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THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC ∗

Katy Craig
1

Abstract. A recurring obstacle in the study of Wasserstein gradient flow is the lack of convexity
of the square Wasserstein metric. In this paper, we develop a class of transport metrics that have
better convexity properties and use these metrics to prove an Euler−Lagrange equation characterizing
Wasserstein discrete gradient flow. We then apply these results to give a new proof of the exponential
formula for the Wasserstein metric, mirroring Crandall and Liggett’s proof of the corresponding Banach
space result [M.G. Crandall and T.M. Liggett, Amer. J. Math. 93 (1971) 265–298]. We conclude by
using our approach to give simple proofs of properties of the gradient flow, including the contracting
semigroup property and energy dissipation inequality.
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1. Introduction

Given a continuously differentiable, convex function E : R
d → R ∪ {+∞}, the gradient flow of E is the

solution to the Cauchy problem

d
dt

u(t) = −∇E(u(t)), u(0) ∈ D(E) = {v ∈ Rd : E(v) < +∞}. (1.1)

Through suitable generalizations of the notion of the gradient, the theory of gradient flow has been extensively
studied in Hilbert spaces [2], Banach spaces [8, 9], nonpositively curved metric spaces [12], and general metric
spaces [1, 7], including the space of probability measures endowed with the Wasserstein metric W2.

Gradient flow in the Wasserstein metric is of particular interest due to the sharp estimates it can provide on
long-time behavior of solutions to partial differential equations [15] and the low regularity it requires, allowing
one to pass seamlessly between Lagrangian and Eulerian perspectives [5,6]. For a sufficiently regular functional E
and measure μ, the formal Wasserstein gradient is given by ∇W2E(μ) = −∇ · (μ∇ δE

δμ ) and the gradient flow
of E corresponds to the partial differential equation

d
dt

μ(t) = −∇W2E(μ) = ∇ ·
(

μ∇δE

δμ

)
, (1.2)

in the duality with C∞
c (Rd × (0, +∞)) with initial conditions limt→0 μ(t) = μ0 ([1], Lem. 10.4.1, Thm. 11.1.4).
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Due to the formal nature of the Wasserstein gradient, rigorous study of Wasserstein gradient flow often
considers a time discretization of the problem that does not require a rigorous notion of gradient. For Euclidean
gradient flow (1.1), this discretization is simply the implicit Euler method, and it is a classical result that un is a
finite difference approximation to the gradient flow if and only if un solves a sequence of minimization problems,

(un − un−1)/τ = −∇E(un), u0 = u ⇐⇒ un = argmin
v

{|v − un−1|2/2τ + E(v)}, u0 = u. (1.3)

Motivated by this, the Wasserstein proximal map Jτ is defined by

Jτμ = argmin
ν

{
W 2

2 (ν, μ)/2τ + E(ν)
}

,

and the discrete gradient flow is defined by Jn
τ μ. Taking τ = t

n and sending n → ∞ gives the exponential
formula relating the discrete gradient flow to the gradient flow which solves (1.2),

lim
n→∞ Jn

t/nμ = μ(t).

Ambrosio et al. were the first to prove the exponential formula for the Wasserstein metric, obtaining the sharp
rate of convergence of the discrete gradient flow Jn

t/nμ to the gradient flow μ(t) ([1], Thm. 4.0.4). In the same
work, they raised the question of whether another proof might be possible, mirroring Crandall and Liggett’s
approach for the Banach space case [9].

A recurring difficulty in the theory of Wasserstein gradient flow is that, while x 	→ 1
2 |x − y|2 is 1-convex

along geodesics in Euclidean space, the square Wasserstein metric μ 	→ 1
2W 2

2 (μ, ω) is not convex along geodesics
([1], Ex. 9.1.5). In fact, it is semi-concave ([1], Thm. 7.3.2). Convexity of the square Euclidean distance ensures
that v 	→ |v − un−1|2/2τ + E(v) is convex, so the minimization problem in (1.3) is well-posed. This argument
fails in the Wasserstein case. Convexity of the square distance is also essential to concluding that the proximal
map satisfies the contraction inequality ‖Jτu − Jτv‖ ≤ ‖u − v‖, a key element in Crandall and Liggett’s proof
of the exponential formula [9, 12]. It is unknown if such a contraction holds in the Wasserstein case, though
“almost” contraction inequalities exist, such as Ambrosio, Gigli, and Savaré’s ([1], Lem. 4.2.4) and Carlen and
the author’s ([4], Thm. 1.3).

In order to circumvent these difficulties, Ambrosio et al. introduced a new class of curves − generalized
geodesics − along which the square distance is 1-convex ([1], Lem. 9.2.1). They also introduced pseudo-
Wasserstein metrics, which they used to study the semi-concavity and differentiability of the square Wasserstein
metric ([1], Eq. 7.3.2). In this paper, we further develop these ideas, introducing a class of transport metrics,
which are a type of pseudo-Wasserstein metric. We show that generalized geodesics, while not geodesics with
respect to the Wasserstein metric, are geodesics with respect to the transport metrics. The transport metrics
also satisfy the key property that the square distance is 1-convex. We use the transport metrics to prove an
Euler−Lagrange equation characterizing the discrete gradient flow, analogous to equation (1.3) above. (One
direction of this characterization is due to Ambrosio et al. [1]. We prove the converse.) We then apply the
transport metrics and Euler−Lagrange equation to give a new proof of the exponential formula, in the style of
Crandall and Liggett. We conclude by applying our estimates to give simple proofs of properties of the gradient
flow, including the contracting semigroup property and energy dissipation inequality.

We are optimistic that our results will be useful in future study of Wasserstein gradient flow. Our
Euler−Lagrange equation replaces the global minimization problem in the definition of the proximal map
with a local computation of the subdifferential. Our results on the structure of transport metrics give further
credence to the geometric naturalness of the assumption of convexity along generalized geodesics, a key element
in the work of Ambrosio et al. Our new proof of the exponential formula brings together the theories of Banach
space and Wasserstein gradient flow, and we believe our work may be useful in studying the behavior of the
gradient flow as the functional E varies − for example, as a regularization of E is removed. The corresponding
problem in the Banach space case is well-understood [3], and the analogy we establish between the Banach and
Wasserstein cases may help extend these results.
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2. Transport metrics and the Euler−Lagrange equation

In Sections 2.1−2.3 we recall foundational results on Wasserstein gradient flow, including Ambrosio, Gigli, and
Savaré’s notion of generalized geodesics and pseudo-Wasserstein metrics. In Section 2.4 we build on this theory,
developing the structure of transport metrics, which have better convexity properties than the Wasserstein
metric. In Section 2.5, we use the convexity of the square transport metrics to prove an Euler−Lagrange
equation characterizing the discrete gradient flow.

2.1. Wasserstein metric

We begin by recalling properties of the Wasserstein metric. Let P(Rd) denote the set of probability measures
on R

d. Given μ, ν ∈ P(Rd), a measurable function t : R
d → R

d transports μ onto ν if ν(B) = μ(t−1(B)) for all
measureable B ⊆ R

d. We call ν the push-forward of μ under t and write ν = t#μ.
For a finite product Πn

i=1R
d, let πi the be projection onto the ith component and πi,j be the projection onto

the ith and jth components. Given μ, ν ∈ P (Rd), the set of transport plans from μ to ν is

Γ (μ, ν) = {μ ∈ P(Rd × R
d) : π1#μ = μ, π2#μ = ν}.

The Wasserstein distance between μ and ν is defined to be

W2(μ, ν) = inf

{(∫
Rd×Rd

|x1 − x2|2dμ(x1, x2)
)1/2

: μ ∈ Γ (μ, ν)

}
. (2.1)

If W2(μ, ν) < +∞, the infimum is attained, and we denote the set of optimal transport plans by Γ0(μ, ν).
If μ does not charge sets of d − 1 dimensional Hausdorff measure, we say that μ does not charge small sets.

In this case, there is a unique optimal transport plan from μ to ν of the form (id × t)#μ, where t is unique
μ-a.e. and id(x) = x is the identity transformation [13]. In particular, there is an optimal transport map t = tν

μ

satisfying t#μ = ν and W2(μ, ν) = ‖id−t‖L2(μ). (See Gigli [10] for a sharp version of this result.) Furthermore,
a measurable map satisfying t#μ = ν is optimal if and only if it is cyclically monotone μ-a.e. [13]. If ν also does
not charge small sets, then tν

μ ◦ tμ
ν = id almost everywhere with respect to μ.

One technical difficulty when working with the Wasserstein distance on P(Rd) is that there exist measures
that are infinite distances apart. Given a fixed reference measure ω0, define

P2,ω0(R
d) = {μ ∈ P(Rd) : W2(μ, ω0) < +∞}.

By the triangle inequality, (P2,ω0(Rd), W2) is a metric space. When ω0 = δ0, the Dirac mass at the origin,
P2,ω0(Rd) = P2(Rd), the subset of P(Rd) with finite second moment.

We consider three classes of curves: locally absolutely continuous curves, (constant speed) geodesics, and
generalized geodesics. We define the first two now and leave the third for the next section.

Definition 2.1. μ(t) : R → P2,ω0(Rd) is locally absolutely continuous if for all I ⊆ R bounded, there exists
m ∈ L1(I) so that W2(μ(t), μ(s)) ≤ ∫ t

s m(r)dr for all s ≤ t ∈ I.

