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DEV-DIV- AND DEVSYM-DEVCURL-INEQUALITIES
FOR INCOMPATIBLE SQUARE TENSOR FIELDS

WITH MIXED BOUNDARY CONDITIONS
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Abstract. Let Ω ⊂ R
n, n ≥ 2, be a bounded Lipschitz domain and 1 < q < ∞. We prove the

inequality
‖T‖Lq(Ω) ≤ CDD

(‖ dev T‖Lq(Ω) + ‖Div T‖Lq(Ω)

)
being valid for tensor fields T : Ω → R

n×n with a normal boundary condition on some open and
non-empty part Γν of the boundary ∂Ω. Here dev T = T − 1

n
tr (T ) · Id denotes the deviatoric part of

the tensor T and Div is the divergence row-wise. Furthermore, we prove

‖T‖L2(Ω) ≤ CDSC

(‖dev symT‖L2(Ω) + ‖Curl T‖L2(Ω)

)
if n ≥ 3,

‖T‖L2(Ω) ≤ CDSDC

(‖dev sym T‖L2(Ω) + ‖dev Curl T‖L2(Ω)

)
if n = 3,

being valid for tensor fields T with a tangential boundary condition on some open and non-empty part
Γτ of ∂Ω. Here, symT = 1

2
(T +T�) denotes the symmetric part of T and Curl is the rotation row-wise.
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1. Introduction

‘Every mathematical theorem has an inequality behind it . . . ’ In this work we consider (n×n)-tensor fields T
on bounded domains Ω ⊂ Rn, n ≥ 2, with Lipschitz-continuous boundary ∂Ω. Such a tensor field may be
decomposed pointwise orthogonally in its symmetric part and its skew-symmetric part

T = symT + skew T, (1.1)

where symT = 1
2 (T +T�) and skew T = 1

2

(
T − T�)

. In the recent paper [29], it has been shown that in L2(Ω)
the skew symmetric part of T is controlled by the symmetric part and the Curl of T , leading to

||T ||L2(Ω) ≤ CSC

(||sym T ||L2(Ω) + ||Curl T ||L2(Ω)

)
, (1.2)

Keywords and phrases. Korn’s inequality, Lie-algebra decomposition, Poincaré’s inequality, Maxwell estimates, relaxed
micromorphic model.
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if a tangential boundary condition is imposed on some non-empty and open part Γτ of the boundary ∂Ω. In
classical terms Tτ |Γτ = 0 is needed for all tangential-vectors τ on Γτ . Here and hereafter all differential operators
on tensor fields are taken row-wise. For exact definitions of operators and function spaces, see Section 2. We shall
call this inequality the Sym-Curl-inequality. Since the Curl operator vanishes on gradients, a certain variant of
Korn’s first inequality follows immediately, i.e., with T = Grad v and Curl Grad = 0 we have

||Grad v||L2(Ω) ≤ CSC ||sym Grad v||L2(Ω) (1.3)

for all v ∈ H1(Ω) with (Grad v)τ |Γτ = 0. Obviously, this boundary condition is a weakening of the usual
Dirichlet boundary condition v |Γτ = 0, see the discussion in [27].

The tensor T may also be decomposed pointwise orthogonally in its trace-free or deviatoric and its trace or
spherical part

T = dev T +
1
n

tr(T ) · Id, (1.4)

where Id denotes the identity matrix in Rn and tr T =
∑n

i=1 Tii.
In Theorem 3.1 of this contribution, we show that in Lq(Ω), 1 < q < ∞, the trace part of T is controlled by

the deviatoric part and the divergence of T , i.e.,

||T ||Lq(Ω) ≤ CDD

(||dev T ||Lq(Ω) + ||Div T ||Lq(Ω)

)
,

if a normal boundary condition is imposed on some non-empty and open part Γν of ∂Ω. In classical terms

Tν |Γν = 0 (1.5)

is needed for the normal vector ν at Γν . We shall call this inequality the Dev-Div-inequality.
In case that n = 3 and T = CurlS is already a Curl of a tensor field S having the proper tangential boundary

condition on Γτ , we conclude that T is already controlled by its deviatoric part alone, i.e.,

||Curl S||Lq(Ω) ≤ CDD||dev Curl S||Lq(Ω), (1.6)

since Div Curl = 0 and T inherits the proper normal boundary condition from S. The inequality (1.6) may be
seen as a Korn-type inequality, cf. (1.3). Both orthogonal decompositions (1.1) and (1.4) may be combined by
appealing to the Cartan-decomposition of the Lie-algebra gl(n)

gl(n) = (sl(n) ∩ Sym(n)) ⊕ so(n) ⊕ R · Id

T = dev symT + skew T +
1
n

tr(T ) · Id.

Here, sl(n) denotes the Lie-algebra of trace free matrices and so(n) denotes the Lie-algebra of skew-symmetric
matrices in Rn×n. Now, in a naive manner an estimate of the following kind could be guessed

||T ||L2(Ω) ≤ C
(||dev symT ||L2(Ω) + ||Curl T ||L2(Ω) + ||Div T ||L2(Ω)

)
,

accompanied by suitable boundary conditions. In fact, in Theorem 5.1 we prove a somewhat stronger result:
For n = 3 we prove the new DevSym-DevCurl-inequality

||T ||L2(Ω) ≤ CDSDC

(||dev symT ||L2(Ω) + ||dev CurlT ||L2(Ω)

)
,

where again a tangential boundary condition is imposed on some non-empty and open part Γτ of the boundary.
Since the deviatoric part is only defined for quadratic tensors, this estimate does not make sense for n 	= 3. In
general, CurlT is a (n(n − 1)/2 × n)-matrix and we prove that for n ≥ 3

||T ||L2(Ω) ≤ CDSC

(||dev symT ||L2(Ω) + ||Curl T ||L2(Ω)

)
(1.7)
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holds. In order to show (1.7) we first prove for n ≥ 3 a Korn type inequality, i.e.

||Grad v||L2(Ω) ≤ C ||dev symGrad v||L2(Ω) (1.8)

for all v ∈ H1(Ω) with (Grad v)τ |Γτ = 0.
Whereas inequalities of Sym-Curl-type are investigated by some of the present authors in a series of papers for

the first time, see [27,29], there are already several contributions to Div-Dev-type inequalities in the literature:
In ([2], Lem. 3.1) a Div-Dev-estimate is proved for n = 2 replacing the boundary condition by the average
condition

∫
Ω tr(T ) dx = 0. In the proof of Theorem 3.1 we adopt the idea of proof from this Lemma. The result

is extended to more general boundary conditions in [9] using a different argument. In ([4], Lem. 3.2) for n = 2
and n = 3 the estimate

||T ||2L2(Ω) ≤ C

(
1
2μ

||dev T ||2L2(Ω) +
1

n(nλ + 2μ)
||tr T ||2L2(Ω) + ||Div T ||2H−1(Γτ ; Ω)

)

is shown by means of a Helmholtz decomposition. In the notation used in this paper H−1(Γτ ; Ω) denotes the
dual space of H(Grad; Γτ ; Ω). This estimate holds uniformly in 0 < μ1 ≤ μ ≤ μ2 and 0 < λ < ∞. Therefore,
in the (incompressible) limit λ → ∞ this estimate implies a Dev-Div-estimate. All of these contributions were
derived with the application to finite element approaches of mixed type to incompressible linear elasticity in
mind (cf. [3], Chap. 9) where the Dev-Div-estimate is crucial for establishing well-posedness of the variational
formulation. Other applications include pseudostress-velocity formulations of Stokes flow (cf. [7], Sect. 3.2) and
generalizations of it (see Sect. 7 for more details).

Korn-type estimates, replacing the symmetric gradient by its trace-free part are given in [11], i.e.

||Grad v||L2(Ω) ≤ C
(||dev sym Grad v||L2(Ω) + ||v||L2(Ω)

)
(1.9)

for all v ∈ H(Grad; Ω) and n ≥ 3. In ([31], Thm. 3.2) a trace-free version of Korn’s first inequality is shown
by means of integral representations. In detail it is shown that for 1 < q < ∞ and any projector Π from
W q (Grad; Ω) onto the finite dimensional kernel of dev sym Grad, there exists a constant C > 0, such that for
all u ∈ W q (Grad; Ω)

||u − Πu||W q(Grad; Ω) ≤ C ||dev sym Gradu||Lq(Ω).

