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ABSOLUTELY CONTINUOUS CURVES IN EXTENDED
WASSERSTEIN-ORLICZ SPACES

STEFANO LISINT!

Abstract. In this paper we extend a previous result of the author [S. Lisini, Calc. Var. Partial Differ.
Eq. 28 (2007) 85-120.] on the characterization of absolutely continuous curves in Wasserstein spaces to
a more general class of spaces: the spaces of probability measures endowed with the Wasserstein—Orlicz
distance constructed on extended Polish spaces (in general non separable), recently considered in
[L. Ambrosio, N. Gigli and G. Savaré, Invent. Math. 195 (2014) 289-391.] An application to the
geodesics of this Wasserstein—Orlicz space is also given.
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1. INTRODUCTION

In this paper we extend a previous result of the author [8] to a more general class of spaces. The result
in [8] concerns the representation of absolutely continuous curves with finite energy in the Wasserstein space
(Z£(X,d),W,) (the space of Borel probability measures on a Polish metric space (X,d), endowed with the
p-Wasserstein distance induced by d) by means of superposition of curves of the same kind on the space (X, d).
The superposition is described by a probability measure on the space of continuous curves in (X, d) representing
the curve in (#(X,d),W,) and satisfying a suitable property.

Here we extend the previous representation result in two directions: in the first one we consider a so-
called extended Polish space (X, 7,d) instead of a Polish space (X,d); in the second one we consider the
1-Orlicz—Wasserstein distance induced by an increasing convex function 1 : [0, +00) — [0, +0c0] instead of the
p-Wasserstein distance modeled on the particular case of ¢(r) = r? for p > 1.

The class of extended Polish spaces was introduced in the recent paper [4]. The authors consider a Polish
space (X,7), i.e. T is a separable topology on X induced by a distance 6 on X such that (X,J) is complete.
The Wasserstein distance is defined between Borel probability measures on (X, 7) and constructed by means of
an extended distance d on X that can assume the value +o0o. The minimum problem that defines the extended
Wasserstein distance makes sense between Borel probability measures on (X, 7), assuming that the extended
distance d is lower semi continuous with respect to 7.

Keywords and phrases. Spaces of probability measures, Wasserstein—Orlicz distance, absolutely continuous curves, superposition
principle, geodesic in spaces of probability measures.

I Dipartimento di Matematica “F.Casorati”, Universita degli Studi di Pavia, 27100 Pavia, Italy. stefano.1lisiniGunipv.it

Article published by EDP Sciences © EDP Sciences, SMAI 2016


http://dx.doi.org/10.1051/cocv/2015020
http://www.esaim-cocv.org
http://www.edpsciences.org

ABSOLUTELY CONTINUOUS CURVES IN EXTENDED WASSERSTEIN—-ORLICZ SPACES 671

A typical example of extended Polish space is the abstract Wiener space (X, 7,7) where (X, 7) is a separale
Banach space and 7 is the topology induced by the norm, « is a Gaussian reference measure on X with zero
mean and supported on all the space. The extended distance is given by d(z,y) = |z — y|g if x —y € H, where
H is the Cameron—Martin space associated to v in X and |- | is the Hilbertian norm of H, and d(z,y) = +o0c
if x —y & H (see for instance [11]).

The Wasserstein—Orlicz distance is still unexplored. At the author’s knowledge, only the papers [12] and,
more recently, [7] deal with this kind of spaces. In the paper ([6], Rem. 3.19), the authors discuss the pos-
sibility to use this kind of Wasserstein—Orlicz distance to extend their results for equation of the form
Oyu — div(uVH (u=tVu) = 0 to the case of a convex function H with non power growth.

Only the particular case of the Wasserstein—Orlicz distance W, corresponding to the function #(s) = 0
if s € [0,1] and ¥(s) = o0 if s € (1,4+00) has been deeply investigated. The extension of the representation
Theorem of [8] to the W, case has been proved in [1]. Another refinement of the representation Theorem of [8]
is contained in ([5], Sect. 5). The problem of the validity of the representation Theorem of [8] in the case of a
general Wasserstein—Orlicz space is raised in the last section of [3].

For the precise statement of the result we address to Theorem 3.1. The strategy of the proof is similar to
the one used to prove Theorem 5 of [8], but there are several additional difficulties because, in general, (X, d)
is non separable and the function v that induces the Wasserstein—Orlicz distance is not homogeneous.

The paper is structured as follows: in Section 2 we introduce the framework of our study and some preliminary
results, in Section 3 we state and prove the main theorem of the paper, and finally in Section 4 we apply the
main theorem in order to characterize the geodesics of the Wasserstein—Orlicz space.

2. NOTATION AND PRELIMINARY RESULTS

2.1. Extended Polish spaces and probability measures
Given a set X, we say that d : X x X — [0, +o00] is an extended distance if

e d(z,y) =d(y,x) for every z,y € X,
e d(z,y) =0 if and only if x =y,
o d(z,y) <d(z,z)+d(z,y) for every z,y,z € X.

(X,d) is called extended metric space. We observe that the only difference between a distance and an extended
distance is that d(z,y) could be equal to +oc0.
We say that (X, 7,d) is a Polish extended space if:

(i) 7isatopology on X and (X, 7) is Polish, i.e. 7 is induced by a distance § such that the metric space (X, J)
is separable and complete;

(ii) dis an extended distance on X and (X,d) is a complete extended metric space;

(iii) For every sequence {x,} C X such that d(x,,z) — 0 with € X, we have that x, — = with respect to
the topology 7;

(iv) d is lower semicontinuous in X x X, with respect to the 7 x 7 topology; i.e.,

liminfd(x,,y,) > d(z,y), V(z,y) € X x X, Y(zn,yn) — (z,y) wrt. 7 X 7. (2.1)

n—-+4oo
In the sequel, the class of compact sets, the class of Borel sets #(X), the class C,(X) of bounded continuous
functions and the class (X)) of Borel probability measures, are always referred to the topology 7, even when
d is a distance.
We say that a sequence p, € Z(X) narrowly converges to p € 2(X) if

tim [ o@) (o) = [ pla)dut@) Ve € CuX). (2.2)

n—-+oo X
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It is well-known that the narrow convergence is induced by a distance on Z(X) (see for instance [2],
Rem. 5.1.1) and we call narrow topology the topology induced by this distance. In particular the compact
subsets of Z(X) coincides with sequentially compact subsets of Z(X).

