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STABILIZATION AND DESTABILIZATION VIA TIME-VARYING NOISE
FOR UNCERTAIN NONLINEAR SYSTEMS ∗

Fengzhong Li1 and Yungang Liu1

Abstract. This paper considers the stochastic stabilization and destabilization for uncertain nonlinear
systems. Remarkably, the systems in question allow serious parameter unknowns (which don’t belong to
any known constant set) and serious time-variations, and possess more general growth conditions than
those in the related existing literature. The former feature makes the time-invariant scheme inapplicable,
and a time-varying one is proposed, mainly to compensate the serious parameter unknowns, as well
as serious time-variations. First, a time-varying stochastic noise is successfully constructed to super-
exponentially stabilize the special but representative case without adverse serious time-variations. Then,
for the general case and general decay rate, it suffices to find a fast enough time-varying gain for the
stochastic noise. Moreover, by a time-varying method, the stochastic destabilization with general growth
rate is also achieved for uncertain nonlinear systems.
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1. Introduction

Usually, stochastic noise has a negative influence on systems, and hence some proper means should be
adopted to counteract the influence. But it is not always the case. Sometimes, stochastic noise can improve the
performance of systems. For instance, in [8], stochastic noise was employed to stabilize a two-dimensional linear
system. Recognizing this interesting fact, much attention has been paid to the stabilization/destabilization via
stochastic noise (see e.g., [2,4–6,13,18–21] and references therein). However, all the related existing results fail
to be applied to the systems with serious parameter unknowns, since no compensation mechanism was taken
for the serious parameter unknowns.

This paper is devoted to the stabilization and destabilization via stochastic noise for uncertain nonlinear
systems. Remarkably, the systems in question allow serious parameter unknowns and serious time-variations,
and possess more general growth conditions than those in [2, 4, 13, 20, 21]. Motivated by [10–12, 16, 17], time-
varying technique is adopted to compensate the serious parameter unknowns. Based on this, a time-varying
stochastic noise is first constructed to super-exponentially stabilize the special but representative case without
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adverse serious time-variations. Then, for the general case and general decay rate, it suffices to find a fast enough
time-varying gain for the stochastic noise, which can overtake the time-variations and the desired decay rate.
It is worth pointing out that, although some works, such as [6, 20], introduced time-varying stochastic noises
to stabilize nonlinear systems, the time-varying noises involved can only deal with the time-variations in the
systems and guarantee the desired decay rate for the perturbed stochastic systems, but cannot compensate any
serious parameter unknowns. Moreover, we apply a time-varying method to the stochastic destabilization, and
achieve the destabilization with general growth rate for uncertain nonlinear systems by time-varying stochastic
noise.

The remainder of this paper is organized as follows. Section 2 gives some notations and preliminary knowledge.
Section 3 presents the stochastic stabilization for uncertain nonlinear systems. Section 4 addresses the stochastic
destabilization for uncertain nonlinear systems. Section 5 collects the proofs of two claims. Section 6 provides
two simulation examples. Section 7 gives some concluding remarks.

2. Notation and preliminary knowledge

Throughout this paper, the following notation is adopted. We use Z+ to denote the set of all positive integers,
R+ to denote the set of all nonnegative real numbers, R≥t0 to denote the set of all real numbers not less than t0,
Rn to denote the n-dimensional Euclidean space, and Rn×m to denote the space of real n × m-matrices. For
a given vector or matrix X , we use XT to denote its transpose. We use ‖X‖ to denote the Euclidean norm of
the vector X . For a given matrix, we use tr {X} to denote its trace when X is a square matrix, and ‖X‖F to
denote the Frobenius norm of X , that is, ‖X‖F =

√
tr {XTX}. For real numbers a and b, a ∧ b := min{a, b}

and a∨b := max{a, b}. For any given sets U and V, we use C(U, V) to denote the set of all continuous functions
mapping from U to V, and C∞(U, V) to denote the set of all infinitely differentiable functions mapping from U

to V. We denote log 0 = −∞.
Consider the stochastic differential system

dx = f(t, x) dt + g(t, x) dB(t) (2.1)

where x = [x1, . . . , xn]T ∈ Rn with the initial value x(t0) = x0; B(t) is an m-dimensional standard Brownian
motion defined on a probability space (Ω, F , P) with Ω being a sample space, F being a filtration, and P
being a probability measure; f : R≥t0 × Rn → Rn and g : R≥t0 × Rn → Rn×m are continuous functions with
f(t, 0) ≡ 0 and g(t, 0) ≡ 0. Clearly, system (2.1) admits a trivial solution x(t) ≡ 0.

To guarantee the existence and uniqueness of solutions for system (2.1), the following assumption is imposed
on system (2.1):

Assumption 2.1. For any T > t0 and any k ∈ Z+, there is a constant C > 0 (depending on T and k) such
that

‖f(t, x) − f(t, y)‖ ∨ ‖g(t, x) − g(t, y)‖F ≤ C‖x − y‖
for all t ∈ [t0, T ] and x, y ∈ Rn with ‖x‖ ∨ ‖y‖ ≤ k.

