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ON THE CONVEXITY OF PIECEWISE-DEFINED FUNCTIONS ∗, ∗∗, ∗∗∗
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Abstract. Functions that are piecewise defined are a common sight in mathematics while convexity
is a property especially desired in optimization. Suppose now a piecewise-defined function is convex
on each of its defining components – when can we conclude that the entire function is convex? In this
paper we provide several convenient, verifiable conditions guaranteeing convexity (or the lack thereof).
Several examples are presented to illustrate our results.
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1. Introduction

Consider the function

f : R
2 → R : (x, y) �→

⎧⎨
⎩

x2 + y2 + 2 max{0, xy}
|x| + |y| , if (x, y) �= (0, 0);

0, otherwise.
(1.1)
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Clearly, f is a piecewise-defined function with continuous components

f1(x, y) := x + y on A1 := R+ × R+; (1.2a)

f2(x, y) :=
x2 + y2

−x + y
on A2 := R− × R+; (1.2b)

f3(x, y) := x + y on A3 := R− × R−; (1.2c)

f4(x, y) :=
x2 + y2

x − y
on A4 := R+ × R−. (1.2d)

One may check that each fi is a convex function (see Example 6.1 below for details). However, whether or not f
itself is convex is not immediately clear. (As it turns out, f is convex.)

On the other hand, if f1(x) = x on A1 := R− and f2(x) = −x on A2 := R+, then f1 and f2 are convex while
the induced piecewise-defined function f(x) = −|x| is not convex.

These and similar examples motivate the goal of this paper which is to present verifiable conditions guar-
anteeing the convexity of a piecewise-defined function provided that each component is convex. Special cases of
our results have been known in the convex interpolation community (see Rem. 5.7). Moreover, our results have
applications to computer-aided convex analysis (see Rem. 5.9).

(We mention in passing three different though related topics: The problem of guaranteeing the convexity of
intersections of sublevel sets of functions was recently considered in [18]. Points of convexity, which localize the
notion of convexity of a function, were investigated in [9, 11]. In [12], it is shown that the convex envelope of a
function arises as the solution of a nonlinear obstacle problem.)

The remainder of this paper is organized as follows. In Section 2, we collect various auxiliary results concerning
convexity and differentiability. We also require properties of collections of sets and of functions which we develop
in Sections 3 and 4, respectively. Our main results guaranteeing convexity are presented in Section 5. Various
examples illustrating convexity and the lack thereof are discussed in Sections 6 and 7, respectively.

Notation: Throughout, X is a Euclidean space with inner product 〈·, ·〉 and induced norm ‖·‖. R denotes the set
of real numbers, R+ :=

{
x ∈ R

∣∣ x ≥ 0
}
, and R− := −R+. For x and y in X , [x, y] :=

{
(1 − t)x + ty

∣∣ 0 ≤ t ≤ 1
}

is the line segment connecting x and y. Similarly, we set ]x, y[ :=
{
(1 − t)x + ty

∣∣ 0 < t < 1
}
, [x, y[ :={

(1 − t)x + ty
∣∣ 0 ≤ t < 1

}
, and ]x, y] := [y, x[. For a subset A of X , conv A, clA, intA, aff A, and riA re-

spectively denote the convex hull, the closure, the interior, the affine hull, and the relative interior of A.
Furthermore, ιA is the indicator function of A defined by ιA(x) = 0, if x ∈ A; and +∞ otherwise. Let
f : X → ]−∞, +∞] = R ∪ {+∞}. The domain of f is Df :=

{
x ∈ X

∣∣ f(x) < +∞}; f is said to be proper
if Df �= ∅. The restriction of f on some subset A of X is denoted by f

∣∣
A
. A set-valued mapping F from X

to another Euclidean space Y is denoted by F : X ⇒ Y ; and its domain is DF :=
{
x ∈ X

∣∣ F (x) �= ∅
}
. For

further background and notation, we refer the reader to [1, 10, 13, 14, 19].

2. Convexity and differentiability

Let f : X → ]−∞, +∞] be proper. For every x ∈ X , the subdifferential (in the sense of convex analysis) of f
at x, denoted by ∂f(x), is the set of all vectors x∗ ∈ X such that

(∀y ∈ X) 〈x∗, y − x〉 ≤ f(y) − f(x). (2.1)

The induced operator ∂f : X ⇒ X has domain D∂f =
{
x ∈ X

∣∣ ∂f(x) �= ∅
} ⊆ Df .

Let us now present some auxiliary results concerning the convexity of a function.

Lemma 2.1. Let f : X → ]−∞, +∞] and let z1 and z2 be in Df . Set x := (1− t)z1 + tz2, where t ∈ [0, 1], and
assume that x ∈ D∂f . Then f(x) ≤ (1 − t)f(z1) + tf(z2).
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Proof. Let x∗ ∈ ∂f(x). Then 〈x∗, z1 − x〉 ≤ f(z1) − f(x) and 〈x∗, z2 − x〉 ≤ f(z2) − f(x). Hence

(1 − t) 〈x∗, z1 − x〉 ≤ (1 − t)(f(z1) − f(x)); (2.2a)

t 〈x∗, z2 − x〉 ≤ t(f(z2) − f(x)). (2.2b)

Adding up the last two inequalities, we obtain 0 ≤ (1 − t)f(z1) + tf(z2) − f(x). �

Fact 2.2 (See [13], Thm. 6.1–6.3). Let A be a nonempty convex subset of X. Then the following hold:

(1) (∀x ∈ cl A)(∀y ∈ riA) ]x, y] ⊆ ri A.
(2) riA is nonempty and convex.
(3) cl(riA) = clA.

