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ABSOLUTELY CONTINUOUS CURVES IN EXTENDED
WASSERSTEIN−ORLICZ SPACES
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Abstract. In this paper we extend a previous result of the author [S. Lisini, Calc. Var. Partial Differ.
Eq. 28 (2007) 85–120.] on the characterization of absolutely continuous curves in Wasserstein spaces to
a more general class of spaces: the spaces of probability measures endowed with the Wasserstein−Orlicz
distance constructed on extended Polish spaces (in general non separable), recently considered in
[L. Ambrosio, N. Gigli and G. Savaré, Invent. Math. 195 (2014) 289–391.] An application to the
geodesics of this Wasserstein−Orlicz space is also given.
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1. Introduction

In this paper we extend a previous result of the author [8] to a more general class of spaces. The result
in [8] concerns the representation of absolutely continuous curves with finite energy in the Wasserstein space
(P(X, d),Wp) (the space of Borel probability measures on a Polish metric space (X, d), endowed with the
p-Wasserstein distance induced by d) by means of superposition of curves of the same kind on the space (X, d).
The superposition is described by a probability measure on the space of continuous curves in (X, d) representing
the curve in (P(X, d),Wp) and satisfying a suitable property.

Here we extend the previous representation result in two directions: in the first one we consider a so-
called extended Polish space (X, τ, d) instead of a Polish space (X, d); in the second one we consider the
ψ-Orlicz–Wasserstein distance induced by an increasing convex function ψ : [0,+∞) → [0,+∞] instead of the
p-Wasserstein distance modeled on the particular case of ψ(r) = rp for p > 1.

The class of extended Polish spaces was introduced in the recent paper [4]. The authors consider a Polish
space (X, τ), i.e. τ is a separable topology on X induced by a distance δ on X such that (X, δ) is complete.
The Wasserstein distance is defined between Borel probability measures on (X, τ) and constructed by means of
an extended distance d on X that can assume the value +∞. The minimum problem that defines the extended
Wasserstein distance makes sense between Borel probability measures on (X, τ), assuming that the extended
distance d is lower semi continuous with respect to τ .

Keywords and phrases. Spaces of probability measures, Wasserstein−Orlicz distance, absolutely continuous curves, superposition
principle, geodesic in spaces of probability measures.
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A typical example of extended Polish space is the abstract Wiener space (X, τ, γ) where (X, τ) is a separale
Banach space and τ is the topology induced by the norm, γ is a Gaussian reference measure on X with zero
mean and supported on all the space. The extended distance is given by d(x, y) = |x− y|H if x− y ∈ H , where
H is the Cameron−Martin space associated to γ in X and | · |H is the Hilbertian norm of H , and d(x, y) = +∞
if x− y �∈ H (see for instance [11]).

The Wasserstein−Orlicz distance is still unexplored. At the author’s knowledge, only the papers [12] and,
more recently, [7] deal with this kind of spaces. In the paper ([6], Rem. 3.19), the authors discuss the pos-
sibility to use this kind of Wasserstein−Orlicz distance to extend their results for equation of the form
∂tu− div(u∇H(u−1∇u) = 0 to the case of a convex function H with non power growth.

Only the particular case of the Wasserstein−Orlicz distance W∞, corresponding to the function ψ(s) = 0
if s ∈ [0, 1] and ψ(s) = +∞ if s ∈ (1,+∞) has been deeply investigated. The extension of the representation
Theorem of [8] to the W∞ case has been proved in [1]. Another refinement of the representation Theorem of [8]
is contained in ([5], Sect. 5). The problem of the validity of the representation Theorem of [8] in the case of a
general Wasserstein−Orlicz space is raised in the last section of [3].

For the precise statement of the result we address to Theorem 3.1. The strategy of the proof is similar to
the one used to prove Theorem 5 of [8], but there are several additional difficulties because, in general, (X, d)
is non separable and the function ψ that induces the Wasserstein−Orlicz distance is not homogeneous.

The paper is structured as follows: in Section 2 we introduce the framework of our study and some preliminary
results, in Section 3 we state and prove the main theorem of the paper, and finally in Section 4 we apply the
main theorem in order to characterize the geodesics of the Wasserstein−Orlicz space.

2. Notation and preliminary results

2.1. Extended Polish spaces and probability measures

Given a set X , we say that d : X ×X → [0,+∞] is an extended distance if

• d(x, y) = d(y, x) for every x, y ∈ X ,
• d(x, y) = 0 if and only if x = y,
• d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ X .

(X, d) is called extended metric space. We observe that the only difference between a distance and an extended
distance is that d(x, y) could be equal to +∞.

We say that (X, τ, d) is a Polish extended space if:

(i) τ is a topology on X and (X, τ) is Polish, i.e. τ is induced by a distance δ such that the metric space (X, δ)
is separable and complete;

(ii) d is an extended distance on X and (X, d) is a complete extended metric space;
(iii) For every sequence {xn} ⊂ X such that d(xn, x) → 0 with x ∈ X , we have that xn → x with respect to

the topology τ ;
(iv) d is lower semicontinuous in X ×X , with respect to the τ × τ topology; i.e.,

lim inf
n→+∞ d(xn, yn) ≥ d(x, y), ∀(x, y) ∈ X ×X, ∀(xn, yn) → (x, y) w.r.t. τ × τ. (2.1)

In the sequel, the class of compact sets, the class of Borel sets B(X), the class Cb(X) of bounded continuous
functions and the class P(X) of Borel probability measures, are always referred to the topology τ , even when
d is a distance.

We say that a sequence μn ∈ P(X) narrowly converges to μ ∈ P(X) if

lim
n→+∞

∫
X

ϕ(x) dμn(x) =
∫
X

ϕ(x) dμ(x) ∀ϕ ∈ Cb(X). (2.2)
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It is well-known that the narrow convergence is induced by a distance on P(X) (see for instance [2],
Rem. 5.1.1) and we call narrow topology the topology induced by this distance. In particular the compact
subsets of P(X) coincides with sequentially compact subsets of P(X).

We also recall that if μn ∈ P(X) narrowly converges to μ ∈ P(X) and ϕ : X → (−∞,+∞] is a lower semi
continuous (with respect to τ) function bounded from below, then

lim inf
n→+∞

∫
X

ϕ(x) dμn(x) ≥
∫
X

ϕ(x) dμ(x). (2.3)

A subset T ⊂ P(X) is said to be tight if

∀ε > 0 ∃Kε ⊂ X compact : μ(X \Kε) < ε ∀μ ∈ T , (2.4)

or, equivalently, if there exists a function ϕ : X → [0,+∞] with compact sublevels λc(ϕ) := {x ∈ X : ϕ(x) ≤ c},
such that

sup
μ∈T

∫
X

ϕ(x) dμ(x) < +∞. (2.5)

By Prokhorov’s theorem, a set T ⊂ P(X) is tight if and only if T is relatively compact in P(X). In
particular, the Polish condition on τ guarantees that all Borel probability measures μ ∈ P(X) are tight.