Assumption 2.1 shows that the local Lipschitz condition holds for the drift and diffusion terms of system (2.1)
on every finite time subinterval. By (Rem. 6.3.4 in p. 113 of [3] or Thm. 3.19 in p. 95 of [15]), we can directly
obtain the following lemma:

Lemma 2.2. Under Assumption 2.1, for any initial value x0 ∈ Rn, system (2.1) has a unique strong solution
x(t) on [t0, τe), where τe is the explosion time, that is, τe = limε→+∞ inf

{
t ≥ t0

∣∣‖x(t)‖ ≥ ε
}
.

To guarantee the global existence of solutions of system (2.1), the drift and diffusion terms of system (2.1)
are usually required to satisfy the linear growth condition, the monotone condition [14] or the Khas’minskii
condition described by Lyapunov-like functions (see e.g., Thm. 4.1 in p. 84 of [8] or Thm. 3.19 in p. 95 of [15]).
It is worth pointing out that the third condition actually covers the former two conditions as special cases.
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The following lemma shows that, for system (2.1) under Assumption 2.1, any solution starting from a non-
zero point will never reach the origin. This lemma can be directly derived from (Lem. 5.1 in p. 164 of [15]) and
hence its proof is omitted here.

Lemma 2.3. Under Assumption 2.1, for any initial value x0 �= 0, the solution x(t) of system (2.1) satisfies

P
{
x(t) �= 0 for all t ∈ [t0, τe)

}
= 1.

We end this section with the definitions of “serious parameter unknowns” and “serious time-variations”.

Definition 2.4. System dx = f(t, x) dt is said to allow serious parameter unknowns, if f : R≥t0 × Rn → Rn

satisfies
‖f(t, x)‖ ≤ θf̄(t, x), (2.2)

where θ is an unknown positive constant (which doesn’t belong to any known bounded interval) and f̄(t, x) is
a known nonnegative function. The system is said to allow serious time-variations, if there holds

‖f(t, x)‖ ≤ h(t)f̂(x), (2.3)

where h(t) is a nonnegative unbounded function of time and f̂(x) is a nonnegative function.

3. Stochastic stabilization

This section is devoted to the stochastic stabilization of the uncertain nonlinear systems with serious parame-
ter unknowns (which don’t belong to any known constant set). By the time-varying technique, we first construct
a time-varying stochastic noise to super-exponentially stabilize the uncertain nonlinear systems without adverse
serious time-variations. Then, for the general case and general decay rate, it suffices to find a fast enough time-
varying gain for the stochastic noise. Moreover, there exists a peering result for the stochastic destabilization of
uncertain nonlinear systems, which will be considered in next section.

Throughout this and next sections, we focus on the following uncertain nonlinear system:

dx = f(t, x) dt, (3.1)

where x = [x1, . . . , xn]T ∈ Rn with the initial value x(t0) = x0; f : R≥t0 × Rn → Rn is an unknown continuous
function which, as that in system (2.1), satisfies f(t, 0) ≡ 0 and Assumption 2.1 with g(t, x) ≡ 0.

Moreover, the following additional assumption is made on system (3.1):

Assumption 3.1. There exist an unknown constant θ > 0 and a known function γ ∈ C(Rn, R+) such that,
for all t ≥ t0 and x ∈ Rn,

xTf(t, x) ≤ θγ(x)‖x‖2. (3.2)

We next show that Assumption 3.1 not only makes system (3.1) allow serious parameter unknowns, but also
possesses rather generality. In fact, (3.2) is obviously implied by (2.2) with f̄(t, x) = γ(x)‖x‖. Besides (3.2),
another type of growth, also often encountered in the related literature (see, e.g., [9, 13, 17]), is the following:

‖f(t, x)‖ ≤ θγ̄(x)‖x‖ (3.3)

with function γ̄ ∈ C(Rn, R+). Clearly, (3.3) implies (3.2), and hence the latter is more general than the former.
If the time-variations in f(t, x) vanish or are weak, then there is no essential difference between (3.2) and (3.3),

regardless of the expressions of γ(x) and γ̄(x). However, (3.2) allows some serious time-variations in f(t, x),
and (3.3) does not. Consider, for example, 1-dimensional system dx = (−tx + x3) dt. Obviously, term “−tx”
makes the system have serious time-variations. Noticing x(−tx + x3) = −tx2 + x4 ≤ x4, there holds (3.2) with
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θ = 1 and γ(x) = x2 for the 1-dimensional system. But, noting | − tx + x3| =
√

t2x2 − 2tx4 + x6, there doesn’t
hold (3.3) for the 1-dimensional system.

Although (3.3) is somewhat simple and implies (3.2) with γ(x) ≤ γ̄(x), we are still inclined to (3.2), since
γ(x) ≤ γ̄(x) would lead to less conservative stochastic stabilization. For example, for 2-dimensional function
f(t, x) = [x1 + x1x

2
2, x2 − x2

1x2]T, it is easy to see that (3.2) holds with γ(x) = 1, and (3.3) holds with
γ̄(x) =

√
1 + x2

1x
2
2. Thus, based on (3.2), one can see from (3.4) below that a more delicate gain function of

stochastic noise can be found to stabilize system (3.1).
It is worth noting that Assumption 3.1 shows the presence of serious parameter unknowns, and hence sys-

tem (3.1) essentially differs from those in [2, 13, 20, 21] where the growth conditions of the nonlinear systems
investigated therein are precisely known. Next we adopt the time-varying technique to compensate the serious
parameter unknowns, and establish the theory on the stochastic stabilization for uncertain nonlinear systems.