Fact 2.3 (See [13], Thm. 23.4). Let f : X → ]−∞, +∞] be convex and proper. Then riDf ⊆ D∂f .

Fact 2.4 (See [19], Thm. 2.4.1(iii)). Let f : X → ]−∞, +∞] be proper. Assume that Df = D∂f is convex. Then
f is convex.

Proof. Take z1 and z2 in Df and let t ∈ [0, 1]. Set x := (1 − t)z1 + tz2. Since ∂f(x) �= ∅, Lemma 2.1 implies
that f(x) ≤ (1 − t)f(z1) + tf(z2). Therefore, f is convex. �

In the presence of continuity, Fact 2.4 admits the following extension.

Lemma 2.5. Let f : X → ]−∞, +∞] be proper. Assume that Df is convex, that f
∣∣
Df

is continuous, and that
ri Df ⊆ D∂f . Then f is convex.

Proof. Fact 2.2 implies that riDf is convex and cl(ri Df ) = cl Df . Then the function f + ιri Df
is convex by

Fact 2.4. Since f
∣∣
Df

is continuous and riDf is dense in Df , we conclude that f
∣∣
Df

is convex. �

Given a nonempty subset A of X , we define the dimension of A to be the dimension of the linear subspace
parallel to the affine hull of A, i.e., dim A := dim(aff A − aff A). We then have the following result.

Lemma 2.6. Let f : X → ]−∞, +∞] be proper. Assume that f
∣∣
Df

is continuous, that Df is convex and at

least 2-dimensional, and that there exists a finite subset E of X such that f
∣∣
[x,y]

is convex for every segment
[x, y] contained in (ri Df ) � E. Then f is convex.

Proof. Take two distinct points x and y in Df , let t ∈ [0, 1], and set z := (1 − t)x + ty. Then z ∈ Df because
Df is convex. It remains to show that

f(z) ≤ (1 − t)f(x) + tf(y). (2.3)

First, since Df is convex and dim(Df ) ≥ 2, there exists w ∈ (riDf ) � aff{x, y}. For each ε ∈ ]0, 1[, set

xε := (1 − ε)x + εw, yε := (1 − ε)y + εw, and zε := (1 − t)xε + tyε. (2.4)

Using Fact 2.2(1) and the finiteness of E, we have

zε ∈ [xε, yε] ⊆ (ri Df ) � E, for every ε > 0 sufficiently small. (2.5)

Because f is convex on [xε, yε], this implies

f(zε) ≤ (1 − t)f(xε) + tf(yε). (2.6)

Letting ε → 0+, we obtain (2.3) by using the continuity of f
∣∣
Df

. �
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Remark 2.7 (The assumption on the dimension is important). Lemma 2.6 fails on R in the following sense.
Consider f : R → R : x �→ −|x| and set E := {0}. Then all assumptions of Lemma 2.6 hold except that Df = R

is only 1-dimensional. Clearly, the conclusion of Lemma 2.6 is not true because f is not convex.

We now turn our attention to differentiability properties. Recall that f : X → ]−∞, +∞] is differentiable
at x ∈ intDf if there exists ∇f(x) ∈ X such that (∀y ∈ X) f(y) − f(x) − 〈∇f(x), y − x〉 = o(‖y − x‖); f is
differentiable on subset A of intDf if f is differentiable at every x ∈ A. We will require the following results.

Fact 2.8 (See [13], Thm. 25.1). Let f : X → ]−∞, +∞] be convex and proper, and assume that x ∈ intDf .
Then f is differentiable at x if and only if ∂f(x) is a singleton.

Fact 2.9 (See [13], Thm. 25.5). Let f : X → ]−∞, +∞] be convex and proper, and let Ω be the set of points
where f is differentiable. Then Ω is a dense subset of intDf , and its complement in intDf is a set of measure
zero. Moreover, ∇f : Ω → X is continuous.

Fact 2.10 (See [13], Thm. 25.6). Let f : X → ]−∞, +∞] be convex and proper such that Df is closed with
nonempty interior. Then

(∀x ∈ Df ) ∂f(x) = cl(conv S(x)) + NDf (x), (2.7)

where NDf (x) :=
{
x∗ ∈ X

∣∣ (∀y ∈ Df ) 〈x∗, y − x〉 ≤ 0
}

is the normal cone to Df at x and S(x) is the set of
all limits of sequences (∇f(xn))n∈N such that f is differentiable at every xn and xn → x.

3. Compatible systems of sets

In this section, we always assume that

I is a nonempty finite set; (3.1a)
A := {Ai}i∈I is a system of convex subsets of X ; (3.1b)
A :=

⋃
i∈I Ai. (3.1c)

Definition 3.1 (Compatible systems of sets). Assume (3.1). We say that A is a compatible system of sets if

i ∈ I
j ∈ I
i �= j

⎫⎬
⎭ ⇒ cl Ai ∩ cl Aj ∩ riA = Ai ∩ Aj ∩ riA; (3.2)

otherwise, we say that A is incompatible.