2.2. Orlicz spaces

Given
ψ : [0,+∞) → [0,+∞] convex, lower semicontinuous, non-decreasing, ψ(0) = 0,

lim
x→+∞ψ(x) = +∞,

(2.6)

a measure space (Ω, ν) and a ν-measurable function u : Ω → R, the Lψν (Ω) Orlicz norm of u is defined by

‖u‖Lψν (Ω) := inf
{
λ > 0 :

∫
Ω

ψ

( |u|
λ

)
dν ≤ 1

}
.

The Orlicz space Lψν (Ω) := {u : Ω → R, measurable : ‖u‖Lψν (Ω) < +∞} is a Banach space. For the theory of
the Orlicz spaces we refer to the complete monograph [9].

Given a bounded sequence {wn} ⊂ Lψν (Ω), the following property of lower semi continuity of the norm holds:

lim inf
n→∞ wn(x) ≥ w(x) for ν-a.e. x ∈ Ω =⇒ lim inf

n→∞ ‖wn‖Lψν (Ω) ≥ ‖w‖Lψν (Ω). (2.7)

Indeed, denoting by λn := ‖wn‖Lψν (Ω) and λ := lim infn λn, up to extracting a subsequence we can assume that
λ = limn λn. By the lower semicontinuity and the monotonicity of ψ we have

lim inf
n→∞ ψ

(
wn(x)
λn

)
≥ ψ

(
w(x)
λ

)
for ν-a.e. x ∈ Ω.

Finally, by Fatou’s lemma

1 ≥ lim inf
n→∞

∫
Ω

ψ

(
wn(x)
λn

)
dν(x) ≥

∫
Ω

ψ

(
w(x)
λ

)
dν(x)

which shows that λ ≥ ‖w‖Lψν (Ω).
We denote by ψ∗ := [0,+∞) → [0,+∞] the conjugate of ψ defined by ψ∗(y) = supx≥0{xy − ψ(x)}. The

following generalized Hölder’s inequality holds∫
Ω

u(x)v(x) dν(x) ≤ 2‖u‖Lψν (Ω)‖v‖Lψ∗
ν (Ω)

, (2.8)
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and the following equivalence between the Orlicz norm in Lψν (Ω) and the dual norm of Lψ
∗

ν (Ω) holds

‖u‖Lψν (Ω) ≤ sup
{∫

Ω

|u(x)v(x)| dν(x) : v ∈ Lψ
∗

ν (Ω), ‖v‖
Lψ

∗
ν (Ω)

≤ 1
}

≤ 2‖u‖Lψν (Ω). (2.9)

In the statement of our main theorem we will assume, in addition to (2.6), that ψ is superlinear at +∞, i.e.

lim
x→+∞

ψ(x)
x

= +∞, (2.10)

and it has null right derivative at 0, i.e.

lim
x→0

ψ(x)
x

= 0. (2.11)

It is easy to check that conditions (2.10) and (2.11) are equivalent to assume that ψ∗(y) > 0 and ψ∗(y) < +∞
for every y > 0.

Typical examples of admissible ψ satisfying (2.6), (2.10) and (2.11) are:

• ψ(x) = xp for p ∈ (1,+∞) and the corresponding Orlicz norm is the standard Lp norm;
• ψ(x) = 0 if x ∈ [0, 1] and ψ(x) = +∞ if x ∈ (1,+∞) and the corresponding Orlicz norm is the L∞ norm;
• ψ(x) = ex − x− 1, exponential growth;
• ψ(x) = ex

p − 1 for p ∈ (1,+∞), power exponential growth;
• ψ(x) = (1 + x) ln(1 + x) − x, L logL-growth.

2.3. Continuous curves

Given (X, τ, d) an extended Polish space, I := [0, T ], T > 0, we denote by C(I;X) the space of continuous
curves in X with respect to the topology τ . C(I;X) is a Polish space with the metric

δ∞(u, ũ) = sup
t∈I

δ(u(t), ũ(t)), (2.12)

where δ is a complete and separable metric on X inducing τ .
Given ψ satisfying (2.6), we say that a curve u : I → X belongs to ACψ(I; (X, d)), if there exists m ∈ Lψ(I)

such that

d(u(s), u(t)) ≤
∫ t

s

m(r) dr ∀s, t ∈ I, s ≤ t. (2.13)

We also denote by AC(I; (X, d)) the set ACψ(I; (X, d)) for ψ(r) = r. We call a curve u ∈ ACψ(I; (X, d)) an
absolutely continuous curve with finite Lψ-energy.

It can be proved that for every u ∈ ACψ(I; (X, d)) there exists the following limit, called metric derivative,

|u′|(t) := lim
h→0

d(u(t+ h), u(t))
|h| for L 1-a.e. t ∈ I, (2.14)

the function t �→ |u′|(t) belongs to Lψ(I) and it is the minimal one satisfying (2.13) (see the proof of Theo-
rem 1.1.2 from [2], that still works in this case)

The following Lemma will be useful in the proof of our main theorem.

Lemma 2.1. Let ψ be satisfying (2.6), (2.10) and (2.11). If u : I → (X, d) is right continuous at every point
and continuous outside a countable set, and

lim sup
h→0+

∥∥∥∥d(u(· + h), u(·))
h

∥∥∥∥
Lψ(I)

< +∞, (2.15)

where u is extended for t > T as u(t) = u(T ), then u ∈ ACψ(I; (X, d)).
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Proof. Since I is bounded, by the assumptions on u we have that the d-closure of u(I) is compact in (X, d).
Consequently u(I) is d-separable. We consider a sequence {yn}n∈N dense in (u(I), d). We fix n ∈ N. Defining
un : I → R by un(t) := d(u(t), yn), the triangular inequality implies

|un(t+ h) − un(t)| ≤ d(u(t+ h), u(t)), ∀t ∈ I, h > 0. (2.16)

Given a test function η ∈ C∞
c (I) and h > 0, recalling Hölder inequality (2.8) we obtain∣∣∣∣

∫
I

un(t)
η(t − h) − η(t)

h
dt
∣∣∣∣ =

∣∣∣∣
∫
I

η(t)
un(t+ h) − un(t)

h
dt
∣∣∣∣

≤ 2
∥∥∥∥un(· + h) − un(·))

h

∥∥∥∥
Lψ(I)

‖η‖Lψ∗ (I) .

By the last inequality, (2.15) and (2.16), passing to the limit for h→ 0 we have that∣∣∣∣
∫
I

un(t)η′(t) dt
∣∣∣∣ ≤ C ‖η‖Lψ∗ (I) . (2.17)

The linear functional Ln : (C∞
c (I), ‖ · ‖Lψ∗(I)) → R defined by Ln(η) =

∫
I
un(t)η′(t) dt, by (2.17), is bounded

and we still denote by Ln its extension to Eψ
∗
(I), the closure of C∞

c (I) with respect to the norm ‖ · ‖Lψ∗(I).
Since, by (2.10) and (2.11), ψ∗ is continuous and strictly positive on (0,+∞), Ln is uniquely represented by
an element vn ∈ Lψ

∗∗
(I) (see [9], Thm. 6, p. 105). The element vn coincides with the distributional derivative

of un and then un ∈ ACψ(I; R) (we observe that ψ∗∗ = ψ because ψ is convex and lower semi continuous). We
denote by u′n(t) the pointwise derivative of un which exists for a.e. t ∈ I.