First, choose a function ρ ∈ C(Rn, R+) such that

lim
‖x‖→+∞

ρ(x) = +∞,

for example, ρ(x) = ‖x‖β with constant β > 0. Based on this, choose a local Lipschitz function α ∈ C(Rn, R+)
such that

α(x) ≥ ρ(x)γ
1
2 (x).

It is necessary to point out that such function α(·) always exists, which can be seen from (Lem. 2.1 in [9]).
Then, by introducing a scalar standard Brownian motion B(t) defined on a probability space (Ω, F , P) with

Ω being a sample space, F being a filtration, and P being a probability measure, we construct the following
stochastic noise for system (3.1): (

tp + α(x)
)
xdB(t) (3.4)

with constant p > 0.
Now, we have the following theorem which shows stochastic noise (3.4) can super-exponentially stabilize

system (3.1) under Assumption 3.1.

Theorem 3.2. If Assumption 3.1 holds, then the following stochastic system

dx = f(t, x) dt +
(
tp + α(x)

)
xdB(t), (3.5)

which is system (3.1) perturbed by stochastic noise (3.4), has a unique strong solution x(t) on [t0, +∞) for any
initial value x0 ∈ Rn, and is super-exponentially stable in the following sense:

lim sup
t→+∞

1
t2p+1

log ‖x(t)‖ ≤ − 1
4p + 2

a.s. (3.6)

Proof. By Lemma 2.2, for any initial value x0 ∈ Rn, system (3.5) has a unique strong solution x(t) on [0, τe),
where τe is the explosion time. Moreover, it can be verified that τe = +∞ a.s. (see Sect. 5 for the proof), that is,
the solution x(t) is defined on [t0, +∞) a.s. Clearly, (3.6) holds for x0 = 0 since x(t) ≡ 0. Therefore, it suffices
to prove (3.6) for x0 �= 0.

By Lemma 2.3, for any initial value x0 �= 0, the solution x(t) �= 0 for all t ∈ [t0, +∞) a.s. Then, by Itô’s
formula and Assumption 3.1, and letting

M(t) := 2
∫ t

t0

(
sp + α(x(s))

)
dB(s),

we have

log ‖x(t)‖2 = log ‖x0‖2 +
∫ t

t0

(
2‖x(s)‖−2xT(s)f(s, x(s)) − (sp + α(x(s))

)2)ds + M(t)

≤ log ‖x0‖2 +
∫ t

t0

(
2θγ(x(s)) − (sp + α(x(s))

)2)ds + M(t). (3.7)
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Clearly, M(t) is a continuous local martingale with the initial value M(t0) = 0. Then, for any ε ∈ (0, 1) and
any k ∈ Z+, using the exponential martingale inequality (see Thm. 7.4 in p. 44 of [14]) yields

P
{

sup
t0≤t≤t0+k

(
M(t) − ε

∫ t

t0

(
sp + α(x(s))

)2 ds
)

>
4
ε

log k

}
≤ 1

k2
·

By Borel−Cantelli’s lemma (see Lem. 2.4 in p. 7 of [14]), we obtain that, for almost all ω ∈ Ω, there is a
sufficiently large integer k0 = k0(ω) > 1 such that, for any integer k ≥ k0,

M(t) ≤ ε

∫ t

t0

(
sp + α(x(s))

)2 ds +
4
ε

log k, ∀t ∈ [t0, t0 + k]. (3.8)

Substituting (3.8) into (3.7) and noting ε ∈ (0, 1) yield that, for any integer k ≥ k0 and all t ∈ [t0, t0 + k],

log ‖x(t)‖2 ≤ log ‖x0‖2 +
∫ t

t0

(
(ε − 1)s2p + 2θγ(x(s))

+(ε − 1)α2(x(s))
)

ds +
4
ε

log k a.s. (3.9)

By ε ∈ (0, 1) and α(x) ≥ ρ(x)γ
1
2 (x), it is deduced that, for all x ∈ R

n,

2θγ(x) + (ε − 1)α2(x) ≤ (2θ + (ε − 1)ρ2(x))γ(x).

Moreover, by lim‖x‖→+∞ ρ(x) = +∞, there exists a constant N > 0 sufficiently large such that ρ2(x) ≥ 2θ
1−ε for

all ‖x‖ ≥ N , which together with ε ∈ (0, 1) implies that, for all x ∈ Rn,

2θγ(x) + (ε − 1)α2(x) ≤ sup
‖x‖≤N

(
2θ + (ε − 1)ρ2(x)

)
γ(x) =: H.

Then, by (3.9), we derive that, for any integer k ≥ k0 and all t ∈ [t0, t0 + k],

log ‖x(t)‖2 ≤ log ‖x0‖2 +
ε − 1
2p + 1

(
t2p+1 − t2p+1

0

)
+ H(t − t0) +

4
ε

log k a.s.

Furthermore, for any integer k ≥ k0 and all t ∈ [t0 + k − 1, t0 + k],

log ‖x(t)‖2

t2p+1
≤ log ‖x0‖2

t2p+1
+

ε − 1
2p + 1

·
(

1 −
(

t0
t

)2p+1
)

+
H(t − t0)

t2p+1
+

4 log(t − t0 + 1)
εt2p+1

a.s.

From this, it follows that

lim sup
t→+∞

log ‖x(t)‖
t2p+1

≤ ε − 1
4p + 2

a.s.