Definition 2.2. Given a metric space (X, d), uα : [0, 1] → X is a (constant speed) geodesic in case d(uα, uβ) =
|β − α|d(u0, u1) for all α, β ∈ [0, 1].

As any two measures are connected by a geodesic, (P2,ω0(Rd), W2) is a geodesic metric space, and all geodesics
are of the form μα =

(
(1 − α)π1 + απ2

)
#μ for μ ∈ Γ0(μ0, μ1) ([1], Thm. 7.2.2). If μ0 does not charge small

sets, the geodesic from μ0 to μ1 is unique and given by μα =
(
(1 − α)id + αtμ1

μ0

)
#μ0.

Given a metric space (X, d), we place the following conditions on functionals E : X → R ∪ {+∞}:
• proper: D(E) = {u ∈ X : E(u) < +∞} �= ∅
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• coercive: There exists τ0 > 0, u0 ∈ X so that inf
{

1
2τ0

d2(u0, v) + E(v) : v ∈ X
}

> −∞.

• lower semicontinuous: For all un, u ∈ X so that un → u, lim infn→∞ E(un) ≥ E(u).
• λ-convex along a curve uα: Given λ ∈ R and a curve uα ∈ X ,

E(uα) ≤ (1 − α)E(u0) + αE(u1) − α(1 − α)
λ

2
d(u0, u1)2. (2.2)

• λ-convex along geodesics : Given λ ∈ R, for all u0, u1 ∈ X , there exists a geodesic uα from u0 and u1 along
which (2.2) holds. We will often simply say that E is λ-convex, or in the case λ = 0, convex.

If (X, d) = (P2,ω0(Rd), W2), we consider the following notions of differentiability.

Definition 2.3. Given E : P2,ω0(Rd) → R ∪ {+∞}, the metric slope of E at u ∈ D(E) is

|∂E|(u) = lim sup
v→u

(E(u) − E(v))+

d(u, v)
·

For ease of notation, we suppose E satisfies the following assumption, which ensures that for all μ ∈ D(E) and
ν ∈ P(Rd) there exists an optimal transport map tν

μ from μ to ν.

Assumption 2.4. If μ ∈ D(E), μ does not give mass to small sets.

Definition 2.5. Suppose E : P2,ω0(Rd) → R∪ {+∞} satisfies domain Assumption 2.4 and is proper, coercive,
lower semicontinuous, and λ-convex along geodesics. Then ξ ∈ L2(μ) belongs to the subdifferential of E at μ in
case for all ν ∈ D(E),

E(ν) − E(μ) ≥
∫

Rd

〈ξ, tν
μ − id〉dμ +

λ

2
W 2

2 (μ, ν).

We denote this by ξ ∈ ∂E(μ). In addition, ξ is a strong subdifferential if for all measurable t it satisfies

E(t#μ) − E(μ) ≥
∫

Rd

〈ξ, t− id〉dμ + o(‖t− id‖2
L2(μ)) as t

L2(μ)−−−−→ id.

2.2. Generalized geodesics

A recurring difficulty in extending results from a Hilbert space (H, ‖·‖) to the Wasserstein metric (P2,ω0 , W2)
is that while y 	→ 1

2‖x− y‖2 is 1-convex along geodesics, μ 	→ 1
2W 2

2 (ω, μ) is not ([1], Ex. 9.1.5). Ambrosio et al.
circumvent this difficulty by introducing generalized geodesics ([1], Def. 9.2.2).

Definition 2.6. Given μ0, μ1, ω1 ∈ P2,ω0(Rd), a measure ω ∈ P(Rd × R
d × R

d) is a transport plan from μ0 to
μ1 with base ω1 in case π1,2#ω ∈ Γ0(ω1, μ0) and π1,3#ω ∈ Γ0(ω1, μ1).

Definition 2.7. Given μ0, μ1, ω1 ∈ P2,ω0(R
d) and ω ∈ P(Rd × R

d × R
d) a transport plan from μ0 to μ1 with

base ω1, a generalized geodesic from μ0 to μ1 with base ω1 is the curve

μα =
(
(1 − α)π2 + απ3

)
#ω, α ∈ [0, 1].

For any three measures, a transport plan from μ0 to μ1 with base ω1 always exists ([1], Lem. 5.3.2), hence
generalized geodesics always exist. If ω1 is absolutely continuous with respect to Lebesgue measure, the gener-
alized geodesic is unique and defined by μα =

(
(1 − α)tμ0

ω1
+ αtμ1

ω1

)
#ω1. Typically, a generalized geodesic is not

a geodesic. However, it is if the base ω1 coincides with either μ0 or μ1.
In addition to the notion of generalized geodesics, Ambrosio et al. introduced the related notion of pseudo-

Wasserstein metrics ([1], Eq. 9.2.5).
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Definition 2.8. Given a transport plan ω from μ0 to μ1 with base ω1, the pseudo-Wasserstein metric is

W2,ω(μ0, μ1) =
(∫

Rd×Rd

|x2 − x3|2dω(x1, x2, x3)
)1/2

.

Remark 2.9. If ω1 = μ0 or μ1, this reduces to the Wasserstein metric. In general, W2,ω(μ0, μ1) ≥ W2(μ0, μ1).
We also have W2,ω(μ0, μ1) ≤ W2(μ0, ω1) + W2(ω1, μ1) by the triangle inequality for L2(ω).

Let ω be a transport plan from μ0 to μ1 with base ω1. If μα is the generalized geodesic induced by ω and
W2,ω is the corresponding pseudo-Wasserstein metric, Ambrosio et al. showed

W 2
2 (ω1, μα) = (1 − α)W 2

2 (ω1, μ0) + αW 2
2 (ω1, μ1) − α(1 − α)W 2

2,ω(μ0, μ1), ∀α ∈ [0, 1]. (2.3)

In particular, while μ 	→ 1
2W 2

2 (ω1, μ) is not convex along geodesics, it is 1-convex along generalized geodesics
with base ω1 ([1], Lem. 9.2.1). This convexity is a key element in their study of discrete gradient flow.

2.3. Gradient flow and discrete gradient flow

For E : P2,ω0(Rd) → R∪ {+∞} and τ > 0, the quadratic perturbation Φ and proximal map Jτ are defined by

Φ(τ, μ; ν) =
1
2τ

W 2
2 (μ, ν) + E(ν), Jτ (μ) = argmin

ν∈P2,ω0(Rd)

Φ(τ, μ; ν). (2.4)

Let J0(μ) = μ. The discrete gradient flow sequence of E is constructed via repeated applications of Jτ ,

μn = Jτ (μn−1) = Jn
τ (μ0), μ0 ∈ D(E).

In order to ensure the proximal map is well-defined, Ambrosio et al. require that the quadratic perturbation
Φ(τ, μ; ·) be convex along generalized geodesics with base μ ([1], Def. 9.2.2).

Definition 2.10. Given λ ∈ R, a functional E : P2,ω0(Rd) → R∪{+∞} is λ-convex along a generalized geodesic
μα induced by ω, in case

E(μα) ≤ (1 − α)E(μ0) + αE(μ1) − α(1 − α)
λ

2
W 2

2,ω(μ0, μ1), ∀α ∈ [0, 1]. (2.5)

E is convex along generalized geodesics if, for all μ0, μ1, ω ∈ P2,ω0(Rd), there exists a generalized geodesic
from μ0 to μ1 with base ω along which E is convex.

By equation (2.3), to ensure Φ(τ, μ; ·) is convex along generalized geodesics with base μ, it is enough for E to
be λ-convex along generalized geodesics for 0 < τ < 1

λ− (where λ− = max{0,−λ}). Note that if E is λ-convex
along generalized geodesics, it is also λ-convex along geodesics. Going forward, we assume the following:

Assumption 2.11. E is proper, coercive, lower semicontinuous, and λ-convex along generalized geodesics.

With this, the proximal map Jτ : D(E) → D(E) : μ 	→ μτ is well-defined and continuous ([1], Thm. 4.1.2).
We now define the Wasserstein gradient flow of a functional E.

Definition 2.12. Suppose E : P2,ω0(Rd) → R∪{+∞} is proper, coercive, lower semicontinuous, and λ-convex
along generalized geodesics for λ ∈ R. A locally absolutely continuous curve μ : (0, +∞) → P2,ω0(R

d) is the
gradient flow of E with initial data μ0 ∈ D(E) if μ(t) t→0−−−→ μ0 and

1
2

d
dt

W 2
2 (μ(t), ω) +

λ

2
W 2

2 (μ(t), ω) ≤ E(ω) − E(μ(t)), ∀ω ∈ D(E), a.e. t > 0. (2.6)
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We close this section by recalling two inequalities for the discrete gradient flow that are consequences of
the convexity of Φ(τ, μ; ·) along generalized geodesics with base μ ([1], Thms. 3.1.6 and 4.1.2). Suppose E is
proper, coercive, lower semicontinuous, and λ-convex along generalized geodesics with 0 < τ < 1/λ−. Then for
μ ∈ D(|∂E|),

τ2|∂E|2(Jτμ) ≤ W 2
2 (μ, Jτμ) ≤ 2τ

1 + λτ

[
E(μ) − E(Jτμ) − 1

2τ
W 2

2 (μ, Jτμ)
]
≤ τ2

(1 + λτ)2
|∂E|2(μ). (2.7)

For μ ∈ D(E) and ν ∈ D(E),

1
2τ

[W 2
2 (Jτμ, ν) − W 2

2 (μ, ν)] +
λ

2
W 2

2 (Jτμ, ν) ≤ E(ν) − E(Jτμ) − 1
2τ

W 2
2 (μ, Jτμ). (2.8)

2.4. Transport metrics

We now consider further properties of the pseudo-Wasserstein metric in the particular case that the base
measure does not give mass to small sets. In contrast to the previous sections, in which we reviewed existing
results, the results in the current section are new and play a key role in our proof of the Euler−Lagrange
equation characterizing the proximal map and the exponential formula.