We also recall that if u,, € Z(X) narrowly converges to € Z(X) and ¢ : X — (—00, +00] is a lower semi
continuous (with respect to 7) function bounded from below, then

fiminf [ ola)dun(a) = [ p(o)du(o) 23)

A subset 7 C Z(X) is said to be tight if
Ve >0 3K, C X compact: p(X \K.)<e Vue.J, (2.4)

or, equivalently, if there exists a function ¢ : X — [0, 400] with compact sublevels A (¢) := {z € X : p(x) < ¢},
such that

Hsg};/Xgo(x) dp(r) < 4o0. (2.5)

By Prokhorov’s theorem, a set .7 C Z(X) is tight if and only if .7 is relatively compact in Z(X). In
particular, the Polish condition on 7 guarantees that all Borel probability measures u € &(X) are tight.

2.2. Orlicz spaces

Given
¥ : [0,400) — [0, +00] convex, lower semicontinuous, non-decreasing, 1(0) = 0,

lim (z) =400, (2:6)
r—-+00

a measure space (2,v) and a v-measurable function u : §2 — R, the LY(£2) Orlicz norm of u is defined by

el ) = inf{)\>0:/w(|%> dy<1},
(]

The Orlicz space LY(£2) := {u : 2 — R, measurable : ”“”L”’(Q) < +o0} is a Banach space. For the theory of

the Orlicz spaces we refer to the complete monograph [9].
Given a bounded sequence {w,,} C LY(£2), the following property of lower semi continuity of the norm holds:

lhni)gfwn(x) >w(z) forv-ae z€N — lim inf lwnll s 0y = 1wl Ly ) (2.7)
Indeed, denoting by A, := ||w]] LY(2) and A := liminf, \,, up to extracting a subsequence we can assume that

A = lim, A\,. By the lower semicontinuity and the monotonicity of ¢ we have

lim inf v (w,;\_(ac)> > (M> for v-a.e. x € (2.

n—00 n A

| > linniigf/nzﬁ (wg—ff)) dv(z) > /Q¢ (@) du(z)

which shows that A > ||w\|Ly(m.
We denote by ¢* := [0,+00) — [0,+0c0] the conjugate of ¢ defined by ¥*(y) = sup,>o{zry — ¥(z)}. The
following generalized Holder’s inequality holds

Finally, by Fatou’s lemma

[ ut@)ota) dv(o) < 2lull 1ol (28)
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and the following equivalence between the Orlicz norm in L¥(£2) and the dual norm of L¥" (§2) holds

HuHL’j(Q) < sup {/Q lu(z)v(z)|dv(z) s v e lef; (‘Q)v ||’UHLy*(Q) < 1} < QHuHLﬂ’(Q)- (2-9)
In the statement of our main theorem we will assume, in addition to (2.6), that ¢ is superlinear at +o0, i.e.

lim 9@2:+w, (2.10)

r——+00 €T

and it has null right derivative at 0, i.e.

nggzza (2.11)

It is easy to check that conditions (2.10) and (2.11) are equivalent to assume that ¢*(y) > 0 and ¥*(y) < +oo

for every y > 0.
Typical examples of admissible ¢ satisfying (2.6), (2.10) and (2.11) are:

e (x) = 2aP for p € (1,+00) and the corresponding Orlicz norm is the standard LP norm;

e Y(x)=0if z € [0,1] and ¢(z) = +o0 if & € (1, 400) and the corresponding Orlicz norm is the L° norm;
e Y(x) =e* —x — 1, exponential growth;

e (z) =e* —1 for p € (1,+00), power exponential growth;

e Y(z) = (14 z)In(l + ) — x, Llog L-growth.

2.3. Continuous curves
Given (X, 7,d) an extended Polish space, I := [0,T], T > 0, we denote by C(I; X) the space of continuous
curves in X with respect to the topology 7. C(I; X) is a Polish space with the metric

Bc o1, 0) = sup (u(t). (1)) (2.12)

where § is a complete and separable metric on X inducing 7.
Given 1 satisfying (2.6), we say that a curve u : I — X belongs to ACY(I;(X,d)), if there exists m € LY (I)
such that

d(u(s),u(t)) < /t m(r)dr Vs,tel, s<t. (2.13)

We also denote by AC(I;(X,d)) the set ACY(I;(X,d)) for ¢)(r) = r. We call a curve u € AC¥(I;(X,d)) an
absolutely continuous curve with finite L¥-energy.
It can be proved that for every u € AC¥(I;(X,d)) there exists the following limit, called metric derivative,

[u'|(t) := lim d(u(t + h), u(t))

1_
lim ] for £ -ae.tel, (2.14)

the function ¢ ~— |u’[(t) belongs to L¥(I) and it is the minimal one satisfying (2.13) (see the proof of Theo-
rem 1.1.2 from [2], that still works in this case)
The following Lemma will be useful in the proof of our main theorem.