Since ε > 0 is arbitrary, letting ε → 0+ yields that (3.6) holds.
This completes the proof. �

From the proof of Theorem 3.2, it can be seen that term α(x)xdB(t) and term tpxdB(t) play different roles
in stabilizing uncertain nonlinear system (3.1). Specifically, the former is to suppress the potential explosion of
system (3.1), and the later is to deal with the serious parameter unknowns of system (3.1). It is worth noting
that, owing to the introduction of time-varying stochastic noise, super-exponential stability is established for the
perturbed stochastic system, but this is very hard if one only concentrates on time-invariant stochastic noises.

In the stochastic noise, we have chosen the time-varying gain as tp, partly since the unknown parameter can
be overtaken by tp as t goes to infinity. It is quite natural that when adverse serious time-variations exist in the
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systems as well, we would find a faster time-varying gain, which can overtake the serious time-variations as t
goes to infinity, and based on which, the stochastic noise of the above structure very likely remains stabilizing
the uncertain nonlinear system. Moreover, from the proof of Theorem 3.2, recognize that the the decay rate of
the perturbed stochastic system is determined by the time-varying gain in the stochastic noise, and increases
with accelerating the time-varying gain. With these insights, the stochastic stabilization with general decay
rate will be established for system (3.1) with serious parameter unknowns and serious time-variations which is
formulated by the following assumption:

Assumption 3.3. There exist an unknown constant θ > 0 and known functions h ∈ C(R≥t0 , R+) and γ ∈
C(Rn, R+) such that, for all t ≥ t0 and x ∈ Rn,

xTf(t, x) ≤ θh(t)γ(x)‖x‖2. (3.10)

Assumption 3.3 makes system (3.1) allow serious parameter unknowns and serious time-variations, since (3.10)
is obviously implied by (2.2) with f̄(t, x) = h(t)γ(x)‖x‖, and also implied by (2.3) with f̂(x) = θγ(x)‖x‖. Remark
that the stochastic stabilization with general decay rate of system (3.1) has been investigated in [20] under the
following one-sided polynomial growth condition:

xTf(t, x) ≤ δ(t)
(
l0 +

n∑
i=1

li‖x‖αi
)‖x‖2 =: δ(t)γ′(x)‖x‖2 (3.11)

with known positive continuous function δ(t) and known nonnegative constants li’s and αi’s. Clearly, (3.11)
is a special case of Assumption 3.3, since (3.11) excludes serious parameter unknowns, and γ′(x) cannot be
non-polynomial function of ‖x‖, which greatly limits the nonlinearities in system (3.1).

Let λ(t) ∈ C(R≥t0 , R+) be the desired decay rate, which is strictly increasing and satisfies λ(t) → +∞ as
t → +∞. Under Assumption 3.3, we first choose a known increasing function L ∈ C

∞(R≥t0 , R+) satisfying

(S1) limt→+∞ L̇(t)/L2(t) = 0;
(S2) limt→+∞

(
h(t) + log t

)
/L(t) = 0;

(S3) L(t) ≥ log λ(t) for all t ≥ t0.

From Lemma 2.2 in [7] and its proof, we see that such L(t) always exists and can be explicitly constructed.
Moreover, by (S2), there clearly holds that limt→+∞ L(t) = +∞.

Then, choose a local Lipschitz function α ∈ C(Rn, R+) such that

α(x) ≥ ρ(x)γ
1
2 (x)

with function ρ ∈ C(Rn, R+) satisfying lim‖x‖→+∞ ρ(x) = +∞. Furthermore, by introducing a scalar standard
Brownian motion B(t) defined on a probability space (Ω, F , P) with Ω being a sample space, F being a
filtration, and P being a probability measure, we construct the following stochastic noise:(

L(t) + h
1
2 (t)α(x)

)
xdB(t). (3.12)

Now, we have the following theorem which shows system (3.1) can be stabilized with decay rate λ(t) by
stochastic noise (3.12) under Assumption 3.3.

Theorem 3.4. If Assumption 3.3 holds, then the following stochastic system

dx = f(t, x) dt +
(
L(t) + h

1
2 (t)α(x)

)
xdB(t), (3.13)

which is system (3.1) perturbed by stochastic noise (3.12), has a unique strong solution x(t) on [t0, +∞) for any
initial value x0 ∈ Rn, and is stable with decay rate λ(t) in the following sense:

lim sup
t→+∞

log ‖x(t)‖
log λ(t)

< 0 a.s. (3.14)
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Proof. By Lemma 2.2, for any initial value x0 ∈ Rn, system (3.13) has a unique strong solution x(t) on [0, τe).
Furthermore, we can show that τe = +∞ a.s. (see Sect. 5 for the proof). Clearly, (3.14) holds for x0 = 0 since
x(t) ≡ 0. Therefore, it suffices to prove (3.14) for x0 �= 0.

By Lemma 2.3, for any initial value x0 �= 0, the solution x(t) �= 0 for all t ∈ [t0, +∞) a.s. Then, from Itô’s
formula and Assumption 3.3, it follows that

log ‖x(t)‖2 = log ‖x0‖2 +
∫ t

t0

(
2‖x(s)‖−2xT(s)f(s, x(s)) − (L(s) + h

1
2 (s)α(x(s))

)2) ds + M(t)

≤ log ‖x0‖2 +
∫ t

t0

(
2θh(s)γ(x(s)) − (L(s) + h

1
2 (s)α(x(s))

)2) ds + M(t)

with M(t) = 2
∫ t

t0

(
L(t) + h

1
2 (t)α(x)

)
dB(s).

