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A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY OPTIMIZATION

Samuel Amstutz
1

and Marc Ciligot-Travain
1

Abstract. The goal of this paper is twofold. On one hand, our work revisits the minimization of the
robust compliance in shape optimization, with a more natural and more general approach than what
has been done before. On the other hand, following a more recent viewpoint on robust optimization,
we study the maximization of the so-called stability radius for a fixed maximal compliance. We provide
theorical as well as numerical results.
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1. Introduction

The compliance C(Ω, fΩ) of a linear elastic structure occupying a domain Ω and submitted to a load fΩ is
defined as the work done by the load, or equivalently as the stored elastic energy. Minimizing the compliance
for a fixed load is a very standard shape optimization problem, for which a wide range of methods have been
developed, see e.g. [1,11] and the references therein. However, it often occurs that the load is not known exactly.
In this work we suppose that it takes the form fN

Ω +BΩξ, ξ ∈ r�, with r > 0, � the closed unit ball of a Hilbert
space, fN

Ω a nominal load and BΩ a linear operator. The robust compliance (also called principal compliance)
is then defined by

jwc(Ω) = sup
ξ∈r�

C(Ω, fN
Ω +BΩξ).

The robust compliance may replace the compliance when the load is uncertain, so that minimizing the robust
compliance is just minimizing the compliance ‘in the worst case’. The way from compliance to robust compliance
is just an illustration of the transition from optimization to robust optimization. The robust compliance has
been first studied in [13], see also [14]. The worst case point of view has been applied to other criteria in [2,8,23].

The goal of this paper is twofold. On one hand, our work revisits the paper by De Gournay et al. [15] about
the minimization of the robust compliance, with a more natural (and more general) approach. By definition,
computing the robust compliance amounts to solving a quadratic optimization problem with a norm constraint
in infinite dimension. In [15], the authors clearly announced that they renounced to follow this direct way
because they did not see how to proceed, and used instead a formulation where the displacement field is chosen
as main unknown. We show in the present article how to deal with the direct formulation.
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On the other hand, following another and more recent viewpoint on robust optimization, we study the
maximization of the so-called stability radius for a fixed maximal compliance. This is actually the main purpose
of this paper, and we shall enter a little more into details. Suppose that the compliance should not exceed α.
Then the stability radius relatively to the level-set [C(Ω, fN

Ω +BΩ.) ≤ α] is defined as

√
2jsr(Ω) = sup

{
r > 0

∣∣ r� ⊂ [C(Ω, fN
Ω +BΩ.) ≤ α]

}
= dist

(
0, [C(Ω, fN

Ω +BΩ.) > α]
)
.

Actually we shall rather consider the squared quantity jsr(Ω), as it will be identified with the value of a
quadratic programming problem. Then it is natural to look for the domain Ω which maximizes jsr(Ω). In other
words, we seek the shape which tolerates the greatest deviation from the nominal load, in the sense that the
compliance remains below α. This is a kind of robustness optimization. Actually, we will not necessarily find
globally optimal shapes. It is more exact to say that we show how to improve the stability radius of a given
shape until reaching, with respect to a certain class of perturbations, a locally optimal design.

The notion of stability radius appeared in robust control (see, e.g., [24, 25]), and has been developed in its
full generality, but not from a very mathematical point of view, at the end of the 90’s by Ben–Haim (see [9]
and the references therein). Compared to the worst case approach, this one avoids fixing r a priori, which is
not necessarily easy and natural in some circumstances. We think that, in many situations, it is more natural
to fix an upper bound α for the objective function, here the compliance. This amounts somehow to fixing some
specifications.

The paper is organized as follows. In Section 2, we describe the general mathematical setting of our problems.
In Section 3, we first show that the two robust criteria, namely jwc(Ω) and jsr(Ω), are the value functions of
some quadratic programs with equality constraints. More precisely, the objective function of each subproblem
is a quadratic functional and the equality constraint is associated with another quadratic functional. Such
problems are known in the literature as trust-region subproblems, and have been extensively studied in the
finite dimensional setting, see e.g. [16–18, 22, 29, 32, 35–37]. Here we prove the existence of critical loads (i.e.
solutions of the subproblems) in arbitrary dimension, for both problems. Finally, using a strong duality argument
for Lagrangian duality extending known results in finite dimension, we show the existence of a unique solution
of the dual problem and give a complete description of the critical loads based on this solution. In Section 4, for
both problems again, we give an expression of the Hadamard semiderivative of the two criteria relatively to the
quadratic functionals depending on Ω, based on the Lagrangian and the solution of the dual problem. Sections 5
through 7 specifically deal with the optimization problem with respect the shape Ω. To keep concise and avoid
repetitions, we concentrate on the maximization of the stability radius. Our procedure relies on the concept of
topological derivative [21,30,34], which evaluates the variation of the objective functional with respect to small
topological perturbations. In Section 5, we deduce from Section 4 the expression of the topological derivative
of the stability radius. The optimization algorithm is described in Section 6, while Section 7 reports on some
numerical computations.

2. General setting

We denote by Ω the domain to be optimized, and by E the set of admissible domains. For each Ω ∈ E
we are given a reflexive Banach space VΩ. We denote by ‖.‖ the norm on VΩ and by 〈., .〉 the duality pairing
between V ′

Ω and VΩ, where V ′
Ω stands for the continuous dual space of VΩ. We also consider a continuous

and self-adjoint positive definite isomorphism AΩ from VΩ into V ′
Ω. We associate to each fΩ ∈ V ′

Ω the vector
uΩ,fΩ = A−1

Ω fΩ ∈ VΩ and the scalar

C(Ω, fΩ) =
1
2
〈fΩ, uΩ,fΩ 〉 =

1
2
〈fΩ, A

−1
Ω fΩ〉.

Referring to the context of structural mechanics, we will subsequently call fΩ the load, uΩ,fΩ the displacement
field, and C(Ω, fΩ) the compliance (actually the half compliance). We will consider a parameterized family of
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loads of the form
fΩ = fN

Ω +BΩξ, ξ ∈ H,
where fN

Ω ∈ V ′
Ω is a given nominal load, H is a fixed (i.e., independent of Ω) separable Hilbert space and

BΩ : H → V ′
Ω is a linear, compact and injective operator. We set

q(Ω, ξ) = C(Ω, fN
Ω +BΩξ).

Hence we have, for ξ ∈ H,

q(Ω, ξ) =
1
2
〈QΩξ, ξ〉 + 〈bΩ, ξ〉 + cΩ

with
QΩ = B∗

ΩA
−1
Ω BΩ, bΩ = B∗

ΩA
−1
Ω fN

Ω , cΩ =
1
2
〈
fN

Ω , A
−1
Ω fN

Ω

〉
. (2.1)

Note that QΩ : H → H is a compact self-adjoint operator satisfying QΩ ≥ 0 and QΩ 
= 0 (one supposes
H 
= {0}).

ΓD
ΓN

Ω fN
Ω

fN
Ω +BΩξ

Before continuing with the abstract framework, let us give a typical concrete example. We consider the
problem of compliance minimization for a structure submitted to an uncertain load. The structure is represented
by a domain Ω ⊂ R

d (d = 2 or d = 3), whose boundary is split into three disjoint subsets Γ , ΓD and ΓN with
meas(ΓD) > 0. Homogeneous Dirichlet boundary conditions are prescribed on ΓD, and Neumann boundary
conditions are prescribed on Γ ∪ ΓN , with zero force on Γ . We denote by H1

D(Ω)d the space of vector fields
belonging to H1(Ω)d with vanishing trace on ΓD. For a given load fΩ ∈ (H1

D(Ω)d)′ and a given displacement
u ∈ H1

D(Ω)d, the elastic energy is the quadratic functional in u defined by

EΩ(u, fΩ) = −1
2

∫
Ω

He(u) : e(u) + 〈fΩ, u〉

where e(u) = (∇u + ∇uT )/2 is the strain tensor and H is the fourth-order elasticity tensor (Hooke’s tensor)
such that He(u) is the stress tensor. The compliance is defined as

C(Ω, fΩ) = max
u∈H1

D(Ω)d
E(u, fΩ).

Therefore, setting VΩ = H1
D(Ω)d, the operator AΩ : VΩ → V ′

Ω is defined by

〈AΩu, v〉 =
∫

Ω

He(u) : e(v)
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and the compliance admits the expression

C(Ω, fΩ) =
1
2
〈fΩ, A

−1
Ω fΩ〉.

We choose H as a closed subspace of L2(ΓN )d, and we define BΩ : H → V ′
Ω by

BΩξ : u ∈ VΩ 
→
∫

ΓN

ξ.u|ΓN .