Lemma 2.1. Let v be satisfying (2.6), (2.10) and (2.11). If u : I — (X,d) is right continuous at every point
and continuous outside a countable set, and

< +o0, (2.15)
LY (1)

lim sup

h—0*t h

‘d(U(’ +h),u()

where u is extended for t > T as u(t) = u(T), then u € ACY(I;(X,d)).
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Proof. Since I is bounded, by the assumptions on u we have that the d-closure of w(I) is compact in (X, d).
Consequently u(I) is d-separable. We consider a sequence {y,}nen dense in (u(I),d). We fix n € N. Defining
Up o I — R by u,(t) :==d(u(t), yn), the triangular inequality implies

un(t + h) — un(t)] < d(u(t + h),u(t)),  Vtel,h>0. (2.16)

Given a test function n € C2°(I) and h > 0, recalling Hélder inequality (2.8) we obtain
I I

h
<2

Un (- +h) = un(-))
h

HWHLW I
Lo (I)

By the last inequality, (2.15) and (2.16), passing to the limit for h — 0 we have that

[ @) < Clall e . (.17
The linear functional .%, : (C°(I), | - | v+ (1)) — R defined by Z,(n) = [} un(t)n'(t) dt, by (2.17), is bounded
and we still denote by %, its extension to E¥" (I), the closure of Cfo( ) with rebpect to the norm || - || Lu=(py-

Since, by (2.10) and (2.11), * is continuous and strictly positive on (0, +00), %, is uniquely represented by
an element v, € L¥" (I) (see [9], Thm. 6, p. 105). The element v,, coincides with the distributional derivative
of u, and then u,, € ACY(I;R) (we observe that 1)** = 1) because 9 is convex and lower semi continuous). We
denote by u/,(¢) the pointwise derivative of u,, which exists for a.e. t € I.

Introducing the negligible set N = UneN{t € I :u (t) does not exists} and defining m(t) := sup,,cn |ul, (t)]
for all t € I'\ N, for the density of {y, }nen in u(I) we have

d(u(t),u(s)) = sup |un(t) — un(s)| < sup/ lul, (1) dr < / m(r)dr, Vt,sel, s<t.
neN neN

By (2.16) we have

()] = tim [eCFR) Zun O

h—0+ h h—0+ h

d(u(t+ h),u(t
and consequently m(t) < lilm(i)rif M for any t € I\ N. By (2.15) and (2.7) we obtain that m €
LY(I). O

2.4. The M(I; X) space

dut+hut) gy

)

We denote by .#(I; X) the space of curves u : I — X which are Lebesgue measurable as functions with
values in (X, 7). We denote by M(I; X) the quotient space of .# (I; X) with respect to the equality .#!-a.e. in
I. The space M(I;X) is a Polish space endowed with the metric

T
51 (u, v) = /0 Feu(t), v(t) dt,

where 6(z,y) := min{d(z,y),1} is a bounded distance still inducing 7 and J is a distance inducing 7.
The space M(I; X) coincides with L(I; (X, d)). It is well-known that &; (u,,u) — 0 as n — +oc if and only
if u,, — w in measure as n — +oc; i.e.

lim 2 ({t € 1:0(un(t)ult) >0}) =0, Vo >0.

n—-4oo

We recall a useful compactness criterion in M(I; X) ([10], Thm. 2).
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Theorem 2.2. A family o/ C M(I; X) is precompact if there exists a function ¥ : X — [0, +00] whose sublevels
Ac(@) :={x € X :¥(x) < c} are compact for every ¢ > 0, such that

T
sup/ U (u(t))dt < +o0, (2.18)
ued JO

and there exists a map g : X x X — [0, 00] lower semi continuous with respect to T X T such that
9(z,y) =0 = z=y

and

T—h
lim sup / g(u(t+h),u(t))dt =0.
h—0% yeor Jo

2.5. Push forward of probability measures

If Y, Z are topological spaces, p € Z(Y) and F : Y — Z is a Borel map (or a p-measurable map), the push
forward of p through F, denoted by Fup € P(Z), is defined as follows:

Fup(B) :=u(F~Y(B)) VB B(2). (2.19)

It is not difficult to check that this definition is equivalent to

/@(Z)d(F#M)(Z)Z/ e(F(y)) du(y) (2.20)
4 Y

for every bounded Borel function ¢ : Z — R. More generally (2.20) holds for every Fyp-integrable function
p:Z —R
We recall the following composition rule: for every p € Z(Y) and for all Borel maps F' : ¥ — Z and
G:7Z — W, we have
(GoF)yp=Gy(Fyp).

The following continuity property holds:
F:Y — Z continuous = Fyu:PA(Y)— P(Z) narrowly continuous.

We say that p € Z(Y) is concentrated on the set A if u(X \ A) = 0. It follows from the definition that Flp
is concentrated on F'(A) if u is concentrated on A.

The support of a Borel probability measure p € Z(Y) is the closed set defined by suppu = {y € Y :
w(U) > 0,VU neighborhood of y}. p is concentrated on supp p and it is the smallest closed set on which p is
concentrated.

In general we have F(supp p) C supp Figp C F(supp p) for F 1 Y — Z continuous.

It follows that Flp(supp Fyp\ F(supp p)) = 0.

The following Lemma is fundamental in our proof of Theorem 3.1. It allows to recover a pointwise bound
assuming an integral bound.