Introducing the negligible set N =
⋃
n∈N

{t ∈ I : u′n(t) does not exists} and defining m(t) := supn∈N |u′n(t)|
for all t ∈ I \N , for the density of {yn}n∈N in u(I) we have

d(u(t), u(s)) = sup
n∈N

|un(t) − un(s)| ≤ sup
n∈N

∫ t

s

|u′n(r)| dr ≤
∫ t

s

m(r) dr, ∀ t, s ∈ I, s < t.

By (2.16) we have

|u′n(t)| = lim
h→0+

|un(t+ h) − un(t)|
h

≤ lim inf
h→0+

d(u(t+ h), u(t))
h

, ∀t ∈ I \N,

and consequently m(t) ≤ lim inf
h→0+

d(u(t+ h), u(t))
h

for any t ∈ I \ N . By (2.15) and (2.7) we obtain that m ∈
Lψ(I). �

2.4. The M(I; X) space

We denote by M (I;X) the space of curves u : I → X which are Lebesgue measurable as functions with
values in (X, τ). We denote by M(I;X) the quotient space of M (I;X) with respect to the equality L 1-a.e. in
I. The space M(I;X) is a Polish space endowed with the metric

δ1(u, v) :=
∫ T

0

δ̃(u(t), v(t)) dt,

where δ̃(x, y) := min{δ(x, y), 1} is a bounded distance still inducing τ and δ is a distance inducing τ .
The space M(I;X) coincides with L1(I; (X, δ̃)). It is well-known that δ1(un, u) → 0 as n→ +∞ if and only

if un → u in measure as n→ +∞; i.e.

lim
n→+∞ L 1({t ∈ I : δ(un(t), u(t)) > σ}) = 0, ∀σ > 0.

We recall a useful compactness criterion in M(I;X) ([10], Thm. 2).
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Theorem 2.2. A family A ⊂ M(I;X) is precompact if there exists a function Ψ : X → [0,+∞] whose sublevels
λc(Ψ) := {x ∈ X : Ψ(x) ≤ c} are compact for every c ≥ 0, such that

sup
u∈A

∫ T

0

Ψ(u(t)) dt < +∞, (2.18)

and there exists a map g : X ×X → [0,∞] lower semi continuous with respect to τ × τ such that

g(x, y) = 0 =⇒ x = y

and

lim
h→0+

sup
u∈A

∫ T−h

0

g(u(t+ h), u(t)) dt = 0.

2.5. Push forward of probability measures

If Y, Z are topological spaces, μ ∈ P(Y ) and F : Y → Z is a Borel map (or a μ-measurable map), the push
forward of μ through F, denoted by F#μ ∈ P(Z), is defined as follows:

F#μ(B) := μ(F−1(B)) ∀B ∈ B(Z). (2.19)

It is not difficult to check that this definition is equivalent to∫
Z

ϕ(z) d(F#μ)(z) =
∫
Y

ϕ(F (y)) dμ(y) (2.20)

for every bounded Borel function ϕ : Z → R. More generally (2.20) holds for every F#μ-integrable function
ϕ : Z → R.

We recall the following composition rule: for every μ ∈ P(Y ) and for all Borel maps F : Y → Z and
G : Z →W , we have

(G ◦ F )#μ = G#(F#μ).

The following continuity property holds:

F : Y → Z continuous =⇒ F# : P(Y ) → P(Z) narrowly continuous.

We say that μ ∈ P(Y ) is concentrated on the set A if μ(X \A) = 0. It follows from the definition that F#μ
is concentrated on F (A) if μ is concentrated on A.

The support of a Borel probability measure μ ∈ P(Y ) is the closed set defined by suppμ = {y ∈ Y :
μ(U) > 0, ∀U neighborhood of y}. μ is concentrated on suppμ and it is the smallest closed set on which μ is
concentrated.

In general we have F (suppμ) ⊂ suppF#μ ⊂ F (suppμ) for F : Y → Z continuous.
It follows that F#μ(suppF#μ \ F (suppμ)) = 0.
The following Lemma is fundamental in our proof of Theorem 3.1. It allows to recover a pointwise bound

assuming an integral bound.

Lemma 2.3. Let Y be a Polish space and {μn}n∈N ⊂ P(Y ) be a sequence narrowly convergent to μ ∈ P(Y )
as n→ +∞. Let Fn : Y → [0,+∞) be a sequence of μn-measurable functions such that

sup
n∈N

∫
Y

Fn(y) dμn(y) < +∞. (2.21)

Then there exists a subsequence μnk such that

for μ-a.e. ȳ ∈ suppμ ∃ynk ∈ suppμnk : lim
k→+∞

ynk = ȳ and sup
k∈N

Fnk(ynk) < +∞. (2.22)
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Proof. Let us define the sequence νn := (i × Fn)#μn ∈ P(Y × R), where i denotes the identity map in Y . We
denote by π1 : Y × R → Y and π2 : Y × R → R the projections defined by π1(y, z) = y and π2(y, z) = z. The
set {νn}n∈N is tight because {π1

#νn}n∈N and {π2
#νn}n∈N are tight. Indeed π1

#νn = μn is narrowly convergent,
and π2

#νn = (Fn)#μn has first moments uniformly bounded because∫
R

|z| dπ2
#νn(z) =

∫
Y

|Fn(y)| dμn(y),

Fn ≥ 0 and (2.21) holds. By Prokhorov’s theorem there exists ν ∈ P(Y × R) and a subsequence {νnk}k∈N ⊂
P(Y × R) narrowly convergent to ν. Since π1

#νn = μn and π1
#νnk → π1

#ν as k → +∞ we have that π1
#ν = μ.

Let ȳ ∈ π1(supp ν), and we observe that μ(suppμ \ π1(supp ν)) = 0. By definition of ȳ there exists z ∈ R

such that (ȳ, z) ∈ supp ν. Let h ∈ N and D1/h(ȳ, z) := B1/h(ȳ) × (z − 1/h, z + 1/h) where Br(ȳ) denotes the
open ball of radius r and center ȳ. By (2.3), with ϕ the characteristic function of D1/h(ȳ, z), we obtain

lim inf
k→+∞

νnk(D1/h(ȳ, z)) ≥ ν(D1/h(ȳ, z)) > 0.