Example 3.2. Every system of finitely many closed convex subsets of X is compatible.

Example 3.3 (Incompatible systems). Suppose that X = R
2, that I = {1, 2}, that A1 = ]0, 1] × [0, 1], and

that A2 = [−1, 0]× [0, 1]. Then A = A1 ∪ A2 = [−1, 1]× [0, 1] and riA = ]−1, 1[× ]0, 1[. Thus, A = {A1, A2} is
incompatible because

cl A1 ∩ cl A2 ∩ riA = {0} × ]0, 1[ �= ∅ = A1 ∩ A2 ∩ ri A. (3.3)

Definition 3.4 (Colinearly ordered tuple). The tuple of vectors (x0, . . . , xn) ∈ Xn is said to be colinearly
ordered if the following hold:

(1) [x0, xn] = [x0, x1] ∪ · · · ∪ [xn−1, xn];
(2) 0 ≤ ‖x0 − x1‖ ≤ ‖x0 − x2‖ ≤ · · · ≤ ‖x0 − xn‖.
Proposition 3.5. Assume (3.1) and that A is a compatible system of sets (Def. 3.1). Then for every segment
[x, y] contained in ri A, there exists a colinearly ordered tuple (x0, . . . , xn) and {Ai1 , . . . , Ain} ⊆ A such that

x0 = x; xn = y; and
(∀k ∈ {1, . . . , n}) [xk−1, xk] ⊆ Aik

. (3.4)
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Proof. Let [x, y] ⊆ ri A, with x ∈ Ai1 for some i1 ∈ I. Set x0 := x. For every t ∈ [0, 1], define

x(t) := (1 − t)x + ty. (3.5)

Furthermore, set
t1 := sup

{
t ∈ [0, 1]

∣∣ x(t) ∈ Ai1

}
and x1 := x(t1). (3.6)

Then [x0, x1[ ⊆ Ai1 and x1 ∈ cl Ai1 . Note also that x1 ∈ riA.

Case 1. t1 = 1. Then x1 = y ∈ cl Ai1 . Suppose that y �∈ Ai1 . Then, y ∈ Ai2 for some i2 ∈ I. It follows that
y ∈ clAi1 ∩ cl Ai2 ∩ ri A = Ai1 ∩Ai2 ∩ ri A, which is a contradiction. Therefore, y ∈ Ai1 and we are done because
[x, y] ⊆ Ai1 .

Case 2. t1 < 1. Then there exist ε ∈ ]0, 1 − t1] and Ai2 ∈ A � {Ai1} such that

]x1, x2] ⊆ Ai2 where x2 := x (t1 + ε) . (3.7)

Hence x1 ∈ cl Ai2 . We then have

x1 ∈ cl Ai1 ∩ cl Ai2 ∩ riA = Ai1 ∩ Ai2 ∩ ri A. (3.8)

So we have split [x, y] into two line segments

[x0, x1] ⊆ Ai1 ∩ ri A and [x1, y] ⊆ (⋃i∈I�{i1} Ai

) ∩ ri A. (3.9)

Next, we repeat the above process for the segment [x1, y]. Since A is finite, we eventually obtain (3.4). �

Remark 3.6 (Closedness is not necessary for compatibility). We note that there are compatible systems of
sets that are not closed. For example, suppose that X = R

2, that I = {1, 2}, that A1 = [0, 1[ × [0, 1], and that
A2 = ]−1, 0]× [0, 1]. Then neither A1 nor A2 is closed. However, since

cl A1 ∩ clA2 = A1 ∩ A2 = {0} × [0, 1], (3.10)

we deduce that A = {A1, A2} is compatible.

Definition 3.7 (Active index set). Assume (3.1). For every x ∈ X , we define the active index set associated
with A by

IA(x) :=
{
i ∈ I

∣∣ x ∈ Ai

}
, (3.11)

and we will write I(x) if there is no cause for confusion.

Proposition 3.8. Assume (3.1) and that A is a compatible system of sets (see Def. 3.1). Suppose that x ∈ intA
and that IA(x) = {i}. Then x ∈ intAi.

Proof. Because int A �= ∅, we have riA = intA. Suppose to the contrary that x �∈ intAi. Then there exist
j ∈ I � {i} and a sequence (xn)n∈N in Aj such that that xn → x. It follows that

x ∈ cl Ai ∩ cl Aj ∩ riA = Ai ∩ Aj ∩ riA, (3.12)

which is absurd because I(x) = {i} by assumption. �
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4. Compatible systems of functions

In this section, we always assume that

I is a nonempty finite set; (4.1a)
F := {fi}i∈I is a system of proper convex functions from X to ]−∞, +∞]; (4.1b)
f := mini∈I fi is the piecewise-defined function associated with F ; (4.1c)
IF : X → I : x �→ {

i ∈ I
∣∣ x ∈ Dfi

}
is the active index set function. (4.1d)

We will write I(x) instead of IF (x) if there is no cause for confusion. Note that Df =
⋃

i∈I Dfi .

