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A VISCO-ELASTO-PLASTIC EVOLUTION MODEL WITH REGULARIZED
FRACTURE

LUKAS JAKABCIN!

Abstract. We study a model for visco-elasto-plastic deformation with fracture, in which fracture is
approximated via a diffuse interface model. We show that a discretized (in time) quasistatic evolution,
converges to a solution of the continuous (in time) evolution, proving existence of a solution to our
model.
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1. INTRODUCTION

This paper deals with a visco-elasto-plastic model with regularized fracture. The model predicting fracture is
based on Griffith’s criterion [13] that crack path and crack growth are determined by the competition between
the elastic energy and the energy dissipated to produce a crack. The variational approach to fracture mechanics
and a mathematical model have been developed by Francfort and Marigo [12], based on this idea. This approach
has been then adapted by Dal Maso and Toader [9] to the study of fracture problems in elasto-plastic materials
with cracks in the case of planar small strain elasto-plasticity where the fracture is represented by the compact
crack set I' C {2 verifying an irrevesibility condition.

In Larsen, Ortner, Suli [16] existence and convergence results are proved for a regularized model of dynamic
brittle fracture based on the Ambrosio—Tortorelli approximation. This model couples an elastodynamic equation
with regularized fracture. Babadjian, Francfort, Mora [3], and Babadjian, Mora [2] study the approximation of
dynamic and quasistatic evolution problems in elasto-plasticity via viscosity regularization.

The goal of this paper is to propose a model that takes into consideration three dissipative terms: plastic
flow, fracture and viscous dissipation. This is motivated by the modeling of the Earth crust considered as a
visco-elasto-plastic solid in which cracks are allowed to propagate. This hypothesis is qualitatevely supported by
analogue 2D-experiments of Peltzer and Tapponnier [17] that show faults propagation in a layer of plasticine.
We study from mathematical point of view a model in R? of visco-elasto-plastic material that may account
for the behaviour observed in the plasticine experiments, but our results extend to any dimension. The main
objective is to understand by which mechanisms energy can be dissipated in such model.
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In this model the fracture is obtained via Ambrosio—Tortorelli regularization. We only consider fracture via
a diffuse interface model. In other words, the geometry of possible cracks is captured by a function v with values
between 0 and 1, v = 1 in the healthy parts that do not contain cracks. The length of the cracks, a quantity that
contributes to the total energy, is approximated via a functional introduced by Ambrosio and Tortorelli [1]. In
other words, the continuous model is obtained coupling visco-elasto-plastic behaviour with regularized fracture
evolution of the model of Larsen, Ortner and Suli [16].

A convenience of a such model is the fact, that it can be studied numerically thanks to the presence of
regularized fracture. For more details, see [6-8] for the numerical studies in elastic case and [4, 15] for the
numerical studies of our models in the case of traction and plasticine experiments.

In this paper, we propose the mathematical analysis of a such model via a semi-discrete time procedure.
We approximate a continuous time evolution, via semi-discrete time evolutions obtained solving incremental
minimum problems. We then prove an existence result to the continuous model when a time discretization
parameter converges to zero. The main difficulty is pass to the limit in the discrete plastic flow rule and
discrete crack propagation condition. For this reason, we prove particularly a strong compactness result for
elastic strain (Prop. 3.12). As in [2], we prove that the discrete-time elastic strain e;f converges strongly in
L2(0, Ty, L*(£2, ngxlﬁ)), but the presence of v in our model requires the analysis and control of some additional
terms associated to v.

The paper is organised as follows. After a short introduction, Section 1 is devoted to the definitions, math-
ematical and mechanical settings necessary to the description of our model. The main result is then presented
in Section 3. Firstly, we prove the existence of solutions for discrete minimum problem in Proposition 3.2 and
Proposition 3.4. Then, we study the convergence of these approximate evolutions as the time step h — 0. The
main result of this paper is presented as follows: There exists at least one limit evolution (u,v, e, p) that satisfies
initial and irreversibility conditions, the equilibrium equation, plastic flow rule and crack propagation condition
(Thm. 3.1).

2. FORMULATION OF THE MODEL

2.1. Preliminaries and mathematical setting

Throughout the paper, §2 is a bounded connected open set in R? with Lipschitz boundary 02 = 0£2p Ud2x
where 002p, 082y are disjoint open sets in 92 and H!(9§2p) > 0. Given Ty > 0, we denote by L?((0,Ty), X),
WHP((0,Ty), X), the Lebesgue and Sobolev spaces involving time (see [11], p. 285), where X is a Banach space.
We will usually write u(t) := u(.,t) for u € WEP((0,Ty), X).

The set of symmetric 2 x 2 matrices is denoted by ngxnzl For ¢,¢ € ngxnzl we define the scalar product
between matrices ¢ : £ := Zij Gij&ij, and the associated matrix norm by [£] := /£ : . Let A be the fourth order
tensor of Lamé coefficients. We assume that for some constants 0 < a; < a9 < 0o, they satisfy the ellipticity
conditions

VeeMZ2  ajlef* < Ae:e < aslel?.

sSym )

For e € MZ? and x € (2, we define ‘6‘,24@) = A(z)e:eand || e [|%:= [, e} dz.
We recall that the mechanical unknowns of our model are the displacement field u : 2 x [0,7] — R2, the
elastic strain e : 2 x [0, Ty] — MZx2, the plastic strain p : 2 x [0,Tf] — MZ%?. We assume u and Vu remain

small. So that the relation bewteen the deformation tensor E and the displacement field is given by
1 T
Eu:= E(Vu + Vu').
We also assume that Eu decomposes as an elastic part and a plastic part

Fu=-e+p.
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We also define the set of kinematically admissible fields by

Aaam = {(u,e,p) € H'(2,R?) x L*(£2,MZ2) x L*(2,MZ%2)

sym

Eu=e+p ae inf, u=0 a.e on 9f2p}.