Lemma 2.3. Let Y be a Polish space and {pn}neny C P(Y) be a sequence narrowly convergent to p € Z(Y)
as n — +oo. Let F,, : Y — [0,+00) be a sequence of p,-measurable functions such that

sup/ F(y) dpn(y) < +oo. (2.21)
neNJyYy

Then there exists a subsequence i, such that

for p-a.e. y € supp . Jyn, € SUPD fy,, : LM y,, =7 and  sup F,, (Yn,, ) < +00. (2.22)
k—-4o00 kEN
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Proof. Let us define the sequence vy, 1= (i X Fy)upn € P(Y x R), where i denotes the identity map in Y. We
denote by 7! : Y x R — Y and 72 : Y x R — R the projections defined by 7!(y, 2) = y and 72(y, 2) = 2. The
set {vy, fnen is tight because {ﬂ#l/n}neN and {ﬂ%l/n}neN are tight. Indeed ’R'J#I/n = iy, is narrowly convergent,
and Fil/n = (F,,)#Mtn has first moments uniformly bounded because

/R 2] v (2) = /Y Fo ()] dpin (9),

F,, > 0 and (2.21) holds. By Prokhorov’s theorem there exists v € Z(Y x R) and a subsequence {vy, }ren C

Z(Y x R) narrowly convergent to v. Since W%&I/n =y and W;#l/nk — 7@7&1/ as k — +oo we have that 7@7&1/ = [

Let i € m!(suppv), and we observe that u(supp u \ 7 (suppv)) = 0. By definition of  there exists z € R
such that (y,2) € suppv. Let h € N and D, (9, 2) := B1/,(y) x (2 — 1/h, 2z + 1/h) where B,(y) denotes the
open ball of radius 7 and center 7. By (2.3), with ¢ the characteristic function of Dy (7, 2), we obtain

liminf v, (Dy/5,(7,2)) > v(D1/n(9,2)) > 0.
k—+o0
Then there exists k(h) € N such that
Uno(D1n(9,2)) >0 VEk > k(h). (2.23)

By definition of v,

VUny, (Dl/h(g’z)) = /"Lnk({y eY: (I X Fnk)(y) € Dl/h(g’z)})
= b, ({y €Y 2 (y, Fui(y)) € Biyn(y) x (2 = 1/h, 2+ 1/h)}).

By (2.23) and (2.24) we have that

supp pn, N {y €Y : (y, Fui () € Biyn(y) x (2 =1/h, 2+ 1/h)} #0 Vk = k(h). (2.25)

(2.24)

Since we can choose the application h +— k(h) strictly increasing, by (2.25) we can select a sequence y,, €
supp i, N{y €Y 2 (y, Fri (y)) € Bin(y) x (2 —1/h, 2+ 1/h)}. By definition y,, — 7 and Fy, (yn,) — z as
k — +o0. Since Fy, (yn, ) converges in R we obtain the bound in (2.22). O

2.6. The extended Wasserstein—Orlicz space (Z(X), Wy,)
Given p,v € Z(X) we define the set of admissible plans I'(u,v) as follows:
P(p,v)i={y € P(X x X): myy = p, mpy = v},

where 7 : X x X — X, for i = 1,2, are the projections on the first and the second component, defined by
' (z,y) = 2 and 7*(z,y) = y.
Given ¢ satisfying (2.6), the ¢-Wasserstein—Orlicz extended distance between u, v € Z(X) is defined by

Wy(p,v) := inf inf {)\ >0: / P (_d(:r,y)) dy(z,y) < 1}
YEL (1,v) XxX A (2.26)
:"VEIFI%/E,V) IdC- ')HW(XXX)'

It is easy to check that

Ww(,u,t/):inf{A>0: inf /}(X)(qp(d(?y)) dv(w,y)<1}

yEI (p,v)

which is the definition given in [12] (see also [7]).
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When the set of v € I'(u, v) such that ||d(-, ~)\|L$(Xxx) < 400 is empty, then Wy, (1, v) = 400. Otherwise it is

not difficult to show that a minimizer v € I'(u, v) in (2.26) exists. We denote by I'¥ (u, ) the set of minimizers
in (2.26). We observe that

v M)
vern) = [ v (Ww, L) e <1, (2.27)
Since ¢ satisfies (2.6), ¥ ~!(s) is well defined for every s > 0 with the following convention: if ¥ (r) = +oo
for 7 > ro and 1 (rg) < +oo, then we define 1~1(s) = rq for every s > (rg); if ¢(1) = 0, then we define
Y1) = inf{r > 1:9(r) > 0}.

Moreover if v € I'¥(p,v) then

/ 4, y) dy (e y) < o (D)W (. 0). (2.28)
XxX

Indeed, for 4 # v (the other case is trivial) using Jensen’s inequality and (2.27)

w( XXX %dﬂf’y)) = /Xx)ﬂ (%) dy(a,y) <1

and (2.28) follows.

Being (X, d) complete, (Z(X), Wy), is complete too (the proof of Proposition 7.1.5 from [2], works also in
the case of the extended distance d and the Orlicz—Wasserstein distance).

We observe that (X, d) is embedded in (Z(X), Wy,) via the map z +— 0, and it holds

Wy (82, 0y) = d(z,y). (2.29)

b
(1)
Thanks to the compatibility condition (iii) in the definition of extended Polish space we also have the following

fundamental property:
Wy (pon, 1) =0 = pn — p narrowly in Z(X). (2.30)

The space (2(X), Wy) is an extended Polish space, when in &?(X) we consider the narrow topology.

3. MAIN THEOREM

In this section we state and prove our main result: a characterization of absolutely continuous curves with finite
LY%-energy in the extended 1-Wasserstein—Orlicz space (2(X), W,,). This result is an extension of Theorem 5
in [8] and some parts of the proof are similar. Nevertheless, since the setting and the spaces are different, we
preferred to write the proof in a self contained form, referring to [8] only at some points.

Before stating the result, we define, for every ¢ € I, the evaluation map e; : C(I; X) — X as er(u) = u(t)
and we observe that e; is continuous.