It is well known, that for n = 2 estimate (1.9) fails to hold true, since in this case the kernel of dev sym Grad
is given by the holomorphic functions and thus is infinite-dimensional. On the other hand, in ([29], Appendix)
inequality (1.8) is proved for v ∈ H(Grad; ∂Ω; Ω) by simple partial integration and some elementary estimates.
In [13] it is proved that

||Grad v||Lq(Ω) ≤ C||dev symGrad v||Lq(Ω)

holds for v ∈ W q(Grad; ∂Ω; Ω) for n = 2 and 1 < q < ∞, and in [14] this inequality is proved for q = 1,
v ∈ W 1(Grad; ∂Ω; Ω) and arbitrary space dimensions n. In Section 6 we show that for the case of only a
partial boundary condition, i.e. v ∈ H(Grad; Γτ ; Ω), the estimate (1.8) is false by means of a construction
taken from [30].

What about inequalities like DevSym-DevSymCurl or other combinations? In Section 6 we give some negative
results in that direction. It may be quite illuminating to see by some simple arguments, why the kernel of the
operators defining the right hand side of our inequalities are trivial on, say, the space of smooth compactly sup-
ported tensor fields. Some calculations in that direction are also presented in Section 6. In Section 7 applications
of the derived inequalities are given. The remaining part of the paper is organized as follows: in Section 2 we shall
give notations and definitions used in this paper. In Section 3 we provide the proof of the Dev-Div-inequality
and in Sections 4 and 5 we give the proofs of the DevSym-Curl- and the DevSym-DevCurl-inequality. In the
Appendix we prove a representation formula for the kernel of dev sym Grad in arbitrary space dimensions used
in the proof of Theorem 5.1.
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2. Definitions and preliminaries

Throughout the entire paper we assume Ω ⊂ Rn, n ≥ 2, to be a bounded domain with boundary ∂Ω.
Moreover, let Γτ be a relatively open subset of ∂Ω and Γν := ∂Ω \ Γ̄τ . Here, the subscripts τ and ν refer to the
tangential and normal boundary condition, respectively.

The usual Lebesgue-spaces of q-integrable functions, vector fields and tensor fields on Ω with values in R, Rn

and Rn×n, respectively, will be denoted by Lq(Ω). Moreover, we introduce the standard Sobolev-spaces

W q(grad; Ω) := {u ∈ Lq(Ω) | grad u ∈ Lq(Ω)} = W 1,q(Ω),
W q(div; Ω) := {u ∈ Lq(Ω) | div u ∈ Lq(Ω)},
W q(curl; Ω) := {u ∈ Lq(Ω) | curl u ∈ Lq(Ω)},

where grad, div and curl are the usual differential operators gradient, divergence and rotation2, respectively.
All derivatives are understood in the distributional sense. For q = 2 we replace as usual W 2 by H .

In order to realize certain boundary conditions we make use of the spaces

C∞(Γ, Ω̄) :=
{
u|Ω | u ∈ C∞

0 (Rn \ Γ̄ )
}

for Γ = ∂Ω, Γτ or Γν and define

W q(grad; Γτ ; Ω), W q(div; Γν ; Ω) and W q(curl; Γτ ; Ω) (2.1)

as completion under the respective graph norms of the scalar-valued space C∞(Γτ , Ω̄) and the vector-valued
spaces C∞(Γν , Ω̄) and C∞(Γτ , Ω̄), respectively. Therefore, these spaces generalize the homogeneous Dirichlet
boundary conditions

u|Γτ = 0 (scalar), ν · v|Γν = 0 (normal) and ν × v|Γτ = 0 (tangential),

respectively.
Now we extend our notations to vector and tensor fields by defining all differential operations on rows. Thus,

for a vector field v = (v1, . . . , vn)� we define the tensor field Grad v := (grad�v1, . . . , grad�vn)�, where �

denotes the transpose. Note, that Grad v is just the Jacobian of v. For a tensor field T we define the divergence

Div T :=
(
div T�

1 , . . . , div T�
n

)� and the rotation CurlT =
(
curl�T�

1 , . . . , curl�T�
n

)�
, where Ti denote the

row-vectors of T , i.e., T = (T1, . . . , Tn)�. The corresponding Sobolev-spaces will be denoted by

W q(Grad; Ω), H(Grad; Ω), W q(Grad; Γτ ; Ω), H(Grad; Γτ ; Ω)

and so on. Note that the spaces W q(Div; Γν ; Ω) and H(Div; Γν ; Ω) generalize the normal boundary condition
Tν|Γν = 0, while the spaces W q(Curl; Γτ ; Ω) and H(Curl; Γτ ; Ω) generalize the tangential boundary condition
Tτ |Γτ = 0.

Furthermore, we define W−1,q(grad; Γν ; Ω) to be the dual of W p(grad; Γτ ; Ω), i.e.,

W−1,q(grad; Γν ; Ω) :=
(
W p(grad; Γτ ; Ω)

)′
,

where as usual p satisfies 1/q + 1/p = 1. If Γν = ∅, i.e., Γτ = ∂Ω, we simply write

W−1,q(grad; Ω) :=
(
W p(grad; ∂Ω; Ω)

)′
.

Analogously we define

W−1,q(Grad; Γν ; Ω) :=
(
W p(Grad; Γτ ; Ω)

)′
,

W−1,q(Grad; Ω) :=
(
W p(Grad; ∂Ω; Ω)

)′
.

2For a definition of the rotation for n �= 3, see, e.g. [26].
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In general, we only assume fairly weak regularity assumptions on the boundary. To be specific, from the
theory of scalar valued functions we need the compact embedding of W 1,q(Ω) into Lq(Ω), i.e. Rellich’s selection
theorem, Korn’s second inequality in Lq(Ω) and the so-called Lions-Lemma (3.7), which are guaranteed, if
the boundary ∂Ω is locally the graph of a Lipschitz-continuous function, see e.g. [1, 20]. Moreover, from the
theory of vector fields, we need the so-called Maxwell compactness property for mixed boundary conditions, i.e.,
the compact embedding of H(curl; Γτ ; Ω) ∩ H(div; Γν ; Ω) into L2(Ω). This implies also for tensor fields the
Maxwell estimate (4.2) and the Helmholtz decomposition (4.1), which are also essential tools in our arguments.
These hold for Lipschitz boundaries ∂Ω as well, provided that the interface Γ̄τ ∩ Γ̄ν is Lipschitz itself. Therefore,
throughout this paper we will assume generally the latter regularity.

3. The Dev-Div-inequality

In this section we shall prove the following theorem.

Theorem 3.1. Let Γν 	= ∅ and 1 < q < ∞. Then there exists a constant CDD, such that the following estimates
hold:

(i) For all T ∈ Lq(Ω)

||T ||Lq(Ω) ≤ CDD

(
||dev T ||Lq(Ω) + ||D̃iv T ||W−1,q(Grad; Γν ; Ω)

)
.

(ii) For all T ∈ W q(Div; Γν ; Ω)

||T ||Lq(Ω) ≤ CDD

(||dev T ||Lq(Ω) + ||Div T ||W−1,q(Grad; Γν ; Ω)

)
≤ CDD

(||dev T ||Lq(Ω) + ||Div T ||Lq(Ω)

)
(ii’) and ||T ||W q(Div; Ω) ≤ CDD

(||dev T ||Lq(Ω) + ||Div T ||Lq(Ω)

)
.

(iii) If n = 3, for all T ∈ W q(Curl; Γν ; Ω) it holds CurlT ∈ W q(Div; Γν ; Ω) with Div CurlT = 0 and

||Curl T ||Lq(Ω) ≤ CDD ||dev Curl T ||Lq(Ω).

The left hand side in (i) resp. (ii) can be replaced by

||T ||Lq(Ω) + ||D̃iv T ||W−1,q(Grad; Γν ; Ω) resp. ||T ||Lq(Ω) + ||Div T ||W−1,q(Grad; Γν ; Ω).