First, we show the following generalization of (2.3).

Proposition 2.13. Fix μ0, μ1, ω1 ∈ P2,ω0(Rd). Let ω be a transport plan from μ0 to μ1 with base ω1 and let
μα be the generalized geodesic induced by ω. Then, for all ν ∈ P2,ω0(Rd) there exists a transport plan ω̃ from ν
to μα with base ω1 so that

W 2
2,ω̃(ν, μα) = (1 − α)W 2

2,ω(ν, μ0) + αW 2
2,ω(ν, μ1) − α(1 − α)W 2

2,ω(μ0, μ1), ∀α ∈ [0, 1].

Proof. Fix μ ∈ P(Rd × R
d × R

d × R
d) so that π1,2#μ = π1,2#ω ∈ Γ0(ω1, μ0), π1,3#μ = π1,3#ω ∈ Γ0(ω1, μ1),

and π1,4#μ ∈ Γ0(ω1, ν) ([1], Lem. 5.3.4). Define ω̃ = (π1 × π4 × [(1 − α)π2 + απ3])#μ. Then ω̃ is a transport
plan from ν to μα with base ω1 and, by the corresponding identity for L2(μ),

W 2
2,ω̃(ν, μα) = ‖x4 − (1 − α)x2 + αx3‖L2(μ) = (1 − α)W 2

2,ω(ν, μ0) + αW 2
2,ω(ν, μ1) − α(1 − α)W 2

2,ω(μ0, μ1). �

Now we consider the pseudo-Wasserstein metrics in the particular case that the base ω does not charge small
sets. (We drop the subscript on ω to ease notation.) In this case, it the pseudo-Wasserstein metric becomes a
true metric, and to emphasize this point, we call it the (2, ω)-transport metric.

Definition 2.14. The (2, ω)-transport metric W2,ω : P2,ω(Rd) × P2,ω(Rd) → R is given by

W2,ω(μ0, μ1) =
(∫

|tμ0
ω − tμ1

ω |2dω

)1/2

.

We show that the generalized geodesics with base ω are exactly the constant speed geodesics for this metric.
This allows us to consider functionals which are convex with respect to the transport metric and define a notion
of subdifferential with respect to this metric. The map μ0 	→ tμ0

ω is a geodesic preserving isometry from P2,ω(Rd)
to L2(ω), so the square transport metric is 1-convex with respect to its own geodesic structure. (The 1-convexity
of the square transport metric can also be seen as a special case of Prop. 2.13).

Proposition 2.15.

(i) W2,ω is a metric on P2,ω(Rd).
(ii) The constant speed geodesics with respect to W2,ω are the generalized geodesics with base ω.
(iii) μ 	→ tμ

ω is a geodesic preserving isometry from P2,ω(Rd) to L2(ω), hence for all ν ∈ P2,ω(Rd),

W 2
2,ω(ν, μα) = (1 − α)W 2

2,ω(ν, μ0) + αW 2
2,ω(ν, μ1) − α(1 − α)W 2

2,ω(μ0, μ1) ∀α ∈ [0, 1]. (2.9)
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Proof. First, we show (i). W2,ω is symmetric and nonnegative by definition. It is non-degenerate since
W2,ω(μ, ν) ≥ W2(μ, ν). It satisfies the triangle inequality since L2(ω) satisfies the triangle inequality.

Next, we show that generalized geodesics with base ω are constant speed geodesics in W2,ω . Let μα =
((1 − α)tμ0

ω + αtμ1
ω )#ω be the generalized geodesic with base ω from μ0 to μ1. Since (1 − α)tμ0

ω + αtμ1
ω is a

convex combination of cyclically monotone maps, tμα
ω = (1 − α)tμ0

ω + αtμ1
ω , hence

W2,ω(μμ→ν
α , μμ→ν

β ) = ‖[(1 − α)tμ
ω + αtν

ω ] − [(1 − β)tμ
ω + βtν

ω]‖L2(ω) = |β − α|W2,ω(μ, ν).

Since the isometry μ 	→ tμ
ω sends μα 	→ tμα

ω = (1 − α)tμ0
ω + αtμ1

ω , equation (2.9) holds for μα by the
corresponding identity for L2(ω). It remains to show that μα is the unique geodesic from μ0 to μ1. Suppose μ̃α

is another. Setting ν = μ̃α in equation (2.9) gives

W 2
2,ω(μ̃α, μα) = (1 − α)W 2

2,ω(μ̃α, μ0) + αW 2
2,ω(μ̃α, μ1) − α(1 − α)W 2

2,ω(μ0, μ1)

= (1 − α)α2W 2
2,ω(μ0, μ1) + α(1 − α)2W 2

2,ω(μ0, μ1) − α(1 − α)W 2
2,ω(μ0, μ1) = 0. �

Remark 2.16 (Convexity). By (ii), if E is λ-convex along generalized geodesics with base ω, it is λ-convex in
the W2,ω metric. By (iii), the function μ 	→ W 2

2,ω(ν, μ) is 2-convex in the W2,ω metric for any ν ∈ P2,ω(Rd). Note
the difference between (2.3), which ensures μ 	→ W 2

2 (ω, μ) is convex along generalized geodesics with base ω,
and (2.9), which ensures μ 	→ W 2

2,ω(ν, μ) is convex along generalized geodesics with base ω for all ν ∈ P2,ω(Rd).

Remark 2.17 (Lower semicontinuity). By Remark 2.9, if μn converges to μ in W2,ω, then the sequence con-
verges in W2. Therefore, if E is lower semicontinuous in W2, E is lower semicontinuous in W2,ω .

Using the isometry from P2,ω(Rd) to L2(ω), we define the W2,ω subdifferential.

Definition 2.18. Given E : P2,ω(Rd) → R ∪ {+∞} proper, lower semicontinuous, and λ-convex with respect
to W2,ω, ξ ∈ L2(ω) belongs to the W2,ω subdifferential of E at μ in case for all ν ∈ P2,ω(Rd),

E(ν) − E(μ) ≥
∫
〈ξ, tν

ω − tμ
ω〉dω +

λ

2
W 2

2,ω(μ, ν). (2.10)

We denote this by ξ ∈ ∂2,ωE(μ).

Remark 2.19 (Characterization of minimizers). Given E as in Definition 2.18 with λ ≥ 0, μ is a minimizer
of E if and only if 0 ∈ ∂2,ωE(μ).

By equation (2.3) and Remark 2.16, the square Wasserstein distance from ω, μ 	→ W 2
2 (ω, μ), is 2-convex

in W2,ω . Thus, we may compute its subdifferential with respect to this metric.

Proposition 2.20. Let F (μ) = W 2
2 (ω, μ). Then 2(tμ

ω − id) ∈ ∂2,ωF (μ).

Proof. W 2
2 (ω, ν) − W 2

2 (ω, μ) =
∫ |tν

ω − id|2dω − ∫ |tμ
ω − id|2dω =

∫
2〈tμ

ω − id, tν
ω − tμ

ω〉dω + W 2
2,ω(μ, ν). �

Finally, we relate the transport metric subdifferential to the strong subdifferential from Definition 2.5.

Lemma 2.21. Suppose E satisfies domain Assumption 2.4 and is proper, lower semicontinuous, and λ-convex
along generalized geodesics. Then if ξ ∈ ∂E(μ) is a strong subdifferential, ξ ◦ tμ

ω ∈ ∂2,ωE(μ).

Proof. If ξ ∈ ∂E(μ), then ξ ∈ L2(μ), hence ξ ◦ tμ
ω ∈ L2(ω). Furthermore, for all ν ∈ P2,ω(Rd),

E(ν) − E(μ) ≥
∫

Rd

〈ξ, tν
ω ◦ tω

μ − id〉dμ + o(‖tν
ω ◦ tω

μ − id‖L2(μ)) =
∫

Rd

〈ξ ◦ tμ
ω , tν

ω − tμ
ω〉dω + o(W2,ω(μ, ν)).

As in ([1], Sect. 10.1.1, B), this implies E(ν) − E(μ) ≥ ∫ 〈ξ ◦ tμ
ω, tν

ω − tμ
ω〉dω + λ

2 W2,ω(μ, ν). �
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We close this subsection with an analogue of inequality (2.8) for transport metrics. Note that since
W 2

2 (Jτμ, ν) ≤ W 2
2,μ(Jτμ, ν), this is stronger than (2.8). We require this strength in our proof of Theorem 3.4.

Theorem 2.22. Suppose E is proper, coercive, lower semicontinuous, and λ-convex along generalized geodesics
for λ ∈ R. Then for all μ ∈ D(E) and ν ∈ D(E),

1
2τ

[W 2
2,μ(Jτμ, ν) − W 2

2 (μ, ν)] +
λ

2
W 2

2,μ(Jτμ, ν) ≤ E(ν) − E(Jτμ) − 1
2τ

W 2
2 (μ, Jτμ).