We denote H)y = {u € HY 2,R?); u = 0ondf2p}. For a fixed constant 7 > 0, we define
K :={qe M2 |¢| <7} and H : MZ)2 — [0, 0c] the support function of K by

H(p) := gu}}g 0:p=rlp|.
e

For n > 0, the elastic energy is defined as

Ea : LX(2,M22) x H'(2,R) = R

sym

(e,v) — ez(e,v):%/ (v® +n) Ae : eda.
17

In the following, we will define an evolution as a limit of time discretizations with a time step h. In fact, p and pg
P—"Po
h

represent the plastic deformation at 2 consecutive time steps, so that ~ p. In the same way, u and ug

w—
O ~ 4. The plastic dissipated energy is

represent displacement field at 2 consecutive time steps, so that

defined, by
& » LA(2,M2X2) x L*(2,M%%23) — R

sym sym

(p,po) ¥ &Ep(p, po) = /Q H(p — po) da.

Given 8 > 0, the viscoelastic dissipated energy is defined by
Eve : HY(2,R?) x HY(2,R?) - R

(u, up) — Epe(u, up) = % /Q(Eu — Eug) : (Eu — Eug) dz.

The Griffith surface energy is approximated by the phase-field surface energy

Es : H'(2,R) - R
1 o)?
v Es(v):/e\Vdex—l—/ (1=v) dx.
0 o 4de

Tt is shown in [5] that in the elastic anti-plane case, where the displacement reduces to a scalar and Eu reduces
to Vu, the Ambrosio—Tortorelli functional

E(Vu,v) = E(Vu,v) + Eg(v),
I'-converges, as 0 < n < € — 0, to the Griffith energy G, where
1
Gu) = 5/ AVl dz + H(S(u)).
0
Here, S(u) denotes the discontinuity set of u, and H! is the 1-dimensional Hausdorff measure. In the case

of n-dimensional elasticity the I'-convergence result for Ambrosio—Tortorelli approximation has been proved
recently by Iurlano [14].
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For f € C*(0,Ty,L?(£2,R?)) and g € C'(0, Ty, L*(82n,R?)), the external forces at time ¢ € [0,7y] with
Ts > 0 are collected into a functional I(t) € (H})*, where (HJ,)* denotes the dual of H}:

UGRD) ::/Qf(t).goda:—i—/aQ g(t).ods Yo € H,.

In the following framework, we approximate the continuous-time visco-elasto-plastic evolution via discrete-time
evolutions obtained by solving incremental Variational problems. Given 7y > 0 and a positive integer Ny, at
each discrete time ¢; = ih,i =1,..., Ny, with h = £, let us assume that the approximate visco-elasto-plastic
evolution (u(t;—1),v(ti—1), e(ti_l),p(tz_l)) is known at ti—1. We then define (u(t;),v(t;),e(t;), p(t;)) as follows:
(u(t;), e(ti), p(t;)) is defined at time ¢; as a minimizer of a deformation energy:

Eaef(u,v(ti—1),€,p) = Eer(e,v(ti-1)) + Eve(u, ulti-1))
+ Ep(p, p(ti-1)) — (U(t:), w),

with v(t;—1) fixed and among all (u, e, p) triplets satisfying the kinematic admissibility condition. Then v(t;) is
determined as a minimizer of the following variational problem:

v(t;) := argmin Eg(e(t;),v) + Es(v).
vﬁv(ti_l)

In the following section, we describe a continuous time evolution of the proposed model.

2.2. The visco-elasto-plastic evolution with regularized fracture

We assume that the stress ¢ = ade + fEu is the sum of two terms. The first term represents the
stress associated to elastic deformation. It is affected by fracture wvia the factor a(x,t). The second term
represents the effect of viscous deformation. Let u € W1o°(0,T¢, H'(2;R?)), v € W1>(0,Ty, H (12;R)),
e € WHee(0, Ty, L2(£2; M2X2)), p € WHoo(0, T, L2(£2; M2%2)). We call

sym sym

(u,v,e,p) : 2 x [0,Tf] — R% x R x M2%2 x M2x2

Sym Sym
a continuous evolution if it satisfies the following properties:

e (H1) Initial conditions: (u(0),v(0),e(0),p(0)) = (uo, vo, €0, po) With

(u0,€0,P0) € Aaam, and vg € H(2) with vg = 1 on 2p and 0 < vy < 1 a.e. in 2. We suppose also
(3 + )] Aco] < 7.

(H2) for every t € [0,T¥], v(t) =1 on 0f2p, and 0 < v(t) <1 a.e. in {2,

(

(

H3) Irreversibility: for a.e. t € [0,T], 9(¢) <0 a.e. in {2,
H4) Kinematic compatibility: for every ¢ € [0,T%], v(t) = 1 on 9§2p,

Eu(t) =e(t) + p(t) a.e. in 2 and wu(t) =0 a.e. on IN2p.

(H5) Equilibrium condition: for a.e. ¢ € [0, 1],
—div(o(t)) = f(t), ae.in £,
o(t).n = g(t), a.e.on O0f2y,

where o (t) = a(t)Ae(t) + BEu(t) and a(t) = (v(t))? + 7.
(H6) Plastic flow rule: for a.e. t € [0,TY%],

a(t)Ae(t) € 0H(p(t)) for a.e. x € 2.

(H7) Crack propagation condition: for a.e. t € [0, T,

Eale).o(0) + EsO) = ) B Bl )+ E5(0)
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3. EXISTENCE RESULT
The main result of the paper is the existence result for the visco-elasto-plastic model with fracture.
Theorem 3.1. Let 3 >0, 7> 0,e >0, n > 0. We suppose that vy satisfies the crack propagation condition

(H7) with e i.e.

Eeileo,v0) + Es(vo) = veHl(m’U:ll{lgan,vgvo Eeileo,v) + Es(v).

Then, there exists at least one solution

we Wh(0, Ty, H' (2 R?)),
ve Whe(0,Ty, H'(2;R)),

e € Whe(0, Ty, L(2: M22)),
(

p € WH(0, Ty, L2(£2; M2)7)),

sym
satisfying (H1)—(HT).

3.1. Time discretization

The proof of Theorem 3.1 is based on a time discretization procedure. We consider a partition of the time
interval [0,TY] into Ny sub-intervals of equal length h:
0 1 n Ny : Tf n n—1
O0=t, <t <...<tp=nh<.. <t =Ty with h:m:th_th — 0.