Here, the bounded linear functionals Div T and D̃iv T from W−1,q(Grad; Γν ; Ω) are defined by

Div T (v) := 〈Div T, v〉 :=
∫

Ω

Div T · v dλ, T ∈ W q(Div; Ω),

D̃iv T (v) := 〈D̃iv T, v〉 := −
∫

Ω

T · Grad v dλ, T ∈ Lq(Ω)

for v ∈ W p(Grad; Γτ ; Ω). Note that for T ∈ W q(Div; Γν ; Ω) the functionals D̃iv T and Div T coincide by
partial integration and

||Div T ||W−1,q(Grad; Γν ; Ω) ≤ min
{||T ||Lq(Ω), ||Div T ||Lq(Ω)

}
.
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Proof. We will follow in close lines the idea of ([2], Lem. 3.1). The key point is our subsequent Lemma 3.2,
which guarantees the existence of some suitable divergence vector potential.

Let T ∈ Lq(Ω). Since by definition T = dev T + 1
n tr(T ) · Id, it is sufficient to estimate ||tr T ||Lq(Ω). Employing

a Corollary of the Hahn−Banach’s Theorem, see e.g. ([34], IV.6, Cor. 2), for every T ∈ Lq(Ω) there exists a
g ∈ Lp(Ω) with ||g||Lp(Ω) = 1 and

||tr T ||Lq(Ω) =
∫

Ω

tr(T ) g dλ.

Due to Lemma 3.2, there exists some vector field v ∈ W p (Grad; Γτ ; Ω), such that div v = g and the estimate
||v||W p(Grad; Ω) ≤ C ||g||Lp(Ω) ≤ C holds, where C > 0 does not depend on g, v or T . Thus,

1
n
||tr T ||Lq(Ω) =

1
n

∫
Ω

tr(T ) div v dλ =
1
n

∫
Ω

tr(T ) Id · Grad v dλ

=
∫

Ω

T · Grad v dλ −
∫

Ω

dev T · Grad v dλ, (3.1)

which shows

1
n
||tr T ||Lq(Ω) ≤

(
||dev T ||Lq(Ω) + ||D̃iv T ||W−1,q(Grad; Γν ; Ω)

)
· ||v||W p(Grad; Γτ ; Ω)︸ ︷︷ ︸

≤C

.

Hence, (i) is proved. To show (ii), let T ∈ W q(Div; Γν ; Ω). Then, D̃iv T = Div T as functionals from
W−1,q(Grad; Γν ; Ω) and ||Div T ||W−1,q(Grad; Γν ; Ω) ≤ ||Div T ||Lq(Ω)

}
. (ii’) is trivial. Let T ∈ W q(Curl; Γν ; Ω).

For n = 3, Curl T is again a quadratic tensor and the homogeneous tangential trace is mapped by the Curl
operator to the homogeneous normal trace3. Thus CurlT is soleniodal and belongs to W q(Div; Γν ; Ω). Now
(iii) follows immediately by (ii) applied to CurlT . �

Lemma 3.2. Let Γν 	= ∅ and 1 < p < ∞. Then, there exists a constant C > 0, such that for all real-valued
functions g ∈ Lp(Ω) there is a vector field v ∈ W p(Grad; Γτ ; Ω) with

div v = g and ||v||W p(Grad; Ω) ≤ C ||g||Lp(Ω). (3.2)

In the case Γν = ∅, this Lemma has been proved in ([33], Lem. 2.1.1) under the additional normalization as-
sumption

∫
Ω

g dλ = 0. With minor modifications the same proof also works in the situation under consideration.
For the convenience of the reader we shall give it in some detail.

Proof. The linear operator

div : W p(Grad; Γτ ; Ω) −→ Lp(Ω) , v �−→ div v

3For the convenience of the reader we give an illustration of this well known fact assuming a completely smooth setting: Let E be
a row-vector of T , ν the outward unit normal of Ω, × the vector product in R

3 and u an arbitrary function with supp u∩∂Ω ⊂ Γν .
Using Gauss Theorem twice we compute

∫
∂Ω

(ν · curl E)u do =

∫
Ω

div (u curl E) dλ =

∫
Ω

grad u · curl E dλ =

∫
Ω

grad u · curl E − (curl grad u) · E dλ

=

∫
Ω

div (E × grad u) dλ =

∫
∂Ω

ν · (E × grad u) do =

∫
∂Ω

(ν × E) · grad u do = 0,

if ν × E = 0 on Γν . Since u is arbitrary the normal trace of curl E is vanishing on Γν . (Using Stokes’s theorem the same is
proved in one line.) As often, the proof in the weak sense is much simpler: take E ∈ W q(curl; Γν ; Ω). Then, there exists a
sequence (En) ⊂ C∞(Γν , Ω̄) with En → E in W q(curl; Ω). Hence, we have Hn := curl En ∈ C∞(Γν , Ω̄) with div Hn = 0. Thus,
Hn → H := curl E in W q(div; Ω), which means H ∈ W q(div; Γν ; Ω) with div H = 0.
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is bounded, i.e.
||div v||Lp(Ω) ≤ C1||v||W p(Grad; Ω) (3.3)

holds for all v ∈ WP (Grad; Γτ ; Ω). We identify
(
Lp(Ω)

)′ = Lq(Ω). Further, we consider the dual operator of
div,

div′ = −grad : Lq(Ω) −→ (
W p(Grad; Γτ ; Ω)

)′ = W−1,q(Grad; Γν ; Ω) ,

defined by

−〈grad u, v〉 :=
∫

Ω

u div v dλ

for all v ∈ W p(Grad; Γτ ; Ω) and all u ∈ Lq(Ω). Here again, the brackets 〈 ·, · 〉 denote the duality pairing of
W p(Grad; Γτ ; Ω) and W−1,q(Grad; Γν ; Ω). Utilizing (3.3) and the definition of the norm in the dual space we
obtain the continuity of grad , i.e.,

||gradu||W−1,q(Grad; Γν ; Ω) ≤ C1 ||u||Lq(Ω).

We will show that also the reversed inequality holds true: there exists a constant C2 > 0, such that for all
u ∈ Lq(Ω)

||u||Lq(Ω) ≤ C2 ||gradu||W−1,q(Grad; Γν ; Ω). (3.4)

To prove (3.4) we use the usual contradiction argument: assume the inequality is false, then there exists a
sequence (uj) ⊂ Lq(Ω) with

||uj ||Lq(Ω) = 1 for all j and lim
j→∞

||gradu||W−1,q(Grad; Γν ; Ω) = 0. (3.5)

Since (uj) is bounded in Lq(Ω), by weak compactness there exists a subsequence of (uj), also called (uj), and
a u ∈ Lq(Ω), such that

uj ⇀ u weakly in Lq(Ω).

Since for all v ∈ W p(Grad; Γτ ; Ω)

|〈gradu, v〉| =
∣∣∣∣
∫

Ω

u div v dλ

∣∣∣∣ = lim
j→∞

∣∣∣∣
∫

Ω

uj div v dλ

∣∣∣∣ (3.6)

= lim
j→∞

|〈graduj , v〉| ≤ lim
j→∞

||graduj||W−1,q(Grad; Γν ; Ω) ||v||W p(Grad; Γτ ; Ω)) = 0,

we conclude gradu = 0, which implies gradu = 0 in the distributional sense and hence by the fundamental
lemma u = const, see also (e.g. [33], II, (1.7.18)). As Γν 	= ∅ is relatively open, there exists a vector field
v̂ ∈ W p(Grad; Γτ ; Ω) such that ∫

Ω

div v̂ dλ 	= 0.

Employing this, (3.6) and u = const we conclude u = 0 since

0 = 〈gradu, v̂〉 = u

∫
Ω

div v̂ dλ.

Remarkably, the operator grad , although being a kind of differential operator, does not vanish on constant
functions.