Proof. If μ does not charge small sets, so W2,μ is a well-defined metric, this is simply the Talagrand inequality
for Φ(τ, μ; ·) in the W2,μ metric. Otherwise, since both E and 1

2τ W 2
2 (μ, ·) are convex along generalized geodesics

with base μ, so is Φ(τ, μ; ·). Thus, for any generalized geodesic μα from Jτμ to ν with base μ, since Jτμ is the
minimizer of Φ(τ, μ; ·),

Φ(τ, μ; Jτμ) ≤ Φ(τ, μ; μα) ≤ (1 − α)Φ(τ, μ; Jτ μ) + αΦ(τ, μ; ν) − 1 + λτ

2τ
α(1 − α)W 2

2,μ(Jτμ, ν).

Rearranging and dividing by α gives 0 ≤ Φ(τ, μ; ν) − Φ(τ, μ; Jτμ) − 1+λτ
2τ (1 − α)W 2

2,μ(Jτμ, ν). Sending α → 0
and expanding Φ according to its definition gives the result. �

2.5. Euler−Lagrange equation

In this section, we use our results on transport metrics from the previous section to prove an Euler−Lagrange
equation characterizing Jτμ, defined in equation (2.4) as the minimizer of the quadratic perturbation Φ(τ, μ; ·).
The fact that Jτμ satisfies 1

τ (tμ
Jτ μ − id) ∈ ∂E(Jτμ) was proved by Ambrosio, Gigli, and Savaré using a type of

argument introduced by Otto ([1], Lem. 10.1.2) [14, 15]. The converse is new.

Theorem 2.23 (Euler−Lagrange equation). Assume that E satisfies domain Assumption 2.4 and convexity
Assumption 2.11 for λ ∈ R. Then for μ ∈ D(E) and 0 < τ < 1

λ− , ν is the unique minimizer of the quadratic
perturbation Φ(τ, μ; ·) if and only if

1
τ
(tμ

ν − id) ∈ ∂E(ν) is a strong subdifferential. (2.11)

Hence, Jτμ is characterized by the fact that 1
τ (tμ

Jτ μ − id) ∈ ∂E(Jτμ) is a strong subdifferential.

We assume μ ∈ D(E) and E satisfies domain Assumption 2.4 to ease notation. See Theorem A.5 for how the
assumption μ ∈ D(E) can be relaxed to μ ∈ D(E) and the domain assumption can be removed.

Proof of Theorem 2.23. Suppose 1
τ (tμ

ν − id) ∈ ∂E(ν) is a strong subdifferential. By Lemma 2.21, we have
1
τ (id− tν

μ) ∈ ∂2,μE(ν). By additivity of the subdifferential and Proposition 2.20,

1
2τ

2(tν
μ − id) +

1
τ

(id− tν
μ) = 0 ∈ ∂2,μΦ(τ, μ; ν).

Since W 2
2 (μ, ·) is 2-convex in the W2,μ metric and E is λ-convex in the W2,μ metric, Φ(τ, μ; ·) is

(
1
τ + λ

)
-convex in

the W2,μ metric, with
(

1
τ + λ

)
> 0. Therefore, by Remark 2.19, 0 ∈ ∂2,μΦ(τ, μ; ν) implies ν minimizes Φ(τ, μ; ·).

See ([1], Lem. 10.1.2) for the converse. �
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3. Exponential formula for the wasserstein metric

We now apply our results on transport metrics and the Euler−Lagrange equation to give a new proof of
the exponential formula in the style of Crandall and Liggett [9]. In Section 3.1, we prove a new “almost”
contraction inequality, analogous to the key inequality ‖Jτu − Jτv‖ ≤ ‖u − v‖ from Crandall and Liggett’s
proof, with higher order terms. In Section 3.2, we apply our Euler−Lagrange equation to control the behavior
of the discrete gradient flow Jn

τ μ as the time step τ varies. In particular, proximal maps with different time
steps can be related by considering intermediate points along a geodesic between μ and Jτμ. The convexity
of the square transport metric W 2

2,μ along this geodesic allows us to control the behavior of the geodesic in
terms of its endpoints. In Sections 3.3 and 3.4, we use these ideas to bound the distance between discrete
gradient flow sequences with different time steps via an asymmetric induction in the style of Rasmussen [16].
Finally, in Section 3.5, we conclude that the discrete gradient flow converges to the gradient flow. We close
Section 3.5 by applying our estimates to give simple proofs of properties of the gradient flow, including the
contracting semigroup property and the energy dissipation inequality. (Note that we do not consider gradient
flow with respect to the transport metrics, but instead use the transport metrics for intermediate estimates of
the Wasserstein discrete gradient flow.)

3.1. Almost contraction inequality

In this subsection, we use the convexity of Φ(τ, μ; ·) along generalized geodesics with base μ, in the form
of inequality (2.8), to prove an almost contraction inequality for the discrete gradient flow. (Inequality (2.8)
is sufficient for this purpose − we use the stronger version in Theorem 2.22 later). Our approach is similar to
previous work of Carlen and the author [4], though instead of symmetrizing the contraction inequality, we leave
the inequality in an asymmetric form that is compatible with the asymmetric induction in Theorems 3.4−3.6.

For the λ ≤ 0 case, our argument follows the first three steps in the proof of ([1], Lem. 4.2.4). For the λ > 0
case, we use a new approach.

Theorem 3.1 (Almost contraction inequality). Suppose E satisfies convexity Assumption 2.11, μ ∈ D(|∂E|),
and ν ∈ D(E). Then we have the following inequalities for all 0 < τ < 1

λ− ,

if λ > 0: (1 + λτ)2W 2
2 (Jτμ, Jτν) ≤ W 2

2 (μ, ν) + τ2|∂E|2(μ) + 2λτ2 [E(ν) − inf E] ,
if λ ≤ 0: (1 + λτ)2W 2

2 (Jτμ, Jτν) ≤ W 2
2 (μ, ν) + τ2|∂E|2(μ).

Proof. Throughout the proof we abbreviate Jτμ by μτ and Jτν by ντ . By inequality (2.8),

(1 + λτ)W 2
2 (μτ , ντ ) − W 2

2 (μ, ντ ) ≤ 2τ [E(ντ ) − E(μτ ) − (1/2τ)W 2
2 (μ, μτ ) (3.1)

(1 + λτ)W 2
2 (ντ , μ) − W 2

2 (ν, μ) ≤ 2τ [E(μ) − E(ντ ) − (1/2τ)W 2
2 (ν, ντ )]. (3.2)

Suppose λ > 0. Dropping − 1
2τ W 2

2 (ν, ντ ) from (3.2), multiplying (3.1) by (1+λτ), and adding the two together,

(1 + λτ)2W 2
2 (μτ , ντ ) − W 2

2 (μ, ν) ≤ 2τ
[
(1 + λτ)E(ντ ) − E(ντ ) + E(μ) − (1 + λτ)

[
E(μτ ) + (1/2τ)W 2

2 (μ, μτ )
]]

Since λ > 0, E is bounded below ([1], Lem. 2.4.8). Applying inequality (2.7) and the fact that E(ντ ) ≤ E(ν),

(1 + λτ)2W 2
2 (μτ , ντ ) − W 2

2 (μ, ν)≤τ2

[
1

1 + λτ
|∂E|2(μ) + 2λ[E(ντ ) − inf E]

]
≤ τ2[|∂E|2(μ) + 2λ [E(ν) − inf E]],

which gives the result.
Now suppose λ ≤ 0. Adding (3.1) and (3.2) and applying inequality (2.7),

(1 + λτ)W 2
2 (μτ , ντ ) − W 2

2 (ν, μ) + λτW 2
2 (ντ , μ) ≤ 2τ

[
E(μ) − E(μτ ) − (1/2τ)W 2

2 (μ, μτ )
]− W 2

2 (ν, ντ )

≤ τ2

1 + λτ
|∂E|2(μ) − W 2

2 (ν, ντ ). (3.3)
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For a, b > 0 and 0 < ε < 1, the convex function φ(ε) = a2/ε + b2/(1 − ε) attains its minimum (a + b)2 at
ε = a/(a + b), hence a2/ε + b2/(1 − ε) ≥ (a + b)2.

Consequently, with ε = −λτ , we obtain

W 2
2 (ντ , μ) ≤ (W2(ντ , ν) + W2(ν, μ))2 ≤ −W 2

2 (ντ , ν)/λτ + W 2
2 (ν, μ)/(1 + λτ). (3.4)

Multiplying by −λτ , adding to (3.3), and multiplying by (1 + λτ), we obtain the result

(1 + λτ)2W 2
2 (μτ , ντ ) ≤ W 2

2 (μ, ν) + τ2|∂E|2(μ). �

Iterating the inequalities in the above theorem and applying inequality (2.7) gives the following corollary.

Corollary 3.2. Suppose E satisfies convexity Assumption 2.11, μ ∈ D(|∂E|), and ν ∈ D(E). Then we have
the following inequalities for all 0 < τ < − 1

λ ,

if λ > 0: W 2
2 (Jn

τ μ, Jn
τ ν) ≤ (1 + λτ)−2nW 2

2 (μ, ν) + nτ2
(|∂E|2(μ) + 2λ [E(ν) − inf E]

)
, (3.5)

if λ ≤ 0: W 2
2 (Jn

τ μ, Jn
τ ν) ≤ (1 + λτ)−2nW 2

2 (μ, ν) + nτ2(1 + λτ)−2n|∂E|2(μ). (3.6)

3.2. Proximal Map with large vs. small time steps

We now apply the Euler−Lagrange equation, Theorem 2.23, to relate the proximal map with a large time
step τ to the proximal map with a small time step h.