The compactness of BΩ is due to the compactness of the Sobolev embedding L2(ΓN ) → H−1/2(ΓN ). A very
standard problem in optimal design consists in minimizing the compliance with a fixed load fN

Ω , i.e.,

Minimize q(Ω, 0) = C(Ω, fN
Ω ), Ω ∈ E ,

where the set E can include constraints. One speaks of robust compliance minimization when, at the same time,
perturbations of the load are considered.

Let us now come back to the general case. In this paper we will investigate two notions of robustness and the
associated optimization problems.

(1) Stability radius as compliance robustness. Given a threshold α > C(Ω, fN
Ω ) = cΩ, the functional jsr

is defined by

jsr(Ω) =
1
2

dist(0, [q(Ω, .) > α])2 = inf
q(Ω,ξ)>α

1
2
‖ξ‖2 = inf

C(Ω,fN
Ω +BΩξ)>α

1
2
‖ξ‖2. (2.2)

Increasing this value amounts to increasing the distance to unfeasability, where unfeasability means that
the compliance is greater than α. This leads to considering the optimization problem:

Maximize jsr(Ω), Ω ∈ E ,

hence one speaks of robustness maximization.
(2) Robust compliance in the worst case sense. Given a radius r > 0, the worst case compliance is

defined by

jwc(Ω) = sup
‖ξ‖≤r

q(Ω, ξ) = sup
‖ξ‖≤r

C(Ω, fN
Ω +BΩξ). (2.3)

This is the maximal compliance obtained for a given family of loads. One naturally wants to minimize this
quantity, leading to the so-called worst case compliance minimization problem:

Minimize jwc(Ω), Ω ∈ E .

In fact it is easily checked that the inequalities in (2.2) and (2.3) can be replaced by equalities, i.e. we have

jsr(Ω) =
1
2

dist(0, [q(Ω, .) = α])2 = inf
q(Ω,ξ)=α

1
2
‖ξ‖2 = inf

C(Ω,fN
Ω +BΩξ)=α

1
2
‖ξ‖2. (2.4)

jwc(Ω) = sup
‖ξ‖=r

q(Ω, ξ) = sup
‖ξ‖=r

C(Ω, fN
Ω +BΩξ). (2.5)
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3. Expression of the robust criteria

In all this section the domain Ω is fixed. Hence, for notational simplicity, we drop the subscript Ω, denot-
ing QΩ, bΩ, cΩ by Q, b, c.

Actually, the framework of this section does not require that Q, b, c be necessarily defined by (2.1). It is
sufficient to assume that Q : H → H is a compact, self-adjoint operator with Q ≥ 0, Q 
= 0, b ∈ H, and
α, r, c ∈ R satisfy c < α and r > 0.

We shall give practical procedures to compute the values of jsr(Ω) and jwc(Ω).
The two optimization problems appearing in (2.4) and (2.5) can be formulated in the form

Minimize q1(ξ), subject to q2(ξ) = 0, ξ ∈ H, (P)

with two quadratic functionals q1 and q2 written as

q1(ξ) =
1
2
〈Q1ξ, ξ〉 + 〈b1, ξ〉 + c1, q2(ξ) =

1
2
〈Q2ξ, ξ〉 + 〈b2, ξ〉 + c2.

In all this section, these quantities are defined as follows, where I is the identity of H.

(1) Compliance robustness :

q1(ξ) =
1
2
‖ξ‖2, q2(ξ) = q(Ω, ξ) − α, (3.1)

i.e.,

Q1 = I, b1 = 0, c1 = 0,
Q2 = Q, b2 = b, c2 = c− α.

(2) Worst case robust compliance :

q1(ξ) = −q(Ω, ξ), q2(ξ) =
1
2
‖ξ‖2 − 1

2
r2, (3.2)

i.e.,

Q1 = −Q, b1 = −b, c1 = −c,
Q2 = I, b2 = 0, c2 = −r2/2.

Problems of form (P) are known in the literature as trust region problems (or subproblems). They have been
extensively studied, but almost always in the case of a finite dimensional space H, see e.g. [16–18,22,29,32,35–37].

3.1. Existence of critical loads

Theorem 3.1. Problem (P) admits at least a solution

Proof. Consider first the case (3.1). In this case, Q2 is compact with Q2 = Q ≥ 0, Q2 
= 0 and c2 = c− α < 0.
Hence q2(0) < 0 and there exists ξ0 such that q2(ξ0) = 0, so [q2 = 0] 
= ∅. Let (ξn) be a minimizing sequence.
For any β > 0, [q1 ≤ β] is a closed ball. Thus, up to a subsequence, there exists ξ ∈ H such that ξn ⇀ ξ.
By compactness of Q2, we have q2(ξ) = lim q2(ξn) = 0. Since q1 is convex and continuous, it is weakly lower-
semicontinuous, thus q1(ξ) ≤ lim inf q1(ξn) = inf [q2=0] q1.

Let us turn to the second case (3.2). Recall that, in this case, Q1 is compact, negative semi-definite. Let (ξn)
be a minimizing sequence of the problem inf [q2≤0] q1. Since [q2 ≤ 0] is a closed ball, up to a subsequence, there
exists ξ ∈ H such that ξn ⇀ ξ. By compactness of Q1, we have q1(ξ) = lim q1(ξn) = inf [q2≤0] q1. As q2 is convex
and continuous, it is weakly lower-semicontinuous, thus q2(ξ) ≤ lim inf q2(ξn) ≤ 0. Therefore, the infimum
inf [q2≤0] q1 is attained at some points of [q2 ≤ 0]. Finally, as q1 is concave and [q2 ≤ 0] is convex, at least one of
these points can be found in [q2 = 0]. �



A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY OPTIMIZATION 69

Remark 3.2. From the proof it appears that Problem (P) still admits solutions if (Q, b, c), with Q : H → H
self-adjoint, compact, is sufficiently close to (Q̄, b̄, c̄) with Q̄ : H → H self-adjoint, compact, Q̄ ≥ 0, Q̄ 
= 0 and
c̄ < α.

3.2. Dual formulation: general framework

For all (ξ, μ) ∈ H × R we associate to Problem (P) the Lagrangian

L(ξ, μ) = q1(ξ) + μq2(ξ) =
1
2
〈(Q1 + μQ2)ξ, ξ〉 + 〈b1 + μb2, ξ〉 + c1 + μc2.

The dual criterion is
g(μ) = inf

ξ∈H
L(ξ, μ).

For any self-adjoint linear continuous operator T : H → H, we have

H = ker T
⊥⊕ cl(im T ),

hence the restriction T |cl(im T ) : cl(im T ) → im T is a bijection. We denote by T † := T |−1
cl(im T ) : im T → cl(im T )

the inverse operator, which, by virtue of the open mapping theorem, is continuous as soon as im T is closed.
For all μ ∈ R such that b1 + μb2 ∈ im (Q1 + μQ2) we set

ψ(μ) = −1
2
〈(Q1 + μQ2)†(b1 + μb2), b1 + μb2〉 + c1 + μc2.

Lemma 3.3. The dual criterion is expressed by

g(μ) =

⎧⎪⎨
⎪⎩

−∞ if Q1 + μQ2 
≥ 0,

−∞ if Q1 + μQ2 ≥ 0 and b1 + μb2 /∈ im (Q1 + μQ2),

ψ(μ) if Q1 + μQ2 ≥ 0 and b1 + μb2 ∈ im (Q1 + μQ2).

Proof. We first note that the condition

∀μ ∈ R, Q1 + μQ2 ≥ 0 =⇒ im (Q1 + μQ2) is closed (3.3)

is fulfilled in the two cases under study. Indeed, in the first case, we have Q1 + μQ2 = I + μQ, whose image is
always closed since Q is compact. In the second case we have Q1 + μQ2 = −Q+ μI, and Q1 + μQ2 ≥ 0 implies
μ > 0, whereby we conclude as before. For simplicity, we set Qμ = Q1 + μQ2, bμ = b1 + μb2, cμ = c1 + μc2, so
that

g(μ) = inf
ξ∈H

qμ(ξ) :=
1
2
〈Qμξ, ξ〉 + 〈bμ, ξ〉 + cμ.

If Qμ 
≥ 0, it is clear that g(μ) = −∞. Therefore we assume now that Qμ ≥ 0. By (3.3), im Qμ is closed, thus

H = ker Qμ

⊥⊕ im Qμ.

For all ξ ∈ H, we make the decomposition ξ = ξ1 + ξ2, with ξ1 ∈ ker Qμ and ξ2 ∈ im Qμ. We get

qμ(ξ) = qμ(ξ2) + 〈bμ, ξ1〉.
Two cases can arise.