Following ([1], Thm. 6.3) the embedding W p(grad; Ω) ↪→ Lq(Ω) is compact. Hence, of course also
W p(grad; Γτ ; Ω) ↪→ Lq(Ω) is compact. Using ([34], X. 4), the dual embedding

Lq(Ω) ↪→ W−1,q(grad; Γν ; Ω) =
(
W p(grad; Γτ ; Ω)

)′
,
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defined by 〈f, w〉 =
∫

Ω f · w dλ for all f ∈ Lq(Ω) and w ∈ W p(grad; Γτ ; Ω), is compact as well. Thus,
we can select a subsequence, again denoted by (uj), which converges to some û ∈ W−1,q(grad; Γν ; Ω) in
W−1,q(grad; Γν ; Ω). As we have seen, (uj) also converges weakly in Lq(Ω) to u = 0 and therefore we get û = 0.
Now we use the so-called Lions-Lemma from [20] (concerning the history of the Lions-Lemma, see also [10]):
There is a positive constant C3, such that for all u ∈ Lq(Ω)

||u||Lq(Ω) ≤ C3

(||gradu||W−1,q(Grad; Ω) + ||u||W−1,q(grad; Ω)

)
. (3.7)

The norms of dual spaces W−1,q(grad; Γν ; Ω) and W−1,q(Grad; Γν ; Ω) are stronger than the norms of
W−1,q(grad; Ω) and W−1,q(Grad; Ω). Hence, we can estimate

1 = ||uj||Lq(Ω) ≤ C3

(||graduj||W−1,q(Grad; Ω) + ||uj ||W−1,q(grad; Ω)

)
≤ C3

(||graduj||W−1,q(Grad; Γν ; Ω) + ||uj ||W−1,q(grad; Γν ; Ω)

) −→ 0

for j → ∞, in contradiction to (3.5). Thus (3.4) is proved.
By (3.4), the range R(grad) of the operator grad is a closed subspace of W−1,q(Grad; Γν ; Ω). Since R(grad)

is the range of the dual operator of div, the closed range theorem (see e.g. [34], VII.5), yields that the range
R(div) is also closed and we have

R(div) =
{

f ∈ Lp(Ω) :
∫

Ω

f · u dλ = 0 for all u ∈ N(grad)
}

,

where N(grad) denotes the kernel of the operator grad. We have already shown above that gradu = 0 implies
u = 0, i.e. N(grad) = {0}. Therefore,

R(div) = Lp(Ω). (3.8)

In order to get the estimate in (3.2), we consider the quotient space

W p(Grad; Γτ ; Ω) /N(div) := {[v] | v ∈ W p(Grad; Γτ ; Ω)},

with [v] := v + N(div), v ∈ W p(Grad; Γτ ; Ω) and the associated norm

||[v]||W p(Grad; Γτ ; Ω)/N(div) := inf
w∈N(div)

||v + w||W p(Grad; Ω).

Thus, the linear operator

div : W p(Grad; Γτ ; Ω) /N(div) −→ Lp(Ω) , [v] �−→ div v

is well-defined, bijective and bounded. According to the bounded inverse theorem (see e.g. [34], II. 5), the inverse
operator div

−1
, mapping Lp(Ω) to W p(Grad; Γτ ; Ω) /N(div) is bounded. Hence there exists a constant C4 > 0,

such that for all g ∈ Lp(Ω) with g = div v and v ∈ W p(Grad; Γτ ; Ω)

inf
w∈N(div)

||v + w||W p(Grad; Ω) ≤ C4||g||Lp(Ω).

Choosing now any constant C5 > C4, then for all g ∈ Lp(Ω) there exists v ∈ W p(Grad; Γτ ; Ω) with div v = g
and

||v||W p(Grad; Ω) ≤ C5 ||g||Lp(Ω),

which completes the proof. �
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Finally, we formulate (3.4) separately. For this, we recall ∇ := grad, i.e.,

∇ : Lq(Ω) → W−1,q(Grad; Γν ; Ω)

defined by

〈∇u, v〉 := −
∫

Ω

u div v dλ

for all u ∈ Lq(Ω) and all v ∈ W p(Grad; Γτ ; Ω).

Lemma 3.3. There exists a constant c > 0, such that for all u ∈ Lq(Ω)

c−1||u||Lq(Ω) ≤ ||∇u||W−1,q(Grad; Γν ; Ω) ≤ c||u||Lq(Ω).

4. The DevSym-Curl-inequality

Sym-Curl-estimates have been established recently in a series of papers by some of the present authors and
have been shown to hold true also for mixed boundary conditions, see [29] for n = 3 and [26] for arbitrary
dimensions. For these results it is crucial that the domain Ω allows for the so-called Maxwell compactness
property, i.e. the compact embedding of H(curl; Γτ ; Ω)∩H(div; Γν ; Ω) into L2(Ω), and the so-called Maxwell
approximation property, see [26]. These two properties ensure that the Helmholtz decomposition (also for tensor
fields) holds true, see [26, 29]:

L2(Ω) = GradH(Grad; Γτ ; Ω) ⊕H(Ω) ⊕ CurlH(Curl; Γν ; Ω), (4.1)

where H(Ω) is the space of harmonic Dirichlet−Neumann-tensors, i.e., the space of tensors T belonging to
H(Curl; Γτ ; Ω) ∩ H(Div; Γν ; Ω) with Curl T = 0 and Div T = 0, and ⊕ denotes orthogonality in L2(Ω). Due
to the Maxwell compactness property, the unit ball in H(Ω) is compact and hence the space H(Ω) has finite
dimension, the dimension depending on topological properties of the domain. In consequence of the Maxwell
compactness property, a Poincaré-type Maxwell estimate is achieved by a standard indirect argument, i.e.

||T ||L2(Ω) ≤ Cm

(||Curl T ||L2(Ω) + ||Div T ||L2(Ω)

)
(4.2)

for all T ∈ H(Curl; Γτ ; Ω) ∩ H(Div; Γν ; Ω) perpendicular to H(Ω), see [29]. Both, the Maxwell compactness
property and the Maxwell approximation property have been proved to be satisfied, if the underlying domain
Ω has a Lipschitz boundary, and in addition the interface between the two kinds of boundaries

Γ̄τ ∩ Γ̄ν is also Lipschitz, (4.3)

see [16, 17] and the discussion in [26, 29].
In order to deal with the influence of possible harmonic Dirichlet−Neumann-tensors, in ([29], Def. 10) a

further technical condition on the domain Ω and the topology of Ω is imposed:

Definition 4.1. Ω is called sliceable, if there exist a natural number J ∈ N and Ωj ⊂ Ω, j = 1, . . . , J , such
that Ω \ (Ω1 ∪ · · · ∪ ΩJ) is a null set and for j = 1, . . . , J

(i) Ωj are open, disjoint and simply connected Lipschitz subdomains of Ω,
(ii) Γτ,j := intrel

(
Ω̄j ∩ Γτ

) 	= ∅, if Γτ 	= ∅.
Here, we denote by intrel the relative interior with respect to the relative topology on Γ .
First we prove:

Lemma 4.2. Let n ≥ 3 and Γτ 	= ∅ or n = 2 and Γτ = ∂Ω. Then, there is a constant CDSG, such that for all
v ∈ H(Grad; Γτ ; Ω)

||Grad v||L2(Ω) ≤ CDSG||dev symGrad v||L2(Ω). (4.4)
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Figure 1. Some ways to ‘cut’ sliceable domains Ω in R3 and R2 into two (J = 2) or more
(J = 3, 4) ‘pieces’. The boundary part Γτ is colored in light gray. Roughly speaking, a domain
is sliceable if it can be cut into finitely many simply connected Lipschitz pieces Ωj , i.e., any
closed curve inside some piece Ωj is homotop to a point, this is, one has to cut all ‘handles’.
In three and higher dimensions, holes inside Ω are permitted, but this is forbidden in the two-
dimensional case. Note that, in these examples it is always possible to slice Ω into two (J = 2)
pieces.

The proof of Lemma 4.2 relies only on the estimate (1.9), i.e., an improved version of Korn’s second
inequality, Rellich’s selection theorem and the control of the kernel of dev symGrad through the boundary
condition. On this account, a representation formula for elements in this kernel is needed, which is given in the
Appendix of this paper. The case n = 2 with full boundary condition is already proved in the Appendix of [29]
and a counterexample to (4.4) for the case n = 2 without the full boundary condition will be given in Section 6.

Proof. In a first step, we prove

(v ∈ H(Grad; Γτ ; Ω) ∧ dev symGrad v = 0) ⇒ v = 0. (4.5)

We utilize the following representation of the kernel which is proved in the Appendix: There are vectors v̄, w̄ ∈
R

n, a real number ū ∈ R and a skew-symmetric matrix Ā ∈ so(n), such that

v(x) = u(x)x − 1
2
|x|2w̄ + Āx + v̄, (4.6)

Grad v(x) = u(x) Id + A(x), (4.7)
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holds for all x ∈ Ω̄, where

u(x) = w̄ · x + ū, Aij(x) =
n∑

k=1

āijkxk + Āij (4.8)

and

āijk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i 	= j, i 	= k, k 	= j,

0 if i = j,

w̄j if k = i, i 	= j,

−w̄i if k = j, k 	= i.