Then there exists k(h) ∈ N such that

νnk(D1/h(ȳ, z)) > 0 ∀k ≥ k(h). (2.23)

By definition of νn

νnk(D1/h(ȳ, z)) = μnk({y ∈ Y : (i × Fnk)(y) ∈ D1/h(ȳ, z)})
= μnk({y ∈ Y : (y, Fnk(y)) ∈ B1/h(ȳ) × (z − 1/h, z + 1/h)}). (2.24)

By (2.23) and (2.24) we have that

suppμnk ∩ {y ∈ Y : (y, Fnk(y)) ∈ B1/h(ȳ) × (z − 1/h, z + 1/h)} �= ∅ ∀k ≥ k(h). (2.25)

Since we can choose the application h �→ k(h) strictly increasing, by (2.25) we can select a sequence ynk ∈
suppμnk ∩ {y ∈ Y : (y, Fnk(y)) ∈ B1/h(ȳ) × (z − 1/h, z + 1/h)}. By definition ynk → ȳ and Fnk(ynk) → z as
k → +∞. Since Fnk(ynk) converges in R we obtain the bound in (2.22). �

2.6. The extended Wasserstein−Orlicz space (P(X), Wψ)

Given μ, ν ∈ P(X) we define the set of admissible plans Γ (μ, ν) as follows:

Γ (μ, ν) := {γ ∈ P(X ×X) : π1
#γ = μ, π2

#γ = ν},
where πi : X × X → X , for i = 1, 2, are the projections on the first and the second component, defined by
π1(x, y) = x and π2(x, y) = y.

Given ψ satisfying (2.6), the ψ-Wasserstein−Orlicz extended distance between μ, ν ∈ P(X) is defined by

Wψ(μ, ν) := inf
γ∈Γ (μ,ν)

inf
{
λ > 0 :

∫
X×X

ψ

(
d(x, y)
λ

)
dγ(x, y) ≤ 1

}
= inf
γ∈Γ (μ,ν)

‖d(·, ·)‖Lψγ (X×X).
(2.26)

It is easy to check that

Wψ(μ, ν) = inf
{
λ > 0 : inf

γ∈Γ (μ,ν)

∫
X×X

ψ

(
d(x, y)
λ

)
dγ(x, y) ≤ 1

}

which is the definition given in [12] (see also [7]).
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When the set of γ ∈ Γ (μ, ν) such that ‖d(·, ·)‖Lψγ (X×X) < +∞ is empty, then Wψ(μ, ν) = +∞. Otherwise it is
not difficult to show that a minimizer γ ∈ Γ (μ, ν) in (2.26) exists. We denote by Γψo (μ, ν) the set of minimizers
in (2.26). We observe that

γ ∈ Γψo (μ, ν) ⇐⇒
∫
X×X

ψ

(
d(x, y)
Wψ(μ, ν)

)
dγ(x, y) ≤ 1. (2.27)

Since ψ satisfies (2.6), ψ−1(s) is well defined for every s > 0 with the following convention: if ψ(r) = +∞
for r > r0 and ψ(r0) < +∞, then we define ψ−1(s) = r0 for every s > ψ(r0); if ψ(1) = 0, then we define
ψ−1(1) = inf{r > 1 : ψ(r) > 0}.

Moreover if γ ∈ Γψo (μ, ν) then ∫
X×X

d(x, y) dγ(x, y) ≤ ψ−1(1)Wψ(μ, ν). (2.28)

Indeed, for μ �= ν (the other case is trivial) using Jensen’s inequality and (2.27)

ψ

(∫
X×X

d(x, y)
Wψ(μ, ν)

dγ(x, y)
)

≤
∫
X×X

ψ

(
d(x, y)
Wψ(μ, ν)

)
dγ(x, y) ≤ 1

and (2.28) follows.
Being (X, d) complete, (P(X),Wψ), is complete too (the proof of Proposition 7.1.5 from [2], works also in

the case of the extended distance d and the Orlicz–Wasserstein distance).
We observe that (X, d) is embedded in (P(X),Wψ) via the map x �→ δx and it holds

Wψ(δx, δy) =
1

ψ−1(1)
d(x, y). (2.29)

Thanks to the compatibility condition (iii) in the definition of extended Polish space we also have the following
fundamental property:

Wψ(μn, μ) → 0 =⇒ μn → μ narrowly in P(X). (2.30)

The space (P(X),Wψ) is an extended Polish space, when in P(X) we consider the narrow topology.

3. Main theorem

In this section we state and prove our main result: a characterization of absolutely continuous curves with finite
Lψ-energy in the extended ψ-Wasserstein−Orlicz space (P(X),Wψ). This result is an extension of Theorem 5
in [8] and some parts of the proof are similar. Nevertheless, since the setting and the spaces are different, we
preferred to write the proof in a self contained form, referring to [8] only at some points.

Before stating the result, we define, for every t ∈ I, the evaluation map et : C(I;X) → X as et(u) = u(t)
and we observe that et is continuous.

Theorem 3.1. Let ψ be satisfying (2.6), (2.10) and (2.11). Let (X, τ, d) be an extended Polish space and
I := [0, T ], T > 0. If μ ∈ ACψ(I; (P(X),Wψ)), then there exists η ∈ P(C(I;X)) such that

(i) η is concentrated on ACψ(I; (X, d)),
(ii) (et)#η = μt ∀t ∈ I,
(iii) for a.e. t ∈ I, the metric derivative |u′|(t) exists for η−a.e. u ∈ C(I;X) and it holds the equality

|μ′|(t) = ‖|u′|(t)‖Lψη (C(I;X)) for a.e. t ∈ I.
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Proof. We preliminary assume that
|μ′| = 1 for a.e. t ∈ I, (3.1)

and we will remove this assumption in Step 6 of this proof. We also assume for simplicity that I = [0, 1].
For any N ∈ N, N ≥ 1, we denote by ti the points

ti :=
i

2N
i = 0, 1, . . . , 2N ,

and we choose optimal plans
γiN ∈ Γψo (μti , μti+1) i = 0, 1, . . . , 2N − 1.

Denoting by XN the product space XN := X0 ×X1 × . . .×X2N , where Xi, i = 0, 1, . . . , 2N , are copies of the
same space X , there exists (see for instance [2], Lem. 5.3.2 and Rem. 5.3.3) a measure γN ∈ P(XN ) such that

πi#γN = μti and πi,i+1
# γN = γiN ,

where πi : XN → Xi is the projection on the ith component and πi,j : XN → Xi ×Xj is the projection on the
(i, j)-th component. The measure γN depends only on the curve μ and N via the choice of the plans γiN .
We define σ : XN → M (I;X), and we use the notation x = (x0, . . . , x2N ) �→ σx, by

σx(t) := xi if t ∈ [ti, ti+1), i = 0, 1, . . . , 2N − 1.

Finally, we define the sequence of probability measures

ηN := σ#γN ∈ P(M(I;X)).