(1) If bμ 
∈ im Qμ, choosing ξ = tb̃μ with t ∈ R and b̃μ the orthogonal projection of bμ onto ker Qμ, we obtain

qμ(ξ) = t‖bμ‖2.

Letting t go to −∞ yields g(μ) = −∞.



70 S. AMSTUTZ AND M. CILIGOT-TRAVAIN

(2) If bμ ∈ im Qμ, we have qμ(ξ) = qμ(ξ2) for all ξ ∈ H, and

g(μ) = inf
ξ2∈im Qμ

qμ(ξ2) :=
1
2
〈Qμξ2, ξ2〉 + 〈bμ, ξ2〉 + cμ.

The unique minimizer of this quadratic problem is ξ2 = −Q†
μbμ, and the value of the minimum is

− 1
2 〈Q†

μbμ, bμ〉 + cμ, i.e., ψ(μ). �

The dual problem is

Maximize ψ(μ) subject to
{
Q1 + μQ2 ≥ 0,
b1 + μb2 ∈ im (Q1 + μQ2),

μ ∈ R. (D)

The following result is an adaptation of (Thm. 2.1 of [37]). Due to its importance in the sequel, we nevertheless
give a proof.

Theorem 3.4. Let ξ̄ ∈ H. The following statements are equivalent:

(1) ξ̄ is a (global) minimizer of (P);
(2) q2(ξ̄) = 0 and there exists μ̄ ∈ R such that

∂ξL(ξ̄, μ̄) = (Q1 + μ̄Q2)ξ̄ + (b1 + μ̄b2) = 0, (3.4)
∂2

ξξL(ξ̄, μ̄) = Q1 + μ̄Q2 ≥ 0; (3.5)

(3) there exists μ̄ ∈ R such that
ξ̄ ∈ argminL(., μ̄) ∩ [q2 = 0]. (3.6)

Proof. We shall prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (1).
First step. Let us assume that ξ̄ is a minimizer of (P). As the constraint is scalar, the classical constraint
qualification reduces to

∇q2(ξ̄) = Q2ξ̄ + b2 
= 0. (3.7)

In case (3.1), Q2ξ̄+ b2 = Qξ̄+ b 
= 0 since otherwise the constraint q2(ξ) = 0 would yield 〈Qξ̄, ξ̄〉 = 2(c−α) < 0.
In case (3.2), Q2ξ̄ + b2 = ξ̄ 
= 0 since ‖ξ̄‖ = r > 0.

Therefore, by the first order necessary optimality condition (see e.g., [27] 1.1.1, Thm. 1), there exists μ̄ ∈ R

such that
∂ξL(ξ̄, μ̄) = 0.

The second order necessary optimality condition reads (see e.g., [27] 7.2.1, Cor. of Thm. 1)

〈∂2
ξξL(ξ̄, μ̄)ζ, ζ〉 ≥ 0 ∀ζ ∈ Tξ̄, (3.8)

Tξ̄ = {ζ ∈ H, 〈Q2ξ̄ + b2, ζ〉 = 0}.
Now, suppose that ζ /∈ Tξ̄. We assume first that Q2ζ 
= 0. Since Q2 ≥ 0, this entails 〈Q2ζ, ζ〉 > 0. Set

t̄ = −2
〈Q2ξ̄ + b2, ζ〉

〈Q2ζ, ζ〉 
= 0, ξ = ξ̄ + t̄ζ.

After calculation we find that q2(ξ) = q2(ξ̄) = 0. This implies

L(ξ, μ̄) − L(ξ̄, μ̄) = q1(ξ) − q1(ξ̄) ≥ 0. (3.9)

Yet we have

L(ξ, μ̄) − L(ξ̄, μ̄) = t̄〈(Q1 + μ̄Q2)ξ̄ + b1 + μ̄b2, ζ〉 +
t̄2

2
〈(Q1 + μ̄Q2)ζ, ζ〉. (3.10)
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Combining (3.4), (3.9), (3.10) and t̄ 
= 0, we derive that 〈(Q1 + μ̄Q2)ζ, ζ〉 ≥ 0. Assume now that Q2ζ = 0.
As Q2 
= 0, we choose some ξ0 ∈ H such that Q2ξ0 
= 0. Let (tn) be an arbitrary sequence of positive real
numbers such that tn → 0 as n → ∞. We set ζn = ζ + tnξ0. For all n we have Q2ζn = tnQ2ξ0 
= 0, hence
〈(Q1 + μ̄Q2)ζn, ζn〉 ≥ 0. Passing to the limit yields 〈(Q1 + μ̄Q2)ζ, ζ〉 ≥ 0. We have proved that Q1 + μ̄Q2 ≥ 0.
In other words, the second order optimality condition (3.8) holds for any ζ, which is a typical fact in quadratic
programming.

Second step. Since the function ξ 
→ L(ξ, μ̄) is quadratic, a Taylor expansion immediately shows that the
conditions (3.4) and (3.5) imply ξ̄ ∈ argminL(., μ̄).

Third step. We remark that, for all μ ∈ R, it holds

[L(., μ) = q1 + δ[q2=0]] = [q2 = 0], (3.11)

with δC the indicator function of the set C, i.e., δC(x) = 0 if x ∈ C and δC(x) = +∞ if x /∈ C. By (A.2) in the
appendix, we have ξ̄ ∈ argminL(., μ̄) ∩ [q2 = 0] ⊂ argmin q1 + δ[q2=0]. �

Remark 3.5. One can also deduce the implication (1)⇒ (3) of Theorem 3.4 from the following version of the
S-lemma (see [19], for the original version in Russian).

Theorem 3.6 (S-lemma, [20], Thm. 2.1). Let si : H → R, i = 1, 2, be two quadratic functionals of the form
si : ξ → 1

2 〈Siξ, ξ〉 + 〈di, ξ〉 + ei, Si : H → H continuous and self-adjoint, di ∈ H and ei ∈ R. Suppose that s2 is
nonlinear, that there exist ξ+, ξ− ∈ H such that s2(ξ+) > 0, s2(ξ−) < 0 and

∀ξ ∈ H, s2(ξ) = 0 =⇒ s1(ξ) ≥ 0.

Then there exists λ ∈ R such that
∀ξ ∈ H, s1(ξ) − λs2(ξ) ≥ 0.

In fact, one sets s1 = q1 − q1(ξ̄), s2 = q2, s2 is nonlinear because Q2 
= 0, and there exist ξ+, ξ− ∈ H such that
s2(ξ+) > 0, s2(ξ−) < 0 due to (3.7) and q2(ξ̄) = 0. Then (1)⇒ (3) of Theorem 3.4 results from the S-lemma 3.6.

The following Theorem is a consequence of Theorem 3.4 together with general results on duality (cf. Ap-
pendix A).

Theorem 3.7. The primal problem (P) and the dual problem (D) have the same optimal values. In addi-
tion, (D) admits solutions, and, if μ̄ is one of these solutions, we have

argmin(P) = argminL(., μ̄) ∩ [q2 = 0].

Proof. In view of Theorem 3.1, Theorem 3.4 and (3.11), one uses successively (A.5), (A.3) and (A.6). �

3.3. Expression of the critical loads for the compliance robustness

In this case, with the notations (2.1), the primal problem (P) and the dual problem (D) read, respectively,

Minimize
1
2
‖ξ‖2 subject to q(ξ) :=

1
2
〈Qξ, ξ〉 + 〈b, ξ〉 + c = α, ξ ∈ H, (3.12)

Maximizeψsr(μ) = −1
2
〈(I + μQ)†(μb), μb〉 + μ(c− α) subject to

{
I + μQ ≥ 0,
μb ∈ im (I + μQ), μ ∈ R. (3.13)

We denote by λmax the largest eigenvalue of Q. The following theorem refines Theorem 3.7 and uses the same
terminology as [37].
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Theorem 3.8. The primal problem (3.12) and the dual problem (3.13) have the same optimal values. The dual
problem (3.13) admits a unique solution μ̄ ∈ R, which can be computed in the following way.

• Easy case: b /∈ ker (Q− λmaxI)⊥. Then μ̄ is the unique solution in ] − 1/λmax, 0[ of the equation

q(−μ(I + μQ)−1b) = α. (3.14)

• Hard case I: b ∈ ker (Q− λmaxI)⊥ and

q((λmaxI −Q)†b) > α. (3.15)

Then μ̄ is also the unique solution in ] − 1/λmax, 0[ of (3.14).
• Hard case II: b ∈ ker (Q− λmaxI)⊥ and q((λmaxI −Q)†b) ≤ α. Then μ̄ = −1/λmax.