Theorem 3.1. Let 1 be satisfying (2.6), (2.10) and (2.11). Let (X, 7,d) be an extended Polish space and
I:=[0,T),T>0.If u€ AC¥(I;(P(X),Wy)), then there exists n € P(C(I; X)) such that

(i) n is concentrated on ACY(I;(X,d)),

(i) (er)wn = pe vVtel,
(iii) for a.e. t € I, the metric derivative |u'|(t) exists for n—a.e. w € C(I; X) and it holds the equality

WO = 11Ol g oy Jorace te T
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Proof. We preliminary assume that
| =1 for a.e. t €1, (3.1)

and we will remove this assumption in Step 6 of this proof. We also assume for simplicity that I = [0, 1].
For any N € N, N > 1, we denote by ¢’ the points

i :ZQLN i=0,1,...,2N

)

and we choose optimal plans

v € TV (pgiy pyier)  i=0,1,...,2Y —1.
Denoting by X x the product space X y := Xg x X; x ... x Xon, where X;, i =0,1,...,2Y, are copies of the
same space X, there exists (see for instance [2], Lem. 5.3.2 and Rem. 5.3.3) a measure vy € (X y) such that

. _— .
myyN = and ATy =,

where 7 : X v — X; is the projection on the ith component and 77 : X v — X; x X; is the projection on the
(4, 7)-th component. The measure yn depends only on the curve p and N wia the choice of the plans 4.
We define 0 : Xy — #(I; X), and we use the notation @ = (xq,...,2Ton) — 04, by

ox(t) =z, if  t e[t ), i=0,1,...,2Y —1.
Finally, we define the sequence of probability measures
N = opyn € P(M(L; X))

Step 1. (Tightness of {nn}neny in P(M(I; X))). In order to prove the tightness of {nn}nen in P(M(I; X))
(we recall that M(I; X) is a Polish space with the metric d;) we show that there exists a function ¢ : M(I; X) —
[0, +00] such that A\.(®) := {u € M(I; X) : &(u) < ¢} is compact in M([; X) for any ¢ € R, and

sup / &(u) dny (u) < +o0. (3.2)
NeN Jmz;x)

Since p is continuous and I is compact, the set o/ := {y; : t € I} is compact in (Z(X), W) and consequently
in Z(X). By Prokhorov’s theorem, .7 is tight in Z?(X) and therefore there exists a function ¥ : X — [0, +00]
such that Ac(¥) := {z € X : ¥(x) < ¢} is compact in X for any ¢ € R} and

sup /X () djua () < +oc. (3.3)
We define ¢ : M(I; X) — [0, +00] by
1 1—h u "
B(u) = /0 P(u(t) dt + sup /O dlu(t+h),ult) 4,

he(0,1) h

The compactness of the sublevels A.(®) in M(I; X) follows by Theorem 2.2 with the choice g(z,y) = d(z, y).
In order to prove (3.2) we begin to show that

1
Ifflé%//vt(l;x)/o U (u(t)))dtdny (u) < +oo. (3.4)
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By the definition of ny we have

/M(I X) / ) dt dny (u) = /XN /01 V(o (t))dtdyn ()

N_1 it

:/ QLN i ¥(z;)dyn ()
Xn =0
1 2N 1
3 2 [ @) dne @)
1 2N -1
S 2 i‘é?/x‘”@ djue(2) = sup /X W (x) dpuy(a)

and (3.4) follows by (3.3). The second bound that we have to show is
1—h
d(u(t+ h),u(t
sup / sup / d(u(t + h), u(t)) dt dnn (u) < 4o0. (3.5)
NeNJ M(I;X) he(0,1) J0 h
First of all we prove that for & € X y we have

2N 1
dt <2 ) d(i,wi41). (3.6)
1=0

1-h
gup [ At 10n()

he(0,1) Jo h

We fix h € (0,1). When h < 27 we have that o4 (t+h) = 04(t) for every t € [t!, 71 —h] and i = 0,...,2V —1.

Then
N1 it 2N _2

1—-h
/0 d(o(t + h), 00 (1)) dt = Z/ d(oa(t+h),oa () dt =h 3 d(@szis1). (3.7)
1=0

=0 Jt'

Now we assume that h > 27 and we take the integer k(h) = [h2"], where [a] := max{n € Z : n < a} is the
integer part of the real number a. By the triangular inequality we have that

1-h 11—tk

/ d(og(t + h),0(t))dt < / d(oz(t +h),ox(t))dt
0
1—k( k(h)
/ O (t + 171, oy (t + 1)) dt (3.8)

k(h) 2N—k(h)—1

_ZQN > d(@irjr wivg)-
=0

Observing that in the last line of (3.8) the term d(zy1,2), for every k = 0,1,...,2¥ — 1 is counted at most

E(h) + 1 times and k(h};);,rl < kggjl < 2, we obtain that

1-h k;(h)—l—l 2N _1 oN_q
/O Aot + 1), 0 (1)) At < “TL0 S d(rgi0,7) < 20 Y dlagin, ). (3.9)

=0 =0
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The inequality (3.6) follows from (3.9) and (3.7). Finally, by (3.6), (2.28) taking into account the optimality of
the plans W;’:Hm\/, and (3.1) we have

1-h 2N —1
/ sup / Mdt dnn(u) <2 Z d(z;, xis1) dyn ()
M(I;X) he(0,1) Jo Xy o
2V -1
<207 (1) Y W (s, pryies) (3.10)
=0
2N -1 1
<7 (1) Y or=27'()
=0

and (3.5) follows.
Then, by Prokhorov’s theorem, there exist n € Z(M(I; X)) and a subsequence N,, such that nn, — 7
narrowly in Z2(M(I; X)) as n — +o0.

Step 2. (7 is concentrated on BV right continuous curves). We apply Lemma 2.3 in order to show that n-a.e.
u € suppn has a right continuous BV representative.

Given a curve u : [a,b] — X, we denote by pV(u, [a,b]) = sup{d_ /", d(u(t;),u(tit1)) :a =11 <t < ... <
tn < tp+1 = b} its pointwise variation and by eV(u, [a,b]) = inf{pV(w, [a,b]) : w(t) = u(t) for a.e. t € (a,b)} its
essential variation.