Step 1. (Tightness of {ηN}N∈N in P(M(I;X))). In order to prove the tightness of {ηN}N∈N in P(M(I;X))
(we recall that M(I;X) is a Polish space with the metric δ1) we show that there exists a function Φ : M(I;X) →
[0,+∞] such that λc(Φ) := {u ∈ M(I;X) : Φ(u) ≤ c} is compact in M(I;X) for any c ∈ R+, and

sup
N∈N

∫
M(I;X)

Φ(u) dηN (u) < +∞. (3.2)

Since μ is continuous and I is compact, the set A := {μt : t ∈ I} is compact in (P(X),Wψ) and consequently
in P(X). By Prokhorov’s theorem, A is tight in P(X) and therefore there exists a function Ψ : X → [0,+∞]
such that λc(Ψ) := {x ∈ X : Ψ(x) ≤ c} is compact in X for any c ∈ R+ and

sup
t∈I

∫
X

Ψ(x) dμt(x) < +∞. (3.3)

We define Φ : M(I;X) → [0,+∞] by

Φ(u) :=
∫ 1

0

Ψ(u(t)) dt+ sup
h∈(0,1)

∫ 1−h

0

d(u(t+ h), u(t))
h

dt.

The compactness of the sublevels λc(Φ) in M(I;X) follows by Theorem 2.2 with the choice g(x, y) = d(x, y).
In order to prove (3.2) we begin to show that

sup
N∈N

∫
M(I;X)

∫ 1

0

Ψ(u(t))) dt dηN (u) < +∞. (3.4)
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By the definition of ηN we have∫
M(I;X)

∫ 1

0

Ψ(u(t)) dt dηN (u) =
∫
XN

∫ 1

0

Ψ(σx(t)) dt dγN (x)

=
∫
XN

2N−1∑
i=0

∫ ti+1

ti
Ψ(xi) dt dγN (x)

=
∫
XN

1
2N

2N−1∑
i=0

Ψ(xi) dγN (x)

=
1

2N

2N−1∑
i=0

∫
X

Ψ(x) dμti (x)

≤ 1
2N

2N−1∑
i=0

sup
t∈I

∫
X

Ψ(x) dμt(x) = sup
t∈I

∫
X

Ψ(x) dμt(x)

and (3.4) follows by (3.3). The second bound that we have to show is

sup
N∈N

∫
M(I;X)

sup
h∈(0,1)

∫ 1−h

0

d(u(t+ h), u(t))
h

dt dηN (u) < +∞. (3.5)

First of all we prove that for x ∈ XN we have

sup
h∈(0,1)

∫ 1−h

0

d(σx(t+ h), σx(t))
h

dt ≤ 2
2N−1∑
i=0

d(xi, xi+1). (3.6)

We fix h ∈ (0, 1). When h < 2−N we have that σx(t+h) = σx(t) for every t ∈ [ti, ti+1−h] and i = 0, . . . , 2N −1.
Then ∫ 1−h

0

d(σx(t+ h), σx(t)) dt =
2N−1∑
i=0

∫ ti+1

ti
d(σx(t+ h), σx(t)) dt = h

2N−2∑
i=0

d(xi, xi+1). (3.7)

Now we assume that h ≥ 2−N and we take the integer k(h) = [h2N ], where [a] := max{n ∈ Z : n ≤ a} is the
integer part of the real number a. By the triangular inequality we have that

∫ 1−h

0

d(σx(t+ h), σx(t)) dt ≤
∫ 1−tk(h)

0

d(σx(t+ h), σx(t)) dt

≤
∫ 1−tk(h)

0

k(h)∑
i=0

d(σx(t+ ti+1), σx(t+ ti)) dt

=
k(h)∑
i=0

1
2N

2N−k(h)−1∑
j=0

d(xi+j+1, xi+j).

(3.8)

Observing that in the last line of (3.8) the term d(xk+1, xk), for every k = 0, 1, . . . , 2N − 1 is counted at most
k(h) + 1 times and k(h)+1

h2N
≤ k(h)+1

k(h) ≤ 2, we obtain that

∫ 1−h

0

d(σx(t+ h), σx(t)) dt ≤ k(h) + 1
2Nh

h

2N−1∑
j=0

d(xj+1, xj) ≤ 2h
2N−1∑
j=0

d(xj+1, xj). (3.9)



680 S. LISINI

The inequality (3.6) follows from (3.9) and (3.7). Finally, by (3.6), (2.28) taking into account the optimality of
the plans πi,i+1

# γN , and (3.1) we have

∫
M(I;X)

sup
h∈(0,1)

∫ 1−h

0

d(u(t+ h), u(t))
h

dt dηN (u) ≤ 2
∫
XN

2N−1∑
i=0

d(xi, xi+1) dγN (x)

≤ 2ψ−1(1)
2N−1∑
i=0

Wψ(μti , μti+1)

≤ 2ψ−1(1)
2N−1∑
i=0

1
2N

= 2ψ−1(1)

(3.10)

and (3.5) follows.
Then, by Prokhorov’s theorem, there exist η ∈ P(M(I;X)) and a subsequence Nn such that ηNn → η

narrowly in P(M(I;X)) as n→ +∞.

Step 2. (η is concentrated on BV right continuous curves). We apply Lemma 2.3 in order to show that η-a.e.
u ∈ supp η has a right continuous BV representative.

Given a curve u : [a, b] → X , we denote by pV(u, [a, b]) = sup{∑n
i=1 d(u(ti), u(ti+1)) : a = t1 < t2 < . . . <

tn < tn+1 = b} its pointwise variation and by eV(u, [a, b]) = inf{pV(w, [a, b]) : w(t) = u(t) for a.e. t ∈ (a, b)} its
essential variation.

We define FN : M(I;X) → [0,+∞) by

FN (u) =

{
eV(u, I) if u ∈ supp ηN ,
0 if u �∈ supp ηN .

(3.11)

If u is a.e. equal to σx then eV(u, I) = pV(σx, I) =
∑2N−1
j=0 d(xj , xj+1). Taking into account this equality, the

computation in (3.10) shows that

sup
N∈N

∫
M(I;X)

FN (u) dηN (u) < +∞. (3.12)

Since FN ≥ 0 by definition, we apply Lemma 2.3 with the choice Y = M(I;X) and μn = ηNn . We still denote
by ηNn the subsequence of ηNn given by Lemma 2.3. Let u ∈ supp(η) be such that (2.22) holds and we denote
by uNn ∈ supp(ηNn) such that uNn → u in M(I;X) and C a constant independent of n such that

FNn(uNn) ≤ C. (3.13)

Moreover, up to extracting a further subsequence, we can also assume that uNn(t) → u(t) with respect to
the distance δ for a.e. t ∈ I. Since uNn ∈ supp(ηNn) we can choose the piecewise constant right continuous
representative of uNn , still denoted by uNn . From (3.13) we obtain that

eV(uNn) = pV(uNn) ≤ C. (3.14)

Defining the increasing functions vn : I → R by vn(t) = pV(uNn , [0, t]), from the Helly’s theorem, up to extract
a further subsequence still denoted by vn, there exists an increasing function v : I → R such that vn(t) converges
to v(t) for every t ∈ I (we observe that for (3.14) v ≤ C). Since the set of discontinuity points of v is at most
countable we can redefine a right continuous function v̄ by v̄(t) = lims→t+ v(t). Since

d(uNn(t), uNn(s)) ≤ vn(s) − vn(t) ∀ t, s ∈ I, t ≤ s, (3.15)
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from the property (2.1) it follows that

d(u(t), u(s)) ≤ v̄(s) − v̄(t) for a.e. t, s ∈ I, t ≤ s. (3.16)

Since (X, d) is complete, by (3.16) we can choose the representative of u, ū : I → X defined by ū(t) =
lims→t+ u(t), which is right continuous by (3.16).