The set Ξ of solutions of the primal problem (3.12) is given by the following expressions.

• Easy case and Hard case I. There is a unique critical load given by

Ξ = {−μ̄(I + μ̄Q)−1b}.

• Hard case II. The set of critical loads is

Ξ =
[
{(λmaxI −Q)†b} + ker (Q− λmaxI)

]
∩ [q = α].

Proof. Let us reformulate the constraints of the dual problem (3.13). The first one is equivalent to μ ≥ −1/λmax,
and we have by the classical theory of compact perturbations of the identity im (I + μQ) = ker (I + μQ)⊥ = H
as soon as μ > −1/λmax. Therefore we have{

I + μQ ≥ 0
μb ∈ im (I + μQ)

}
⇐⇒

{
μ > −1/λmax if b /∈ ker (Q− λmaxI)⊥

μ ≥ −1/λmax if b ∈ ker (Q− λmaxI)⊥

}
.

If −1/λmax < μ we have

ψsr(μ) = −μ
2

2
〈(I + μQ)−1b, b〉 + μ(c− α). (3.16)

Differentiating entails

ψ′
sr(μ) = −μ〈(I + μQ)−1b, b〉 +

μ2

2
〈(I + μQ)−2Qb, b〉 + (c− α) (3.17)

= q(−μ(I + μQ)−1b) − α. (3.18)

Replacing μQ by (I + μQ) − I in the second term of the right hand side of (3.17) leads to the alternative
expressions

ψ′
sr(μ) = −μ

2
〈((I + μQ)−1 + (I + μQ)−2

)
b, b〉 + (c− α) (3.19)

= −μ
2
〈(I + μQ)−2(2I + μQ)b, b〉 + (c− α). (3.20)

Differentiating another time from (3.19) yields

ψ′′
sr(μ) = −1

2
〈((I + μQ)−1 + (I + μQ)−2

)
b, b〉 +

μ

2
〈((I + μQ)−2 + 2(I + μQ)−3

)
Qb, b〉

= −〈(I + μQ)−3b, b〉. (3.21)
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Let Λ be the set of eigenvalues of Q, Λ� := Λ \ {0} and, for λ ∈ R, denote by bλ the orthogonal projection of
b on ker (Q− λI). From (3.20) we get for all μ ∈] − 1/λmax,+∞[

ψ′
sr(μ) = −μ

2

∑
λ∈Λ

2 + μλ

(1 + μλ)2
‖bλ‖2 + c− α

= −μ‖b0‖2 +
1
2

∑
λ∈Λ�

(
1

λ(1 + μλ)2
− 1
λ

)
‖bλ‖2 + c− α. (3.22)

Note that ψ′
sr(0) = c− α < 0.

• Easy case: b /∈ ker (Q − λmaxI)⊥. Then bλmax 
= 0 and, due to (3.22), limμ→(−1/λmax)+ ψ
′
sr(μ) = +∞. Due

to (3.21), it follows that ψ′
sr is decreasing and ψsr admits a unique maximizer μ̄ on ] − 1/λmax,+∞[. It is

characterized by ψ′
sr(μ̄) = 0 and obviously belongs to ] − 1/λmax, 0[.

• Hard case: b ∈ ker (Q−λmaxI)⊥. Then the expressions (3.16)–(3.18) remain true for μ = −1/λmax, provided
that the restriction of I + μQ to ker (Q− λmaxI)⊥ is considered. In particular,

ψ′
sr(−1/λmax) = q

(
(λmaxI −Q)† b

)
− α

is finite.
If ψ′

sr(−1/λmax) > 0 (hard case I), then b 
= 0. Due to (3.21), it follows that ψ′
sr is decreasing and ψsr admits

a unique maximizer μ̄ in ]−1/λmax,+∞[, characterized by ψ′
sr(μ̄) = 0 and clearly belonging to ]−1/λmax, 0[.

If ψ′
sr(−1/λmax) ≤ 0 (hard case II), in view of (3.21) and ψ′

sr(0) = c−α < 0, ψsr is decreasing and −1/λmax

is the unique maximizer of ψsr in [−1/λmax,+∞[.

By Theorem 3.7, the set of solutions of the primal problem is given by

Ξ = argminL(., μ̄) ∩ [q = α].

Here the Lagrangian is

L(ξ, μ̄) =
1
2
〈(I + μ̄Q)ξ, ξ〉 + μ̄〈b, ξ〉 + μ̄(c− α).

In the easy case and the hard case I, L(., μ̄) is strictly convex since μ̄ > −1/λmax. It admits as unique minimizer

ξ̄ = −μ̄(I + μ̄Q)−1b.

From (3.18) and ψ′
sr(μ̄) = 0 we derive that q(ξ̄) = 1

2 〈Qξ̄, ξ̄〉 + 〈b, ξ̄〉 + c = α.
In the hard case II, we have μ̄ = −1/λmax and

argminL(., μ̄) = {ξ ∈ H, (Q− λmaxI)ξ = −b}.

Using that b ∈ ker (Q− λmaxI)⊥ = im (Q− λmaxI) we obtain

argminL(., μ̄) = {(λmaxI −Q)†b} + ker (Q− λmaxI).

Observe that q(−(Q− λmaxI)†b) ≤ α confirms that Ξ 
= ∅. �

Remark 3.9. If fN
Ω ∈ im BΩ, then the expressions (3.14) and (3.15) can be conveniently rewritten. Indeed,

writing fN
Ω = BΩξ

N yields b = QξN as well as c = 1
2 〈QξN , ξN 〉. Plugging these expressions into (3.14) entails

after simplification

ψ′
sr(μ) = q

(
(I + μQ)−1ξN − ξN

)− α = C
(
Ω,BΩ(I + μQ)−1ξN

)− α.
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To conclude this section, we present an interesting connection between the dual problem (3.13) and a semidef-
inite programming problem inspired by [10].

We will need the following version of the S-lemma in Hilbert spaces . It relies on slightly different assumptions
from Theorem 3.6, but its statement is contained in the same reference (see again [19] for the original version
in Russian).

Theorem 3.10 (S-lemma [20], Thm. 2.1). Let si : H → R, i = 1, 2, be two quadratic functionals of the form
si : ξ → 1

2 〈Siξ, ξ〉 + 〈di, ξ〉 + ei, Si : H → H continuous and self-adjoint, di ∈ H and ei ∈ R, i = 1, 2. Suppose
that there exists ξ+ ∈ H such that s2(ξ+) > 0 and

∀ξ ∈ H, s2(ξ) ≥ 0 =⇒ s1(ξ) ≥ 0.

Then there exists λ ≥ 0 such that
∀ξ ∈ H, s1(ξ) − λs2(ξ) ≥ 0.

Moreover, if there exists ξ− such that s1(ξ−) < 0, one can suppose that λ > 0.

Let us consider the following problem:

Maximize ρ subject to ρB ⊂ [q ≤ α], ρ ∈ R
�
+, (3.23)

whose (unique) solution is ρ = dist(0, [q = α]) = dist(0, [q > α]) ∈ R
�
+ since c = q(0) < α and Q ≥ 0, Q 
= 0 so

there exists ξ0 such that q(ξ0) ≥ α. Yet we have for all ρ > 0

ρB ⊂ [q ≤ α] ⇐⇒ ∀ξ ∈ H, ‖ξ‖ ≤ ρ⇒ q(ξ) ≤ α,

⇐⇒ ∀ξ ∈ H, ‖ξ‖ ≤ 1 ⇒ q(ρξ) ≤ α,

⇐⇒ ∀ξ ∈ H, 1 − ‖ξ‖2 ≥ 0 ⇒ α− q(ρξ) ≥ 0.

As 1 − ‖ξ‖2 = 1 > 0 for ξ = 0 and α− q(ρξ) < 0 for some ξ, using Theorem 3.10, one obtains

ρB ⊂ [q ≤ α] ⇐⇒ ∃λ > 0, ∀ξ ∈ H, α− q(ρξ) − λ[1 − ‖ξ‖2] ≥ 0.

But q(ξ) can be expressed as

q(ξ) = max
v∈VΩ

−1
2
〈AΩv, v〉 + 〈fN

Ω +BΩξ, v〉,
whereby

α− q(ρξ) − λ[1 − ‖ξ‖2] ≥ 0 ⇐⇒ ∀v ∈ VΩ,
1
2
〈AΩv, v〉 + λ‖ξ‖2 − ρ〈BΩξ, v〉 − 〈fN

Ω , v〉 + α− λ ≥ 0.