(4.9)

In particular, A(x) is skew-symmetric and the dimension of the kernel of dev sym Grad is (n+1)(n+2)/2. Due
to this formula, v is a smooth vector field on Ω̄. Let x ∈ Γτ and τ ∈ Rn, τ 	= 0, tangential to Γτ in x. Since
v ∈ H (Grad; Γτ ; Ω), we have Grad v ∈ H (Curl; Γτ ; Ω), i.e.

Grad v(x) τ = 0.

Therefore, if x ∈ Γτ , then Grad v(x) does not have full rank. By (4.7) and since τ · A(x) τ = 0

0 = |Grad v(x) τ |2 = u2(x)|τ |2 + |A(x)τ |2 (4.10)

holds with u and A from (4.8). Hence u(x) = 0. Therefore, (4.8) implies necessarily

0 = u(x) = w̄ · x + ū for all x ∈ Γτ . (4.11)

On the other hand, if u(x) = 0, then Grad v(x) has not full rank, since A(x) is skew-symmetric. Thus, for all
x ∈ Γτ the matrix Grad v(x) does not have full rank, if and only if (4.11) holds. If w̄ 	= 0, then by (4.11) Γτ ⊂ E,
where E denotes the affine hypersurface defined by equation (4.11). On the other hand, for all x ∈ Γτ ⊂ E, due
to the representation formula (4.6) and (4.11), we get

v(x) = −1
2
|x|2w̄ + Āx + v̄ = 0, (4.12)

describing for w̄ 	= 0 a quadratic surface and not a hypersurface. This proves w̄ = 0 and hence u = ū = 0.
Consequently, on Γτ

v(x) = Āx + v̄ = 0, (4.13)

yielding Ā = 0 and v̄ = 0, since otherwise the solution set of (4.13) is an affine surface with co-dimension
codim ≥ 2, recall that Ā is skew-symmetric. But such a surface cannot contain an open and non-empty subset
of a Lipschitz-continuous boundary. Therefore (4.5) is proved.

In the second step we utilize 1.9 from ([11], Thm. 1.1) and carry out the usual conclusion by contradiction.
Assume the estimate (4.4) is false, then there exists a sequence (vj) ⊂ H(Grad; Γτ ; Ω) with ||Grad vj ||L2(Ω) = 1
and

||dev sym Grad vj ||L2(Ω) <
1
j

(4.14)

for all j ∈ N. According to (1.9) the sequence of norms ||vj ||L2(Ω) is bounded from below, i.e. there exists J ∈ N

and a constant C > 0, such that
||vj ||L2(Ω) ≥ C for all j ≥ J. (4.15)

Utilizing Poincaré’s inequality and ||Grad vj ||L2(Ω) = 1, the sequence (vj) is bounded in H(Grad; Ω). Employing
Rellich’s selection theorem there is a subsequence of (vj), again called (vj), and v ∈ H(Grad; Γτ ; Ω) such that

vj → v strongly in L2(Ω), (4.16)
Grad vj ⇀ Grad v weakly in L2(Ω).
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Hence dev symGrad vj converges weakly to dev sym Grad v and due to weak lower semi-continuity of the norm
and (4.14) we conclude

||dev sym Grad v||L2(Ω) ≤ lim inf
j→∞

||dev sym Grad vj ||L2(Ω) = 0.

According to (4.5), this implies v = 0, in contradiction to (4.15) und (4.16). Therefore, Lemma 4.2 is proved. �

Now, we can prove the DevSym-Curl-inequality:

Theorem 4.3. Let n ≥ 3, Ω ⊂ Rn be a slicable domain and Γτ 	= ∅. Then, there is a positive constant CDSC ,
such that for all T ∈ H(Curl; Γτ ; Ω)

||T ||L2(Ω) ≤ CDSC

(||dev symT ||L2(Ω) + ||Curl T ||L2(Ω)

)
. (4.17)

We note that Theorem 4.3 remains true if n = 2 and Γτ = ∂Ω since Lemma 4.2 holds in this case as well.
Moreover, with (4.17) also

||T ||L2(Ω) + ||Curl T ||L2(Ω) ≤ CDSC

(||dev symT ||L2(Ω) + ||CurlT ||L2(Ω)

)
holds.

Proof. We combine the proof of the Sym-Curl-inequality (1.2) from the papers [26, 29] with Lemma 4.2. Let
T ∈ H(Curl; Γτ ; Ω). Using the Helmholtz decomposition from [26] we have the orthogonal sum

T = R + S ∈ H(Curl0; Γτ ; Ω) ⊕ Curl H(Curl; Γν ; Ω),

where R ∈ (Curl0; Γτ ; Ω), if and only if R ∈ H(Curl; Γτ ; Ω) and CurlR = 0. Note, that in general
R ∈ H(Curl0; Γτ ; Ω) does not imply R = Grad v with v ∈ H(Grad; Γτ ; Ω), since, depending on topologi-
cal properties of the domain Ω, some harmonic-Dirichlet−Neumann tensor fields could be involved. In order to
deal with this possibility, we slice the domain Ω according to Definition 4.1 and set

R =
J∑

j=1

χjRj ,

where Rj := R|Ωj and χj is the indicator-function of Ωj . In the proofs of ([29], Lems. 9 and 12) it is shown, that
there are non-empty and relatively open connected subsets Γ̃τ,j ⊂ Γτ,j and vector fields vj ∈ H(Grad; Γ̃τ,j; Ωj)
such that Grad vj = Rj . Now we apply (4.4) to vj and get

||T ||2L2(Ω) = ||R||2L2(Ω) + ||S||2L2(Ω) =
J∑

j=1

||Rj ||2L2(Ωj)
+ ||S||2L2(Ω) (4.18)

≤ C

J∑
j=1

||dev symRj ||2L2(Ωj)
+ ||S||2L2(Ω) = C ||dev symR||2L2(Ω) + ||S||2L2(Ω)

≤ C ||dev symT ||2L2(Ω) + C ||dev symS||2L2(Ω) + ||S||2L2(Ω)

≤ C ||dev symT ||2L2(Ω) + C ||S||2L2(Ω).

Concerning the S-part, we note that Curl T = CurlS and S ∈ H (Curl; Γτ ; Ω) since T and R belong to
H (Curl; Γτ ; Ω). Moreover, since

CurlH (Curl; Γν ; Ω) ⊂ H (Div0; Γν ; Ω) ∩H(Ω)⊥
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we even have S ∈ H (Curl; Γτ ; Ω)∩H (Div0; Γν ; Ω)∩H(Ω)⊥. By means of the Maxwell’s inequality (4.2) and
since Div S = 0 we estimate

||S||L2(Ω) ≤ Cm ||Curl S||L2(Ω) = Cm ||CurlT ||L2(Ω). (4.19)

Combining (4.19) and (4.18) yields

||T ||L2(Ω) ≤ C ||dev symT ||L2(Ω) + C ||Curl T ||L2(Ω),

completing the proof. �

5. The Sym-DevCurl- and DevSym-DevCurl-inequalities

Now, we combine the Dev-Div-inequality with the Sym-Curl-inequality and the DevSym-Curl-inequality. For
this, we need n = 3 since only then CurlT is again quadratic.

Theorem 5.1. Let Ω ⊂ R3 be a slicable domain and Γτ 	= ∅. Then, there are positive constants CSDC and
CDSDC , such that for all T ∈ H(Curl; Γτ ; Ω)

||T ||L2(Ω) ≤ CSDC

(||sym T ||L2(Ω) + ||dev CurlT ||L2(Ω)

)
,

||T ||L2(Ω) ≤ CDSDC

(||dev symT ||L2(Ω) + ||dev Curl T ||L2(Ω)

) (5.1)

and
||T ||L2(Ω) + ||Curl T ||L2(Ω) ≤ CSDC

(||sym T ||L2(Ω) + ||dev CurlT ||L2(Ω)

)
,

||T ||L2(Ω) + ||Curl T ||L2(Ω) ≤ CDSDC

(||dev symT ||L2(Ω) + ||dev Curl T ||L2(Ω)

)
.

(5.2)

Proof. Combine Theorem 4.3 with Theorem 3.1 (ii). �

6. Kernels and counterexamples

It is illuminating to see, how the kernels of the inequalities are controlled on, say, the space of smooth
compactly supported tensor fields. Of course, some of the given arguments are well known. In the following we
always assume that T is such a smooth tensor field with compact support in Ω ⊂ R3.