We have just proved that η-a.e. u ∈ supp η is equivalent (with respect to the a.e. equality) to a d-right
continuous function with pointwise d-bounded variation, continuous at every point except at most a countable
set.

Step 3. (Proof of (i)). We recall the notation k(r) = [2Nr], for r ∈ R. For every u ∈ supp(ηN ) and every
a, b, h ∈ I such that a < b, h ≥ 2−N , b + h ∈ I, it holds

∫ b

a

ψ

(
k(h)

k(h) + 1
d(u(t+ h), u(t))

h

)
dt ≤

∫ b

a

k(h)∑
i=0

1
k(h) + 1

ψ
(
2Nd(xk(t)+i+1, xk(t)+i)

)
dt. (3.17)

Indeed, by the monotonicity of ψ, the discrete Jensen’s inequality and k(h)/h ≤ 2N we have

∫ b

a

ψ

(
k(h)

k(h) + 1
d(u(t+ h), u(t))

h

)
dt ≤

∫ b

a

ψ

(
k(h)

k(h) + 1
d(xk(t+h), xk(t))

h

)
dt

≤
∫ b

a

ψ

⎛
⎝ 1
k(h) + 1

k(h)∑
i=0

k(h)
h

d(xk(t)+i+1, xk(t)+i)

⎞
⎠ dt ≤

∫ b

a

1
k(h) + 1

k(h)∑
i=0

ψ

(
k(h)
h

d(xk(t)+i+1, xk(t)+i)
)

dt

≤
∫ b

a

1
k(h) + 1

k(h)∑
i=0

ψ
(
2Nd(xk(t)+i+1, xk(t)+i)

)
dt.

Moreover, since Wψ(μtk , μtk+1) ≤ 2−N by (3.1), taking into account the optimality of πj,j+1
# γN , it holds

1
k + 1

k∑
j=0

∫
XN

ψ
(
2Nd(xj+1, xj)

)
dγN (x) ≤ 1

k + 1

k∑
j=0

∫
XN

ψ

(
d(xj+1, xj)

Wψ(μtj+1 , μtj )

)
dγN (x) ≤ 1, (3.18)

for every k ≤ 2N − 1.

Let us define the sequence of lower semi continuous functions fN : M(I;X) → [0,+∞] by

fN(u) := sup
1/2N≤h<1

∫ 1−h

0

ψ

(
d(u(t+ h), u(t))

2h

)
dt,

that satisfies the monotonicity property

fN (u) ≤ fN+1(u) ∀u ∈ M(I;X). (3.19)
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For h ∈ [2−N , 1) and u ∈ supp(ηN ), by (3.17) and the inequality 1
2 ≤ k

k+1 , we have that

∫ 1−h

0

ψ

(
d(u(t+ h), u(t))

2h

)
dt

≤
∫ 1−tk(h)

0

1
k(h) + 1

k(h)∑
i=0

ψ
(
2Nd(xk(t)+i+1, xk(t)+i)

)
dt

=
2N−k(h)−1∑

j=0

2−N
1

k(h) + 1

k(h)∑
i=0

ψ
(
2Nd(xj+i+1, xj+i)

)

≤
2N−1∑
j=0

2−Nψ
(
2Nd(xj+1, xj)

)
.

It follows that

fN (u) ≤
2N−1∑
j=0

2−Nψ
(
2Nd(xj+1, xj)

)

for every u ∈ supp(ηN ). Integrating the last inequality, taking into account (3.18) we obtain that

∫
M(I;X)

fN (u) dηN (u) ≤
2N−1∑
j=0

2−N
∫
XN

ψ
(
2Nd(xj+1, xj)

)
dγN (x) ≤ 1.

The lower semi continuity of fN , the monotonicity (3.19) and the last inequality yield∫
M(I;X)

fN (u) dη(u) ≤ 1 ∀N ∈ N.

Consequently, by monotone convergence theorem, we have that∫
M(I;X)

sup
N∈N

fN (u) dη(u) ≤ 1,

and
sup
N∈N

fN (u) < +∞ for η − a.e. u ∈ M(I;X). (3.20)

Since

sup
N∈N

fN (u) = sup
0<h<1

∫ 1−h

0

ψ

(
d(u(t+ h), u(t))

2h

)
dt,

and
∫ 1−h
0 ψ

(
d(u(t+h),u(t))

2h

)
dt ≤ C implies

∥∥∥ d(u(·+h),u(·))
h

∥∥∥
Lψ(0,1−h)

≤ max{C, 1} we obtain that (2.15) holds for

η-a.e. u ∈ M(I;X).
Finally, taking into account Step 2, we can associate to η-a.e. u ∈ supp η a right continuous representative ū,

with at most a countable points of discontinuity satisfying (2.15). By Lemma 2.1 this representative belongs to
ACψ(I; (X, d)).

Defining the canonical immersion T : C(I;X) → M(I;X) and observing that it is continuous, we define the
new Borel probability measure η̃ ∈ P(C(I;X)) by η̃(B) = η(T (B)). For the previous steps η̃ is concentrated
on ACψ(I; (X, d)).



ABSOLUTELY CONTINUOUS CURVES IN EXTENDED WASSERSTEIN−ORLICZ SPACES 683

Step 4. (Proof of (ii)). The property (ii) follows from the identity∫
C(I;X)

ϕ(u(t)) dη̃(u) =
∫
X

ϕ(x) dμt(x) ∀t ∈ I, ∀ϕ ∈ Cb(X) (3.21)

which can be proven as in Step 3 of the proof of Theorem 5 in [8].

Step 5. (Proof of (iii)). Reasoning as in ([8], Thm. 4) it is simple to prove that for a.e. t ∈ I, |u′|(t) exists for
η̃−a.e. u ∈ C(I;X).

For every N ∈ N, h ≥ 2−N , a, b ∈ I such that a < b and b+ h ∈ I, by (3.17) and (3.18) we have

∫
M(I;X)

∫ b

a

ψ

(
k(h)

k(h) + 1
d(u(t+ h), u(t))

h

)
dt dηN (u)

≤
∫
XN

∫ b

a

1
k(h) + 1

k(h)∑
i=0

ψ
(
2Nd(xk(t)+i+1, xk(t)+i)

)
dt dγN (x)

≤
∫ b

a

1
k(h) + 1

k(h)∑
i=0

∫
XN

ψ

(
d(xk(t)+i+1, xk(t)+i)
Wψ(μtk(t)+i+1 , μtk(t)+i )

)
dγN (x) dt ≤ b− a,

and consequently ∫
M(I;X)

1
b− a

∫ b

a

ψ

(
k(h)

k(h) + 1
d(u(t+ h), u(t))

h

)
dt dηN (u) ≤ 1.