We set vg = vp, u% = U, 62 = ey, p% = po. Note that in the whole text, C' > 0 denotes a generic constant which
is independent of the discretization parameters. For n =1,..., Ny, Ny > 2, we construct (uj, v}, ej,py) using
an alternate minimization procedure. We define the deformation energy

_ 1 _ 1 _
Sdef(zav}? 1v§aq) = 5/(2 O/Z 1A£ : gdx—’_ %ﬁ H Ez — EU‘Z ! H%z

o /Q g — ppYdz — (), 2)
= £ ) 4 Sl ) 4 Sl ) — (D), 2),

with aZ_l = [vﬁ_l]z +n, >0, 7>0. Since Eges (., UZ_l, .,.) is strictly convex, coercive and Agq., is a convex
closed set, we have

Proposition 3.2. Suppose that (uz_l,ez_l,pz_l) € Augm- There exists unique minimizer to the variational

problem

min ez, 0" E q). 3.1
(2,6,9) EAadm def( h &) (3-1)

We now define (uj, e}, py) as a solution of (3.1) and we derive the Euler—Lagrange equation satisfied by this
solution.

Proposition 3.3. Let (uy, e}, p}) € Aaam be a solution to (3.1) with

n n—1
n— Euy,

E
ol = a T Ae} + B h = a1 Ael + BESuY. (3.2)
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Then, for alln € {1,...,N¢}:

—div(o}) = f(t}), a.e. in (2,
op.m=g(t}), a.e on O,

aytAep € OH(pr —pp')  ace.in L.

Proof. Let (2,£,q) € Aadm, then (u} + sz, e} + s, pf + 5q) € Aqam is an admissible triplet for every 0 < s < 1.
We have
gdef(u?w ’U}?_la eZapZ) S ngf(uZ + SZ, ’U}?_la 62 + ngpz + Sq)a

hence

Fu? — Byt
ogs/ aZflAeﬁzgdw—ks/ 5M:(§+q)dw
o o h

b / P+ sq — 0 — [ — g Mdz — s{1(83), 2) + o(s).
N

Let ¥(s) :==7 [, |p} + sq — pi~!|dx. Using the convexity of ¥ we have ¥(s) — ¥(0) < s(¥(1) — ¥(0)). Dividing
this inequality by s and letting s tend to zero implies that

Eul — Eul™t
/az_lAeﬁzfdx—i—ﬁ/ 2l T By o Yh (€4 q)dx
Q Q

+T/Q i — ot al = ok — i da
= (I(t}), 2). (3.3)
Testing (3.3) with (z,&, q) = £(¢, E¢,0) for any ¢ € C2°(£2,R?), we obtain
[ o Bl e = it (3.4
and —div(o}) = f(t?) a.e. in £2. Furher, picking ¢ € C°°(2,R?), with ¢ = 0 on 012p in (¢, E¢,0) as a test

function for (3.3) and integrating (3.4) by parts, we also obtain that o}'.n = g(¢}) a.e. on 92x. Testing (3.3)
with (0, —g+pl —p} ' g —pp +pp~ ") for any g € L?(£2,M2X2), we have

sym

r / glde > 7 / pp — g da + / VA (g — (f — ) da,
(9] 0 0
so that

Tlgl > Tlph (@) = p " (@)] + af T (@) Aeji (@) : (¢ = (Ph () — Py~ (2)))

(3.5)
for all ¢q € ngxrfl and for a.e. € (2, which by definition of the subdifferential implies that
ay~tAelr € OH(py —pp~ ') a.e.in Q. (3.6)
O
Proposition 3.4. For given e, € LQ(Q,Mf?ﬁ) there exists an unique minimizer vy to
vp = argmin {Ealef,v) + Es(v)}. (3.7)

vEH(2),v=10nd2p, vgvﬁ’_l



154 L. JAKABCIN
Additionally, for alln € {1,...,N¢}, vp satisfies the following variational inequality:
2€/QVUZ (vy — @) da + /QUZAeZ cep(vy — ) de
+ (297 [ ot =16k — ) e <0, (3.8)
for ;my 0 € HY D), p=10nd2p and ¢ < v,?_l. Furthermore, vy satisfies the comparison principle 0 < vjl <
vy a.e. in {2

Proof. The existence and uniqueness of the solution of (3.7) follow from the strict convexity and coercivity of
the functional & (e}, .) + Es(.), and since {v € H'(2), v = 1ond2p, v < v} '} is a closed convex set. Let ¢
an admissible function for (3.7), then ¢ = v} +t(p — v}}) with 0 <t < 1 is an admissible function for (3.7). In
fact, 1 € HY(£2), ¢ = 1 on 92p and

Y <op+ t(vZfl —v)=vp(1—¢t)+ thfl
<op Tt l—t) gt =0l
By definition of v}, Eq(ef, vf) + Es(v) < Ealef,¥) + Es(¢). We obtain:
26/ VupV(vy — @) dz +/ vy Aep s ep (v — @) da + (26)71/ (v, — 1) (v — @) da <0. (3.9)
o) o) Q
Testing (3.9) with ¢ = max(0,v}) gives
25/ Vop Vuy de —l—/ ()2 Aell - el da + (25)*1/ (v, — Doy dz <0, (3.10)
{vjy <0} {viy <0} {viy <0}
so that v} =0 a.e. on {v} <O0}. It follows that v}’ > 0 a.e. in (2. O

Remark 3.5. Testing (3.9) with ¢ = vg_l and with ¢ = 2v — vg_l we derive the equality
25/ VoprV (vpp — vy~ da —|—/ vpAejt e (v —vp ) da + (2¢) 1 / (vp = D)(vy —vp~H)de =0. (3.11)
Q Q Q
3.2. A priori estimates

We define for all n > 1,

un _ unfl ’Un _ ,Unfl en _ enfl pn _pnfl
Sul = h h Sy = h h , el = h h , Splt = h h .
h h ) h A h h Ph n
Proposition 3.6. There ezists a constant C' > 0 independent of h and n such that
(L P L P e P PO (3.12)
5 AV f

For the proof of Proposition 3.6 we need following lemma.