Theorem 3.3. Suppose E satisfies convexity Assumption 2.11. Then if μ ∈ D(E) and 0 < h ≤ τ < 1
λ− ,

Jτμ = Jh

[(
τ − h

τ
tJτ μ
μ +

h

τ
id
)

#μ

]
.

Proof of Theorem 3.3. For simplicity of notation, we prove the result in the case E satisfies domain Assump-
tion 2.4. See Theorem A.6 for the general result. As in the previous proof, we abbreviate Jτμ by μτ .

By Theorem 2.23, ξ = 1
τ (tμ

μτ
− id) ∈ ∂E(μτ ) is a strong subdifferential. Since h/τ ≤ 1,

(id + hξ) =
(
id +

h

τ
(tμ

μτ
− id)

)
=
(

τ − h

τ
id +

h

τ
tμ
μτ

)
(3.7)

is cyclically monotone. Consequently, if we define ν = (id + hξ)#μτ , then tν
μτ

= id + hξ. Rearranging shows
1
h (tν

μτ
− id) = ξ ∈ ∂E(μτ ), so by a second application of Theorem 2.23, μτ = νh.

We now rewrite ν as it appears in the theorem. By equation (3.7), (id + hξ) =
(

τ−h
τ id + h

τ tμ
μτ

)
=(

τ−h
τ tμτ

μ + h
τ id
) ◦ tμ

μτ
. Therefore, ν = (id + hξ)#μτ =

(
τ−h

τ tμτ
μ + h

τ id
)
#μ. �

After proving Theorem 3.3, we discovered another proof of the same result, independently obtained by Jost and
Mayer [11,12]. It is non-variational and quite different from the proof given above, and we hope our proof is of
independent interest.

3.3. Asymmetric recursive inequality

The following inequality bounds the Wasserstein distance between discrete gradient flow sequences with
different time steps in terms of a convex combination of earlier elements of the sequences, plus a small error
term. A fundamental difference between Crandall and Liggett’s recursive inequality and our Theorem 3.4 is that
theirs involves the distance while ours involves the square distance. (This is a consequence of the fact that our
contraction inequality Thm. 3.1 involves the square distance plus error terms.) Therefore, where Crandall and
Liggett were able to use the triangle inequality to control the distance to intermediate points on a geodesic in
terms of the distance to its endpoints, we have to use the convexity of the square transport metric. The bulk of
our proof is devoted to passing from the transport metric back to the Wasserstein metric.
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Theorem 3.4. Suppose E satisfies convexity Assumption 2.11. Then if μ ∈ D(|∂E|) and 0 < h ≤ τ < 1
λ− ,

(1 − λ−h)2W 2
2 (Jn

τ μ, Jm
h μ)

≤ h

τ
(1 − λ−τ)−1W 2

2 (Jn−1
τ μ, Jm−1

h μ) +
τ − h

τ
W 2

2 (Jm−1
h μ, Jn

τ μ) + 2h2(1 − λ−h)−2m|∂E|2(μ).

To consider λ ≥ 0 and λ < 0 jointly, we replace λ by −λ−: any function that is λ convex is also −λ− convex.

Proof. To simplify notation, we abbreviate Jn
τ μ by Jn, Jm

h μ by Jm, and [([τ − h]/τ)tJn

Jn−1 + (h/τ)id]#Jn−1 by
μJn−1→Jn

τ−h
τ

, since the latter is the geodesic from Jn−1 to Jn at time (τ − h)/τ . With this, we have

(1 − λ−h)2W 2
2 (Jn, Jm) = (1 − λ−h)2W 2

2 (Jh(μJn−1→Jn

τ−h
τ

), Jm) by Theorem 3.3,

≤ W 2
2 (μJn−1→Jn

τ−h
τ

, Jm−1) + h2|∂E|2(Jm−1) by Theorem 3.1,

≤ W 2
2,Jn−1(μJn−1→Jn

τ−h
τ

, Jm−1) + h2|∂E|2(Jm−1) by Remark 2.9.

By Proposition 2.13, W 2
2,Jn−1 is convex along generalized geodesics with base Jn−1. In particular, it is convex

along the geodesic μJn−1→Jn

τ−h
τ

, which gives

(1 − λ−h)2W 2
2 (Jn, Jm) ≤ h

τ
W 2

2,Jn−1(Jn−1, Jm−1) +
τ − h

τ
W 2

2,Jn−1(Jm−1, Jn) + h2|∂E|2(Jm−1). (3.8)

By Remark 2.9, W 2
2,Jn−1(Jn−1, Jm−1) = W 2

2 (Jn−1, Jm−1). To control the second term, we claim that

W 2
2,Jn−1(Jm−1, Jn) ≤ τ

h

(
W 2

2 (Jm−1, Jn) − (1 − λ−h)W 2
2,Jm−1(Jm, Jn)

)
+

1
1 − λ−τ

W 2
2 (Jn−1, Jm−1) +

τh

1 − λ−h
|∂E|2(Jm−1). (3.9)

Substituting (3.9) into (3.8), simplifying and rearranging, and using (1 − λ−h)2 ≤ (1 − λ−h) gives

(1 − λ−h)2(τ/h)W 2
2 (Jn, Jm) ≤ 1 − λ−h

1 − λ−τ
W 2

2 (Jn−1, Jm−1) +
τ − h

h
W 2

2 (Jm−1, Jn)

+
[
h(τ − h)
1 − λ−h

+ h2

]
|∂E|2(Jm−1).

Multiplying by h/τ and using both 1−λ−h ≤ 1 and |∂E|2(Jm−1) ≤ (1−λ−h)−2(m−1)|∂E|2(μ) gives the result

(1 − λ−h)2W 2
2 (Jn, Jm) ≤ h

τ

1
1 − λ−τ

W 2
2 (Jn−1, Jm−1) +

τ − h

τ
W 2

2 (Jm−1, Jn) + 2h2(1 − λ−h)−2m|∂E|2(μ).

It remains to show (3.9). Replacing (μ, ν) in Theorem 2.22 with (Jm−1, Jn) and (Jn−1, Jm−1) gives

(1 − λ−h)W 2
2,Jm−1(Jm, Jn) − W 2

2 (Jm−1, Jn) ≤ 2h
[
E(Jn) − E(Jm) − W 2

2 (Jm−1, Jm)/(2h)
]
, (3.10)

(1 − λ−τ)W 2
2,Jn−1 (Jn, Jm−1) − W 2

2 (Jn−1, Jm−1) ≤ 2τ
[
E(Jm−1) − E(Jn) − W 2

2 (Jn−1, Jn)/(2τ)
]
. (3.11)

Multiplying (3.10) by τ , (3.11) by h, adding them together, and applying inequality (2.7) gives

τ(1 − λ−h)W 2
2,Jm−1(Jm, Jn) + h(1 − λ−τ)W 2

2,Jn−1(Jn, Jm−1)

≤ τW 2
2 (Jm−1, Jn) + hW 2

2 (Jn−1, Jm−1)
+ 2τh

[
E(Jm−1) − E(Jm) − W 2

2 (Jm−1, Jm)/(2h)
]− hW 2

2 (Jn−1, Jn)

≤ τW 2
2 (Jm−1, Jn) + hW 2

2 (Jn−1, Jm−1) +
τh2

1 − λ−h
|∂E|2(Jm−1) − hW 2

2 (Jn−1, Jn). (3.12)
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As in equation (3.4) we have, λ−τW 2
2,Jn−1 (Jm−1, Jn) ≤ W 2

2 (Jn, Jn−1) + λ−τ
1−λ−τ W 2

2 (Jn−1, Jm−1). Multiplying
by h and adding to (3.12) gives

τ(1 − λ−h)W 2
2,Jm−1(Jm, Jn) + hW 2

2,Jn−1(Jn, Jm−1)

≤ τW 2
2 (Jm−1, Jn) +

h

1 − λ−τ
W 2

2 (Jn−1, Jm−1) +
τh2

1 − λ−h
|∂E|2(Jm−1).

Rearranging and dividing by h gives the desired bound (3.9). �

3.4. Distance between discrete gradient flows with different time steps

The following bound controls the distance between discrete gradient flow sequences with time steps τ and h.
It is inspired by Rasmussen’s simplification of Crandall and Liggett’s method [16, 18]. Unlike in the Banach
space case, we work with the square distance instead of the distance itself. While this complicated matters in
the previous theorem, it simplifies the induction in the following theorem.

We begin with the base case of the induction, bounding the distance between the 0th and nth terms.

Lemma 3.5. Suppose E satisfies convexity Assumption 2.11. Then if μ ∈ D(|∂E|) and 0 < τ < 1
λ− ,

W2(Jn
τ μ, μ) ≤ nτ

(1 − τλ−)n
|∂E(μ)|

Proof. This follows from the triangle inequality, (2.7), and the inequalities 1
1+τλ ≤ 1

1−τλ− and 1 ≤ 1
1−τλ− .

W2(Jn
τ μ, μ) ≤

n∑
i=1

W2(J i
τμ, J i−1

τ μ) ≤
n∑

i=1

τ

1 + τλ
|∂E(J i−1

τ μ)| ≤
n∑

i=1

τ

(1 + τλ)i
|∂E(μ)| ≤ nτ

(1 − τλ−)n
|∂E(μ)|.