Definition 4.1 (Compatible systems of functions). Assume (4.1). We say that F is a compatible system of
functions if (∀i ∈ I) fi

∣∣
Dfi

is continuous and

i ∈ I
j ∈ I
i �= j

Dfi ∩ Dfj �= ∅

⎫⎪⎬
⎪⎭ ⇒ fi

∣∣
Dfi

∩Dfj

≡ fj

∣∣
Dfi

∩Dfj

. (4.2)

We start with a useful lemma.

Lemma 4.2. Assume (4.1) and that F is compatible system of functions (Def. 4.1). Then

(∀x ∈ X) ∂f(x) ⊆
⋂

i∈IF (x)

∂fi(x). (4.3)

Proof. Suppose that x∗ ∈ ∂f(x) and that i ∈ IF (x). Then fi(x) = f(x) and (∀y ∈ X) fi(y) − fi(x) ≥
f(y) − f(x) ≥ 〈x∗, y − x〉. Therefore, x∗ ∈ ∂fi(x). �

Lemma 4.3. Let (a, b, c) ∈ X3 be colinearly ordered (Def. 3.4). Assume (4.1) with I = {1, 2}, that F is
compatible system of functions (Def. 4.1), that Df1 = [a, b], that Df2 = [b, c], and that

∂f1(b) ∩ ∂f2(b) �= ∅. (4.4)

Then f is convex and

(∀x ∈ Df ) ∂f(x) =
⋂

i∈IF (x)

∂fi(x) =

⎧⎪⎨
⎪⎩

∂f1(x), if x ∈ [a, b[ ;
∂f1(b) ∩ ∂f2(b), if x = b;
∂f2(x), if x ∈ ]b, c] .

(4.5)

Proof. We assume that a, b, c are pairwise distinct since the other cases are trivial. First, we show that

(∀x ∈ [a, b[
)

∂f1(x) ⊆ ∂f(x). (4.6)

Suppose that x ∈ [a, b[ and that x∗ ∈ ∂f1(x). To establish (4.6), it suffices to show that

(∀y ∈ [a, c]
) 〈x∗, y − x〉 ≤ f(y) − f(x). (4.7)
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Indeed, (4.7) is true for y ∈ [a, b] by definition of ∂f1(x) and f . Now suppose that y ∈ ]b, c]. By (4.4), there
exists b∗ ∈ ∂f1(b) ∩ ∂f2(b). Then

〈x∗, y − x〉 = 〈x∗, b − x〉 + 〈x∗, y − b〉 (4.8a)

≤ f1(b) − f1(x) +
‖y − b‖
‖b − x‖ 〈x∗, b − x〉 (4.8b)

≤ f1(b) − f1(x) +
‖y − b‖
‖b − x‖ 〈b∗, b − x〉 (4.8c)

≤ f1(b) − f1(x) + 〈b∗, y − b〉 (4.8d)

≤ f1(b) − f1(x) + f2(y) − f2(b) (4.8e)

= f2(y) − f1(x) (4.8f)
= f(y) − f(x). (4.8g)

Hence (4.7) holds, as does (4.6).
Switching the roles of f1 and f2, we obtain analogously

(∀x ∈ [c, b[ ) ∂f2(x) ⊆ ∂f(x). (4.9)

Next, it is straightforward to check that

∂f1(b) ∩ ∂f2(b) ⊆ ∂f(b). (4.10)

Since the reverse inclusions of (4.6), (4.9), and (4.10) follow from Lemma 4.2, we conclude that (4.5) holds.
Using (4.4), (4.5) and Fact 2.3, we conclude that ∂f(x) �= ∅ for all x ∈ ]a, c[ = ri Df . Finally, it follows from
Lemma 2.5 that f is convex. �

Theorem 4.4. Let (x0, . . . , xn) ∈ Xn+1 be colinearly ordered (Def. 3.4). Assume (4.1) with I = {1, . . . , n} and
that F is a compatible system of functions (Def. 4.1) such that the following hold:

(1) (∀i ∈ {1, . . . , n}) Dfi = [xi−1, xi].
(2) (∀i ∈ {1, . . . , n − 1}) ∂fi(xi) ∩ ∂fi+1(xi) �= ∅.

Then f is convex and
(∀x ∈ Df ) ∂f(x) =

⋂
i∈IF (x)

∂fi(x). (4.11)

Proof. If n = 1, then the result is trivial. For n ≥ 2, the result follows by inductively applying Lemma 4.3. �

5. Main results

We are now ready for our main results.