Lemma 3.7. For all n > 1, we have aZ_lAeZ € K a.e. in 2. Additionally, there exists a constant C > 0,
independent of h and n such that

| Ae? || =< C. (3.13)
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Proof. Testlng (3.5) with ¢’ = a} " Aep () + p}(x) — p}~ ' (2) leads to |a) ' Ae}(z)| < 7 for a.e. x € £2. Since
n<ay” Yzx) for all z € 02, Wehave||Aeh L=< C. O

Lemma 3.8. For all g € K = {q* € MZ2)2; |¢*| < 7} and n > 1, we have
ay tAep opy = q:opy,  a.e. in (2. (3.14)
Proof. By convex duality
L Ael € OH (pf — pit) <= pjt —pp !t € OH* (a) " Ae})

where H*(¢*) = 1x(q*) denotes the convex conjugate of H. Since aZflAeZ € Ka.e.in {2, we have for all g € K
ay~tAep : opl > q 1 opy ace. in 2. O

Lemma 3.9. For alln € {1,..., Ny}, there exists a constant C > 0 independent of h and n such that
16071122 + [Vévi |17 < Clider |2 (3.15)
Proof. We proceed as in the proof of Lemma 3.4 in [16]. We write inequality (3.9) at time ¢}~ "
2e /Q Vo V(v = p)da + /Qv,?_lAeZ_l et —p)da
+ (2¢)71 /Q(v;;—l — Dyt —p)dz <0 (3.16)
for any ¢ < 0272, v € HY(2), p =1 on 82p. We choose ¢ = v}l < v,’fz and divide (3.16) by h:
26/()Vvﬁflv5v{f dz + /Qv;f*lAeZ*l cep vl dw

+ (26)—1/ (Wt — 1)s0 da > 0. (3.17)
2

We divide (3.11) by h and substract (3.17). Then we use the equality a® — b* = (a — b)? + 2(a — b)b, the fact
that év; <0, and the Cauchy—Schwarz inequality to obtain

16v5lehlallZz + (22) M IovR 12> + (2)[IVovR |12

1
< E/ W [eh ) oof da
1 n—1
= — ey toup da
h
/A el efop ool de

<3 | eR1aldil) (o e = ep)la da
<2 Gvp)lerla ez || vp = oenla |l - (3.18)
The result follows from the Young inequality ab < a?/2 + b%/2. O

‘We now prove Proposition 3.6.
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Proof. Testing (3.3) with (z,¢, ¢q) = £(hou}, E(hdu}),0) where E(héu}) = h(de} + dp}), we obtain

/ azflAeZ s ey — ezfl)dac —I—/ azflAeZ : (py —pzfl)dac + h3 || Eduy H%'z
19,

2
= <l(t2)a UZ - u2_1>7

[ b Ak s 0~ ) do = )k~ )~ 8 | B |
- /Qaz_lAeZ s ey — e da. (3.19)
Testing (3.3) with (0, hdpy, —hdp}) yields
/Qaz_lAeZ cpp—pr ) de > 7'/9 Iy —pr Y da. (3.20)
Combining (3.19) and (3.20), we get
/QaZ*IAeZ (ep — e Y da + B || Eduy ||2- —H/Q i — pp | dw
< (), — ). (3.21)
The first term on the left-hand side can be analysed in a similar way as in [16]:

/ aptAep : (e —ep ) da = Ealef, vp) — Eale)  vp ) (3.22)
Q

1 — n 1 n — n
+ gHIER ) ekl — 5 [ (ah = a7 lehf do.

Further, we observe that
af —ap ™t = (0})? — (up ) = h(uf, + o h)dep = 2hopse]; — h2JSup .

Thanks to (3.11), we obtain

1 n — n - n n -
—5 [(ar =i Pde = 227! [ (o = (e - oY da
2 9]

1
+2€/ Vo (Vop — Vv,f_l) dx + §h2||(5vﬁ)\eﬁ\,4\|%z,
Q

and rewriting v} — v ' = (v — 1) — (v} — 1), yields

Q(aZ —ay Dlepidz = Es(vy) — Es(v ™) (3.23)

1
2
1
+ 1 ((4e) 7 lovg 172 + ellVovpl7z) + 5h*[10vk leh]allZ-

Summing (3.21) for 1 <n < N and using (3.22) and (3.23) we obtain

N N
el o)+ Es(u) + Y8 | 0 I + X h [ (60
n=1

n=1

N
< S ), up — up ) + Ealeo, vo) + Es(vo),
n=1
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where 1 < N < Ny. Using the Korn inequality we obtain the following estimate

N 1/2

/2 , N
> h{(tR), dup) < (Zhnz M|l Hl)*> (Zh|V(5uZ||2L2>
n=1 n=1
N /2 , N 1/2
C(Zhll(tﬁ)lﬁ%)*) (ZhIIEMZII%z) :
n=1 n=1

For all N € {1,..., Ny} yields

llen l13 + lon 122 + Vo' 172 + Z h3 || Esuy, |13 +Zh/ |0py|de < C, (3.24)

n=1

where C' > 0 is a constant independent of i and n. Let Ny such that {|[ef°||3+ vy ° |2, + || Vup°||2.} is maximal
between 1 < N < Ny. Inequality (3.24) is true for N = Ny, and N = Ny. Thus,

max f{HehH2 +opllze + IVoRliZa} + Z h3 || Eduj |13 + Z h/ |0p} | da < 2C. (3.25)
Further, using the inequality aZfl <1+mn,forallne{l,...,Ns} we obtain from Proposition 3.3

o122 :/ lo? da :/ o ayt Aep dac—l—ﬁ/ oy : Edup dzx
7 o o

< Cllog|zellerllL> + BUER), dup)
< Cllopllz2llerllz> + ClLE) |y - BIIVIug | 2

< Cllopllz2llerlle> + ClLED )« | BESuy | 2
< Cllog | 2llerllz> + CNEER i)~ (lorll2 + llenlz2)- (3.26)
We thus deduce that
{lmax llopllze < C. (3.27)
It follows from (3.2), (3.25) and (3.27) that
{{nax |Eduf||z2 < C. (3.28)

We now estimate dej:
noy ||def |32 < / ay =t Adey : dey d
o
= / ay~tAdey : Boup dx — / ay =t Adey : oppda
7 2
< C||\Esu}|| 2 )0e] 12 — /Qa;—lAaez : opy da.