Passing to the limit in the last inequality along the sequence ηNn we obtain that the following inequality

∫
C(I;X)

1
b− a

∫ b

a

ψ

(
d(u(t+ h), u(t))

h

)
dt dη̃(u) ≤ 1

holds for every a, b ∈ I such that a < b, h > 0 and b + h ∈ I. Taking into account (i), Fubini’s theorem and
Lebesgue differentiation theorem we obtain∫

C(I;X)

ψ
(
|u′|(t)

)
dη̃(u) ≤ 1 for a.e. t ∈ I

and this shows that
‖|u′|(t)‖Lψη̃ (C(I;X)) ≤ 1 = |μ′|(t) for a.e. t ∈ I.

Step 6. (Conclusion). Finally we have to remove the assumption (3.1). Let μ ∈ ACψ(I; (P(X),Wψ)) with
length L :=

∫ T
0 |μ′|(t) dt.

If L = 0, then μt = μ0 for every t ∈ I and μ is represented by η := σ#μ0, where σ : X → C(I;X) denotes
the function σ(x) = cx, cx(t) := x for every t ∈ I.

When L > 0 we can reparametrize μ by its arc-length (see Lem. 1.1.4(b) of [2] for the details). We define
the increasing function s : I → [0, L] by s(t) :=

∫ t
0
|μ′|(r) dr observing that s is absolutely continuous with

pointwise derivative
s′(t) = |μ′|(t) for a.e. t ∈ I. (3.22)

Defining s−1 : I → [0, L] by s−1(s) = min{t ∈ I : s(t) = s} it is easy to check that the new curve μ̂ : [0, L] →
P(X) defined by μ̂s = μs−1(s) satisfies |μ̂′|(s) = 1 for a.e. s ∈ [0, L] and μt = μ̂s(t). By the previous steps, we
represent μ̂ by a measure η̂ concentrated on ACψ([0, L]; (X, d)). Denoting by F : C([0, L];X) → C(I;X) the
map defined by F (û) = û ◦ s, we represent μ by η := F#η̂. Clearly (et)#η = (et ◦F )#η̂ = μ̂s(t) = μt. Moreover,
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η is concentrated on curves u of the form u(t) = û(s(t)) with û ∈ ACψ([0, L]; (X, d)). Since s is monotone and
AC(I; R) and û is AC([0, L]; (X, d)) then û ◦ s is AC(I; (X, d)), and the metric derivative satisfies

|u′|(t) ≤ |û′|(s(t))s′(t) for a.e. t ∈ I. (3.23)

Let t ∈ I such that s′(t) and |μ′|(t) exist and s′(t) = |μ′|(t) > 0. Taking into account (3) and Jensen’s
inequality we have for h > 0

∫
C(I;X)

ψ

(
d(u(t+ h), u(t))
s(t+ h) − s(t)

)
dη(u) =

∫
C([0,L];X)

ψ

(
d(û(s(t+ h)), u(s(t)))

s(t+ h) − s(t)

)
dη̂(û)

≤
∫
C([0,L];X)

ψ

(
1

s(t+ h) − s(t)

∫ s(t+h)

s(t)

|û′|(r) dr

)
dη̂(û)

≤ 1
s(t+ h) − s(t)

∫ s(t+h)

s(t)

∫
C([0,L];X)

ψ (|û′|(r)) dη̂(û) dr ≤ 1.

By Fatou’s lemma, taking into account that η is concentrated on AC(I; (X, d)) curves, we obtain the inequality

∫
C(I;X)

ψ

( |u′|(t)
|μ′|(t)

)
dη(u) ≤ 1. (3.24)

On the other hand, if |μ′|(t) = 0 on a set J ⊂ I of positive measure, then for η-a.e. u we have |u′|(t) = 0
for a.e. t ∈ J because of the inequality (3.23). Taking into account this observation and (3.24) we obtain the
inequality

‖|u′|(t)‖Lψη (C(I;X)) ≤ |μ′|(t), for a.e. t ∈ I. (3.25)

We prove that η is concentrated on ACψ(I; (X, d)). Since
∫
C(I;X) |u′|(t) dη(u) ≤ ψ−1(1)‖|u′|(t)‖Lψη (C(I;X))

(see the same computation of (2.28) and notice that ψ−1(1) > 0), for every v ∈ Lψ
∗
(I) such that ‖v‖Lψ∗(I) ≤ 1,

from (3.25) we have ∫
I

∫
C(I;X)

|u′|(t) dη(u)|v(t)| dt ≤ ψ−1(1)
∫
I

|μ′|(t)|v(t)| dt.

By the inequality (2.9) and Fubini’s theorem it follows that∫
C(I;X)

∫
I

|u′|(t)|v(t)| dt dη(u) ≤ 2ψ−1(1)‖|μ′|‖Lψ(I).

Since |μ′| ∈ Lψ(I) it follows that for η-a.e. u ∈ C(I;X)∫
I

|u′|(t)|w(t)| dt < +∞ for every w ∈ Lψ
∗
(I).

By ([9], Prop. 1, p. 100) it follows that |u′| ∈ Lψ(I) and (i) holds.
In order to show the opposite inequality of (3.25), we assume that t ∈ I is such that |u′|(t) exists for η−a.e.

u ∈ C(I;X) and λt := ‖|u′|(t)‖Lψη (C(I;X)) > 0. We fix ε > 0. Since
∫
C(I;X)

ψ
(

|u′|(t)
λt

)
dη(u) ≤ 1 and ψ is strictly

increasing on an interval of the form (r0, r1) where r0 ≥ 0, r1 ≤ +∞ and ψ(r) = 0 for r < r0, ψ(r) = +∞ for
r > r1, we have that ∫

C(I;X)

ψ

( |u′|(t)
λt + ε

)
dη(u) < 1.
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For h > 0, let γt,t+h := (et, et+h)#η. Taking into account that η is concentrated on AC(I; (X, d)) and ψ is
continuous on (0, r1) and left continuous at r1, we have

lim sup
h→0+

∫
X×X

ψ

(
d(x, y)
h(λt + ε)

)
dγt,t+h(x, y) = lim sup

h→0+

∫
C(I;X)

ψ

(
d(u(t), u(t+ h))

h(λt + ε)

)
dη(u)

≤
∫
C(I;X)

lim sup
h→0+

ψ

(
d(u(t), u(t+ h))

h(λt + ε)

)
dη(u)

=
∫
C(I;X)

ψ

( |u′|(t)
λt + ε

)
dη(u) < 1.