�

Theorem 3.6. Suppose E satisfies convexity Assumption 2.11. Then if μ ∈ D(|∂E|) and 0 < h ≤ τ < 1
λ− ,

W 2
2 (Jn

τ μ, Jm
h μ) ≤ [(nτ − mh)2 + τhm + 2τ2n

]
(1 − λ−τ)−2n(1 − λ−h)−2m|∂E|2(μ). (3.13)

Proof. We proceed by induction. The base case, when either n = 0 or m = 0, follows from Lemma 3.5. We
assume the inequality holds for (n − 1, m) and (n, m) and show that this implies it holds for (n, m + 1).

By Theorem 3.4,

(1 − λ−h)2W 2
2 (Jn

τ μ, Jm+1
h μ)

≤ h

τ
(1 − λ−τ)−1W 2

2 (Jn−1
τ μ, Jm

h μ) +
τ − h

τ
W 2

2 (Jm
h μ, Jn

τ μ) + 2h2(1 − λ−h)−2(m+1)|∂E|2(μ).

Dividing by (1 − λ−h)2 and applying the inductive hypothesis,

W 2
2 (Jn

τ μ, Jm+1
h μ) ≤ h

τ

[
((n − 1)τ − mh)2 + τhm + 2τ2(n − 1)

]
(1 − λ−τ)−2(n−1)−1(1 − λ−h)−2(m+1)|∂E|2(μ)

+
τ − h

τ

[
(nτ − mh)2 + τhm + 2τ2n

]
(1 − λ−τ)−2n(1 − λ−h)−2(m+1)|∂E(μ)|2

+ 2h2(1 − λ−h)−2(m+1)−2|∂E|2(μ).

To control the first term, note that (1 − λ−τ)−2(n−1)−1 = (1 − λ−τ)−2n+1 < (1 − λ−τ)−2n and[
((n − 1)τ − mh)2 + τhm + 2τ2(n − 1)

]
=
[
(nτ − mh)2 − 2(nτ − mh)τ + τ2 + τhm + 2τ2(n − 1)

]
.
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To control the third term, note that (1 − λ−h)−2 ≤ (1 − λ−τ)−2 ≤ (1 − λ−τ)−2n. Using these estimates, we
may group together the three terms and obtain the following bound.

W 2
2 (Jn

τ μ, Jm+1
h μ)

≤
{

h

τ

[
(nτ − mh)2 − 2(nτ − mh)τ + τ2 + τhm + 2τ2(n − 1)

]
+

τ − h

τ

[
(nτ − mh)2 + τhm + 2τ2n

]
+ 2h2

}
· (1 − λ−τ)−2n(1 − λ−h)−2(m+1)|∂E|2(μ).

Simplifying and bounding the quantity within the brackets gives the result,

h

τ

[
(nτ − mh)2 − 2(nτ − mh)τ + τ2 + τhm + 2τ2(n − 1)

]
+

τ − h

τ

[
(nτ − mh)2 + τhm + 2τ2n

]
+ 2h2

=
h

τ

[
(nτ − mh)2 + τhm + 2τ2n

]
+

τ − h

τ

[
(nτ − mh)2 + τhm + 2τ2n

]
+

h

τ

[−2(nτ − mh)τ − τ2
]
+ 2h2

=
[
(nτ − mh)2 + τhm + 2τ2n

]− 2(nτ − mh)h − τh + 2h2

= (nτ − mh)2 − 2(nτ − mh)h + τhm − τh + 2τ2n + 2h2

= (nτ − (m + 1)h)2 + τhm − τh + 2τ2n + h2

≤ (nτ − (m + 1)h)2 + τh(m + 1) + 2τ2n. �

3.5. Exponential formula for the wasserstein metric

We now combine our previous results to conclude the exponential formula for the Wasserstein metric. We prove
the quantitative bound W2(Jn

t/nμ, μ(t)) ≤ O(n−1/2), which agrees with the rate Crandall and Liggett obtained in
the Banach space case[9]. By a different method, Ambrosio, Gigli, and Savaré showed W2(Jn

t/nμ, μ(t)) ≤ O(n−1)
([1], Thm. 4.0.4), which agrees with the optimal rate in a Hilbert space [17]. Our rate improves upon the rate
obtained by Clément and Desch [7], d(Jn

t/nμ, μ(t)) ≤ O(n−1/4), though they considered the more general case
of a metric space (X, d) that satisfies inequality (2.8), with W2 replaced by d.

Though we do not obtain the optimal rate of convergence, we demonstrate that Crandall and Liggett’s
approach extends to the Wasserstein metric, providing a simple and robust route to the exponential formula
and properties of continuous gradient flow. In particular, it is hoped that this method may be used to study the
behavior of the gradient flow as the functional E varies − for example, as a regularization of E is removed. The
corresponding problem in the Banach space case is well-understood [3], and the analogy we establish between
the Banach and Wasserstein cases may help extend these results.

Theorem 3.7 (Exponential formula). Suppose E satisfies convexity Assumption 2.11. For μ ∈ D(E), t ≥ 0, the
discrete gradient flow sequence Jn

t/nμ converges as n → ∞. The convergence is uniform in t on compact subsets
of [0, +∞), and the limit μ(t) is the gradient flow of E with initial conditions μ0 in the sense of Definition 2.12.
When μ0 ∈ D(|∂E|) and n ≥ 2λ−t, the distance between Jn

t/n and μ(t) is bounded by

W2(Jn
t/nμ, μ(t)) ≤

√
3

t√
n

e3λ−t|∂E|(μ0). (3.14)

Remark 3.8 (Varying time steps). For any partition of the interval [0, t] into n time steps τ1, . . . , τn, the
corresponding discrete gradient flow with varying time steps Πn

i=1Jτiμ converges to μ(t) as the maximum time
step goes to zero. See Theorem A.4.

We may apply our estimates to give shorts proofs of several known properties of the gradient flow ([1],
Thm. 2.4.15, Prop. 4.3.1, Cor. 4.3.3). Our proofs merely use the fact that μ(t) = limn→∞ Jn

t/nμ0, not that μ(t)
is a solution to the gradient flow in the sense of Definition 2.12.
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Theorem 3.9. Suppose E satisfies convexity Assumption 2.11. Then the function S(t) on (0, +∞), S(t):
D(E) → D(|∂E|): μ 	→ μ(t) is a λ-contracting semigroup, i.e.

(i) limt→0 S(t)μ = S(0)μ = μ,
(ii) S(t + s) = S(t)S(s)μ for t, s ≥ 0,
(iii) W2(S(t)μ, S(t)ν) ≤ e−λtW2(μ, ν).

Furthermore, μ(t) is locally Lipschitz on (0, +∞) and if μ ∈ D(|∂E|),

W2(μ(t), μ(s)) ≤ |t − s|eλ−teλ−s|∂E|(μ). (3.15)

Finally, an energy dissipation inequality holds,∫ t1

t0

|∂E|2(μ(s))ds ≤ E(μ(t0)) − E(μ(t1)). (3.16)

We now turn to the proofs of these results.

Proof of Theorem 3.7. To ease notation, we drop the subscript on the initial data μ0 and we abbreviate Jτμ
by μτ . We also use that μ ∈ D(E) implies μτ ∈ D(|∂E|) (2.7) and limτ→0 μτ = μ ([1], Lem. 3.1.2).

First, we prove the error estimate for μ ∈ D(|∂E|). By Theorem 3.6, if we define τ = t
n , h = t

m , with
m ≥ n > 2tλ−, so 0 ≤ h ≤ τ < 1

2λ− ,

W 2
2 (Jn

t/nμ, Jm
t/mμ) ≤ 3

t2

n
(1 − λ−t/n)−2n(1 − λ−t/m)−2m|∂E|2(μ) ≤ 3

t2

n
e8λ−t|∂E|2(μ). (3.17)

In the second inequality, we use (1 − α)−1 ≤ e2α for α ∈ [0, 1/2]. Thus, the sequence Jn
t/nμ is Cauchy, and

limn→∞ Jn
t/nμ exists ([1], Prop. 7.1.5). The convergence is uniform in t on compact subsets of [0, +∞). If μ(t)

denotes the limit, then sending m → ∞ in the first inequality of (3.17) gives (3.14).
Now suppose μ ∈ D(E). By the triangle inequality,

W2(Jn
t/nμ, Jm

t/mμ) ≤ W2(Jn
t/nμ, Jn

t/nμτ ) + W2(Jn
t/nμτ , Jm

t/mμτ ) + W2(Jm
t/mμτ , Jm

t/mμ).

We may choose n, m large enough, uniformly in t ∈ [0, T ], so that the second term arbitrarily small. By
Corollary 3.2, we may choose n, m large enough and τ small enough, uniformly in t ∈ [0, T ], so that the first
and third terms are arbitrarily small. Thus, the sequence Jn

t/nμ is Cauchy uniformly in t ∈ [0, T ], so the limit
exists and convergence is uniform for t ∈ [0, T ].

We now show that μ(t) is the gradient flow of E with initial conditions μ in the sense of Definition 2.12. As
our proof of Theorem 3.9 merely uses the fact that μ(t) = limn→∞ Jn

t/nμ, we may leverage these results. By (i),
limt→0 S(t)μ = μ, so it remains to show that S(t)μ satisfies inequality (2.6) from Definition 2.12.