6.1. The kernel of the Dev-Div-inequality

Consider some T in the kernel of the Dev-Div-inequality, i.e., dev T = 0 and Div T = 0. Since dev T = 0 we
have T = u · Id. But therefore Div T = gradu = 0 and we conclude u = const. Since u and T are compactly
supported, u = 0 and T = 0 in Ω.

6.2. The kernel of the Sym-Curl-inequality

Consider some T in the kernel of the Sym-Curl-inequality, i.e., sym T = 0 and CurlT = 0. Since sym T = 0
we conclude T (x) = A(x) ∈ so(3), say

A =

⎛
⎝ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞
⎠ and (6.1)

CurlA =

⎛
⎝∂2a2 + ∂3a3 −∂1a2 −∂1a3

−∂2a1 ∂3a3 + ∂1a1 −∂2a3

−∂3a1 −∂3a2 ∂1a1 + ∂2a2

⎞
⎠ (6.2)

with a smooth and compactly supported vector field a = (a1, a2, a3)�. Hence CurlA = 0 implies Grada = 0
and thus a = 0 and T = A = 0, see also [22].
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6.3. The kernel of the DevSym-DevCurl-inequality

Regarding the DevSym-DevCurl-inequality the situation gets more involved. Let us assume dev sym T = 0
and dev CurlT = 0. Then

T (x) = u(x) · Id + A(x), (6.3)
Curl (u(x) · Id) + CurlA(x) = CurlT (x) = y(x) · Id (6.4)

with smooth and compactly supported functions u, y and with a, A as above. Now

Curl (u · Id) =

⎛
⎝ 0 ∂3u −∂2u

−∂3u 0 ∂1u
∂2u −∂1u 0

⎞
⎠ (6.5)

is a skew-symmetric matrix. Therefore, sym CurlA = y · Id and hence by (6.2)

∂1a2 + ∂2a1 = ∂2a3 + ∂3a2 = ∂3a1 + ∂1a3 = 0 (6.6)

and
∂2a2 + ∂3a3 = ∂3a3 + ∂1a1 = ∂1a1 + ∂2a2 = y. (6.7)

The second series of equations yields

∂1a1 = ∂2a2 = ∂3a3 =
y

2
as well as 2 div a = 3 y. (6.8)

By means of comparison of the skew-symmetric parts of equation (6.4), utilizing (6.1) and (6.5), we conclude
that

gradu =

⎛
⎝∂2a3

∂3a1

∂1a2

⎞
⎠ (6.9)

and thus, employing (6.6)

0 = curl gradu = curl

⎛
⎝∂2a3

∂3a1

∂1a2

⎞
⎠ = −

⎛
⎝ (∂2

2 + ∂2
3)a1

(∂2
3 + ∂2

1)a2

(∂2
1 + ∂2

2)a3

⎞
⎠. (6.10)

With (6.10) and (6.8) we obtain

Δa = −1
2
grad y = −1

3
graddiv a. (6.11)

Furthermore, due to (6.6)

curla = 2

⎛
⎝∂2a3

∂3a1

∂1a2

⎞
⎠

and employing (6.10) it follows that curl curla = 0. The combination of this fact with (6.11) and the identity
graddiv − curl curl = Δ yields

graddiv a = Δa = −1
3
graddiv a

and thus graddiv a = Δa = 0. Since this Poisson’s equation is uniquely solvable we conclude a = 0 and A = 0,
and utilizing (6.9) also u = const. Hence, u = 0 yielding T = 0.
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6.4. There are no DevSym-DevSymCurl- or DevSym-SymCurl-inequalities

Choose u ∈ C∞
0 (Ω; R) and set T := u · Id. Then dev sym T = 0 and, according to (6.5), sym CurlT = 0.

Therefore, such inequalities have to be false.

6.5. There is no Sym-Div-inequality

Choose u ∈ C∞
0 (Ω; R) and set a := gradu and define A according to (6.1). Then we have Div A = −curla =

−curl gradu = 0 and sym A = 0. Therefore, such an inequality is false.

6.6. The DevSymGrad-inequality is false for n = 2

As already announced in the introduction, now we show that in the case n = 2 the trace-free version of
Korn’s first inequality with only partial boundary condition is false. This is remarkable, since the kernel of the
inequality is already controlled by a partial boundary condition. In fact, if a function is in the kernel, then it
is holomorphic in Ω. But if a holomorphic function vanishes on some part of the boundary it has to vanish
on the whole of Ω. This shows that having a norm on the space under consideration is only necessary for the
validity of an inequality. The construction of our counterexample is taken from [30] and in that paper it served
as a counterexample to a version of Korn’s first inequality with non-constant (rotation) coefficients. For the
convenience of the reader we introduce this example in detail, thereby we exactly follow [30].

We identify R2 with C via standard notation z = x + iy. We also use the standard notation for the polar
coordinates (x, y) = r (cos t, sin t). Consider the sequence

un(x, y) = xzn

on the half disk Ω = {z : |z| < 1, x > 0}. As Γτ we choose {z ∈ ∂Ω : x = 0}. Then, of course, each of the
mappings un vanishes on Γτ . We first compute gradun(x, y). Since

(zn)′ = nzn−1 = nrn−1(cos(nt − t) + i sin(nt − t)),

we obtain

grad zn = nrn−1

(
cos(nt − t) − sin(nt − t)
sin(nt − t) cos(nt − t)

)
.

Therefore, we have

gradun(x, y) = (xgrad x(zn) + zn, xgrad y(zn)) (6.12)

= rn

(
cos(nt) 0
sin(nt) 0

)
+ nrn cos t

(
cos(nt − t) − sin(nt − t)
sin(nt − t) cos(nt − t)

)

and hence

|gradun|2 = r2n + 2n2r2n cos2 t + 2r2nn cos t (cos(nt) cos(nt − t) + sin(nt) sin(nt − t))
= r2n + 2r2n(n2 + n) cos2 t. (6.13)

Taking into account that ∫ π/2

−π/2

cos2 t dt =
π

2
,

we obtain ∫
Ω

|gradun|2 =
∫ 1

0

∫ π/2

−π/2

r(r2n + 2r2n(n2 + n) cos2 t) dt dr

= π(n2 + n + 1)
∫ 1

0

r2n+1 dr = π
n2 + n + 1

2n + 2
·
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Now, we use this construction as a counterexample for the DevSymGrad-inequality: Switching back to our
notation we have

lim
n→∞ ||Gradun||L2(Ω) = ∞. (6.14)

On the other hand, inspection of formula (6.12) yields

sym Gradun = rn

(
cos(nt) 1

2 sin(nt)
1
2 sin(nt) 0

)
+ nrn cos t

(
cos(nt − t) 0

0 cos(nt − t)

)
,

dev2 sym Gradun =
1
2
rn

(
cos(nt) sin(nt)
sin(nt) − cos(nt)

)
,

where dev2 X = X − 1
2 tr (X) · Id denotes the two-dimensional deviator. Hence,

|dev2 sym Gradun|2 =
1
2
r2n

and thus
||dev2 sym Gradun||2L2(Ω) =

π

4n + 4
,

converging to zero in the limit n → ∞ in contradiction to (6.14) and (1.8).
The fact that the DevSymGrad inequality does not hold in the two-dimensional case is due to the special

form of the dev operator in this case. If we instead view the plane symmetric gradient as an object in three
dimensions and apply the standard dev operator for n = 3 (simply denoted by dev in the sequel), then we
obtain

dev sym Gradun = rn

⎛
⎝ 2

3 cos(nt) 1
2 sin(nt) 0

1
2 sin(nt) − 1

3 cos(nt) 0
0 0 − 1

3 cos(nt)

⎞
⎠

+ nrn cos t cos(nt − t)

⎛
⎝ 1

3 0 0
0 1

3 0
0 0 − 2

3

⎞
⎠.

This implies

|dev sym Gradun|2 = r2n

(
2
3

cos2(nt) +
1
2

sin2(nt)
)

+
2
3
n2r2n cos2 t cos2(nt − t)

≥ 2
3
n2r2n cos2 t cos2(nt − t)

and, for n > 2,

||dev3D sym Grad un||2L2(Ω) ≥
2
3
n2 π

4
1

2n + 2
=

πn2

12(n + 1)
,

where we used the fact that ∫ π/2

−π/2

cos2 t cos2(nt − t) dt =
π

4

holds for n > 2. This means that ||dev sym Gradun||2L2(Ω) → ∞ for n → ∞ in concordance with Lemma 4.2.