Similar to the proof of Theorem 3.2, we can derive that, for any ε ∈ (0, 1) and almost all ω ∈ Ω, there is a
sufficiently large integer k0 = k0(ω) > 1 such that, for any integer k ≥ k0 and all t ∈ [t0, t0 + k],

log ‖x(t)‖2 ≤ log ‖x0‖2 +
∫ t

t0

(
2θh(s)γ(x(s)) + (ε − 1)h(s)α2(x(s))

+(ε − 1)L2(s)
)

ds +
4
ε

log k a.s. (3.15)

In terms of the proof of Theorem 3.2, there exists H > 0 such that, for all x ∈ Rn,

2θγ(x) + (ε − 1)α2(x) ≤ H,

which together with (3.15), implies that, for any integer k ≥ k0 and all t ∈ [t0, t0 + k],

log ‖x(t)‖2 ≤ log ‖x0‖2 +
∫ t

t0

(
(ε − 1)L2(s) + Hh(s)

)
ds +

4
ε

log k a.s. (3.16)

By properties (S1) and (S2) of L(t), there exists T > t0 sufficiently large such that L(t) > 0 and

(ε − 1)L2(t) + Hh(t) ≤ −μ1L
2(t) ≤ −μ2L̇(t), ∀t ≥ T,

where μ1 > 0 and μ2 > 0 are some constants. From this and (3.16), it follows that, for any integer k ≥
max{k0, T − t0} and all t ∈ [T, t0 + k],

log ‖x(t)‖2 ≤ log ‖x(t0)‖2 +
∫ T

t0

(
(ε − 1)L2(s) + Hh(s)

)
ds − μ2

∫ t

T

L̇(s) ds +
4
ε

log k

≤ Δ(t0, T )− μ2L(t) +
4
ε

log k a.s.,

where Δ(t0, T ) = μ2L(T )+log ‖x(t0)‖2+
∫ T

t0

(
(ε−1)L2(s)+Hh(s)

)
ds. Hence, for any integer k ≥ max{k0, T−t0}

and all t ∈ [t0 + k − 1, t0 + k],

log ‖x(t)‖2

L(t)
≤ Δ(t0, T )

L(t)
− μ2 +

4 log(t − t0 + 1)
εL(t)

a.s.,

which together with property (S2) of L(t) and limt→+∞ L(t) = +∞, implies

lim sup
t→+∞

log ‖x(t)‖2

L(t)
≤ −μ2 a.s.

Then, applying property (S3) of L(t) again yields

lim sup
t→+∞

log ‖x(t)‖
log λ(t)

< 0 a.s.

This completes the proof. �



STABILIZATION AND DESTABILIZATION VIA TIME-VARYING NOISE FOR UNCERTAIN NONLINEAR SYSTEMS 617

4. Stochastic destabilization

This section turns to exploiting the opposite effect of stochastic noise, i.e., destabilizing uncertain nonlinear
systems. We shall propose the time-varying scheme for stochastic destabilization, and achieve the destabilization
with general growth rate for system (3.1) with serious parameter unknowns and serious time-variations.

We concentrate on the multidimensional case of system (3.1). This is because scalar counterexamples exist
which cannot be destabilized by any equilibrium-preserving stochastic noise of type g(t, x) dB(t). For example,
consider the following scalar system:

ẋ = −x − x3,

whose zero solution is clearly exponentially stable. However, for any perturbed stochastic system

dx = −(x + x3) dt + g(t, x) dB(t)

with Assumption 2.1 and g(t, 0) ≡ 0, similar to the proof of Theorem 3.2, it can be proved that all the solutions
of the perturbed stochastic system converge to zero exponentially.

Moreover, the following additional assumption is imposed on system (3.1):

Assumption 4.1. There exist an unknown constant θ > 0 and functions h ∈ C(R≥t0 , R+) and γ ∈ C(Rn, R+)
such that, for all t ≥ t0 and x ∈ Rn,

xTf(t, x) ≥ −θh(t)γ(x)‖x‖2. (4.1)

Assumption 4.1 makes system (3.1) allow serious parameter unknowns and serious time-variations, since (4.1)
is obviously implied by (2.2) with f̄(t, x) = h(t)γ(x)‖x‖, and also implied by (2.3) with f̂(x) = θγ(x)‖x‖.

Let λ(t) ∈ C
(
R≥t0 , R+

)
be the desired growth rate, which is strictly increasing and satisfies λ(t) → +∞

as t → +∞. Under Assumption 4.1, by Lemma 2.2 in [7] and its proof, a known increasing function L ∈
C∞(R≥t0 , R+) can be explicitly constructed such that

(D1) limt→+∞ L̇(t)/L2(t) = 0;
(D2) limt→+∞ h(t)/L(t) = 0;
(D3) L(t) ≥ log λ(t) for all t ≥ t0.