(3.26)

Consequently there exists h̄ (depending on ε and t) such that∫
X×X

ψ

(
d(x, y)
h(λt + ε)

)
dγt,t+h(x, y) ≤ 1 ∀h ∈ (0, h̄).

Since γt,t+h ∈ Γ (μt, μt+h), the last inequality shows that

Wψ(μt, μt+h) ≤ h(λt + ε) ∀h ∈ (0, h̄).

Finally, dividing by h and passing to the limit for h→ 0+ we obtain

|μ′|(t) ≤ ‖|u′|(t)‖Lψη (C(I;X)) for a.e. t ∈ I. �

Remark 3.2. The following example shows that the assumption (2.10) is necessary for the validity of
Theorem 3.1.

Since ψ is convex, if (2.10) is not satisfied there exist b ∈ (0,+∞) such that and ψ(t) ≤ bt for every t ≥ 0.
Then it holds Wψ(μ, ν) ≤ bW1(μ, ν), where W1 denotes the distance Wφ for φ(t) = t. Given two distinct points
x0, x1 ∈ X , we consider the curve μ : [0, 1] → P(X) defined by μt = (1 − t)δx0 + tδx1 . We observe that
supp(μt) = {x0, x1} for t ∈ (0, 1) and supp(μi) = {xi} for i = 0, 1. Clearly μ is Lipschitz with respect to the
distance W1 and, consequently, with respect to Wψ . In particular μ ∈ ACψ(I;X). If there exists a measure
η satisfying properties (i) and (ii) of Theorem 3.1, then for η-a.e. u it holds that u(i) = xi for i = 0, 1 and
u(t) ∈ {x0, x1} for every t ∈ (0, 1), therefore u cannot be continuous.

4. Geodesics in (P((X, d)), Wψ)

We apply Theorem 3.1 in order to characterize the geodesics of the metric space (P(X),Wψ) in terms of the
geodesics of the space (X, d).

In this section I denotes the unitary interval [0, 1].
We say that u : I → X is a constant speed geodesic in (X, d) if

d(u(t), u(s)) = |t− s|d(u(0), u(1)) ∀s, t ∈ I. (4.1)

We define the set G(X, d) := {u : I → X : u is a constant speed geodesic of (X, d)}.
Proposition 4.1. Let (X, τ, d) be an extended Polish space and ψ be satisfying (2.6). If η ∈ P(C(I;X)) is
concentrated on G(X, d) and γ0,1 := (e0, e1)#η ∈ Γψo ((e0)#η, (e1)#η), then the curve μ : I → P(X) defined by
μt = (et)#η is a constant speed geodesic in (P(X),Wψ).

Proof. Since γ0,1 := (e0, e1)#η ∈ Γψo (μ0, μ1), the following inequality holds∫
X×X

ψ

(
d(x, y)

Wψ(μ0, μ1)

)
dγ0,1(x, y) ≤ 1. (4.2)
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Since η is concentrated on constant speed geodesics and γs,t := (es, et)#η ∈ Γ (μs, μt) we have, for every t, s ∈ I,
t �= s. ∫

X×X
ψ

(
d(x, y)

Wψ(μ0, μ1)

)
dγ0,1(x, y) =

∫
C(I;X)

ψ

(
d(u(0), u(1))
Wψ(μ0, μ1)

)
dη(u)

=
∫
C(I;X)

ψ

(
d(u(t), u(s))

|t− s|Wψ(μ0, μ1)

)
dη(u)

=
∫
X×X

ψ

(
d(x, y)

|t− s|Wψ(μ0, μ1)

)
dγt,s(x, y).

(4.3)

From (4.2) and (4.3) it follows that

Wψ(μt, μs) ≤ |t− s|Wψ(μ0, μ1) ∀s, t ∈ I. (4.4)

By the triangular inequality we conclude that equality holds in (4.4). �

Theorem 4.2. Let (X, τ, d) be an extended Polish space and ψ be satisfying (2.6), (2.10) and (2.11). Let
μ : I → P(X) be a constant speed geodesic in (P(X),Wψ) and η ∈ P(C(I;X)) a measure representing μ in
the sense that (i), (ii) and (iii) of Theorem 3.1 hold. Then γs,t := (es, et)#η belongs to Γψo (μs, μt) for every
s, t ∈ I. If, in addition, ψ is strictly convex and∫

X×X
ψ

(
d(x, y)

Wψ(μ0, μ1)

)
dγ0,1(x, y) = 1, (4.5)

then η is concentrated on G(X, d).

Proof. Let L = Wψ(μ0, μ1). Since μ is a constant speed geodesic and (iii) of Theorem 3.1 holds

L = |μ′|(r) = ‖|u′|(r)‖Lψη (C(I;X)) for a.e. r ∈ I. (4.6)

Let t, s ∈ I, t �= s. Since, by (4.6), it holds

1
t− s

∫ t

s

∫
C(I;X)

ψ

( |u′|(r)
L

)
dη(u) dr ≤ 1,

Fubini’s theorem and Jensen’s inequality yield

∫
C(I;X)

ψ

(
1

t− s

∫ t

s

|u′|(r)
L

dr
)

dη(u) ≤ 1. (4.7)

By the monotonicity of ψ and (4.7) we obtain
∫
C(I;X)

ψ

(
d(u(s), u(t))
|t− s|L

)
dη(u) ≤ 1.

Since |t− s|L = Wψ(μs, μt) we have

∫
C(I;X)

ψ

(
d(u(s), u(t))
Wψ(μs, μt)

)
dη(u) ≤ 1 (4.8)

and, recalling (2.27), this shows that γs,t is optimal.
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Assuming (4.5) and using Jensen’s inequality we have

1 =
∫
C(I;X)

ψ

(
d(u(0), u(1))

L

)
dη(u) ≤

∫
C(I;X)

ψ

(∫ 1

0

|u′|(t)
L

dt
)

dη(u)

≤
∫
C(I;X)

∫ 1

0

ψ

( |u′|(t)
L

)
dt dη(u) =

∫ 1

0

∫
C(I;X)

ψ

( |u′|(t)
L

)
dη(u) dt ≤ 1.

(4.9)

It follows that equality holds in (4.9) and, still by Jensen’s inequality, we have

ψ
(∫ 1

0

|u′|(t)
L

dt
)

=
∫ 1

0

ψ

( |u′|(t)
L

)
dt, for η-a.e. u ∈ C(I;X). (4.10)

The strict convexity of ψ implies that, if u satisfies the equality in (4.10), then |u′| is constant, say |u′|(t) = Lu for
a.e. t ∈ I. Analogously equality in (4.9) shows that ψ

(
d(u(0),u(1))

L

)
= ψ

(
Lu
L

)
for η-a.e. u ∈ C(I;X). The strict

monotonicity of ψ implies that d(u(0), u(1)) = Lu and we conclude that u ∈ G(X, d) for η-a.e. u ∈ C(I;X). �
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