7. Applications

In this section we will present some prototype applications where the new inequalities may be used to establish
coercivity of the models.
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7.1. Infinitesimal incompressible elasticity

Historically, inequalities like the one in Theorem 3.1 first appeared in the context of mixed stress-displacement
formulations of linear elasticity in the incompressible limit (cf. [2]). The result in [2] is stated in two dimensions
assuming vanishing average trace (see also [3], Prop. 9.1.1). It is generalized in [9] using a different argument
assuming only that the identity tensor is eliminated by some constraint. In the incompressible limit, the mixed
variational formulation of linear elasticity turns into the problem of finding some σ ∈ H(Div;Γν ; Ω), u ∈
L2(Ω; Rn) and γ ∈ L2(Ω; so(n)), such that

(dev σ, τ)L2(Ω) + (u, Div τ)L2(Ω) + (γ, skew τ)L2(Ω) = 0,

(Div σ, v)L2(Ω) + (f, v)L2(Ω) = 0,

(skew σ, η)L2(Ω) = 0 (7.1)

holds for all τ ∈ H(Div;Γν ; Ω), v ∈ L2(Ω; Rn) and η ∈ L2(Ω; so(n)). This saddle-point problem may be
viewed as the Karush−Kuhn−Tucker system associated with minimizing the elastic energy with respect to the
stresses subject to momentum balance and symmetry as constraints. Its well-posedness relies on the estimate
in Theorem 3.1. The same is true for the stress-displacement first-order system least squares approach studied
in [5].

7.2. Pseudostress formulation of stationary Stokes equations

Here, the following formulation of the stationary Stokes equations is considered: For some given f : Ω → R3

find the pressure p : Ω → R, the velocity u : Ω → R3 and the stress σ : Ω → R3×3 such that the first-order
system

σ − μ symgradu + p Id = 0, Div σ = f, div u = 0

holds in Ω. This system is obviously equivalent to

dev σ − μ sym gradu = 0, Div σ = f,

where the pressure p has been eliminated and can be computed afterwards as p = −tr (σ)/3. For this first-order
system, a least squares formulation based on minimizing the quadratic functional

‖ dev σ − μ sym gradu‖2
L2(Ω) + ‖Div σ − f‖2

L2(Ω) (7.2)

with respect to u and σ may be used. In order to obtain a coercivity result for this functional, let us first
investigate the mixed terms arising in the first part of the functional, leading to

(dev σ, sym gradu)L2(Ω) = (sym dev σ, grad u)L2(Ω) = (sym σ − 1
3
tr (σ)Id, gradu)L2(Ω)

= (σ, gradu)L2(Ω) − (skew σ, gradu)L2(Ω) − 1
3
(tr (σ), div u)L2(Ω)

= −(Div σ, u)L2(Ω) − (skew σ, gradu)L2(Ω) − 1
3
(tr (σ), div u)L2(Ω),

if we assume proper boundary conditions on σ and u, justifying the partial integration without boundary terms,
i.e., σ ∈ H(Div;Γν ; Ω) and u ∈ H(Grad; Γτ ; Ω). This implies, for arbitrary δ ∈ (0, 1),

2μ(dev σ, sym gradu)L2(Ω) ≤ δ

(
μ2‖u‖2

L2(Ω) + μ2‖gradu‖2
L2(Ω) +

1
3
‖tr (σ)‖2

L2(Ω)

)

+
1
δ

(
‖Div σ‖2

L2(Ω) + ‖ skew σ‖2
L2(Ω) +

1
3
μ2‖div u‖2

L2(Ω)

)
. (7.3)
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If we combine this with the straightforward estimates

‖ skewσ‖L2(Ω) = ‖ skew(dev σ − μ symgradu)‖L2(Ω) ≤ ‖ dev σ − μ symgradu‖L2(Ω),

μ‖div u‖L2(Ω) = ‖tr(dev σ − μ sym gradu)‖L2(Ω) ≤
√

3‖ dev σ − μ symgradu‖L2(Ω),

we are led to

‖dev σ − μ symgradu‖2
L2(Ω) + ‖Div σ‖2

L2(Ω)

≥ 1
3

(
‖ dev σ − μ sym gradu‖2

L2(Ω) + ‖ skew σ‖2
L2(Ω) +

μ2

3
‖div u‖2

L2(Ω) + ‖Div σ‖2
L2(Ω)

)

≥ δ

6

(
‖ dev σ − μ sym gradu‖2

L2(Ω) +
2
δ

(
‖ skew σ‖2

L2(Ω) +
μ2

3
‖div u‖2

L2(Ω) + ‖Div σ‖2
L2(Ω)

))

≥ δ

6

(
‖ dev σ‖2

L2(Ω) + μ2‖ symgradu‖2
L2(Ω) − δ

(
μ2‖u‖2

L2(Ω) + μ2‖gradu‖2
L2(Ω) +

1
3
‖tr (σ)‖2

L2(Ω)

)

+
1
δ

(
‖Div σ‖2

L2(Ω) + ‖ skewσ‖2
L2(Ω) +

1
3
μ2‖div u‖2

L2(Ω)

))

≥ δ

6

(
‖ dev σ‖2

L2(Ω) + ‖Div σ‖2
L2(Ω) + μ2‖ symgradu‖2

L2(Ω) − δμ2‖u‖2
H(Grad;Ω) −

δ

3
‖tr (σ)‖2

L2(Ω)

)

≥ δ

6

(
1

C2
DD

‖σ‖2
H(Div;Ω) +

μ2

C2
KP

‖u‖2
H(Grad;Ω) − δμ2‖u‖2

H(Grad;Ω) − δ‖σ‖2
L2(Ω)

)

for all δ ≤ 1 with CDD from Theorem 3.1 and the Korn−Poincaré constant CKP in the Korn−Poincaré’s
inequality

CKP ‖ symgradu‖L2(Ω) ≥ CK‖gradu‖L2(Ω) ≥ ‖u‖H(Grad;Ω).

Choosing δ sufficiently small gives us the desired coercivity estimate

‖ dev σ − μ sym gradu‖2
L2(Ω) + ‖Div σ‖2

L2(Ω) ≥ C
(
‖Div σ‖2

H(Div;Ω) + ‖u‖2
H(Grad;Ω)

)
. (7.4)

The pseudostress-velocity formulation of the stationary Stokes’s equations introduced above was studied in
([7], Sect. 3.2) (see also [8, 15] for related mixed finite element approaches). It was used as a basis for the
treatment of Stokes−Darcy interface problems by a first-order system least squares approach in [19]. Recently,
a pseudostress-based approach for the stationary Navier−Stokes was investigated in [6].

7.3. Pseudostress formulation of generalized Newtonian flow

The estimate of Theorem 3.1 is also useful in the context of nonlinear generalized Newtonian fluids which
differs from the formulation above in that the viscosity may depend on the velocity gradient μ = μ(gradu).
Very popular is Carreau’s law, where this nonlinear dependence is given by

μ(gradu) = μ0

(
1 + | sym gradu|2)(r−2)/2

with μ0 > 0 and r ≥ 1. Depending on the value of r, shear-thickening or shear-thinning behavior of the fluid
can be modeled. A dual-mixed approach to nonlinear generalized Newtonian Stokes flow was introduced and
analyzed in [12]. This model may also be treated by a pseudostress-velocity approach in a first-order system
least squares setting based on minimizing the nonlinear functional

‖ dev σ − μ(gradu) symgradu‖2
L2(Ω) + ‖Div σ − f‖2

L2(Ω). (7.5)

Such a method is studied in detail in [18].
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7.4. Infinitesimal gradient plasticity

Phenomenological plasticity models are intended to describe the irreversible deformation behavior of metals.
There exists a great variety of models. Here we focus on rate-dependent or rate-independent models with
kinematic hardening. The system of equations consist of balance of linear momentum coupled with a local
nonlinear evolution equation in each space point for the plastic variable.

In many new applications, the size of the considered specimen is so small, that size effects need to be taken
into account. Instead of a local evolution problem we have to consider a nonlinear evolution problem where the
right hand side contains certain combinations of second partial derivatives of the plastic distortion.