From Lemma 3.7 it follows that for n > 2, a) 2A6271 € K a.e. in {2. This implies that aZflAezfl € K a.e.
in {2 and from Lemma 3.8 we deduce that
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Joan “LASep - Sppdr > 0, and thus ||de}||z: < C||Eu}||pe. Since af)Ae) € K, we also deduce from
Lemma 3.8 that [, a) Adej, : 0pj dz > 0, and thus ||de, |2 < C||Eduj||r2. By the estimate (3.28) and since
Eouy = dep + opj we have

e (el 2. 097 12) < C. (3.29)

Ny
Applying Lemma 3.9 concludes the proof of Proposition 3.6. O

3.3. Compactness results

We now define piecewise affine interpolants of the sequences (ul)~%., (v (em)Ne (M) by
up(t) up ouy
vp(t) vy ovp
ap(t) | = [ ap | + (@ —t}) | da} for te[ty ' tr], n=1,...,N;
en(t) ey dey
Ph(t) Ph opj,

We define backward piecewise constant interpolant uz(7 t) by
uf () =uy, for te () ' t}], n=1,...,N;

and similarly we define v, (¢), e/ (), pi (t), ;7 (¢).
We also define u; (0) = uo, v; (0) = vo, € (0) = eq, p; (0) = po. The forward piecewise constant interpolant
ay (.,t) is defined by
a, (t)=ap"t, for te[tp 'ty), n=1,...,Ny.

Thanks to Proposition 3.6

[unllwroe 0,1y, 11 (2r2) + lvnllwre 0,1y, 11 (2,R))
+llenllwoe o,y 22 m252)) + IPRllwos 01y L2 m252)) < C-
Hence, there exists a subsequence h; N\, 0 (we just write h) and u € Wh(0,Ty, H'(2,R?)), v €

Whoe(0, Ty, HY(2,R)), with 0 < v(t) < 1, v(t) = 1 on 902p, 9(t) < 0 ae. in 2 for ae. t € (0,7,
e € Whe(0, Ty, L2(£2,M2X2)), p € Whe°(0, Ty, L*(£2,M2%2)) such that

Sym Sym
Up, Up— U, U weakly* L>(0,Ty, H' (2,R?)),
Uh, Oh—0, O weakly* in L>(0,Ty, H' (2,R)), (3.30)
en, En—e, € weakly™* L>=(0,Ty, L*(£2 Mfyxrﬁ))
pr br—p b weakly®in  L29(0, Ty, L*(92, M),

Using Arzela—Ascoli Theorem and Proposition 3.6, we have for all ¢ € [0, T],

wp (t)— u(t), weakly in H'(2,R?),

en(t)—e(t), weakly in  L*(02,MZ77), (3.31)
pr(t)— p(t), weakly in L? (92, Mfyxlfl),

vp(t)—v(t), weakly in H'(2,R),

and for all t € [0, T%],

(u(t), e(t), p(t)) € Aaam- (3.32)
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Thanks to the previous convergences, we also have that for a.e. t € [0, TY],
(a(t), é(t), p(t)) € Aadm. (3.33)

Since vy, is uniformly bounded in W1°°(0, T, H*(£2,R)), the Arzela—Ascoli Theorem for metric spaces [10]
implies that v, — v strongly in C(0,Tf, L*(£2,R)). Since 0 < v;(t) < 1 a.e. in £2, for all ¢, this convergence
implies ap, — a in C(0,T¢, L?(£2,R)). On the other hand, since for all ¢ € (0, T¥],

lan(t) — aj, (t)]|2 < 2h[lan(?)]| L2, (3.34)
len(t) = e (t)llz2 < hllen(t)]l e, (3.35)
lon(t) = vy ()]l z2 < Al (t)]] 22, (3.36)

we also have that

a, — a strongly in L>®(0,Ty, L*($2,R)) with a =1+,

ef—e weakly* in L>(0,Ty, L*(£2, Msyxn?)) (3.37)
v —w weakly* in L>(0,Ty, H' (2, R)). (3.38)

From (3.31) and (3.35), we deduce that for all ¢ € [0, T,
el (t)—e(t), weakly in L2(02,M253). (3.39)

3.4. Passage to the limit in the equilibrium condition

Theorem 3.10. For a.e. t € [0,TY],

—div(o(t)) = f(t), a.e. in 2,
o(t).n = g(t), a.e. on Oy

where o(t) = a(t)Ae(t) + BEu(t) and a(t) = [v(t)]* + 7.

Proof. With the previous notation, we can rewrite (3.4) as
[ @040+ BE0) s Bodo = (1(0).0), Yo € Hp Ve € 0.T))
Q
(3.40)
Integrating (3.40) on fixed [t1,t2] C [0, Tf] we have

ta
/ / (ay, (t)Aejf (t) + BEuL(t)) : E¢dxdt :/ (IF(t), ¢) dt. (3.41)
t1
We now pass to the limit when h goes to zero in (3.41). For any fixed t1,to € [0,T%], V¢ € Hp,, we write (3.41)
as:

(aj; (1) Aef (t) + BEwin(t)) - B¢ drdt — / (), ¢y dt

t1 22 t1

- / 2 [ (@) Act () + 9P (1) : s = (1e). )

—/qu—um@m. (3.42)
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We estimate the second term on the right-hand side of (3.42) thanks to the Cauchy—Schwarz inequality

to

/t / ay, (t) — a(t))Aej (t) : B¢ dx dt (3.43)
1

< [[(a;, —a)Ed|L2( (0,Ty,L?) HAeh ll 22 (0,T¢,L2)-

Since (a;, —a) — 0 a.e. in 2 x (0,Ty), |a;, —al?> <4, |V¢|? € L'(2 x (0,T))
and using Lemma 3.7 we obtain by the Lebesgue dominated convergence

r\0

lim /t12 /Q(a; (t) —a(t)Aef (t) : E¢dzdt = 0. (3.44)

We estimate the last term on the right-hand side of (3.42) by

/tt (L (6) = 1(t), ) dt < h(ts — 1)l (3.45)

Using (3.30), (3.37), (3.42), (3.44), (3.45) we deduce that V[t, t2] C [0, T7],
/t t /Q (a(t)Ae(t) + BEu(t)) : B¢ dx — (I(t),¢) dt = 0. (3.46)
O

3.5. Strong compactness result for the elastic strain

To pass to the limit in the discrete plastic flow rule and crack propagation condition, we need the strong
compactness result for the elastic strain contained in the following lemma.