Changing (ξ, v) into (s−1ξ, s−1v) for any s 
= 0, one also has

∀ξ ∈ H, α− q(ρξ) − λ[1 − ‖ξ‖2] ≥ 0 ⇐⇒ ∀(v, ξ, s) ∈ VΩ ×H × R,

1
2
〈AΩv, v〉 + λ‖ξ‖2 − ρ〈BΩξ, v〉 − s〈fN

Ω , v〉 + (α− λ)s2 ≥ 0,

⇐⇒
⎡
⎣ AΩ ρBΩ (fN

Ω )∗
ρB∗

Ω 2λI 0
fN

Ω 0 2(α− λ)

⎤
⎦ ≥ 0,

where (fN
Ω )∗ : R → V ′

Ω is defined as s→ sfN
Ω . Finally

ρB ⊂ [q ≤ α] ⇐⇒ ∃λ > 0,

⎡
⎣ AΩ ρBΩ (fN

Ω )∗
ρB∗

Ω 2λI 0
fN

Ω 0 2(α− λ)

⎤
⎦ ≥ 0. (3.24)
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Therefore, ρ̄ > 0 is the solution of (3.23) if and only if there exists λ̄ > 0 such that (ρ̄, λ̄) is solution of:

Maximize ρ subject to

⎡
⎣ AΩ ρBΩ (fN

Ω )∗
ρB∗

Ω λI 0
fN

Ω 0 2α− λ

⎤
⎦ ≥ 0, ρ, λ ∈ R

�
+. (3.25)

Note that the above matrix is affine in (ρ, λ) and that, as Problem (3.23) admits a solution, it is also the case
for Problem (3.25).

Proposition 3.11. Problem (3.25) admits a unique solution (ρ̄, λ̄). This solution is such that ρ̄ = dist(0, [q >
α]) and −ρ̄2/λ̄ is the solution of the dual problem (3.13).

Proof. Let (ρ̄, λ̄) be a solution of (3.25). The constraint implies

∀ξ ∈ H, α− q(ρ̄ξ) − λ̄

2
[1 − ‖ξ‖2] ≥ 0. (3.26)

Let ξ̄ be a solution of the primal problem (P). Substituting ξ for ρ̄ξ in (3.26) and multiplying by ρ̄2/λ̄ we arrive
at

∀ξ ∈ H, 1
2
‖ξ‖2 − ρ̄2

λ̄
[q(ξ) − α] ≥ 1

2
ρ̄2 =

1
2
‖ξ̄‖2.

As q(ξ̄) = α we can write

∀ξ ∈ H, 1
2
‖ξ‖2 − ρ̄2

λ̄
[q(ξ) − α] ≥ 1

2
‖ξ̄2‖ − ρ̄2

λ̄
[q(ξ̄) − α].

It follows that
ξ̄ ∈ argminL(.,−ρ̄2/λ̄) ∩ [L(.,−ρ̄2/λ̄) =

1
2
‖.‖2]

thus, by virtue of (A.7), −ρ̄2/λ̄ is the solution of the dual problem (3.13). The uniqueness of the solution of the
dual problem and the implication just proved imply the uniqueness of the solution of problem (3.25). �

3.4. Expression of the critical loads for the robust compliance in the worst case sense

Here, using again the notation (2.1), the primal problem (P) and the dual problem (D) are equivalent,
respectively, to:

Minimize−q(ξ) = −1
2
〈Qξ, ξ〉 − 〈b, ξ〉 − c subject to ‖ξ‖ = r, ξ ∈ H, (3.27)

Maximize
1
2
〈(Q− μI)†b, b〉 − c− μ

r2

2
subject to

{−Q+ μI ≥ 0,
b ∈ im (Q− μI), μ ∈ R. (3.28)

The largest eigenvalue of Q is still denoted by λmax. Applying Theorem 3.7 similarly to Theorem 3.8 provides
the following result.

Theorem 3.12. The primal problem (3.27) and the dual problem (3.28) have the same optimal values. The
dual problem (3.28) admits a unique solution μ̄ ∈ R, which can be computed in the following way.

• Easy case: b /∈ ker (Q− λmaxI)⊥. Then μ̄ is the unique solution in ]λmax,+∞[ of the equation

‖(−Q+ μI)−1b‖ = r. (3.29)

• Hard case I: b ∈ ker (Q − λmaxI)⊥ and ‖(−Q + λmaxI)†b‖ > r. Then μ̄ is also the unique solution in
]λmax,+∞[ of (3.29).



76 S. AMSTUTZ AND M. CILIGOT-TRAVAIN

• Hard case II: b ∈ ker (Q− λmaxI)⊥ and ‖(−Q+ λmaxI)†b‖ ≤ r. Then μ̄ = λmax.

The set Ξ of solutions of the primal problem (3.27) is given by the following expressions.

• Easy case and Hard case I. There is a unique critical load given by

Ξ = {(−Q+ μ̄I)−1b}.
• Hard case II. The set of critical loads is

Ξ =
[
{(−Q+ λmaxI)†b} + ker (Q− λmaxI)

]
∩ [ ‖ . ‖ = r].

As in the preceding subsection, we present a connection between the dual problem (3.28) and a semidefinite
programming problem. Let us consider the following problem:

Minimize α subject to rB ⊂ [q ≤ α], α ∈ R, (3.30)

where r > 0 and whose (unique) solution is α = sup‖ξ‖≤r q(ξ).
Therefore, using (3.24), ᾱ is the solution of (3.30) if and only if there exists λ̄ > 0 such that (ᾱ, λ̄) is solution of:

Minimize α subject to

⎡
⎣ AΩ rBΩ (fN

Ω )∗
rB∗

Ω λI 0
fN

Ω 0 2α− λ

⎤
⎦ ≥ 0, α ∈ R, λ ∈ R

�
+. (3.31)

Note that the above matrix is affine in (α, λ) and that, as problem (3.30) admits a solution, the same holds for
problem (3.31). Similarly to Proposition 3.11 we obtain the following.

Proposition 3.13. Problem (3.31) admits a unique solution (ᾱ, λ̄). This solution is such that ᾱ = sup‖ξ‖≤r q(ξ)
and λ̄/r2 is the solution of the dual problem (3.28).

4. Hadamard semiderivative of the robust criteria

The functionals jsr(Ω) and jwc(Ω) can be written as

jsr(Ω) = Jsr(wΩ), jwc(Ω) = Jwc(wΩ), (4.1)

with wΩ = (QΩ, bΩ, cΩ) defined by (2.1), wΩ ∈ W := Ks(H) × H × R, where Ks(H) stands for the space of
self-adjoint compact linear operators from H into itself. Moreover Jsr, Jwc : W → R ∪ {+∞} are defined, for
w ∈ W , by

Jsr(w) = inf
q(w,ξ)=α

1
2
‖ξ‖2, (4.2)

and
Jwc(w) = sup

‖ξ‖=r

q(w, ξ) (4.3)

with, for w = (Q, b, c) ∈W ,

q(w, ξ) =
1
2
〈Qξ, ξ〉 + 〈b, ξ〉 + c.

In view of (4.1), calculating the shape derivative or the topological derivative of jsr or jwc requires to calculate
the Hadamard semiderivative of Jsr or Jwc. This is the aim of this section. The sensitivity of w with respect
to Ω, specifically its topological derivative, will be studied in Section 5.

Our approach, on one hand, adapts the proof of Theorem 4.24 in [12] to a slightly different context, while, on
the other hand, it shows that the modified assumptions of this Theorem, in particular the strong assumption (iii),
are fulfilled.

In all this section, we consider some w̄ = (Q̄, b̄, c̄) ∈W with Q̄ : H → H a self–ajoint compact operator such
that Q̄ ≥ 0, Q̄ 
= 0 and some α, r ∈ R with c̄ < α, r > 0.
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4.1. Hadamard semiderivatives

Let X be a Banach space and consider a function f : X → R ∪ {−∞,+∞}. If z, d ∈ X and f(z) ∈ R the
upper and lower Hadamard semiderivatives of f at point z in direction d are defined, respectively, as

f ′
+(z, d) = lim sup

t↓0
v→d

f(z + tv) − f(z)
t

, f ′
−(z, d) = lim inf

t↓0
v→d

f(z + tv) − f(z)
t

·

If f ′
+(z, d) = f ′−(z, d), their common value is called the Hadamard semiderivative of f at point z in direction d,

denoted by f ′(z, d).

4.2. Hadamard semiderivative of the compliance robustness

Let w ∈ W and denote by Ξ(w) the minimizing set of (4.2). Recall that the Lagrangian of this problem is

L(w, ξ, μ) =
1
2
‖ξ‖2 + μ(q(w, ξ) − α),

and that the dual criterion is
g(w, μ) = inf

ξ∈H
L(w, ξ, μ).