For the setting of the nonlinear gradient-plasticity problem, let Ω ⊂ R3 be an open and bounded set, the set
of material points of the solid body. By Te we denote a positive number (time of existence). Unknown in our
small strain formulation are the displacement field u : Ω × [0, Te) → R3 of the material point x at time t and
the non-symmetric infinitesimal plastic distortion P : Ω × [0, Te) → sl(3). The model equations of the problem
are

Div σ = f,

σ = 2μ (sym(gradu − P )) + λ tr (gradu) · Id,

∂tP (x, t) ∈ g
(
x, Σlin(x, t)

)
, (7.6)

Σlin = Σlin
e + Σlin

sh + Σlin
curl,

Σlin
e = σ, Σlin

sh = − dev symP, Σlin
curl = −CurlCurl P,

which must be satisfied in Ω × [0, Te). Here, Σlin is the infinitesimal Eshelby stress tensor driving the evolution
of the plastic distortion P . The initial and boundary conditions are

P ( ·, 0) = P0 in Ω,

ν × P = 0 on ∂Ω × [0, Te),

u = 0 on ∂Ω × [0, Te),

where ν is a normal vector on the boundary ∂Ω. For the model we require that the nonlinear constitutive
mapping (Σ → g( ·, Σ)) : R3×3 → 2sl(3) is monotone. Given are the volume force f : Ω × [0, Te) → R3 and the
initial datum P0 : Ω → sl(3). It is easy to see that the corresponding free energy of the system is

μ‖ sym(gradu − P )‖2
L2(Ω) +

λ

2
‖tr (gradu)‖2

L2(Ω) +
1
2
‖ dev symP‖2

L2(Ω) +
1
2
‖CurlP‖2

L2(Ω) . (7.7)

The appearance of Curl P instead of the full gradient gradP is dictated by dislocation mechanics, the appearance
of dev symP instead of P is dictated by invariance of the model under superposition of infinitesimal rotations.
Here, coercivcity is obtained by using the DevSym-Curl inequality. Model equations similar to the above problem
have been considered in [25].

7.5. Infinitesimal Cosserat elasticity

Cosserat or micropolar elasticity is intended to describe materials with a microstructure which has the degrees
of freedom of a rigid body. With Cosserat elasticity, it is possible to describe some form of elastic size effects
(smaller samples are comparatively stiffer) and wave dispersion in the case of dynamic equations. Here, we
consider the static problem. In a variational context, the problem is completely described by writing the energy
which is to be minimized. We are looking for the displacement u : Ω → R3 and the infinitesimal Cosserat
microrotation A : Ω → so(3) minimizing the two-field functional

μ‖ symgradu‖2
L2(Ω) + μc‖ skew(gradu − A)‖2

L2(Ω) +
λ

2
‖tr (gradu)‖2

L2(Ω)

+
1
2
‖ dev sym CurlA‖2

L2(Ω) + (f, u)L2(Ω) .
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The corresponding system of Euler−Lagrange’s equations in strong form are

Div σ = f,

σ = 2μ symgradu + λ tr (gradu) · Id + 2μc skew(gradu − A),
skew σ = skew Curl dev symCurl A .

The form of the curvature contribution dev sym CurlA instead of the full gradient gradA is motivated by
conformal invariance of the model, see [23]. Here, a variant of the DevSym-DevCurl inequality is applicable.
Model equations similar to the above problem have been considered in [23].

7.6. Infinitesimal Cosserat elasto-plasticity

Frequently encountered are also couplings between Cosserat elasticity and plasticity models. However, plas-
ticity in these models is treated classically as a local phenomenon. We are looking for the displacement
u : Ω × [0, Te) → R3, the infinitesimal Cosserat micro-rotation A : Ω × [0, Te) → so(3) and the plastic dis-
tortion P : Ω × [0, Te) → sl(3) satisfying

Div σ = f,

σ = 2μ (sym(gradu − P )) + λ tr (gradu) · Id + 2μc skew(gradu − A),
∂tP (x, t) ∈ g

(
x, sym σ(x, t)

)
, (7.8)

skew σ = skew Curl dev Curl A .

Model equations with these features have been considered in [21,24] with the purpose of obtaining regularizations
of classical plasticity models.

7.7. Infinitesimal relaxed micromorphic elasticity

Micromorphic extended continuum models assume that at each material point there is a microstructure
attached which itself may deform as an elastic body. In a variational context, the problem is completely described
by writing down the energy which is to be minimized. We are looking for the displacement fields u : Ω → R3

and the not necessarily symmetric micromorphic distortion P : Ω → R3×3 minimizing

μ‖ sym(gradu − P )‖2
L2(Ω) +

λ

2
‖tr (gradu − P )‖2

L2(Ω)

+
1
2
‖ dev symP‖2

L2(Ω) +
1
2
‖CurlP‖2

L2(Ω) + (f, u)L2(Ω) .

The corresponding system of Euler−Lagrange’s equations in strong form are

Div σ = f,

σ = 2μ sym(gradu − P ) + λ tr (gradu − P ) · Id,

Curl dev Curl P = − dev symP + σ .

An important feature, which sets this model apart from more classical micromorphic approaches, is that the
balance of forces does not ‘see’ derivatives of P since Div Curl = 0. Here, the DevSym-DevCurl-inequality is
applicable. Model equations similar to the above problem have been considered in [28].

Appendix A. The kernel of dev symGrad

For the convenience of the reader we compute the representation formulae (4.6) and (4.8) of vector fields
in the kernel of dev sym Grad, used in the proof of Lemma 4.2. These mappings are often called conformal
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mappings or conformal Killing vectors. Such a representation is given, e.g., in [32]. Now let Ω ⊂ Rn be an
arbitrary domain, n ≥ 3 and v ∈ H(Grad ; Ω) with dev sym Grad v = 0. Then

Grad v = u · Id + A, (A.1)

where after selecting a suitable representant u(x) ∈ R and A(x) is a skew-symmetric (n × n)-matrix for all
x ∈ Ω. Since Curl Grad v = 0 we obtain that for all i, j, k = 1, . . . , n

(∂ju) δik − (∂ku) δij = −∂jAik + ∂kAij . (A.2)

Now assume that i, j, k are pairwise different, then using (A.2) and Aij = −Aji we compute

∂jAik = ∂kAij = −∂kAji = −∂iAjk = ∂iAkj = ∂jAki = −∂jAik,

yielding ∂jAik = 0. Now assume j = i, but k 	= i. In this case we obtain by (A.2)

∂jAjk = ∂ku.

Therefore,
∂jAjk = ∂ku if j 	= k,
∂jAkj = −∂ku if j 	= k,
∂jAik = 0 if i 	= j, i 	= k, j 	= k,
∂jAii = 0.

(A.3)

Now we show that (A.3) implies gradu = const. First assume j 	= k and choose i with i 	= j and i 	= k (since
n ≥ 3, this is possible). Therefore we obtain

∂k∂ju = ∂k∂iAij = ∂i∂kAij = 0.

Now, we assume that i 	= j, then

∂j∂ju = ∂j∂iAij = −∂j∂iAji = −∂i∂jAji = −∂i∂iu.

As n ≥ 3 we can play the indices against each other and obtain

∂j∂ju = −∂i∂iu = ∂k∂ku = −∂j∂ju = 0

for i, j, k pairwise different. Therefore gradu = const. = w̄ ∈ Rn and after a possible redefinition on a set of
measure zero, we get

u(x) = w̄ · x + ū (A.4)

with ū ∈ R. Note ∂iu = w̄i. Since ∂kAij is constant, see (A.3), we also know that

Aij(x) =
n∑

k=1

∂kAijxk + Āij =
n∑

k=1

āijkxk + Āij = w̄jxi − w̄ixj + Āij (A.5)

with āijk from (4.9) and some skew-symmetric constant matrix Ā. Utilizing (A.1), (A.4) and (A.5) we conclude
that (4.7) holds true. Furthermore, by integrating the i-th component of v we obtain from (A.1), i.e.,

∂jvi(x) = u(x)δij + Aij(x) = u(x)δij + w̄jxi − w̄ixj + Āij ,

immediately

vi(x) = u(x)xi − 1
2
w̄i|x|2 + Āikxk + v̄i

or as a vector
v(x) = u(x)x − 1

2
|x|2w̄ + Āx + v̄

which is (4.6).
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derivées partielles. Les Presses de l’Université de Montréal (1967) 102–128.
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