Theorem 5.1 (Main result I). Assume (4.1), that F is a compatible system of functions (Def. 4.1), and that
the following hold:

(a) Df =
⋃

i∈I Dfi is convex and at least 2-dimensional.
(b) {Dfi}i∈I is a compatible system of sets (Def. 3.1).
(c) There exists a finite subset E of X such that

x ∈ (ri Df ) � E
card I(x) ≥ 2

}
⇒

⋂
i∈I(x)

∂fi(x) �= ∅. (5.1)
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Then f is convex and
(∀x ∈ riDf ) ∅ �= ∂f(x) ⊆

⋂
i∈I(x)

∂fi(x). (5.2)

Proof. Let [x, y] ⊆ (riDf )� E. By the compatibility in (b) and Proposition 3.5, there exist a colinearly ordered
tuple (x0, . . . , xn) ∈ Xn+1 and functions fi1 , . . . , fin in F such that

x0 = x; xn = y; and
(∀k ∈ {1, . . . , n}) [xk−1, xk] ⊆ Dfik

∩ ri Df . (5.3)

Define (∀k ∈ {1, . . . , n}) gk := fik
+ ι[xk−1,xk] = f + ι[xk−1,xk]. (5.4)

Using (5.1), we see that, for every k ∈ {1, . . . , n − 1},
∂gk(xk) ∩ ∂gk+1(xk) ⊇ ∂fik

(xk) ∩ ∂fik+1(xk) ⊇
⋂

i∈I(xk)

∂fi(xk) �= ∅. (5.5)

By applying Theorem 4.4 to the system {gk}k∈{1,...,n}, we see that g = mink∈{1,...,n} gk = f + ι[x,y] is convex
and hence so is f

∣∣
[x,y]

. In view of Lemma 2.6, we obtain the convexity of f . Finally, for all x ∈ ri Df , we have
∂f(x) �= ∅ by Fact 2.3. Therefore, (5.2) follows from Lemma 4.2. �

Remark 5.2. We note an interesting feature in Theorem 5.1. In assumption (c), we require the non-emptiness
of the subdifferential intersection (5.1) at all relative interior points except for finitely many points. Since
our conclusion says that f is convex, the subdifferential intersection is nonempty at every point in ri Df (see
Fact 2.3). That means, in order to check the convexity of f , we are allowed to ignore verifying (5.1) at finitely
many points in riDf . This turns out to be very convenient since checking (5.1) at certain points may not be
obvious (see, for example, Example 6.1).

Remark 5.3 (Compatibility on the system of domains is essential). Theorem 5.1 fails if the domain compati-
bility assumption (b) is omitted: indeed, suppose that X = R

2, that I = {1, 2}, and that

f1 = ι[0,1]×[0,1] and f2 = ι[−1,0[×[0,1] + 1. (5.6)

Then F is a compatible system of functions. Even though Df = [−1, 1]× [0, 1] is convex, {Dfi ∩ riDf}i∈I is not
a compatible system of sets. So, Theorem 5.1(b) is violated. Clearly, f is not convex.

We thank a referee for a comment that caused us to point out the following result, which is complementary
to Theorem 5.1. It deals with the case when Df is 1-dimensional. For notational simplicity we state the result
when X = R.

Theorem 5.4. Assume that X = R, that (4.1) holds, that F is a compatible system of functions (Def. 4.1),
and that the following hold:

(a) I = {1, 2, . . . , n} for some n ≥ 2 and (∀i ∈ I) intDfi �= ∅.
(b) (∀i ∈ {1, . . . , n − 1}) xi := maxDfi = min Dfi+1 and ∂fi(xi) ∩ ∂fi+1(xi) �= ∅.
(c) {Dfi}i∈I is a compatible system of sets (Def. 3.1).

Then f is convex and (∀x ∈ Df ) ∂f(x) =
⋂

i∈IF (x) ∂fi(x).

Proof. Take x0 ∈ Df1 and xn ∈ Dfn such that x0 < x1 ≤ xn−1 < xn. By Theorem 4.4, the result holds for
f + ι[x0,xn]. Since x0 and xn were chosen arbitrarily, we are done. �

Theorem 5.5 (Main result II). Assume (4.1), that F is a compatible system of functions (Def. 4.1), that each
fi is differentiable on intDfi �= ∅, and that the following hold:

(a) Df =
⋃

i∈I Dfi is convex and at least 2-dimensional.
(b) {Dfi}i∈I is a compatible system of sets (Def. 3.1).
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(c) There exists a finite subset E of X such that

x ∈ (intDf ) � E
{i, j} ⊆ I(x)

}
⇒ lim

z→x
z∈intDfi

∇fi(z) = lim
z→x

z∈intDfj

∇fj(z) exists. (5.7)

Then f is convex; moreover, it is continuously differentiable on (intDf ) � E.

Proof. We will prove the convexity of f by using Theorem 5.1. Note that it suffices to verify assumption (c)
of Theorem 5.1. To this end, let x ∈ int(Df ) � E such that card I(x) ≥ 2 and denote by u∗

x the limit in (5.7).
Fact 2.10 and Lemma 4.2 imply

u∗
x ∈

⋂
i∈I(x)

∂fi(x). (5.8)

So assumption (c) in Theorem 5.1 holds. Thus, we conclude that f is convex.
Turning towards the differentiability statement, let Ω be the set of points at which f is differentiable. Then⋃

i∈I intDfi ⊆ Ω ⊆ intDf .
Now let x ∈ (intDf ) � E. We consider two cases.

Case 1. Card I(x) = 1. Then Proposition 3.8 implies that x ∈ intDfi for some i ∈ I, which implies that x ∈ Ω.