We define Fiy : M(I; X) — [0,400) by

Fy (1) = eV(u,I) if u € suppnn, (3.11)
0 if u & suppnn. ’

If u is a.e. equal to o, then eV(u,I) = pV(og,I) = Z?ZJI d

computation in (3.10) shows that

(2j,2j41). Taking into account this equality, the

sup / Fr(u)dny(u) < 4o0. (3.12)
NeNJM(I;X)

Since Fy > 0 by definition, we apply Lemma 2.3 with the choice Y = M(I; X) and p,, = ny, . We still denote
by nn, the subsequence of 7y, given by Lemma 2.3. Let u € supp(n) be such that (2.22) holds and we denote
by up, € supp(ny, ) such that uy, — win M(I; X) and C a constant independent of n such that

FNn(uNn) S C (313)

Moreover, up to extracting a further subsequence, we can also assume that uy, (t) — wu(t) with respect to
the distance § for a.e. ¢ € I. Since un, € supp(nn, ) we can choose the piecewise constant right continuous
representative of up, , still denoted by uy, . From (3.13) we obtain that

eV(un,) =pV(un,) < C. (3.14)

Defining the increasing functions v, : I — R by v, (t) = pV(un,, [0,1]), from the Helly’s theorem, up to extract
a further subsequence still denoted by v,,, there exists an increasing function v : I — R such that v, (¢) converges
to v(t) for every t € I (we observe that for (3.14) v < C). Since the set of discontinuity points of v is at most
countable we can redefine a right continuous function v by o(t) = lim,_;+ v(t). Since

d(un, (t),un, (8)) < vn(s) — vn(t) Vi,sel, t<s, (3.15)
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from the property (2.1) it follows that
d(u(t),u(s)) < wv(s) — o(t) forae t,sel, t<s. (3.16)

Since (X,d) is complete, by (3.16) we can choose the representative of w, @ : I — X defined by u(t) =
lim,_,;+ u(t), which is right continuous by (3.16).

We have just proved that n-a.e. u € suppn is equivalent (with respect to the a.e. equality) to a d-right
continuous function with pointwise d-bounded variation, continuous at every point except at most a countable
set.

Step 3. (Proof of (i)). We recall the notation k(r) = [2V7], for » € R. For every u € supp(ny) and every
a,b,h € I such that a < b, h >2 N b+ h eI, it holds

bkh)

/abw (k(l}i()h_;)_ 1 d(u(t +hh) > dt </ 11/1(2Nd(xk(t)+i+1,xk(t)+i)) dt. (3.17)

Indeed, by the monotonicity of ¢, the discrete Jensen’s inequality and k(h)/h < 2V we have

/b¢<k(k(h) d(u(t-i—h)au(t))) dt</b¢< (k(h) d(xk(t+h)a$k(t))> dt

h)+1 h kE(h)+1 h
b k(h) k(h)
1 k(h) k),
S/a (] EOES ; N d(@h(t)titts Try4i) | A </ OEE th( d(@h(t)yritts Trey+i) ) dt

Moreover, since Wy (g, pirt1) < 27N by (3.1), taking into account the optimality of 7T] JHAN it holds

k+1 Z/XN 2 d(%“’xﬂ)) dyv() < = Zk:/ (#) dyn(z) <1, (3.18)

(fes+1s pgi)

for every k < 2V —1.

Let us define the sequence of lower semi continuous functions fy : M(I; X) — [0, +o0] by

T A e XY

1/28<n<1.Jo 2h

that satisfies the monotonicity property

fn(u) < fnia(u) Vue M(I; X). (3.19)
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For h € [27V,1) and u € supp(ny), by (3.17) and the inequality £ < kL we have that

_ k) k(h)
1—t 1

< /O k(h) + 1 >0 (2Vd(@ryirn Treo+)) dE
i=0
2N—k(h)—1 1 k(h)
= > 2N W (2Vd(@ghi, 7))
= k(h)+1 —
2N 1
< > 2Ny (2Nd(wja,25)) -
j=0
It follows that
2N 1
MOED SRR CALCREN)
=0

for every u € supp(nn). Integrating the last inequality, taking into account (3.18) we obtain that

/M(I;X) S (w) dny (u Z 2~ N/ (sz(:ch,xj)) dyn(z) < 1.

The lower semi continuity of fx, the monotonicity (3.19) and the last inequality yield

/ fnv(u)dn(u) <1 VN eN.
M(I;X)

Consequently, by monotone convergence theorem, we have that

/ sup fr(u) dn(u) < 1,
M(

I;X) NeN
and
sup fy(u) < oo for n —a.e. u € M(I; X). (3.20)
NeN
Since
1—h
d(u(t + h),u(t
sup fu(u) = swp [0 (—‘”( .l ))) @,
NeN o<h<1.Jo 2h
and folfh ’(/J(W) dt < C implies HMHM 01m < max{C, 1} we obtain that (2.15) holds for

n-a.e. u € M(I; X).

Finally, taking into account Step 2, we can associate to n-a.e. u € suppn a right continuous representative u,
with at most a countable points of discontinuity satisfying (2.15). By Lemma 2.1 this representative belongs to
ACY(I;(X,d)).

Defining the canonical immersion T': C(I; X)) — M(I; X) and observing that it is continuous, we define the

new Borel probability measure 7 € Z(C(I; X)) by 7(B) = n(T'(B)). For the previous steps 7 is concentrated
on ACY(I;(X,d)).
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Step 4. (Proof of (ii)). The property (ii) follows from the identity
/ o(u(t)) dif(u) = / o(@)du(x) VeI, Ve Cp(X) (3.21)
C(I;X) X

which can be proven as in Step 3 of the proof of Theorem 5 in [8].