We denote by μ̄ the unique solution of the dual problem for w̄, i.e. the unique element of argmax g(w̄, .).

Lemma 4.1. Let ξ̄ ∈ H be such that q(w̄, ξ̄) = α. There exists a neighborhood W of w̄ and a function Sw̄,ξ̄ :
W → H of class C∞ such that Sw̄,ξ̄(w̄) = ξ̄ and

q(w, Sw̄,ξ̄(w)) = α ∀w ∈ W .

Proof. Consider the function F : (w, s) ∈W × R 
→ q(w, sξ̄) − α, which is clearly of class C∞. We have

∂sF (w̄, 1) = 〈Q̄ξ̄, ξ̄〉 + 〈b̄, ξ̄〉 =
1
2
〈Q̄ξ̄, ξ̄〉 − (c̄− α),

due to q(w̄, ξ̄) = α. Using that Q̄ ≥ 0 and c̄ < α we infer ∂sF (w̄, 1) > 0. The implicit function theorem leads to
the result. �

Lemma 4.2. We have, for any h̄ ∈W ,

(Jsr)′+(w̄, h̄) ≤ inf
ξ̄∈Ξ(w̄)

∂wL(w̄, ξ̄, μ̄)h̄.

Proof. Choose an arbitrary ξ̄ ∈ Ξ(w̄). Let (tn, hn) ∈ R
∗
+ ×W be such that tn → 0, hn → h̄, and

(Jsr)′+(w̄, h̄) = lim
n→+∞

Jsr(w̄ + tnhn) − Jsr(w̄)
tn

·

We assume that n is large enough so that wn := w̄+tnhn ∈ W . Denoting ξn := Sw̄,ξ̄(wn), we have q(wn, ξn) = α,
hence (4.2) entails

Jsr(wn) ≤ 1
2
‖ξn‖2 = L(wn, ξn, μ)

for any μ ∈ R. As ξ̄ ∈ Ξ(w̄), (4.2) also yields

Jsr(w̄) =
1
2
‖ξ̄‖2 = L(w̄, ξ̄, μ).
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Therefore we have
Jsr(wn) − Jsr(w̄)

tn
≤ L(wn, ξn, μ) − L(w̄, ξ̄, μ)

tn
·

For all w in a neighborhood of w̄ we set

Φ(w) = L(w, Sw̄,ξ̄(w), μ).

We have
L(wn, ξn, μ) − L(w̄, ξ̄, μ) = Φ(wn) − Φ(w̄) = dΦ(w̄)(tnhn) + on→+∞(tnhn),

since Φ is Fréchet differentiable by composition. The chain rule gives, for v ∈ H,

dΦ(w̄)(v) = ∂wL(w̄, ξ̄, μ)v + ∂ξL(w̄, ξ̄, μ)(dSw̄,ξ̄(w̄)v).

We can choose μ = μ̄, for which it holds ∂ξL(w̄, ξ̄, μ̄) = 0. We arrive at dΦ(w̄)(v) = ∂wL(w̄, ξ̄, μ̄)v, and

Jsr(w̄ + tnhn) − Jsr(w̄)
tn

≤ ∂wL(w̄, ξ̄, μ̄)hn + o(1).

Passing to the limit yields
(Jsr)′+(w̄, h̄) ≤ ∂wL(w̄, ξ̄, μ̄)h̄.

This being true for any ξ̄ ∈ Ξ(w̄), we arrive at the desired result. �

Lemma 4.3. For any h̄ ∈W we have

(Jsr)′−(w̄, h̄) ≥ inf
ξ̄∈Ξ(w̄)

∂wL(w̄, ξ̄, μ̄)h̄.

Proof. Let (tn, hn) ∈ R
∗
+ ×W be such that tn → 0, hn → h̄, and

(Jsr)′−(w̄, h̄) = lim
n→+∞

Jsr(w̄ + tnhn) − Jsr(w̄)
tn

·

For all n we set wn = w̄ + tnhn and choose some ξn ∈ Ξ(wn) (cf. Rem. 3.2).

Step 1. We choose an arbitrary ξ ∈ H such that q(w̄, ξ) = α. By Lemma 4.1, there exists a neighborhood W
of w̄ and a function Sw̄,ξ : W → H of class C∞ such that Sw̄,ξ(w̄) = ξ and

q(w, Sw̄,ξ(w)) = α ∀w ∈ W .

Since wn → w̄, it holds for n large enough q(wn, Sw̄,ξ(wn)) = α, hence

1
2
‖ξn‖2 ≤ 1

2
‖Sw̄,ξ(wn)‖2. (4.4)

This shows that the sequence (ξn) is bounded. Therefore there exists ξ̄ ∈ H such that ξn ⇀ ξ̄ weakly for some
non-relabeled subsequence.

Step 2. We shall show that ξ̄ ∈ Ξ(w̄). From wn = w̄ + tnhn and q(wn, ξn) = α, denoting hn = (Qn, bn, cn), we
obtain

q(wn, ξn) =
1
2
〈(Q̄+ tnQn)ξn, ξn〉 + 〈b̄+ tnbn, ξn〉 + c̄+ tncn = α. (4.5)

We have Q̄ + tnQn → Q̄, Q̄ compact, b̄ + tnbn → b̄, c̄ + tncn → c̄ and ξn ⇀ ξ̄. Hence (Q̄ + tnQn)ξn → Q̄ξ̄
strongly and 1

2 〈(Q̄+ tnQn)ξn, ξn〉 → 1
2 〈Q̄ξ̄, ξ̄〉. Passing to the limit in (4.5) yields

1
2
〈Q̄ξ̄, ξ̄〉 + 〈b̄, ξ̄〉 + c̄ = q(w̄, ξ̄) = α.
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Moreover, since ξn ⇀ ξ̄ and Sw̄,ξ(wn) → Sw̄,ξ(w̄) = ξ, (4.4) entails

1
2
‖ξ̄‖2 ≤ 1

2
lim inf
n→+∞ ‖ξn‖2 ≤ 1

2
lim inf
n→+∞ ‖Sw̄,ξ(wn)‖2 =

1
2
‖ξ‖2.

This proves that ξ̄ ∈ Ξ(w̄).

Step 3. From Theorem 3.7, we have Jsr(w̄) = g(w̄, μ̄) = infξ∈H L(w̄, ξ, μ̄). It follows that Jsr(w̄) ≤ L(w̄, ξn, μ̄).
As ξn ∈ Ξ(wn), we have Jsr(wn) = 1

2‖ξn‖2 = L(wn, ξn, μ̄). We arrive at

Jsr(wn) − Jsr(w̄)
tn

≥ L(wn, ξn, μ̄) − L(w̄, ξn, μ̄)
tn

·

Yet we have
L(wn, ξn, μ̄) − L(w̄, ξn, μ̄)

tn
= μ̄

[
1
2
〈Qnξn, ξn〉 + 〈bn, ξn〉 + cn

]
.

Denoting h̄ = (Q, b, c) and using that Qn → Q compact, bn → b, cn → c and ξn ⇀ ξ̄ weakly, one obtains

L(wn, ξn, μ̄) − L(w̄, ξn, μ̄)
tn

−→ μ̄

[
1
2
〈Qξ̄, ξ̄〉 + 〈b, ξ〉 + c

]
= ∂wL(w̄, ξ̄, μ̄)h̄.

It follows that

(Jsr)′−(w̄, h̄) = lim
n→+∞

Jsr(w̄ + tnhn) − Jsr(w̄)
tn

≥ ∂wL(w̄, ξ̄, μ̄)h̄.

The proof is therefore complete. �

From Lemmas 4.2 and 4.3, we derive the following.

Theorem 4.4. For any h̄ ∈W , Jsr admits a Hadamard semiderivative at point w̄ in the direction h̄ given by

J ′
sr(w̄, h̄) = inf

ξ̄∈Ξ(w̄)
∂wL(w̄, ξ̄, μ̄)h̄ = inf

ξ̄∈Ξ(w̄)
μ̄q(h̄, ξ̄),

where μ̄ is the unique solution of the dual problem (3.13).

4.3. Hadamard semiderivative of the robust compliance in the worst case sense

We denote by Ξ(w̄) the maximizing set of (4.3) with w = w̄, which has been obtained in Theorem 3.12.
Slightly adapting the proof of Theorem 4.13 in [12], one obtains the following result.

Theorem 4.5. For any h̄ ∈ W , the worst case functional Jwc admits a Hadamard semiderivative at point w̄
in the direction h̄ given by

J ′
wc(w̄, h̄) = sup

ξ̄∈Ξ(w̄)

∂wq(w̄, ξ̄)h̄ = sup
ξ̄∈Ξ(w̄)

q(h̄, ξ̄).