Lemma 3.11. Suppose that for allt € [0,T}), a; (t) — a(t) in L*(£2) and e} (t) — e(t) weakly in L*(£2, M2x2).
Then for all t € [0,Ty), a;, (t)Ae) (t) — a(t)Ae(t) weakly in L*(12, M2x2).

Proof. Let ¢ € L?(£2,M2X2) a test function. We can write

sym

/ (ay, () Aey (1) — a(t)Ae(t)) : ¢dz = / (ay (t) = a(t))Aey (t) : o da
17} 17}
—I—/ a(t)(Ae;f (t) — Ae(t)) : ¢ da.
Q

From Lemma 3.7 we deduce that for all t € [0,7}), || Ae; (t) ||L~< C, so that since aj (t) — a(t) in L?(£2) the
first term on the right-hand side converges to zero using the Cauchy—Schwarz inequality. Since ez (t) = e(t) in
L2(02,MZ}2), the second term on the right-hand converges to zero. O

Proposition 3.12. The following strong convergences hold:

enef —e strongly in L2(0, Ty, L*(02,M2X2)). (3.47)

sym
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Proof. Givenn € {1,..., N}, we define [t]), :=t} if t € (¢}, ¢}]. We set t1 = 0, to = [t];, and ¢ = 1, in (3.46)
and (3.41), and substract these two relations:

[t]h
/ / ((a;, (s)Ae;f (s) + BEun(s)) — (a(s)Ae(s) + BEU(s))) : Eup(s)dzds

0 2

[t]n
- /0 (LF (5) — 1(s), 1in(s)) ds. (3.48)
We define
[t]n
fu(t) = / / ((a;, (s)Ae) (s) + BEun(s)) — (a(s)Ae(s) + BEu(s))) : Eup(s)dzds.
0 2

Using inequality (3.45) with ¢ = wj, and thanks to Proposition 3.6, we have

[t]n
Jian [0 ) = 165) ) ds = 0
and from (3.48) we deduce
;111{% fu(t) =0.

We now estimate
)] < |l (ay Ae + BEuy) — (aAe + BEW) || 20,1502 | Etin || 22(0,1,,22) -

From Proposition 3.6 we deduce that there exists some C' > 0 independent of h such that |f;,(t)| < C. Thanks
to the Lebesgue dominated convergence

Ty

Jim, i fn(t)dt = 0. (3.49)

We rewrite fa(t) as
ey = | . | (@5 946 (5) = a(s) de(s) = Bui(s) dadis
18 /0 o /Q | Buin(s) — Ei(s)|? da ds
+8 /O o /Q (Buin(s) — Bi(s)) : Ei(s)dz ds. (3.50)
We define
gn(t) =B /0 o /Q (Buin(s) — Ei(s)) : Ea(s)dz ds, (3.51)

which tends to 0 since Edij, — Ed weakly in L?(0, Ty, L*(£2,MZ25?)). Using Proposition 3.6 and the Lebesgue
dominated convergence theorem yields

Ty

1 = U. . 2
Jimy ; gn(t)dt =0 (3.52)



162 L. JAKABCIN

From (3.49), (3.50), (3.52) we deduce that

Ty prltla
}IL{% {/ / / (ay, (s)Aejf (s) — a(s)Ae(s)) : Eup(s)dxdsdt

n g/Tf/ /|Euh )dedsdt} (3.53)

so that

Ty pltln
imsu a; (s)Ael (s) — a(s)Ae(s)) : Eup(s)dzds .
timsup [ [ [ (@i (5)Act 0) — as) Acs) = B (s) dw st < 0

h\0
(3.54)

We now estimate the integral in (3.54). We note that
Ty pltla
Iy, = / / / (ay, (s)Ae;f (s) — a(s)Ae(s)) : Eup(s)dxdsdt
o Jo 2
Tf [t]h
- / / / (ar () Aet () — a(s)Ae(s)) : (Buin(s) — Ei(s)) da ds dt
o Jo Q

+ /OTf /OM’L /Q (a; (s)Aef (s) — a(s)Ae(s)) : Eu(s) dz dsdt

/ ’ / N / ay, (s)Aey, (s) : (Bnin(s) — Bi(s)) da ds dt
/Tf/ / s)Ae(s) : (Euip(s) — Ei(s)) dvdsdt

- ’ / [ (@) ) Aei(s) s Bis) deds
/Tf/ / — Ae(s)) : Bi(s)dzdsdt

Since Eu, — FEd weakly in L?(0,Ty, L*(£2,MZ2)2)), and ef — e weakly in L2(0,Ty, L*(92, MZ2x2)), the
Lebesque’s dominated convergence shows that

/Tf/ / s)Ae(s) : (Eup(s) — Bu(s)) dzdsdt — 0
= /Tf /[t]h/ — Ae(s)) : Bi(s)dzdsdt — 0.