Step 5. (Proof of (iii)). Reasoning as in ([8], Thm. 4) it is simple to prove that for a.e. t € I, |u’|(t) exists for
n—a.e. u € C(I; X).
For every N € N, h > 27V a,b € I such that a < band b+ h € I, by (3.17) and (3.18) we have

' k(h) d(u(t+ h),u(t))
/M(I;X)/a v (k(h) +1 h ) dt dny (u)

b k(h)
1
</XN/a RS ;¢(2Nd($k(t)+i+1axk(t)+i)) dtdyn(x)

< /b 1 f:)/ ¢ < d(Z(t) 1it1s Th(t)+i) ) dyn(z)dt < b
_— i B a’
—Jo k(h)+1 i=0 Y XN Ww(ﬂtk(t)+i+1aﬂtk(t)+i) w -

L k(h) d(u(t +h), u(t))
/MU;X) b—a /a v (k(h) +1 h ) dt dnn (u) < 1.

Passing to the limit in the last inequality along the sequence 1y, we obtain that the following inequality

/C(I;X> b i a /ab¢ (M) dtdi(u) <1

holds for every a,b € I such that a < b, h > 0 and b+ h € I. Taking into account (i), Fubini’s theorem and
Lebesgue differentiation theorem we obtain

and consequently

/ w(\u’\(t)> dij(u) <1 for a.e. t €1
C(I;X)

and this shows that
|Hul|(t)||Lg’(C(1;X)) <1l=|u|(t) foraetel

Step 6. (Conclusion). Finally we have to remove the assumption (3.1). Let u € ACY(I;(2(X),Wy)) with
length L := fOT | |(t) dt.

If L =0, then p; = po for every ¢ € I and p is represented by 7 := og g, where o : X — C(I; X) denotes
the function o(x) = ¢y, ¢ (t) ==z for every t € I.

When L > 0 we can reparametrize p by its arc-length (see Lem. 1.1.4(b) of [2] for the details). We define
the increasing function s : I — [0, L] by s(t) := fot |t/|(r) dr observing that s is absolutely continuous with

pointwise derivative
s'(t) = |u'|(¢) for a.e. t € I. (3.22)

Defining s7! : I — [0, L] by s71(s) = min{t € I : s(t) = s} it is easy to check that the new curve fi : [0, L] —
P(X) defined by fis = pg-1(s) satisfies [i'|(s) = 1 for a.e. s € [0, L] and py = fig). By the previous steps, we
represent /i by a measure i) concentrated on AC¥ ([0, L]; (X,d)). Denoting by F : C([0, L]; X) — C(I; X) the
map defined by F'(i) = @ o s, we represent pu by 1 := Fyn. Clearly (e;)xn = (e 0 F') 41 = fis) = . Moreover,
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7 is concentrated on curves u of the form u(t) = a(s(t)) with @ € ACY ([0, L]; (X,d)). Since s is monotone and
AC(I;R) and @ is AC([0, L]; (X, d)) then 4o s is AC(I;(X,d)), and the metric derivative satisfies

[ (t) < |@|(s(t))s'(t) for a.e. t € I. (3.23)

Let t € I such that s'(t) and |p/|(t) exist and s'(t) = |/|(t) > 0. Taking into account (3) and Jensen’s
inequality we have for h > 0

d(u(t + h),u(t)) u) — d(a(s(t+h)),u(s())\ ;. 4
/C(I;X)w( s(t+h)—s(t) ) dn(u) /C’([O,L];X)w< s(t+h)—s(t) > (@)
1 s(t+n) »
< /C i )¢<—t+h)_s() / ) u(r)dr> ()

(t+h)
b (1) (r)) di(a) dr < 1.
T o o 08100 i@

By Fatou’s lemma, taking into account that 7 is concentrated on AC(I;(X,d)) curves, we obtain the inequality

w0
/CU;X) v (|u'|<t>> dnfu) < 1 (3.24)

On the other hand, if |¢/|(t) = 0 on a set J C I of positive measure, then for n-a.e. u we have |u'[(f) = 0
for a.e. t € J because of the inequality (3.23). Taking into account this observation and (3.24) we obtain the
inequality

H|u'|(t)||L%J(C(I;X)) < (), for ae. t € I. (3.25)

We prove that 7 is concentrated on ACY(I;(X,d)). Since fC(IX [u|(t) dn(u) < = L(1)]||u/|(t )||Lw(c(1 X))
(see the same computation of (2.28) and notice that ¢~ (1) > 0), for every v € L* (I ) such that |[v]| L=y < 1,

from (3.25) we have
/ / | (£) dn(a)[o()] dt < $1 (1) / ) (6) ()] dt.
1Jor;x) I

By the inequality (2.9) and Fubini’s theorem it follows that
[ [ Wil ddn) < 20 @l
crx) Jr1
Since |u'| € L¥(I) it follows that for n-a.e. u € C(I; X)

/ [W'|(t)|w(t)| dt < 400 for every w € LY (I).
I

By ([9], Prop. 1, p. 100) it follows that |[u/| € L¥(I) and (i) holds.
In order to show the opposite inequality of (3.25), we assume that ¢ € I is such that |u/|(¢) exists for n—a.e.
u € C(I; X) and \; := H|U/‘(t)HL,’f;( orxy) > 0. We fix € > 0. Since [, IX)w(Iu It ) dn(u) <1 and 9 is strictly

increasing on an interval of the form (rg,r1) where rg > 0, r1 < 400 and ¥(r) = 0 for r < ro, (r) = +oo for

r > ri, we have that
|w'|(t)
WP (— dn(u) < 1.
/C’(I;X) At + € )
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For h > 0, let vy 14n = (e, et4n)xn. Taking into account that 7 is concentrated on AC(I;(X,d)) and ¢ is
continuous on (0,71) and left continuous at r1, we have

: d(z, y) Y d(u(®), ut+h)\ 4,
e [ (ts) e =t [ (SR ) anco

. d(u(t), u(t+ )Y
= /C(I;X) h;ﬁ?)lipw< h(A +¢) ) dn(w) (3:26)

B /C(I;X) v <kﬁ%) dn(u) < 1.