From (D3), we see that limt→+∞ L(t) = +∞. Such L(t) will be adopted as the time-varying gain of stochastic
noise. Then, choose a local Lipschitz function α ∈ C(Rn, R+) such that

α(x) ≥ ρ(x)γ
1
2 (x)

with function ρ ∈ C(Rn, R+) satisfying lim‖x‖→+∞ ρ(x) = +∞. Furthermore, motivated by [2], we introduce an
n-dimensional standard Brownian motion B(t) defined on a probability space (Ω, F , P) with Ω being a sample
space, F being a filtration, and P being a probability measure, and construct the following stochastic noise:(

L(t) + h
1
2 (t)α(x)

)
diag(x2, x3, . . . , xn, x1) dB(t). (4.2)

Now, we have the following theorem which shows system (3.1) can be destabilized with growth rate λ(t) by
stochastic noise (4.2) under Assumption 4.1.

Theorem 4.2. If Assumption 4.1 holds, then the following stochastic system

dx = f(t, x) dt +
(
L(t) + h

1
2 (t)α(x)

)
diag(x2, x3, . . . , xn, x1) dB(t), (4.3)

which is system (3.1) perturbed by stochastic noise (4.2), has a unique strong solution x(t) on [t0, τe) for any
initial value x0 ∈ Rn, and is unstable with growth rate λ(t) in the following sense:

lim inf
t→τe

log ‖x(t)‖
log λ(t)

> 0 a.s. (4.4)

for x0 �= 0, where τe is the explosion time of the solution x(t).
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Proof. By Lemmas 2.2 and 2.3, for any initial value x0 �= 0, system (4.3) has a unique solution x(t) �= 0 on
[t0, τe). Define Ω1 =

{
ω ∈ Ω

∣∣τe(ω) = +∞}. Clearly, (4.4) holds on Ω \ Ω1. Hence, it suffices to prove (4.4) on
Ω1.

By Itô’s formula and letting

M(t) :=
n∑

i=1

∫ t

t0

2‖x(s)‖−2
(
L(s) + h

1
2 (s)α(x(s))

)
xi(s)xi+1(s) dBi(s)

with xn+1 = x1, we obtain that

log ‖x(t)‖2 = log ‖x0‖2 +
∫ t

t0

(
2‖x(s)‖−2xT(s)f(s, x(s))

+
(
L(s) + h

1
2 (s)α(x(s))

)2
(

1 − 2‖x(s)‖−4
n∑

i=1

x2
i (s)x

2
i+1(s))

)
ds + M(t).

Then, by Assumption 4.1 and noting

3
n∑

i=1

x2
i x

2
i+1 ≤ 2

n∑
i=1

x2
i x

2
i+1 +

n∑
i=1

x4
i ≤ ‖x‖4, (4.5)

it is deduced that

log ‖x(t)‖2 ≥ log ‖x0‖2 +
∫ t

t0

(
−2θh(s)γ(x(s)) +

1
3

(
L(s) + h

1
2 (s)α(x(s))

)2
)

ds + M(t),

which together with α(x) ≥ ρ(x)γ
1
2 (x), implies

log ‖x(t)‖2 ≥ log ‖x0‖2 +
1
6

∫ t

t0

(
L2(s) + h(s)γ(x(s))

(
ρ2(x(s)) − 12θ

))
ds

+
1
6

∫ t

t0

(
L(s) + h

1
2 (s)α(x(s))

)2 ds + M(t). (4.6)

By lim‖x‖→+∞ ρ(x) = +∞, there exists a constant N > 0 sufficiently large such that ρ2(x) ≥ 12θ for all
‖x‖ ≥ N , which implies that, for all x ∈ Rn,

γ(x)
(
ρ2(x) − 12θ

) ≥ inf
‖x‖≤N

γ(x)
(
ρ2(x) − 12θ

)
:= δ.

Moreover, by properties (D1) and (D2) of L(t), there exists T > t0 sufficiently large such that, for all t ≥ T and
all x ∈ Rn,

L2(t) + h(t)γ(x)
(
ρ2(x) − 12θ

) ≥ L2(t) + δh(t) ≥ μ1L
2(t) ≥ μ2L̇(t),

where μ1 > 0 and μ2 > 0 are some constants. Substituting this into (4.6) yields that, for all t ≥ T ,

log ‖x(t)‖2 ≥ log ‖x0‖2 +
1
6

∫ T

t0

(
L2(s) + h(s)γ(x(s))

(
ρ2(x(s)) − 12θ

))
ds

+
μ2

6

∫ t

T

L̇(s) ds +
1
6

∫ t

t0

(
L(s) + h

1
2 (s)α(x(s))

)2 ds + M(t)

= Δ(t0, T ) +
μ2

6
L(t) +

1
6

∫ t

t0

(
L(s) + h

1
2 (s)α(x(s))

)2 ds + M(t) a.s. on Ω1, (4.7)

where Δ(t0, T ) = log ‖x0‖2 + 1
6

∫ T

t0

(
L2(s) + h(s)γ(x(s))(ρ2(x(s)) − 12θ)

)
ds − μ2

6 L(T ).
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Note that the quadratic variation of M(t)

〈M, M〉t =
n∑

i=1

∫ t

t0

4‖x(s)‖−4
(
L(s) + h

1
2 (s)α(x(s))

)2
x2

i (s)x
2
i+1(s) ds (4.8)

is continuous, increasing and nonnegative a.s. on Ω1. Then we consider the following two mutually exclusive
cases:

Case 1. On Ω2 =
{
ω ∈ Ω1

∣∣ limt→+∞〈M, M〉t < +∞}.
By the definition of the quadratic variation of local martingale (see p. 12 of [14]), we have that, for almost

all ω ∈ Ω2,
M2(t) = 〈M, M〉t + M(t)

with some continuous local martingale M(t). Then, by (Thm. 3.9 in p. 14 of [14]), we see that limt→+∞ M2(t)
exists and is finite a.s. on Ω2, which together with the continuity of M(t), implies that M(t) is bounded a.s.
on Ω2.

