T.
By Ito’s formula, we see that d|z|?> = 2zdz + (dz)?. Hence we obtain that

IE/Iz(t)zdx—]E/I|z(0)|2dx:2IE/Ot 3 /\?|zi(s)zds—i—IE/Ot/I(—Qa(s)zZ—l—Z2)dxds

Ai<r
t t
> QIE/ Z /\?|zi(s)\2ds—E/ /\a(s)z|2dxds
0 Ai<r 0 I
t
2B [ Y@ - glals)Pas 20 (48)
0 Ai<lr

In view of (4.7)) and (4.8), we obtain that
E/22($,0)d$ < CleC“/F]E/ 22 (x,t)da
I w

for t € [0, T]. Therefore,

/E(IE/If(as,O)da:)%dt < (Cre®2VT)3 /E (IE/UJZQ(a:,t)da;>%dt_

Hence we deduce that for each 27 € L?(2, P, Fr; X,),

]E/IZQ(x,O)dx < % (/OT (E/IXEszz(x,t)dx> : dt)2

01602\/; 5
= W HXEXwZHL;(O,T;L'A’(Q;L%I))) :

According to dual argument and a Riesz-type Representation Theorem, one can get the first result in part (a)
by similar argument as in [9].

Applying Itd’s formula to e7f|z|?, the second result in part a) can be obtained following the above methods
with minor changes.

(b) Since yo € L*($2,Fo, P; L*(I)) with P, ,(yo) = 0, yo can be written as yo = > .o, y4e; for suitable
yb € L?(02, Fy, P). Thus, the solution y of system (4.7) can be expressed as

o0

Y= Zyz(t)eza

i=k
where y* € L%(£2; C([0,T])) solves the following equation

{ dy’ + A\fy'dt = a(t)y'dB iy [0, 77,
y'(0) = wp.
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Applying Itd’s formula to ei =8|y (¢)|2, we have that

a (291 y(1)[2) = o 1aydy 4 o (dy)? 4 (247 — ) POy 2ar,

Hence it is clear that

oo

E/e(”‘?*‘f)ﬂy(t)\zdx—]’bﬁ/|y(0)\2dw—]E/ PN N " (—2A8) |y [Pds
I I

i=k
-HE/ / (A =9302(5)|y|>dads
+ (2§ — / / (AT=8)3)y2dads < 0,

which gives the desired estimate (4.4) immediately. O

Proof of Theorem 1.2. By same idea in [9], without loss of generality, in what follows we assume that Ay > &
and C7 > 1.

By Lemma 4.1, we can take a number ¢ € E with £ < T and a sequence {tx}35_; C (0,7) such that (4.1)—(4.3)
hold for some positive numbers p and Cp, and such that £ —t; < min{\§, 1}.

First, we take go(x) to be g(z, 1), where ¢ is the solution to the following equation

dg + A%qdt = a(t)gdB in I x (0,11),
Q(Ovt) =0= Q(lvt) in (Oa tl)a

. (4.10)
q-(0,t) =0 =¢q,(1,t) in (0,t1),
q(z,0) = yo(x) in [.
Next, we will show that there exists a control f € LE(t1,t; L?(£2; L*(I))) such that the solution § of
dj + A°§dt = a(t)jdB + yoxefdt in I x (t1,?),
j(0,t) =0 =g(1,t in (t1,1),
4(0, 1) y(1,1) (ta ~) (4.11)
7:(0,1) =0 = g.(1,¢) in (t1,1),
y(@,t1) = Go(x) in 7,
satisfying §(f) = 0 in I, P-a.s and
12
7] < LE|goll32(r) (4.12)

L2 (41,12 (2,12 (1))

where L is a constant independent of yg.
Indeed, set Ky = [tan—1,tan] and Jy = [tan,tony1] for N =1,2,..., then

[tl,a = fj (KNUJN).

N=1

Tt is clear that m(E N Ky) > 0 and m(ENJy) > 0 for all N > 1.
According to Lemmas 4.1 and 4.2 and the same argument in proof of Theorem 1.1 in [9], we control equa-
tion (4.11) on Ky corresponding a control fn such that Pr, (yn(-,tan)) = 0 and

Cy N Ax(N-1 _
IFN e (tan s taniz2(2iz2yy) < 2871 (m) cio . oprl )041042-~-@N]EH:U0H%2(1)’
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where

eczx/ﬁ’ N =1,

an =
N ecz,\/ﬁe(—%}*\,71+£)(t3—t2)CO_Q(N_2)’ N > 2,
2

TN (66’N71+§>b7 N =1,
_ 2 ~ 2C 1
C=—"—, C=—L_¢2 b=a--.

t3 — tg pz(tg — t1)2 2

On the other hand, we let the equation evolve freely on Jy.

Now, we prove the existence of the constant L in (4.12).
It is clear that

||fNH%gg(tw,l,tw;L?(Q;L?(z))) <"V Vaja;y. . anEl|gol (),

where N > 1, and 2% <P <Ty<...<Fy — o0as N — oco. Moreover,we have
b _ _ _ _
(Fn—1)? (ts — 12)C5 2N — ¢ty — )0y "N > 2, N > 2,
therefore .
e (rRoi=€)(ta—t)C " o man L NS g (4.13)
Note that b1 AN(N—-1) AN(N—-1) AN(N—1)
NNyt o T ¢«
(eF1%1>r1%I—1 (ezéN,Q)ﬂ%_l (CN-22r%
and

_ _% N - N(b+1)
eCm/rNeer_l < C(b)ec b —C

b

for each N > 2, where C'(b) is a positive constant depend on b. We derive from the definition of 7 that there
exists a natural number Ny, such that for all N > Ny,

~ b1 b1
CNIN=1)g=Tx", <1 and eC2VTN o= TNy <1. (4.14)
Combining (4.13) and (4.14), we see that for all N > N,

CN(N=1) o GNIN=1) (Cov/in (=27 46 (ts—12) 0“2

b1
< ONWN=1) Cav/iN g =47y

bl bl bl
_ C?N(Nfl)e—fj\ﬁ_l .eCQ«/fNe T2 o

e
<1

Moreover, it is obviously that ay < 1 for any N > Ny. We set

L:max{CﬁN(N*l)alag...aN,l <NKL NO} < 0
Then we can obtain that

||fNH%?_—o(th_hth;L?(Q;Lz(I))) S L]EH:IJOH%?(I)?
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where N > 1. We now contruct f by setting

- fN(ZL',t) rel,te Kn,N>1,
0 zel,teJy,N>1.

Tt is clear that f € L (t1,%; L*(2; L*(I))) and satisfies the estimate

P ~ 2
Hf”L;__c(tl,g;m(g;[,z(j))) < LE||?JOHL2(I)'

Arguing as in [9,10], we can obtain g(z,t) =0 in I, P-a.s.
Finally, construct a control f by setting

0 in Ix (O,tl),
f=2 flzt) in Ix(t,1),
0 in Ix(tT).

It is clear that f € L3 (0,7 L?(£2; L*(I))) and that the corresponding solution y of (1.1) satisfies y(T') = 0 in I,
P-a.s. Moreover, the control f satisfies the estimate

1125 0,722 (sp2 (7)) < LEIYolZ2ry- U
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