Consequently there exists h (depending on ¢ and t) such that

d(xay) 7
LXX¢ <m> d’yt,t+h(1'7y) S 1 Vh S (0, h)

Since Y¢ t+n € I'(1e, fie+n ), the last inequality shows that
Wy (e, preyn) < h(Ae +€) Vh € (0, h).
Finally, dividing by h and passing to the limit for h — 07 we obtain
@) < W[l orixy — for ae. t € L. 0

Remark 3.2. The following example shows that the assumption (2.10) is necessary for the validity of
Theorem 3.1.

Since 1 is convex, if (2.10) is not satisfied there exist b € (0,400) such that and (t) < bt for every ¢t > 0.
Then it holds Wy (u, v) < bW1 (i, v), where Wi denotes the distance Wy for ¢(t) = t. Given two distinct points
xo,21 € X, we consider the curve p : [0,1] — Z(X) defined by u; = (1 — ¢)d,, + td,,. We observe that
supp(pt) = {zo, 21} for ¢ € (0,1) and supp(p;) = {x;} for i = 0,1. Clearly p is Lipschitz with respect to the
distance W; and, consequently, with respect to W,. In particular p1 € ACY(I; X). If there exists a measure
n satisfying properties (i) and (ii) of Theorem 3.1, then for n-a.e. u it holds that u(i) = x; for ¢ = 0,1 and
u(t) € {zo,x1} for every t € (0,1), therefore u cannot be continuous.

4. GEODESICS IN (Z((X,d)), Wy)

We apply Theorem 3.1 in order to characterize the geodesics of the metric space (22(X), Wy,) in terms of the
geodesics of the space (X, d).

In this section I denotes the unitary interval [0, 1].

We say that v : I — X is a constant speed geodesic in (X,d) if

d(u(t),u(s)) = |t — s|d(u(0),u(1)) Vs, t € 1. (4.1)
We define the set G(X,d) :={u: I — X : u is a constant speed geodesic of (X,d)}.

Proposition 4.1. Let (X, 7,d) be an extended Polish space and ¢ be satisfying (2.6). If n € P(C(I; X)) is
concentrated on G(X,d) and vo,1 := (eo,e1)xn € I¥ ((eo)xn, (e1)xn), then the curve p: I — P(X) defined by
pe = (er)gn is a constant speed geodesic in (P(X), Wy,).

Proof. Since 79,1 := (eq, e1)xn € 'Y (uo, 1), the following inequality holds

d(z,y)
/X><X¢ <m> dvo,1(z,y) < 1. (4.2)
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Since n is concentrated on constant speed geodesics and 7y, 1 = (es, €¢)un € I'(is, pt) we have, for every ¢, s € I,

t#s.
_dl@y) o) = d((©), u) Y
/XXXw (Ww(ﬂo,m)) ot /C(I;X)¢ ( Wy (po, 1) ) ()
— d(u(t), u(s)) .
B /Cu;X)w <t— sz(uo,u1)> dn(u) (4.3)

B /)(wa (|t - Sdé[zzio,mJ $1es(2,9)

Ww(“tvﬂs) < |t - S‘Ww(/’éovl’(‘l) vsvt el (44)

From (4.2) and (4.3) it follows that

By the triangular inequality we conclude that equality holds in (4.4). O
Theorem 4.2. Let (X,7,d) be an extended Polish space and 1 be satisfying (2.6), (2.10) and (2.11). Let
w:l — P(X) be a constant speed geodesic in (P(X),Wy) andn € Z(C(I; X)) a measure representing p in

the sense that (i), (ii) and (ili) of Theorem 3.1 hold. Then ~s; = (es,ei)xn belongs to T'¥ (us, i) for every
s,t € I. If, in addition, 1 is strictly convex and

Joow® (et ) stz =1 a5

then n is concentrated on G(X,d).
Proof. Let L = Wy (0, 1) Since p is a constant speed geodesic and (iii) of Theorem 3.1 holds
L=|g|(r)= H|ul|(r)HL,’,§’(C(I;X)) for a.e. r € I. (4.6)

Let t,s € I, t # s. Since, by (4.6), it holds

1/ u’(?“))
t—s/s /C(I;X)¢< i dn(u)dr <1,

Fubini’s theorem and Jensen’s inequality yield

/C(I;X) ¥ (% /f @ d?”) dn(u) < 1. (47)

By the monotonicity of ¢ and (4.7) we obtain

/C(I;X) v (%) dn(u) < 1.

Since [t — s|L = Wy (s, pt) we have

d(u(s), u(t))
/C(I;X) v <m> dn(u) <1 (4.8)

and, recalling (2.27), this shows that ~, ; is optimal.
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Assuming (4.5) and using Jensen’s inequality we have

1_/I”¢(%ﬂ%¥gﬁ>mwy<lumw(/qugdmw
< Lo (MY = [ (M) dpar<

Tt follows that equality holds in (4.9) and, still by Jensen’s inequality, we have

¢(/01 |UI|/( ) dt) /01 ¥ (@) dt, for n-a.e. u € C(I; X). (4.10)

The strict convexity of ¢ implies that, if u satisfies the equality in (4.10), then |u’| is constant, say |u'|(t) = L, for
a.e. t € I. Analogously equality in (4.9) shows that w(M) = 1/1(%) for n-a.e. u € C(I; X). The strict
monotonicity of ¢ implies that d(«(0),u(1)) = L,, and we conclude that u € G(X,d) for n-a.e. w € C(I; X). O
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