Since a;, —a — 0 a.e. in 2 x (0,7) and a € L*((0,Ty) x §2), and using Lemma 3.7, Proposition 3.6, and
Lebesgue’s dominated convergence theorem imply

Ty rltln
3= a, (s) —a(s))Ae; (s) : Bu(s)dxdsdt — 0.
o= [ [ @) —ae)ac(s) s Bi)dedsat 0
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We deduce that

limsup I;, = limsup I} < 0. (3.56)
hN\0 AN\0

By the kinematic compatibility, Euy — Et = (el — €) + (ph — p) we have

Ty ltln
limsup I} = limsup a; (s)Ae) (s) : (en(s) — é(s))dadsdt
" 0o Jo Q" g

RN\0 RN\0

Ty plths
- F(s) : (pn(s) — p(s xrds . .
[ ] o) @) - i) ded dt} (3.57)

:= lim sup {Kﬁ + K;%} .
BN\0
We can write
Ty pltln
L= a; (s)Ael (s) : (en(s) — é(s)) dzds
Kb [ [ a0 (@6s) — é(s)) dadsar
Tf [t]h
_ / / / (an(s) — a7 (s))Aei (s) : (€n(s) — é(s)) dardsdt
o Jo Q
Ty pltln
—|—/0 /0 /Qah(s)Ae;f(s) :(en(s) —é(s)) dadsdt. (3.58)

From (3.34), we deduce that (a, —aj) — 0 a.e. in 2 x (0,T). Lemma 3.7, Proposition 3.6 and the Lebesgue’s
dominated convergence give

Tf [t]h
/ / /(ah(s) —ar () Aet () : (en(s) — é(s)) dads dt — 0, (3.59)
o Jo Q
so that (3.58) and (3.59) imply
Ty rltln
III;I\S(I)lp K} = hr}?\sgp/o /0 /Q an(s)Aef (s) : (€n(s) — é(s)) dz dsdt. (3.60)
Furthermore,
Ty rltln
L= an(s)Ae; (s) : (e —€(s))dzds
o= [ [ an9eiis) s @) = é(s)) deds
Tf [t]h
= an(s)(Aef (s) — Aep(s)) : (en(s) — é(s)) dzdsdt

+f v / . [ @0(6) = als))Ae(s) 5 (6 (5) — ) s
+f v / . [ als)4e(s) : (en(o) — e aasat

= L)+ LY+ L] +L§. (3.61)
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The strong convergence ej, — e — 0 in L?(0,Ty, L?(£2,M2%2)) (see (3.35)), the weak convergence €j, — ¢ in

sym
L2(0,Ty, L*(2,M2%2)), Propostion 3.6 and Lebesgue convergence dominated theorem yield to
Ty rlthh
L= / / / an(s — Aen(s) : (€n(s) — é(s)) dwdsdt — 0, (3.62)

Ty rltln
- a(s)Ae(s) : (en(s) — é(s xds — 0. .
L"/O/O /Q<>A<><h<> (s)) dedsdt — 0 (3.63)

We now estimate

Ty rltls
7T .— an(s) —a(s))Ae(s) : (en(s) —é(s)) dx dsdt.
L.—/O/0 /Q(h() (8))Ae(s) : (en(s) —é(s))drdsdt

We have

/ /ah ) — a(s)) Ae(s) : (€n(s) — é(s)) da ds

< H ap — a)Ae HL2(O Tf,LQ)H e — € HL2(O Ty, L2) -

From Proposition 3.6 we deduce that there exists some C' > 0 independent of h such that

/O[t]h /Q(ah(s) —a(s))Ae(s) : (en(s) —é(s))dzds < C' || (ap — a)Ae ||L2(07Tf7L2) .
Since ap(t) € L>®(£2), (ap, —a) — 0 a.e. in £2 x (0,Ty), the Lebesgue’s dominated convergence gives that
L] —0. (3.64)
From (3.60), (3.61), (3.62), (3.63), (3.64) we deduce that

Ty
limsup K} = lim sup/ / / ap(s —e(s))(en(s) —é(s))dzdsdt.

AN AN

(3.65)
We now estimate K7:

Tf [t h

K2 = / / / o (s)Ae () : (u(s) — p(s)) dedsdt (3.66)
o Jo Ja

Ty rltln
= / / / (ay, (s)Aejf () : pr(s)) — (a;, (s)Aef () : p(s)) dz ds dt.
o Jo Q

Using Lemma 3.11, we have a, Ae;f (t) — aAe(t) weakly in L?(£2,MZ2%?2). Thanks to Lemma 3.7, we also have

sym

that for all t € [0,T}), a;, (t)Ae} (t) € K a.e. in 2, with K a convex closed set. We obtain that for all ¢ € [0, Ty),
a(t)Ae(t) € K a.e. in Q By Lemma 3.8, we have for all t € (0,7}), a;, (t)Ae} () : pr(t) = a(t)Ae(t) : pi(t) ae.

in 2. So that we have
Ty pltln
/ / / $)Ae(s) : pu(s) — a, (s)Aef (s) : pls) da ds dt

-/ K / . | al)Ae): (o) = pls)) dads s

/Tf /mh/ $)Ae(s) — ay (s)Aef (s)) : p(s) dr ds dt. (3.67)
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Since p, — p weakly in L2(0, Ty, L?(£2, M2%2)),

sym
Tf [t]h
/ / / a(s)Ae(s) : (pn(s) — p(s))dedsdt — 0. (3.68)
o Jo
Since a;, Aej — aAe weakly in L*(0, Ty, L*(£2, M2%2))
Ty pltln
/ / / a(s)A(s) — ay (s))Aet(s) : p(s) dar ds dt — 0. (3.69)

From (3.56), (3.57), (3.65), (3.67), (3.68), (3.69) we deduce that

Ty plin
limsup I;, > lim sup/0 /0 /Q ap(s)A(en(s) —e(s)) : (en(s) — é(s)) dedsdt.

AN0 AN0
(3.70)
Integrating by parts and using the fact that e, (0) = eg, we get
(t]n
/ / an(s)Alen(s) —e(s)) : (en(s) — é(s))dxds
= / San([tln) Alen([t]n) — e([t]n)) : (en([t]ln) — e([t]n)) dz
——/ / ap(s —e(s)) : (en(s) —e(s)) dxds. (3.71)
Since Vt € (0,T%] and a.e. in £2, an(.,t) <0,
Ty rltn
- / / / an(s)A(en(s) —e(s)) : (en(s) —e(s))dedsdt > 0.
o Jo Q
Since ap(t) > n for all ¢t € [0, T¥], using the ellipticity hypothesis
Ae e > aalel?, we deduce from (3.70), and (3.71) that
1 s
limsup I, > —nay lim sup/ / len([t]n) — e([t]n)|? dz dt. (3.72)
A0 2 o Jo Jo