Case 2. Card I(x) ≥ 2. Since x ∈ intDf , we obtain NDf
(x) = {0}. Hence, by Fact 2.10, we have

∂f(x) = cl conv
{
lim
n∈N

∇f(zn)
∣∣ Ω � zn → x

}
. (5.9)

Let (zn)n∈N be a sequence in Ω such that zn → x, and let (εn)n∈N be in R++ such that εn → 0+. By Fact 2.9,
∇f
∣∣
Ω

is the continuous and because
⋃

i∈I intDfi is dense in Df , there exists a sequence (yn)n∈N in
⋃

i∈I intDfi

such that
(∀n ∈ N) ‖yn − zn‖ ≤ εn and ‖∇f(yn) −∇f(zn)‖ ≤ εn. (5.10)

Combining with (5.7), we deduce that

yn → x and lim
n∈N

∇f(zn) = lim
n∈N

∇f(yn) = u∗
x. (5.11)

So, (5.9) becomes ∂f(x) = {u∗
x}. Thus, f is differentiable at x by Fact 2.8. �

Corollary 5.6. Assume (4.1), that F is a compatible system of functions (Def. 4.1), and that the following
hold:
(a) Df =

⋃
i∈I Dfi is convex and at least 2-dimensional.

(b) {Dfi}i∈I is a compatible system of sets (Def. 3.1).
(c) f is continuously differentiable on intDf .
Then f is convex.

Proof. This follows from Theorem 5.5 with E = ∅. �
Remark 5.7 (Convex interpolation). When X = R

2, then Corollary 5.6 is known and of importance in the
convex interpolation of data; (see, e.g., [5] Thm. 1, [6] Prop. 2.2, [15] Thm. 3.1, [2] Prop. 5.1 and the related [16]
Thm. 3.6) for further details.

Corollary 5.8. Assume (4.1), that F is a compatible system of functions (Def. 4.1), that each Dfi is closed,
and that (∀i ∈ I)(∀x ∈ Dfi ) fi(x) = 1

2 〈x, Aix〉 + 〈bi, x〉 + γi, where Ai : X → X is linear with Ai = A∗
i � 0,

bi ∈ X, and γi ∈ R. Furthermore, assume that Df =
⋃

i∈I Dfi is convex and at least 2-dimensional, and that

{i, j} ⊆ I
i �= j

x ∈ Dfi ∩ Dfj

⎫⎬
⎭ ⇒ Aix + bi = Ajx + bj . (5.12)

Then f is convex; moreover, it is continuously differentiable on intDf .
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Proof. This follows from Example 3.2 and Theorem 5.5 with E =∅ since ∇fi(x)=Aix+bi when x ∈ intDfi . �

Remark 5.9 (Piecewise linear-quadratic function). Consider Corollary 5.8 with the additional assumption that
each Dfi is a polyhedral set. Then Corollary 5.8 provides a sufficient condition for checking the convexity of f
which in this case is a piecewise linear-quadratic function. These functions play a role in computer-aided convex
analysis (see [7], [14] Sect. 10.E) and also [17] for further information on functions of this type). Moreover, we
thus partially answer an open question from ([8], Sect. 23.4.2). Our results also enhance our understanding of
how nonconvexity occurs and form another step towards building a nonconvex toolbox that extends current
bivariate computational convex analysis algorithms [3, 4].

6. Checking convexity

We start with an application of Theorem 5.5.

Example 6.1. The function

f : R
2 → R : (x, y) �→

⎧⎨
⎩

x2 + y2 + 2 max{0, xy}
|x| + |y| , if (x, y) �= (0, 0);

0, if (x, y) = (0, 0)
(6.1)

is convex, and differentiable on R
2

� {(0, 0)}.
Proof. First, set I := {1, . . . , 4} and

f1(x, y) :=

{
x + y, if (x, y) ∈ A1 := R

2
+,

+∞, otherwise;
(6.2a)

f2(x, y) :=

{
x2+y2

−x+y , if (x, y) ∈ A2 := R− × R+,

+∞, otherwise;
(6.2b)

f3(x, y) :=

{
−x − y, if (x, y) ∈ A3 := R

2−,

+∞, otherwise;
(6.2c)

f4(x, y) :=

{
x2+y2

x−y , if (x, y) ∈ A4 := R+ × R−,

+∞, otherwise.
(6.2d)

Then {fi}i∈I is a compatible system of functions (Def. 4.1) with f being the corresponding piecewise-defined
function. Moreover, {Dfi}i∈I = {Ai}i∈I is a compatible system of sets.

Each fi is differentiable on intAi with the gradient given by

∇f1(x, y) = (1, 1) for (x, y) ∈ intA1; (6.3a)

∇f2(x, y) =
(−x2 + 2xy + y2

(x − y)2
,
−x2 − 2xy + y2

(x − y)2

)
for (x, y) ∈ intA2; (6.3b)

∇f3(x, y) = (−1,−1) for (x, y) ∈ intA3; (6.3c)

∇f4(x, y) =
(

x2 − 2xy − y2

(x − y)2
,
x2 + 2xy − y2

(x − y)2

)
for (x, y) ∈ intA4. (6.3d)

One readily checks that the Hessian of each fi is positive semi-definite on intAi; hence, by the continuity
of fi

∣∣
Dfi

, we have that fi is convex.
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Moreover,