5. Topological derivative of the robust criteria

Consider a reference domain Ω = Ω0 ∈ E and a family of perturbed domains (Ωt)t>0 such that, for all t
small enough, Ωt ∈ E . We choose for simplicity a nominal load of the form fN

Ω = BΩξ
N ∈ V ′

Ω with ξN ∈ H. As
in the previous sections, set wΩ = (QΩ, bΩ, cΩ) with

QΩ = B∗
ΩA

−1
Ω BΩ, bΩ = B∗

ΩA
−1
Ω BΩξ

N = QΩξ
N , cΩ =

1
2
〈B∗

ΩA
−1
Ω BΩξ

N , ξN 〉 =
1
2
〈QΩξ

N , ξN 〉.

We make the following assumption, which will be verified for specific problems in Section 6.
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Assumption 5.1. There exists δ > 0 and a self-adjoint linear operator GΩ : H → H such that

〈QΩtξ, ξ〉 − 〈QΩξ, ξ〉 = t〈GΩξ, ξ〉 +O(t1+δ) ∀ξ ∈ H.

Lemma 5.2. The function t ∈ R+ 
→ QΩt ∈ L(H) admits a right derivative at 0 given by

d
dt

[QΩt ]|t=0 = GΩ .

Proof. Assumption 5.1 and the polarization identity entail

〈QΩtξ, ζ〉 − 〈QΩ, ξ, ζ〉 = t〈GΩξ, ζ〉 +O(t1+δ) ∀ξ, ζ ∈ H,

that is,

∀ξ, ζ ∈ H, sup
t>0

t−δ

∣∣∣∣
〈(

QΩt −QΩ

t
−GΩ

)
ξ, ζ

〉∣∣∣∣ < +∞.

By the Banach–Steinhaus’s theorem we obtain

∀ξ ∈ H, sup
t>0

t−δ

∥∥∥∥
(
QΩt −QΩ

t
−GΩ

)
ξ

∥∥∥∥
H
< +∞.

Another application of the Banach-Steinhaus theorem yields

sup
t>0

t−δ

∥∥∥∥QΩt −QΩ

t
−GΩ

∥∥∥∥
L(H)

< +∞.

In particular we have

lim
t↓0

∥∥∥∥QΩt −QΩ

t
−GΩ

∥∥∥∥
L(H)

= 0,

and the proof is achieved. �

The following theorem states the right derivative of t→ jsr(Ωt).

Theorem 5.3. The function t 
→ jsr(Ωt) admits a right derivative at 0 given by

d
dt

[jsr(Ωt)]|t=0 = inf
ξ̄∈Ξ

1
2
μ̄〈ξN + ξ̄, GΩ(ξN + ξ̄)〉, (5.1)

where Ξ is the set of solutions of the primal problem (3.12) and μ̄ is the solution of the dual problem (3.13).

Proof. By Lemma 5.2, we get that the map t 
→ wΩt admits a right derivative at 0 given by

d
dt

[QΩt ]|t=0 = GΩ ,
d
dt

[bΩt ]|t=0 = GΩξ
N ,

d
dt

[cΩt ]|t=0 =
1
2
〈GΩξ

N , ξN 〉. (5.2)

Next, with the notation of Section 4, we have

jsr(Ωt) = Jsr(wΩt).

By composition (see, e.g., [12], Prop. 2.47), the function t 
→ jsr(Ωt) admits a right derivative at 0 given by

d
dt

[jsr(Ωt)]|t=0 = J ′
sr

(
wΩ,

d
dt

[wΩt ]|t=0

)
.
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Theorem 4.4 yields

d
dt

[jsr(Ωt)]|t=0 = inf
ξ̄∈Ξ

μ̄

[
1
2

〈
d
dt

[QΩt ]|t=0ξ̄, ξ̄

〉
+
〈

d
dt

[bΩt ]|t=0, ξ̄

〉
+

d
dt

[cΩt ]|t=0

]
.

Using (5.2) we arrive at

d
dt

[jsr(Ωt)]|t=0 = inf
ξ̄∈Ξ

μ̄

[
1
2
〈
GΩ ξ̄, ξ̄

〉
+
〈
GΩξ

N , ξ̄
〉

+
1
2
〈
GΩξ

N , ξN
〉]
.

A rearrangement completes the proof. �

6. Algorithm

6.1. Problem setting

In the examples we will present we want to minimize

J (Ω) := Φ(jsr(Ω)) + �|Ω|,
where Φ : R

∗
+ → R is a smooth and decreasing function, � is a user-given Lagrange multiplier, and |Ω| is the

Lebesgue measure of Ω. In order to maintain jsr(Ω) positive during the iterations, we further assume that
limt→0 Φ(t) = +∞. In our computations, for numerical purposes, we have used the function with moderate
growth Φ(t) = − log t.

We choose E as the set of all subdomains of a fixed “hold-all” domain D ⊂ R
N . Our model problem is that

of linear elasticity, with the following standard framework. The domain Ω is occupied by an elastic material of
unitary Young modulus, and its complement D\Ω is filled with a weak phase, i.e., a fictitious material with
small Young modulus ε. This permits to formulate the equilibrium equations, represented by the operator AΩ , in
the fixed domain D. Therefore the function space VΩ is the subspace H1

D(D)N including the Dirichlet boundary
condition on the appropriate part ΓD of ∂Ω. The Hilbert space H and the operator BΩ : H → V ′

Ω may be
arbitrary but BΩ is assumed to be independent of Ω.

For some x̂ ∈ D \ ∂Ω, we consider the topological perturbation

Ωt =
{
Ω \ B(x̂, ρ(t)) if x̂ ∈ Ω,
(Ω ∪ B(x̂, ρ(t))) ∩D if x̂ ∈ D \Ω,

with ρ(t) = t1/N .

6.2. Optimality condition

The derivative of J (Ωt) with respect to t is the so called topological derivative. It is given by the chain rule:

gΩ(x̂) :=
d
dt

[J (Ωt)]|t=0 = Φ′(jsr(Ω))
d
dt

[jsr(Ωt)]|t=0 + �
d
dt

[|Ωt|]|t=0.

Of course, this is only valid if the topological derivatives d
dt [jsr(Ωt)]|t=0 and d

dt [|Ωt|]|t=0 exist. For this latter
one this is obviously true. In the two dimensional case N = 2 in which we henceforth place ourselves we have

d
dt

[|Ωt|]|t=0 =
{−π if x̂ ∈ Ω,
π if x̂ ∈ D \Ω.

The expression of d
dt [jsr(Ωt)]|t=0 has been obtained in Theorem 5.3 upon Assumption 5.1. The operatorGΩ that

satisfies Assumption 5.1 is associated with the topological derivative of the classical compliance. Its expression
is known as (see [4, 6]):

〈GΩξ, ξ〉 = −π r − 1
κr + 1

κ+ 1
2

[
2σ : e+

(ε− 1)(κ− 2)
κ+ 2ε− 1

tr σ tr e
]
,
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with

r =
{
ε if x̂ ∈ Ω,
ε−1 if x̂ ∈ D \Ω,

κ = (λL + 3μL)/(λL +μL), λL, μL the Lamé coefficients of the material, and (σ, e) the stress and strain tensors
respectively at point x̂ for the load BΩξ.

A necessary optimality condition for this class of perturbations is clearly

gΩ(x̂) ≥ 0 ∀x̂ ∈ D, (6.1)

which is the starting point of our algorithm.

6.3. Description of the algorithm

In order to solve (6.1) we use the algorithm introduced in [6] and further analyzed in [5]. We recall its main
features. Each domain Ω is represented by a smooth function ψΩ : D → R such that

Ω = {x ∈ D,ψΩ(x) < 0}.
Such a level-set representation is very standard in shape optimization. It is usually combined with a Hamilton–
Jacobi evolution equation, see [3,31] to cite only the seminal works. However the Hamilton–Jacobi’s formulation
does not allow to easily nucleate holes, which can be a serious limitation in topology optimization. We proceed
differently, defining first the signed topological derivative as

g̃Ω(x̂) =
{−gΩ(x̂) if x̂ ∈ Ω,

gΩ(x̂) if x̂ /∈ Ω.

It appears that (6.1) will be solved as soon as

g̃Ω ∼ ψΩ, (6.2)

with the equivalence relation ∼ defined by

ψ1 ∼ ψ2 ⇐⇒ ∃α > 0, ψ1 ∼ αψ2.