Define the piecewise constant function gn(s) = [E(J i
τμ) − E(ω)](1 + λτ)i−1 for s ∈ ((i − 1)τ, iτ ], 1 ≤ i ≤ n.

Iterating inequality (2.8) for 0 < τ < 1/λ− shows that for all ω ∈ D(E),

(1 + λτ)nW 2
2 (Jn

τ μ, ω) ≤ W 2
2 (μ, ω) + 2τ

n∑
i=1

[E(ω) − E(J i
τμ)](1 + λτ)i−1 = W 2

2 (μ, ω) − 2
∫ τn

0

gn(s)ds

Set τ = t/n and suppose the following claim holds:

Claim. lim infn→∞
∫ t

0 gn(s)ds ≥ ∫ t

0 [E(S(s)μ) − E(ω)]eλsds.
Then taking the liminf of the above inequality gives

eλtW 2
2 (S(t)μ, ω) ≤ W 2

2 (μ, ω) + 2
∫ t

0

[E(ω) − E(S(s)μ)]eλsds. (3.18)
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Applying the semigroup property (ii) of Theorem 3.9 and multiplying through by eλt0 ,

eλ(t+t0)W 2
2 (S(t + t0)μ, ω) − eλt0W 2

2 (S(t0)μ, ω) ≤ 2
∫ t+t0

t0

[E(ω) − E(S(s)μ)]eλsds.

Dividing by t, sending t → 0, and dividing by 2eλt0 gives inequality (2.6). The left hand side converges for a.e.
t0 since the function f(t) = 1

2W 2
2 (S(t)μ, ω) is locally Lipschitz by Theorem 3.9.

We conclude by proving the claim. Since E(J i
t/nμ) ≥ E(Jn

t/nμ) and lim infn→∞ E(Jn
t/nμ) ≥ E(S(t)μ), gn(s)

is bounded below. By Fatou’s lemma, it is enough to show lim infn→∞ gn(s)ds ≥ [E(S(s)μ)−E(ω)]eλs, and by
the lower semicontinuity of E, this holds if limn→∞ J i

t/nμ = S(s)μ. By the triangle inequality,

W2(J i
t/nμ, S(s)μ) ≤ W2(J i

t/nμ, J i
t/nμτ ) + W2(J i

t/nμτ , S(s)μτ ) + W2(S(s)μτ , S(s)μ).

By Corollary 3.2, we may choose n large enough and τ small enough, uniformly in t ∈ [0, T ], so that the first
term is arbitrarily small. Likewise, the third term may be made arbitrarily small by the contraction inequality
(iii) of Theorem 3.9. Thus it remains to show that limn→∞ J i

t/nμτ = S(s)μτ . This follows by Theorem 3.6, since
for s ∈ ((i − 1)t/n, it/n] and m, n large enough,

W 2
2 (J i

t/nμτ , Jm
s/mμτ ) ≤

((
i
t

n
− s

)2

+
t

n
s + 2

t2

n2
i

)
e4λ−(t+s)|∂E|(μτ )

≤
(

3t2

n2
+

ts + 2t2

n

)
e4λ−(t+s)|∂E|(μτ ). �

Proof of Theorem 3.9. Throughout, we abbreviate Jτμ by μτ and use that μ ∈ D(E) implies μτ ∈ D(|∂E|)
by (2.7) and limτ→0 μτ = μ by ([1], Lem. 3.1.2).

(iii) follows by sending n → ∞ in Corollary 3.2. In particular, for μ, ν ∈ D(E),

W 2
2 (S(t)μτ , S(t)ν) ≤ e−λtW 2

2 (μτ , ν).

The result then follows by the triangle inequality and the continuity of the proximal map, as τ → 0,

W2(S(t)μ, S(t)ν) ≤ W2(S(t)μ, S(t)μτ ) + W2(S(t)μτ , S(t)ν) ≤ e−λtW2(μ, μτ ) + e−λtW2(μτ , ν).

Next, we show estimate (3.15) on the modulus of continuity for S(t)μ when μ ∈ D(|∂E|). Given t ≥ s ≥ 0,
define τ = t

n , h = s
m for m, n large enough so 0 ≤ h ≤ τ < 1

λ− . By Theorem 3.6,

W 2
2 (Jn

t/nμ, Jm
s/mμ) ≤

[
(t − s)2 +

ts

n
+ 2

t2

n

]
(1 − λ−t/n)−2n(1 − λ−s/m)−2m|∂E|2(μ). (3.19)

Sending m, n → ∞ and taking the square root of both sides gives (3.15). If μ ∈ D(E), then by (iii),
limτ→0 S(t)μτ = S(t)μ uniformly for t ∈ [0, T ], so S(t)μ is also continuous for t ∈ [0, T ]. Thus (i) holds.

Next, we turn to (ii). Note that it is enough to show S(t)mμ = S(mt)μ for fixed m ∈ N. If we have this, then
for any l, k, r, s ∈ N,

S

(
l

k
+

r

s

)
μ = S

(
ls + rk

ks

)
μ =

[
S

(
1
ks

)]ls+rk

μ =
[
S

(
1
ks

)]ls [
S

(
1
ks

)]rk

μ = S

(
l

k

)
S
(r

s

)
μ.

Since S(t)μ is continuous in t ∈ [0, +∞), S(t + s)μ = S(t)S(s)μ for all t, s ≥ 0. Likewise, it is enough to show
the result for μ ∈ D(|∂E|). If μ ∈ D(E), then by (iii), limτ→0 S(t)μτ = S(t)μ uniformly for t ∈ [0, T ], so
S(t + s)μ = limτ→0 S(t + s)μτ = limτ→0 S(t)S(s)μτ = S(t)S(s)μ.
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We proceed by induction. S(t)mμ = S(mt)μ for m = 1. Suppose that S(t)m−1μ = S((m − 1)t)μ. We show
that we may choose n large enough to make the right hand side of the following inequality arbitrarily small:

W2(S(mt)μ, S(t)mμ) ≤ W2(S(mt)μ, (Jn
t/n)mμ) + W2((Jn

t/n)mμ, Jn
t/nS(t)m−1μ) + W2(Jn

t/nS(t)m−1μ, S(t)mμ)

Since W2(S(mt)μ, (Jn
t/n)mμ) = W2(S(mt)μ, Jnm

tm/nmμ) and limn→∞ Jnm
tm/nmμ = S(mt)μ, the first term may be

made arbitrarily small. Since limn→∞ Jn
t/nS(t)m−1μ = S(t)mμ, so may the third term.

To bound the second term, note that by the lower semicontinuity of |∂E| ([1], Cor. 2.4.10) and (2.7),

|∂E|(μ(t)) ≤ lim inf
n→∞ |∂E|(Jn

t/nμ) ≤ lim inf
n→∞ (1 − λ−t/n)−n|∂E|(μ) = eλ−t|∂E|(μ). (3.20)

Hence, |∂E|2(S(t)m−1μ) ≤ e2(m−1)λ−t|∂E|2(μ). Combining this with Corollary 3.2,

W 2
2 (Jn

t/nS(t)m−1μ, Jn
t/n(Jn

t/n)m−1μ)

≤ (1 − λ−(t/n))−2nW 2
2 (S(t)m−1μ, (Jn

t/n)m−1μ) +
n(t/n)2e2(m−1)λ−t

(1 − λ−(t/n))2n
|∂E|2(μ).

By the inductive hypothesis, limn→∞(Jn
t/n)m−1μ = limn→∞ J

n(m−1)
t(m−1)/n(m−1)μ = S((m − 1)t)μ = S(t)m−1μ.

Thus, we may choose n large enough to make the second term arbitrarily small.
Finally, we show the energy dissipation inequality (3.16). By (ii), it is enough to prove the result for t0 = 0,

t1 = t. By inequality (2.7),

τ(1 + λτ/2)|∂E|2(μτ ) ≤ E(μ) − E(μτ ). (3.21)

Define gn(s) = (1 + λτ/2)|∂E|2(J i
τμ) for s ∈ ((i − 1)τ, iτ ], 1 ≤ i ≤ n. Summing (3.21),

∫ τn

0

gn(s)ds =
n∑

i=1

τ(1 + λτ/2)|∂E|2(J i
τμ) ≤ E(μ) − E(Jn

τ μ). (3.22)

Let τ = t/n. As in the proof of the previous theorem, limn→∞ J i
t/nμ = S(s)μ. Taking the liminf of (3.22) and

applying Fatou’s lemma along with the lower semicontinuity of E and |∂E| ([1], Cor. 2.4.10) gives

∫ t

0

|∂E|2(S(s)μ) =
∫ t

0

lim inf
n→∞ gn(s)ds ≤ E(μ) − E(S(t)μ).

The lower semicontinuity of E and the fact that Jn
t/nμ ∈ D(E) ensure E(S(t)μ) < +∞ for all t ≥ 0. Then,

the energy dissipation inequality implies that |∂E|2(S(s)μ) < +∞ for almost every s ≥ 0. By (iii) and (3.20),
|∂E|(S(t)μ) ≤ eλ−(t−s)|∂E|(S(s)μ) for 0 < s < t. Therefore, S(t) : D(E) → D(|∂E|). �

Appendix A. Generalizations

A.1. Varying time steps

This section contains generalizations of the previous theorems to the case where we replace m time steps of
size h with a sequence of varying time steps. For simplicity of notation, we write Jm =

∏m
k=1 Jhk

μ, Jn = Jn
τ μ,

Sm =
∑m

k=1 hk, and Pm =
∏m

k=1(1 − λ−hk)−1.
In Theorems A.1−A.3 below, we suppose E satisfies convexity Assumption 2.11, μ ∈ D(|∂E|), and 0 < hi ≤

τ < 1
λ− . The first result is a generalization of Theorem 3.4, the second is a generalization of Lemma 3.5, and

the third is a generalization of Theorem 3.6.
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Theorem A.1.