(∀a > 0) lim
(x,y)→(a,0)
(x,y)∈int A1

∇f1(x, y) = lim
(x,y)→(a,0)
(x,y)∈int A4

∇f4(x, y) = (1, 1); (6.4a)

(∀a < 0) lim
(x,y)→(a,0)
(x,y)∈int A2

∇f2(x, y) = lim
(x,y)→(a,0)
(x,y)∈int A3

∇f3(x, y) = (−1,−1); (6.4b)

(∀b > 0) lim
(x,y)→(0,b)
(x,y)∈int A1

∇f1(x, y) = lim
(x,y)→(0,b)
(x,y)∈int A2

∇f2(x, y) = (1, 1); (6.4c)

(∀b < 0) lim
(x,y)→(0,b)
(x,y)∈int A3

∇f3(x, y) = lim
(x,y)→(0,b)
(x,y)∈int A4

∇f4(x, y) = (−1,−1). (6.4d)

Now set E := {(0, 0)}. From the above computations, we observe that all assumptions of Theorem 5.5 are
satisfied. Thus, we conclude that f is a convex function that is also continuously differentiable away from the
origin. �

In fact, the function defined by (6.1) is actually a norm since it is clearly positively homogeneous. An analogous
use of Theorem 5.5 allows for a systematic proof of the convexity of the function considered next.

Example 6.2. The function

f : R
2 → R : (x, y) �→

{√
x6 + y4, if xy ≥ 0;

|x|3 + y2, otherwise,
(6.5)

is a convex and continuously differentiable.

We conclude this section with an application of Theorem 5.1.

Example 6.3. The function

f : R
2 → R : (x, y) �→ f(x, y) :=

{√
x4 + y2, if xy ≥ 0;

x2 + |y|, otherwise,
(6.6)

is convex.

Proof. First, set I := {1, . . . , 4} and

f1(x) :=

{√
x4

1 + x2
2, if x ∈ A1 := R

2
+,

+∞, otherwise;
(6.7a)

f2(x) :=

{
x2

1 + x2, if x ∈ A2 := R− × R+,

+∞, otherwise;
(6.7b)

f3(x) :=

{√
x4

1 + x2
2, if x ∈ A3 := R

2−,

+∞, otherwise;
(6.7c)

f4(x) :=

{
x2

1 − x2, if x ∈ A4 := R+ × R−,

+∞, otherwise.
(6.7d)

Then {fi}i∈I is a compatible system of functions (Def. 4.1) with f being the corresponding piecewise function.
Moreover, {Dfi}i∈I = {Ai}i∈I is a compatible system of sets.
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Each fi is differentiable on intAi with the gradient given by

∇f1(x) =

(
2x3

1√
x4

1 + x2
2

,
x2√

x4
1 + x2

2

)
for x ∈ intA1; (6.8a)

∇f2(x) = (2x1, 1) for x ∈ intA2; (6.8b)

∇f3(x) =

(
2x3

1√
x4

1 + x2
2

,
x2√

x4
1 + x2

2

)
for x ∈ intA3; (6.8c)

∇f4(x) = (2x1,−1) for x ∈ intA4. (6.8d)

Next, since the Hessian of fi is positive semidefinite on intAi, we deduce that each fi is convex.
Now set E := {(0, 0)}. We will verify (5.1). Note that simple computations show the following:
For x = (0, x2) ∈ (A1 ∩ A2) � E,

lim
z→x

z∈int A1

∇f1(z) = lim
z→x

z∈int A2

∇f2(z) = (0, 1) ∈ ∂f1(x) ∩ ∂f2(x). (6.9)

For x = (0, x2) ∈ (A3 ∩ A4) � E,

lim
z→x

z∈int A3

∇f3(z) = lim
z→x

z∈int A4

∇f4(z) = (0,−1) ∈ ∂f3(x) ∩ ∂f4(x). (6.10)

For x = (x1, 0) ∈ (A2 ∩ A3) � E,

lim
z→x

z∈int A2

∇f2(z) = (2x1, 1) and NA2(x) = {0} × R−; (6.11a)

lim
z→x

z∈int A3

∇f3(z) = (2x1, 0) and NA3(x) = {0} × R+. (6.11b)

Then, using Fact 2.10, we conclude that ∂f2(x) ∩ ∂f3(x) �= ∅.
For x = (x1, 0) ∈ (A1 ∩ A4) � E,

lim
z→x

z∈int A1

∇f1(z) = (2x1, 0) and NA1(x) = {0} × R−; (6.12a)

lim
z→x

z∈int A4

∇f4(z) = (2x1,−1) and NA4(x) = {0} × R+. (6.12b)

Then, using Fact 2.10, we conclude that ∂f1(x) ∩ ∂f4(x) �= ∅.
So, we have verified that assumption (c) in Theorem 5.1 holds. Therefore, f is convex by Theorem 5.1. �

7. Detecting the lack of convexity

The nonempty subdifferential intersection condition (5.1) is indeed crucial for the check of convexity: we will
see in the following result that the violation of (5.1) leads to nonconvexity.