By definition we have ey ([t]n) = ] (t). Since e € Wo°(0, T, L?(£2,M2:2)), we now estimate e(t) — e([t]n) in
L? using Cauchy—Schwarz inequality and Fubini theorem:

/\ \de</9 /tmhé(s)ds

< h1/2/ / (s))*dsdz < ChY? || é || pe(o,1y 1) - (3.73)

2
dx

We define for ¢ € (0, Ty], e"(t) := e([t]s). From (3.73) we deduce that " — e strongly in L>°(0, Ty, L?(£2, M2X2)).

sym

Since en([t]n) — e([t]n) = €/ (t) — e([t]n) = e} (t) — e(t) + e(t) — e([t]n), we deduce from (3.54) and (3.72) that

Ty
0 > limsup I, > 1% Jim sup / lef () —e(t)||3. dt (3.74)
hN\O 2 o 0 ’

T Ty
+2/0 /Q(eZ(t)—e(t)) : (e(t)—e([t}h))dde/O le([t]n) — e(t)]/2 dt}.
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Since e — e strongly in L>°(0, Ty, L*(2,M2X2)) and e} — e weakly* in L>°(0, Ty, L*(2,M

Sym

that

Ty
/ / (e () — e(t) = (e(t) — e([t])) dardt — 0,
0 (9]

Ty
/O le([t]n) — e(t)||22 dt — 0.

We deduce from (3.74), (3.75), (3.76) that

Ty Ty
0 > lim sup/ e (1) — e(t)||72 dt > lim inf/ lef () —e(t)]|72dt > 0.
MN\O  Jo N0 Jo )

We conclude that

T.
i [ ek () = el =0,
and as a consequence of (3.35) we deduce
Ty
tin [ len(t) = (03 at = 0.

We now derive the plastic flow rule and the minimality of v.

3.6. Passage to the limit in the plastic flow rule

Corollary 3.13. For a.e. t € [0,TY],
a(t)Ae(t) € OH(p(t)) a.e.in (2.

Proof. For all ¢ € L*([0,Ty], L*(£2, K)), we have that

Ty
/ / (aj, (t)Aeff (t) — q) : pu(t) dzdt > 0.
0 N
We can rewrite
Ty
/ / (ay, () Aef () = q) : pa(t) d dt
0 n
Ty
B / / (ay, (t) — a(t))Aej (t) : pu(t) da dt
0 N
Ty
+/O /Q a(t)(Aef () = e(t)) : pu(t) dz dt

Ty
+ /0 /Q (a(t)Ae(t) - q) : pn(t) da dt.
=T+ 1>+ T5.

), it follows

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)
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By Lebesgue dominated convergence theorem, Proposition 3.6 and Lemma 3.7, T} converges to zero. Thanks

to Propostion 3.12, T converges to zero. Since pj, — p weakly in L?(0,7y, L?), T5 — fo Jola(t)Ae(t) —q) :
p(t) da dt. We obtain

Ty
/ /(a(t)Ae(t) _ ) p(t)dzdt > 0. (3.81)
0o Jo
Since a(t)Ae(t) € K ae. in {2 for all t € [0,T}), inequality (3.81) gives that for a.e. t € [0,T%], p(t) €
01k (a(t)Ae(t)) = OH*(a(t)Ae(t)) a.e. in 2. And we conclude by convex duality. O

3.7. Passage to the limit in the crack propagation condition

Corollary 3.14. For a.e. t € [0,TY],
26/ Vou(t p)dx + /Qv(t)Ae(t) ce(t)(v(t) — @) da (3.82)
297 [ (0 - D) - p)de <0,
7

for any ¢ € HY(2), ¢ <v(t) and o =1 on 002p.
Proof. For all t € (0, Ty] we rewrite (3.8) as

2 Vvh () — @) d —I—/ v (8)Aef (t) e () (o) (1) — ¢) da
7
(20 / (v (6) = (o (8) — ) dw < 0 (3.83)
e
for any ¢ € H'(£2), ¢ < v, (t) and ¢ = 1 on 9§2p. Since v (t) is minimal among all ¢ < v} (¢), it is minimal

among ¢ < v, (t). Integrating over [0, T}], we obtain

Ty
26/0 /Q Vo )V (v} (t) — ) da dt

i /on /n vy (1) Aeyy (8) = e (8)(vy) (1) — ) dardt
Ty
+ (25)—1/O /Q(v;f(t) — 1) (v (t) — ) daxdt <0 (3.8

for any ¢ € H'(£2), p < v/ (t) and ¢ =1 on 92p. Let a € L2(0, Ty, H' (2 )) with a(.,t) > 0 and a(.,t) =0 on
90p for all t € [0, Ty]. Testing (3.84) with admissible test function ¢ = v} (£) — a(t) we obtain

Ty Ty
26/ / Vo, (t)Va(t) dxdt—l—/o /Qv;(t)Aez(t) cef (t)a(t) dzdt
Ty
(20)- / / at) dz dt < 0 (3.85)

for any a € L%(0, Ty, H'(£2)) with a(.,t) > 0 and a(.,t) = 0 on 902p for all t € [0,Ty]. Since v;; = v in
L>(0,Ty, HY), e} — e strongly in L2(0, Ty, L?(£2,M2%2)) and v;" — v a.e. in 2 x (0,T}) we obtain

sym

2 /Tf/ Vo(t)Va(t) d:rdt—i—/OTf/Qv(t)Ae(t) ce(t)a(t)dzde
(20)" / N / £ dz dt < 0 (3.86)



168 L. JAKABCIN

t) > 0and a(.,t) =0o0n 002p for all t € [0,T]. We set a(t) = v(t) —(t)

for any o € L2(0, Ty, H'(£2)) with a(.,
HY(£2)) and ¢(.,t) =1 on d2p. O

with (1) < v(. 1), ¢ € L2(0, Ty,

4. CONCLUSION

In this paper, we proved an existence result for a visco-elasto-plastic model with fracture. We studied an
associated discrete time evolution model. We proved that as discretization time step converges to zero, the
discrete time evolution solutions converge to limit that is a solution of continuous time visco-elasto-plastic
model with fracture. In other words, the limit evolution satisfies (H1)—(HT).
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