Then, by (4.7), limt→+∞ L(t) = +∞ and the boundedness of M(t) on Ω2, we obtain that

lim inf
t→+∞

log ‖x(t)‖2

L(t)
≥ lim inf

t→+∞

(
μ2

6
+

M(t)
L(t)

+
Δ(t0, T )

L(t)

)
> 0 a.s. on Ω2,

which together with property (D3) of L(t), implies that (4.4) holds with τe = +∞ a.s. on Ω2.

Case 2. On Ω1 \ Ω2 =
{
ω ∈ Ω1

∣∣ limt→+∞〈M, M〉t = +∞}.
By (4.5) and (4.8), we obtain

〈M, M〉t ≤ 4
3

∫ t

t0

(
L(s) + h

1
2 (s)α(x(s))

)2 ds =: A(t). (4.9)

Clearly, limt→+∞ A(t) = +∞ a.s. on Ω1 \ Ω2. Moreover, by the strong law of large numbers (see Thm. 3.4 in
p. 12 of [14]), we derive

lim
t→+∞

M(t)
〈M, M〉t = 0 a.s. on Ω1 \ Ω2,

which together with (4.9), implies that

lim
t→+∞

M(t)
A(t)

= 0 a.s. on Ω1 \ Ω2.

Then, by (4.7) and (4.9), we derive

lim inf
t→+∞

log ‖x(t)‖2

A(t)
≥ lim inf

t→+∞

(
1
8

+
M(t)
A(t)

+
Δ(t0, T )
A(t)

)
> 0 a.s. on Ω1 \ Ω2. (4.10)

By properties (D1) and (D3) of L(t), there exists T ′ ≥ t0 sufficiently large such that, for all t ≥ T ′,

A(t) ≥ 4
3

∫ t

t0

L2(s) ds ≥ μ3

∫ t

T ′
L̇(s) ds ds

= μ3L(t) − μ3L(T ′) ≥ μ4 log λ(t) a.s. on Ω1 \ Ω2,

where μ3 > 0 and μ4 > 0 are some constants. From this and (4.10), it follows that (4.4) holds with τe = +∞
a.s. on Ω1 \ Ω2.

This completes the proof. �
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5. Detailed proofs of two claims

Proof of “τe = +∞ a.s.” in Theorem 3.2. Let V (x) = ‖x‖ν with ν ∈ (0, 1). Then, by (3.5) and Itô’s formula,
we derive

LV (x) =
ν

2

(
2‖x‖ν−2xTf(t, x) + (ν − 1)‖x‖ν

(
tp + α(x)

)2)
,

which together with Assumption 3.1, ν ∈ (0, 1) and α(x) ≥ ρ(x)γ
1
2 (x), implies that, for all t ≥ t0 and x ∈ Rn,

LV (x) ≤ ν

2

(
2θ‖x‖νγ(x) + (ν − 1)‖x‖να2(x)

)
≤ ν

2
(
2θ + (ν − 1)ρ2(x)

)
γ(x)V (x).

By lim‖x‖→+∞ ρ(x) = +∞, there exists r > 0 sufficiently large such that ρ2(x) ≥ 2θ
1−ν for all ‖x‖ ≥ r, which

together with ν ∈ (0, 1) implies that, for all x ∈ Rn,

ν

2
(
2θ + (ν − 1)ρ2(x)

)
γ(x) ≤ sup

‖x‖≤r

ν

2
(
2θ + (ν − 1)ρ2(x)

)
γ(x) =: c.

From this, it follows that
LV (x) ≤ cV (x),

which together with Theorem 4.1 in page 84 of [8], implies τe = +∞ a.s. for any initial value. �

Proof of “τe = +∞ a.s.” in Theorem 3.4. For contradiction, suppose that for a solution x(t), there holds
P
{
τe < +∞} > 0. Then, there exist ε ∈ (0, 1) and T > t0 such that

P
{
τk ≤ T

} ≥ ε, ∀k ≥ N (5.1)

for N > 0 sufficiently large, where τk = inf
{
t ≥ t0

∣∣‖x(t)‖ ≥ k
}
, k ∈ Z+.

Let ν ∈ (0, 1). By Itô’s formula, we obtain that, for any k ≥ N ,

E
(‖x(T ∧ τk)‖ν

)
= ‖x0‖ν + E

(∫ T∧τk

t0

ν

2
q (s, x(s)) ds

)
,

where q(t, x) = 2‖x‖ν−2xTf(t, x) + (ν − 1)
(
L(t) + h

1
2 (t)α(x)

)2. By Assumption 3.3 and α(x) ≥ ρ(x)γ
1
2 (x), it is

deduced that, for all t ≥ t0 and x ∈ Rn,

q(t, x) ≤ 2θh(t)γ(x)‖x‖ν + (ν − 1)h(t)‖x‖να2(x)

≤ h(t)
(
2θ + (ν − 1)ρ2(x)

)‖x‖νγ(x).