Theorem 7.1 (Detecting lack of convexity). Assume (4.1), that F is a compatible system of functions
(Def. 4.1), and that

(∃x ∈ ri Df )
⋂

i∈I(x)

∂fi(x) = ∅. (7.1)

Then f is not convex.
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Proof. Using Lemma 4.2, we have ∂f(x) ⊆ ⋂i∈I(x) ∂fi(x) = ∅. Therefore, by Fact 2.3, f is not convex. �

Using Theorem 7.1, we will now illustrate that the finiteness assumption on E is important for our main
results (Thms. 5.1 and 5.5).

Example 7.2. Suppose that X = R
2, set

f1(x, y) :=

{
max{−x, y}, if (x, y) ∈ A1 := R+ × R;
+∞, otherwise,

(7.2a)

f2(x, y) :=

{
max{x, y}, if (x, y) ∈ A2 := R− × R;
+∞, otherwise,

(7.2b)

F := {f1, f2}, f := min{f1, f2}, i.e.,

f : R
2 → R : (x, y) �→ max

{− |x|, y}, (7.3)

and E := {0} × R−. Then one checks the following:

(1) F is a compatible system of functions.
(2) {A1, A2} is a compatible system of sets.
(3) For every (x, y) ∈ R

2
� E with IF (x, y) = {1, 2}, we must have (x, y) ∈ {0} × R++, i.e., x = 0 and y > 0.

Then f(x, y) = y locally around (0, y) and thus

∂f1(0, y) ∩ ∂f2(0, y) ⊇ ∂f(0, y) = {(0, 1)}. (7.4)

So, all assumptions in Theorems 5.1 and 5.5 are satisfied except that E is infinite. However, for (0, y) ∈
E � {(0, 0)}, we have y < 0; thus, f1(x, y) = −x + ιA1(x, y) locally around (0, y). It follows that

∂f1(0, y) = (−1, 0) + NA1(0, y) = ]−∞,−1]× {0} (7.5)

and similarly that
∂f2(0, y) = (1, 0) + NA2(x, y) = [1, +∞[× {0}. (7.6)

Hence ∂f1(0, y) ∩ ∂f2(0, y) = ∅ and so f is not convex by applying Theorem 7.1 or by direct inspection.

In the previous example, the set E was infinite, but unbounded. In the next (slightly more involved) example,
we provide a case where E is bounded.

Example 7.3. Suppose that X = R
2, set I := {1, . . . , 6},

A1 :=
{
(x, y) ∈ R

2
∣∣ |x| + |y| ≥ 1, x ≥ 0, y ≥ 0

}
, (7.7a)

A2 :=
{
(x, y) ∈ R

2
∣∣ |x| + |y| ≥ 1, x ≤ 0, y ≥ 0

}
, (7.7b)

A3 :=
{
(x, y) ∈ R

2
∣∣ |x| + |y| ≥ 1, x ≤ 0, y ≤ 0

}
, (7.7c)

A4 :=
{
(x, y) ∈ R

2
∣∣ |x| + |y| ≥ 1, x ≥ 0, y ≤ 0

}
, (7.7d)

A5 :=
{
(x, y) ∈ R

2
∣∣ |x| + |y| ≤ 1, x ≥ 0

}
, (7.7e)

A6 :=
{
(x, y) ∈ R

2
∣∣ |x| + |y| ≤ 1, x ≤ 0

}
, (7.7f)

f : R
2 → R : (x, y) �→ max

{
1 − |x|, |y|}, (7.8)

F := {fi}i∈I , where (∀i ∈ I) fi := f + ιAi , (7.9)
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and E :=
({0} × [−1, 1]

) ∪ {(±1, 0)}. Then one checks the following:

(1) Each fi is convex and continuous on Dfi because

fi(x, y) = y + ιAi(x, y) for i ∈ {1, 2}; (7.10a)

fi(x, y) = −y + ιAi(x, y) for i ∈ {3, 4}; (7.10b)
f5(x, y) = −x + 1 + ιA5(x, y); and (7.10c)
f6(x, y) = x + 1 + ιA6(x, y). (7.10d)

Consequently, F is a compatible system of functions.
(2) {Ai}i∈I is a compatible system of sets.
(3) f is the piecewise-defined function associated with F .
(4) Take (x, y) ∈ R

2
� E with card IF (x, y) ≥ 2. Then

IF (x, y) ∈ {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 6}, {3, 4}, {3, 6}, {4, 5}}. (7.11)

Suppose, for instance, that IF (x, y) = {1, 5}. Then x > 0, y > 0, and x + y = 1. We have

∂f1(x, y) = (0, 1) + NA1(x, y) = (0, 1) + R+(−1,−1) (7.12)

and
∂f5(x, y) = (0, 1) + NA5(x, y) = (−1, 0) + R+(1, 1). (7.13)

Then (
−1

2
,
1
2

)
∈ ∂f1(x, y) ∩ ∂f5(x, y); (7.14)

similarly, one obtains nonemptiness for the other cases.

We observe that all assumptions in Theorems 5.1 and 5.5 are satisfied except that E is infinite and bounded.
However, for every (0, y) ∈ {0}× ]−1, 1[ ⊆ E, we have f(x, y) = min{f5(x, y), f6(x, y)} = −|x|+1 locally around
(0, y). Clearly, f is not convex.
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