We apply to (6.2) the fixed point iteration with relaxation, i.e., the update of the function ψΩ at iteration k is

ψΩk+1 ∼ (1 − ωk)ψΩk
+ ωkg̃Ωk

.

The parameter ωk ∈]0, 1] acts as step size and is fixed at every iteration by a line search.

Remark 6.1. Consider a combination of disjoint topological perturbations, such as for instance

Ωt = Ω \
n⋃

i=1

B(x̂i, ρ(t)).

The topological derivative of the compliance is additive with respect to the perturbation (see [7]), i.e.,

GΩ =
n∑

i=1

GΩ,i,

where GΩ,i is the topological derivative for a single perturbation. The topological derivative of Ω → jsr(Ω) for
the combination of perturbations is then

d
dt

[jsr(Ωt)]|t=0 = inf
ξ̄∈Ξ

μ̄

n∑
i=1

〈GΩ,i(ξN + ξ̄), ξN + ξ̄〉 ≥
n∑

i=1

inf
ξ̄∈Ξ

μ̄〈GΩ,i(ξN + ξ̄), ξN + ξ̄〉.

This means that jsr is superadditive with respect to the perturbation, hence a combination of descent directions
for the functional J still provides a descent direction (recall that Φ is decreasing).
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Figure 1. Beam: obtained domains for one load (left) and two loads (right).

For solving the dual problem (3.14) in the easy case and the hard case I, we have contented ourselves with
the bisection method, as in our examples the space H was of small dimension.

Also, we have always encountered simple eigenvalues λmax. In such cases the set of critical loads Ξ consists
of at most two points, therefore solving the minimization problem in (5.1) is trivial. Further investigation would
be needed to design a numerical procedure able to deal with the general case.

7. Numerical examples

In the subsequent computations, the linear elasticity equations are solved by means of P1 finite elements
(recall that the space dimension is N = 2), leading to a stiffness matrix denoted by KΩ. We consider a finite-
dimensional space of perturbations H, say H = R

m equipped with its canonical inner product and its canonical
basis (ei)m

i=1. Each ei corresponds to an applied load φi and a force vector Fi in the finite element framework.
Then the matrix QΩ admits the entries:

[QΩ]ij =
1
2
FT

i K
−1
Ω Fj .

7.1. Beam

The hold all domain D is the unit square ]0, 1[×]0, 1[, with a Dirichlet boundary condition on the left side.
We denote by p the middle of the right side and by φ1 the unit horizontal force applied at p. The nominal load
fN

Ω corresponds to φ1.
At first we consider a one-dimensional space H, for which the value ξ = 1 of the parameter corresponds to

the force φ1. The threshold α is chosen as 10 times the compliance of the initial domain, which is the band
]0, 1[×]0.4, 0.6[, under the nominal load. The Lagrange multiplier for the area is fixed to � = 10. In this situation,
only the easy case occurs. The optimized domain is represented in Figure 1, left. The convergence history of the
criterion J is shown in Figure 2, left.

Next we add a unit vertical force φ2, still applied at point p, and represented by the parameter ξ = (0, 1)
in the space H = R

2. The force φ1, represented by the parameter ξN = (1, 0), remains the nominal load. The
other data are unchanged. The optimized domain is given in Figure 1, right, with the convergence history in
Figure 2, right. For comparison, note that the area of this domain (0.168) is close to the area obtained in the
previous case (0.160). The configuration at convergence is the hard case II, with the critical loads (including
the nominal load) corresponding to the forces 1.09φ1 ± 0.76φ2.
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Figure 2. Beam: convergence histories for one load (left) and two loads (right).

7.2. Mast

For this problem the hold-all domain D is the union of the rectangles ] − 1, 1[×]0, 4[ and ] − 2, 2[×]4, 6[. A
Dirichlet boundary condition is applied at the bottom side. We consider 4 forces:

• φ1 is the force of components (0,−1) applied at point p1 = (−1, 4);
• φ2 is the force of components (0,−1) applied at point p2 = (1, 4);
• φ3 is the force of components (1, 0) applied at point p1;
• φ4 is the force of components (1, 0) applied at point p2.

The nominal load corresponds to the forces φ1 and φ2 applied simultaneously.
As first case we again consider a one-dimensional space of perturbations, spanned by the nominal load. The

forces φ3 and φ4 are not taken into account. The initialization is the full domain D, and α is chosen as 10 times
the compliance of this domain under the nominal load. The Lagrange multiplier � is fixed to 0.8. The optimized
domain is represented in Figure 3, left.

Then we consider a two-dimensional space of perturbations, spanned by the forces φ1 and φ2 applied inde-
pendently. All the other data are unchanged. The optimized domain is represented in Figure 3, middle. Due to
the symmetry of the problem, this is a hard case II. The critical loads are 1.98φ1 + 1.01φ2 and 1.01φ1 + 1.98φ2.

Finally we consider four independent perturbations, given by the forces φ1, φ2, φ3 and φ4. We obtain the
domain represented in Figure 3, right. This is again a hard case II, with the critical loads given by 1.28φ1 +
1.09φ2 − 0.30φ3 − 0.39φ4 and its symmetric 1.09φ1 + 1.28φ2 + 0.39φ3 + 0.30φ4.

From the first case to the last one, we clearly observe, first, a stiffening under non-symmetric vertical load,
then, a stiffening under horizontal load.

Appendix A. Lagrangian duality

Here we gather useful results on general Lagrangian duality theory, which are essentially reformulations of
classical results found in [26, 28, 33]. We nevertheless provide concise proofs for completeness.

Let X,Y be two sets and L : X × Y → R := R ∪ {−∞,+∞} be an application, called the Lagrangian. We
define

f(x) = sup
y∈Y

L(x, y), x ∈ X,

g(y) = inf
x∈X

L(x, y), y ∈ Y.

The duality theory aims at finding relations between the primal problem

Minimize f(x), x ∈ X, (P)
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Figure 3. Mast: obtained domains for one load (left), two loads (middle) and four loads (right).

and the so-called dual problem
Maximize g(y), y ∈ Y. (D)

We denote by v(P) = infx∈X f(x) and v(D) = supy∈Y g(y) the values of the primal and the dual problems,
respectively.

Moreover, for any y ∈ Y , we consider the problem

Minimize L(x, y), x ∈ X, (Ly)

with value v(Ly) = infx∈X L(x, y) = g(y). We always have (weak duality):

∀y ∈ Y, v(Ly) ≤ v(D) ≤ v(P). (A.1)

Theorem A.1.

(1) For all y ∈ Y it holds
argmin(Ly) ∩ [L(., y) = f ] ⊂ argmin(P). (A.2)

(2) For all y ∈ Y it holds

v(P) = v(Ly) ⇐⇒
{
y ∈ argmax(D),
v(D) = v(P).

(A.3)

(3) We have the relations:

v(P) = v(Ly) =⇒ argmin(Ly) ∩ [L(., y) = f ] = argmin(P). (A.4)

(4) For all y ∈ Y it holds
argmin(Ly) ∩ [L(., y) = f ] 
= ∅ =⇒ v(Ly) = v(P), (A.5)

hence
argmin(Ly) ∩ [L(., y) = f ] 
= ∅ =⇒ argmin(Ly) ∩ [L(., y) = f ] = argmin(P). (A.6)

(5) We always have {
y ∈ Y

∣∣ argmin(Ly) ∩ [L(., y) = f ] 
= ∅
}
⊂ argmax(D). (A.7)
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Proof.

(1) If x̄ ∈ argmin(Ly) ∩ [L(., y) = f ] then, for all x ∈ X , f(x̄) = L(x̄, y) ≤ L(x, y) ≤ f(x).
(2) If v(Ly) = v(P), using (A.1), one obtains v(D) = v(P) = v(Ly) = g(y) and y ∈ argmax(D). If y ∈

argmax(D) and v(D) = v(P) then v(Ly) = g(y) = v(D) = v(P).
(3) If x̄ ∈ argmin(P) then L(x̄, y) ≤ f(x̄) = v(P) = v(Ly) ≤ L(x, y) for all x ∈ X . In particular L(x̄, y) = f(x̄)

and x̄ ∈ argmin(Ly). The reverse inclusion is given by (A.2).
(4) If x̄ ∈ argmin(Ly) ∩ [L(., y) = f ] then

v(P) = inf
x∈X

f(x) ≤ f(x̄) = L(x̄, y) = v(Ly) = inf
x∈X

L(x, y) ≤ inf
x∈X

f(x) = v(P).

(5) If argmin(Ly)∩ [L(., y) = f ] 
= ∅, then using (A.5), one infers v(Ly) = v(P). We conclude using (A.3). �
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