Moreover, by lim‖x‖→+∞ ρ(x) = +∞, there exists a constant r > 0 sufficiently large such that ρ2(x) ≥ 2θ
1−ν for

all ‖x‖ ≥ r, which together with ν ∈ (0, 1) implies that, for x ∈ Rn,(
2θ + (ν − 1)ρ2(x)

)‖x‖νγ(x) ≤ sup
‖x‖≤r

(
2θ + (ν − 1)ρ2(x)

)‖x‖νγ(x) =: δ.

Then, we derive that
q(t, x) ≤ δh(t), ∀t ≥ t0, ∀x ∈ R

n.

From this, it follows that, for any k ≥ N ,

E
(‖x(T ∧ τk)‖ν

) ≤ ‖x0‖ν +
δν

2

∫ T

t0

h(s) ds < +∞. (5.2)
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However, from (5.1), it follows that, for any k ≥ N ,

E
(‖x(T ∧ τk)‖ν

) ≥ kνP{τk ≤ T } ≥ kνε,

which implies limk→+∞ E
(‖x(T ∧ τk)‖ν

)
= +∞. Clearly, this contradicts (5.2). Hence, for any initial value,

there holds P{τe < +∞} = 0. �

6. Simulation results

In this section, two examples are given to further show the effectiveness and correctness of our results.

Example 6.1. Consider the stochastic stabilization for the following 2-dimensional nonlinear system:{
dx1 = (θ1x1 + x1x

2
2) dt,

dx2 = (θ2x2 − x2
1x2) dt,

(6.1)

where θ1 and θ2 are unknown constants. In what follows, let t0 = 0.

It is easy to verify that system (6.1) satisfies Assumption 3.1 with γ(x) ≡ 1 and θ = max{|θ1|, |θ2|}. According
to the construction procedure of the stochastic noise in Theorem 3.2, we introduce the following stochastic noise:(

t + (1 + ‖x‖2)
1
16
)
xdB(t),

which perturbs system (6.1) into the following stochastic system:{
dx1 = (θ1x1 + x1x

2
2) dt +

(
t + (1 + ‖x‖2)

1
16
)
x1 dB(t),

dx2 = (θ2x2 − x2
1x2) dt +

(
t + (1 + ‖x‖2)

1
16
)
x2 dB(t),

(6.2)

where B(t) is a scalar standard Brownian motion.
Let θ1 = 1, θ2 = 5. Using MATLAB, Figures 1–4 are obtained to exhibit the trajectories of the states of

system (6.2) with x(0) = [5,−2]T, x(0) = [3, 4]T, x(0) = [−7,−3]T and x(0) = [−4, 6]T, respectively.
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Figure 1. Trajectories with x(0) = [5,−2]T.
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Figure 2. Trajectories with x(0) = [3, 4]T.
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Figure 3. Trajectories with x(0) = [−7,−3]T.
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Figure 4. Trajectories with x(0) = [−4, 6]T.
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Figure 5. Trajectories with x(0) = [5,−1]T.

Example 6.2. Consider the stochastic stabilization for the following 2-dimensional system:{
dx1 = (a11x1 + a12x2) dt,

dx2 = (a21x1 + a22x2) dt,
(6.3)

where aij ’s are unknown constants. In what follows, let t0 = 0.

It is easy to verify that system (6.3) satisfies Assumption 4.1 with γ(x) ≡ 1, h(t) ≡ 1, and θ = max{|a11| +
(|a12| + |a21|)/2, |a22| + (|a12| + |a21|)/2}.

Let λ(t) = t. Then, according to the construction procedure of the stochastic noise in Theorem 4.2, we
introduce the following stochastic noise:

(
(t + 0.1)

1
2 + ‖x‖)diag{x2, x1} dB(t),

which perturbs system (6.3) into the following stochastic system:

{
dx1 = (a11x1 + a12x2) dt +

(
(t + 0.1)

1
2 + ‖x‖)x2 dB1(t),

dx2 = (a21x1 + a22x2) dt +
(
(t + 0.1)

1
2 + ‖x‖)x1 dB2(t),

(6.4)

where B(t) = [B1(t), B2(t)]T is a 2-dimensional standard Brownian motion.
Let a11 = −2, a12 = 1, a21 = −1, a22 = −2. Using MATLAB, Figures 5–8 are obtained to exhibit the

trajectories of the states of system (6.4) with x(0) = [5,−1]T, x(0) = [4, 2]T, x(0) = [−3,−6]T and x(0) =
[−5, 10]T, respectively.
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Figure 6. Trajectories with x(0) = [4, 2]T.
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Figure 7. Trajectories with x(0) = [−3,−6]T.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−200

0

200

400

Time(s)

St
at

e
x
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

Time(s)

St
at

e
x
2

Figure 8. Trajectories with x(0) = [−5, 10]T.

7. Concluding remarks

In this paper, we have considered the stochastic stabilization and destabilization of the uncertain nonlinear
systems with serious parameter unknowns. The time-varying technique is adopted to effectively compensate the
serious unknowns, and based on this, a time-varying stochastic noise is introduced to establish the stabiliza-
tion/destabilization with general decay/growth rate of uncertain nonlinear systems. To our knowledge, there
have been some works on stochastic stabilization/destabilization of switching systems and functional differential
systems (see e.g., [1,22] and references therein), but the systems therein don’t allow serious parameter unknowns.
Therefore, a further research is to extend the results of this paper to the switching systems and functional differ-
ential systems with serious parameter unknowns, and to accomplish the stochastic stabilization/destabilization
with general decay/growth rate.
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