(1 − λ−hm)2W 2
2 (Jn, Jm) ≤ hm

τ
(1 − λ−τ)−1W 2

2 (Jn−1, Jm−1) +
τ − hm

τ
W 2

2 (Jm−1, Jn) + 2h2
mP 2

m|∂E|2(μ).

Lemma A.2. W2 (Jm, μ) ≤ |∂E(μ)|SmPm.

Theorem A.3. W 2
2 (Jn, Jm) ≤

[
(nτ − Sm)2 + τSm + 2τ2n

]
(1 − λ−τ)−2nP 2

m|∂E|2(μ).

The proof of each of these results is a straightforward generalization of the previous proof. (Simply replace h
with hm, use |∂E|2(Jm) ≤ P 2

m|∂E|2(μ), and, in the third result, replace mh by Sm.)
We combine these results in the following theorem to prove the convergence of the discrete gradient flow with

varying time steps.

Theorem A.4. Suppose E satisfies convexity Assumption 2.11. For μ ∈ D(|∂E|) and any partition of the
interval {0 = t0 < t1 < · · · < ti < ti+1 < . . . tm = t} corresponding to time steps hi = ti − ti+1 the discrete
gradient flow sequence sequence

∏m
i=1 Jhiμ converges to the gradient flow μ(t) as |h| = max1≤i≤m hi → 0.

The convergence is uniform in t on compact subsets of [0, +∞). When |h| ≤ 1
2λ− , the distance between the

approximating sequence
∏m

i=1 Jhiμ and the continuous gradient flow S(t)μ is bounded by

W2

(
S(t)μ,

m∏
i=1

Jhiμ

)
≤ 2

[|h|2 + 3|h|t]1/2
e4λ−t|∂E|(μ)

Proof. Let τ = |h|, so 0 < hk ≤ τ < 1
2λ− , and let n be the greatest integer less than or equal to t/τ ,

so t/τ − 1 < n ≤ t/τ , hence t − τ < nτ ≤ t. By the triangle inequality, Theorem A.3, and the fact that
(1 − α)−1 ≤ e2α for α ∈ [0, 1/2],

W2

(
S(t)μ,

m∏
i=1

Jhiμ

)
≤ W2(S(t)μ, Jn

τ μ) + W2

(
Jn

τ μ,

m∏
i=1

Jhiμ

)
= lim

l→∞
W2(J l

t/lμ, Jn
τ μ) + W2

(
Jn

τ μ,

m∏
i=1

Jhiμ

)

≤ lim
l→∞

[
(nτ − t)2 + τt + 2τ2n

]1/2
(1 − λ−τ)−n(1 − λ−t/l)−l|∂E|(μ)

+
[
(nτ − t)2 + τt + 2τ2n

]1/2

(1 − λ−τ)−n

{
m∏

k=1

(1 − λ−hk)−1

}
|∂E|(μ)

≤ 2
[|h|2 + 3|h|t]1/2

e4λ−t|∂E|(μ) �

A.2. Allowing E(μ) < +∞ when μ charges small sets

In this section, we give proofs of the Euler−Lagrange equation (Thm. 2.23) and the relation between proximal
maps with small and large time steps (Thm. 3.3) in the general case, in which measures may give mass to small
sets. In this context, optimal transport maps may no longer exist, so the transport metrics (Def. 2.14) may no
longer be well-defined.

Theorem A.5 (Euler−Lagrange equation). Suppose E satisfies convexity Assumption 2.11. Then for ω ∈
D(E), 0 < τ < 1

λ− , μ is the unique minimizer of the quadratic perturbation Φ(τ, ω; ·) if and only if for all
γ ∈ Γ0(μ, ω), defining γτ = ρτ#γ, ρτ (x1, x2) = (x1, (x2 − x1)/τ), we have

E(ν) − E(μ) ≥
∫
〈x2, x3 − x1〉dγ + o

(‖x1 − x3‖L2(γ)

) ∀γ ∈ Γ (γτ , ν), ν ∈ D(E), ν → μ. (A.1)

Proof. ([1], Lem. 10.3.4) shows that if μ is the unique minimizer of Φ(τ, ω; ·), then (A.1) holds for all γ ∈ Γ0(μ, ω).
We now prove the converse. Suppose that for all γ ∈ Γ0(μ, ω), (A.1) holds, and fix ν ∈ D(E). There exists some

generalized geodesic μα from μ to ν with base ω along which E is λ-convex. Let ω be the plan that induces
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this generalized geodesic, with π1,2#ω ∈ Γ0(ω, μ) and π1,3#ω ∈ Γ0(ω, ν), so μα = [(1 − α)π2 + απ3]#ω.
Applying (A.1) withγ = π2,1#ω and ν = μα shows

E(μα) − E(μ) ≥
∫
〈x2, x3 − x1〉dγα + o

(‖x1 − x3‖L2(γα)

) ∀γα ∈ Γ (γτ , μα), μα → μ. (A.2)

Since (x2,
x1−x2

τ , (1 − α)x2 + αx3)#ω ∈ Γ (γτ , μα),

E(μα) − E(μ) ≥
∫

〈(x1 − x2)/τ, ((1 − α)x2 + αx3) − x2〉dω + o
(‖x2 − (1 − α)x2 − αx3‖L2(ω)

)
= α

∫
〈(x1 − x2)/τ, x3 − x2〉dω + αo

(‖x2 − x3‖L2(ω)

)
.

By definition of convexity along a generalized geodesic, E(ν)−E(μ) ≥ 1
α [E(μα) − E(μ)]+(1−α)λ

2 ‖x2−x3‖L2(ω).
Using the above inequality, we may bound this from below,

E(ν) − E(μ) ≥
∫

〈(x1 − x2)/τ, x3 − x2〉dω + o (1) + (1 − α)(λ/2)‖x2 − x3‖L2(ω).

Sending α → 0,

E(ν) − E(μ) ≥
∫

〈(x1 − x2)/τ, x3 − x2〉dω + (λ/2)‖x2 − x3‖L2(ω). (A.3)

Likewise, we have

W 2
2 (ν, ω) − W 2

2 (μ, ω) =
∫

|x1 − x3|2dω −
∫

|x1 − x2|2dω = ‖x2 − x3‖2
L2(ω) + 2

∫
〈x3 − x2, x2 − x1〉dω.

Combining this with the fact that λ + 1/τ > 0,

Φ(τ, ω; ν) − Φ(τ, ω; μ) ≥
∫
〈(x3 − x1)/τ + (x1 − x3)/τ, x2 − x1〉dω = 0

Since ν ∈ D(E) was arbitrary, μ minimizes Φ(τ, ω; ·). �

We now turn to the proof of Theorem 3.3. For simplicity of notation, we abbreviate Jτμ by μτ .

Theorem A.6. Suppose E satisfies convexity Assumption 2.11. Then if μ ∈ D(E) and 0 < h ≤ τ < 1
λ− ,

Jτμ = Jh

[
μμτ→μ

h
τ

]
,

where μμτ→μ
h
τ

is any geodesic from μτ to μ at time h
τ .

Proof. Choose any geodesic μμτ→μ
α from μτ to μ, and define ω = μμτ→μ

h
τ

. We must show μτ = ωh.

By ([1], Lem. 7.2.1), there exists a unique plan γμτ→ω ∈ Γ0(μτ , ω) and there exists γ ∈ Γ0(μτ , μ) so that
γμτ→ω = ( τ−h

τ π1,1 + h
τ π1,2)#γ. By Theorem A.5, for all γ ∈ Γ0(μτ , μ),

E(ν) − E(μτ ) ≥
∫
〈x2, x3 − x1〉dγ + o

(‖x1 − x3‖L2(γ)

) ∀γ ∈ Γ (γτ , ν), ν → μτ . (A.4)

To prove μτ = ωh, by a second application of Theorem A.5, it’s enough to show that for all γ̃ ∈ Γ0(μτ , ω),

E(ν̃) − E(μτ ) ≥
∫
〈x2, x3 − x1〉dγ̃ + o

(‖x1 − x3‖L2(γ̃)

) ∀γ̃ ∈ Γ (γ̃h, ν̃), ν̃ → μτ . (A.5)

Since γμτ→ω is the unique plan in Γ0(μτ , ω), it is enough to show that (A.5) holds for γ̃ = γμτ→ω.
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As (A.4) holds for all γ ∈ Γ0(μτ , μ), in particular, it holds for γ so that γμτ→ω = ( τ−h
τ π1,1 + h

τ π1,2)#γ.
Furthermore,

ρh

(
x1,

τ − h

τ
x1 +

h

τ
x2

)
=
(

x1,
1
h

[
τ − h

τ
x1 +

h

τ
x2 − x1

])
=
(

x1,
x2 − x1

τ

)
= ρτ (x1, x2).

Consequently, γ̃h = ρh#γμτ→ν = ρh ◦ ( τ−h
τ π1,1 + h

τ π1,2)#γ = ρτ#γ = γτ . Therefore, the fact that (A.4) holds
for γ implies that (A.5) holds for γ̃. This proves the result. �
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